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IN THIS SUPPLEMENT, I formally show that the weakly belief-free equilibria
identified in Section 4 lie above the Pareto frontier of the belief-free equilib-
rium payoff set. The proof is based on the characterization theorem by Ely,
Horner, and Olszewski (2005) (referred to as EHO hereafter).

To explain their characterization of the belief-free equilibrium payoffs, I first
introduce the notion of regime A and an associated value MA

i . Using these
concepts, I then find an upper bound for the belief-free equilibrium payoffs.
A regime A = A1 × A2 is a product of nonempty subsets of the stage game ac-
tion sets Ai ⊂ Ai, Ai �= ∅, i = 1�2. In each period of a belief-free equilibrium,
players typically have multiple best-reply actions and they are played with pos-
itive probabilities. A regime corresponds to the set of such actions. For each
regime A, define a number

MA
i = supvi

such that for some mixed action α−i whose support is A−i and xi : A−i ×Ω−i →
R+,

vi ≥ g(ai�α−i)−
∑

a−i�ω−i

xi(a−i�ω−i)p−i(ω−i|ai� a−i)α−i(a−i)

for all ai with equality if ai ∈ Ai, where p−i(ω−i|ai� a−i) is the marginal distri-
bution of ω−i given action profile (ai� a−i). Intuitively, the positive number xi

represents the reduction in player i’s future payoffs. Note that a belief-free
equilibrium has the property that player i’s payoff is solely determined by the
opponent’s strategy. This is why the reduction in i’s future payoffs, xi, de-
pends on the opponent’s action and signal (a−i�ω−i). Note also that the op-
ponent’s action a−i is restricted to the component A−i of the current regime
A = Ai × A−i. The above set of inequalities ensures that player i’s best reply
actions in the current period correspond to set Ai, a component of the regime
A = Ai × A−i. Hence, the value MA

i is closely related to the best belief-free
payoff when the current regime is A (a more precise explanation will be given
below).

Now let V ∗ be the limit set of belief-free equilibrium payoffs when δ → 1.
EHO provided an explicit formula to compute V ∗. For our purpose here, I only
sketch the relevant part of their characterization to obtain a bound for V ∗. In
Section 4.1, EHO partitioned all games into three classes: the positive, the neg-
ative, and the abnormal cases (for our purpose here, we do not need to know
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their definitions). Their Proposition 6 shows that the abnormal case obtains
only if one of the players has a dominant action in the stage game that yields
the same payoff against all actions of the other player. Clearly, this is not the
case in our example with the prisoner’s dilemma stage game, so our example is
in either the positive or the negative case.1 If it is in the negative case, EHO’s
Proposition 5 shows that the only belief-free equilibrium is the repetition of
the stage game Nash equilibrium, yielding (0�0) in our example.

If our example is in the positive case, Proposition 5 in EHO implies that the
limit set of belief-free equilibrium payoffs can be calculated as

V ∗ =
⋃
p

∏
i=1�2

[∑
A

p(A)mA
i �

∑
A

p(A)MA
i

]
�(S1)

where mA
i is some number (for our purpose here, we do not need to know

its definition) and p is a probability distribution over regimes A. The union
is taken with respect to all probability distributions p such that the intervals
in formula (S1) are well defined (i.e.,

∑
A p(A)mA

i ≤ ∑
A p(A)MA

i , i = 1�2).
The point to note is that V ∗ is a union of product sets (rectangles), and the
efficient point (upper-right corner) of each rectangle is a convex combination
of (MA

1 �MA
2 ).

The characterization (S1) of V ∗ implies, in the positive case, the belief-free
equilibrium payoffs satisfy the bound

(v1� v2) ∈ V ∗ 
⇒ v1 + v2 ≤ max
A

MA
1 +MA

2 �(S2)

where maximum is taken over all possible regimes (i.e., for all A = A1 × A2

such that Ai ⊂ Ai, Ai �= ∅, i = 1�2).
In what follows, I estimate MA

1 + MA
2 for each regime A. In our example,

Ai = {C�D}, so that Ai = {C}� {D}, or {C�D}. Before examining each regime,
I first derive some general results. Consider a regime A where C ∈ Ai. In this
case, the incentive constraint in the definition of MA

i reduces to

vi = g(C�α−i)(S3)

−
∑

a−i�ω−i

xi(a−i�ω−i)p−i(ω−i|C�a−i)α−i(a−i)

≥ g(D�α−i)−
∑

a−i�ω−i

xi(a−i�ω−i)p−i(ω−i|D�a−i)α−i(a−i)�(S4)

1With some calculation, we can determine which case applies to our example, but this is not
necessary to derive our upper bound payoff.
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This inequality (S4) can be rearranged as

∑
a−i�ω−i

xi(a−i�ω−i)p−i(ω−i|C�a−i)

(
p−i(ω−i|D�a−i)

p−i(ω−i|C�a−i)
− 1

)
α−i(a−i)(S5)

≥ g(D�α−i)− g(C�α−i)�

Now let

L∗ = max
ω−i�a−i

p−i(ω−i|D�a−i)

p−i(ω−i|C�a−i)

be the maximum likelihood ratio to detect player i’s deviation from C to D.
The inequality (S5) and L∗ − 1 > 0 imply2

∑
a−i�ω−i

xi(a−i�ω−i)p−i(ω−i|C�a−i)α−i(a−i)≥ g(D�α−i)− g(C�α−i)

L∗ − 1
�

Plugging this into the definition (S3) of vi, we obtain

vi ≤ g(C�α−i)− g(D�α−i)− g(C�α−i)

