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B.1 Derivation Hamilton-Jacobi-Bellman

This appendix proves that if v(ω) is given by:

v(ω) =

∫ ω̄

ω

R(ω′)Πω′(ω′;ω)dω′ (65)

for an arbitrary continuous function R(·) and where the local time function Πω′(·) is given

as in Stokey (2009) Proposition 10.4:

Πω′(ω′;ω) =



























(

ζ2e
ζ1ω+ζ2ω̄ − ζ1e

ζ1ω̄+ζ2ω
)(

ζ2e
ζ2(ω−ω′) − ζ1e

ζ1(ω−ω′)
)

(ρ+ q + δ)(ζ2 − ζ1)
(

eζ1ω+ζ2ω̄ − eζ1ω̄+ζ2ω
) if ω ≤ ω′ < ω

(

ζ2e
ζ1ω+ζ2ω − ζ1e

ζ1ω+ζ2ω
)(

ζ2e
ζ2(ω̄−ω′) − ζ1e

ζ1(ω̄−ω′)
)

(ρ+ q + δ)(ζ2 − ζ1)
(

eζ1ω+ζ2ω̄ − eζ1ω̄+ζ2ω
) if ω ≤ ω′ ≤ ω̄,

(66)

where ζ1 < 0 < ζ2 are the two roots of the characteristic equation ρ+ q+ δ = µζ+ σ2

2
ζ2, then

(ρ+ q + δ)v(ω) = R(ω) + µv′(ω) +
σ2

2
v′′(ω).

Proof. Differentiating v with respect to ω we get

v′(ω) =

∫ ω̄

ω

R(ω′)Πω′ω(ω
′;ω)dω′

v′′(ω) =

∫ ω̄

ω

R(ω′)Πω′ωω(ω
′;ω)dω′ +R(ω)

(

lim
ω′↑ω

Πω′ω(ω
′;ω)− lim

ω′↓ω
Πω′ω(ω

′;ω)
)

where we use that Πω′ is continuous but Πω′ω has a jump at ω′ = ω. Then

(ρ+ q + δ)v(ω)− µv′(ω)−
σ2

2
v′′(ω)

=

∫ ω̄

ω

R(ω)

(

(ρ+ q + δ)Πω′(ω′;ω)− µΠω′ω(ω
′;ω)−

σ2

2
Πω′ωω(ω

′;ω)

)

dω′

−
σ2

2
R(ω)

(

lim
ω′↑ω

Πω′ω(ω
′;ω)− lim

ω′↓ω
Πω′ω(ω

′;ω)

)

.
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Using the functional form of Πω′ we have, for ω′ < ω:

Πω′(ω′;ω) = eζ1ωh̃