L∗ − 1
�

This is essentially the formula identified by Abreu, Milgrom, and Pearce
(1991). The reason for welfare loss (the second term on the right hand side)
is that players are sometimes punished simultaneously in belief-free equilibria.
Recall that MA

i is obtained as the supremum of vi with respect to xi and α−i

whose support is A−i. (Note that the right hand side of the above inequality, in
contrast, does not depend on xi.) Hence, we have

MA
i ≤ supg(C�α−i)− g(D�α−i)− g(C�α−i)

L∗ − 1
�(S6)

where the supremum is taken over all α−i whose support is A−i.
Now we calculate the maximum likelihood ratio L∗ and determine the

right hand side of the inequality (S6). In our example, when a−i = C,
maxω−i

p−i(ω−i |D�a−i)

p−i(ω−i|C�a−i)
is equal to (as our example is symmetric, consider −i = 2

without loss of generality)

p2(ω2 = B|D�C)

p2(ω2 = B|C�C)
=

1
2

+ 1
8

1/3
= 15

8
�

2Note that as long as player i’s action affects the distribution of the opponent’s signal (which
is certainly the case in our example), there must be some ω−i which becomes more likely when
player i deviates from C to D. Hence, we have L∗ > 1.
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When a−i =D, maxω−i

p−i(ω−i |D�a−i)

p−i(ω−i |C�a−i)
is equal to

p2(ω2 = B|D�D)

p2(ω2 = B|C�D)
= 2/5 + 1/5

1/4 + 1/8
= 8

5
�

As the former is larger, we conclude L∗ = 15
8 . Plugging this into (S6), we obtain

the following upper bounds of MA
i .

(a) When C ∈ Ai and A−i = {C},

MA
i ≤ g(C�C)− g(D�C)− g(C�C)

15
8

− 1

= 1 − 1/2
15
8

− 1
= 3

7
�

(b) When C ∈ Ai and A−i = {D},

MA
i ≤ g(C�D)− g(D�D)− g(C�D)

15
8

− 1

= −1
6

− 1/6
15
8

− 1
= − 5

14
�

(c) When C ∈ Ai and A−i = {C�D}, the larger upper bound in the above
two cases applies, so that we have

MA
i ≤ 3

7
�

Given those bounds, we are ready to estimate MA
1 +MA

2 for each regime A.
Case (i), where C ∈ Ai for i = 1�2: The above analysis (cases (a) and (c))

shows

MA
1 +MA

2 ≤ 6
7
�

Case (ii), where C ∈ Ai and A−i = {D}: Our case (b) shows MA
i ≤ − 5

14 . In
contrast, MA

−i is simply achieved by x−i ≡ 0 (as D is the dominant strategy in
the stage game) so that

MA
−i = sup

αi

g(D�αi)= g(D�C) = 3
2
�
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Hence, we have

MA
1 +MA

2 ≤ 3
2

− 5
14

= 8
7
�

Case (iii), where A = {D} × {D}: Since D is the dominant action in the stage
game, MA

i is achieved by xi ≡ 0. Moreover, the opponent’s action is restricted
to A−i = {D}, so that we have MA

i = g(D�D) = 0. Hence,

MA
1 +MA

2 = 0�

Let me summarize our discussion above. If our example is in the negative
case as defined by EHO, the only belief-free equilibrium payoff is (0�0). Oth-
erwise, our example is in the positive case, where the sum of belief-free equi-
librium payoffs v1 + v2 (in the limit as δ → 1) is bounded above by the max-
imum of the upper bounds found in Cases (i)–(iii), which is equal to 8

7 . Alto-
gether, those results show that any limit belief-free equilibrium payoff profile
(as δ→ 1) (v1� v2) ∈ V ∗ satisfies v1 + v2 ≤ 8

7 .
To complete our argument, I now examine the belief-free equilibrium pay-

offs for a fixed discount factor δ < 1. Let V (δ) be the set of belief-free equilib-
rium payoff profiles for discount factor δ < 1. The standard argument3 shows
that this is monotone increasing in δ (i.e., V (δ) ⊂ V (δ′) if δ < δ′). Hence, we
have V (δ) ⊂ V ∗, so that for any discount factor δ, all belief-free equilibrium
payoffs (v1� v2) ∈ V (δ) satisfy v1 + v2 ≤ 8

7 . Now recall that in our example, our
one-period memory transition rule is an equilibrium if δ ≥ 0�98954, with re-
duced game given by

C D

C x�x α�β

D β�α y� y

(S7)

Numerical computation shows x� y�α�β > 0�6 for δ ≥ 0�98954. Hence, the to-
tal payoff in any entry in our reduced game payoff table (S7) exceeds 1�2, which

3The proof is as follows. Suppose we terminate the repeated game under δ′ > δ randomly in
each period with probability 1 − δ

δ′ and start a new game (and repeat this procedure). In this way,
we can decompose the repeated game under δ′ into a series of randomly terminated repeated
games, each of which has effective discount factor equal to δ′ × δ

δ′ = δ. Hence, any equilibrium
(average) payoff under δ can also be achieved under δ′ > δ. This argument presupposes that
public randomization is available (to terminate the game). Even without public randomization,
however, our conclusion V (δ) ⊂ V ∗ also holds, because (i) the set of belief-free payoff profiles
V (δ) is smaller without public randomization and (ii) the same limit payoff set V ∗ obtains with
or without public randomization (see Ely, Horner, and Olszewski (2004), the online appendix to
EHO).
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is larger than the upper bound for the total payoffs associated with the belief-
free equilibria, 8

7 . This implies that all of our equilibria lie above the Pareto
frontier of the belief-free equilibrium payoff set.
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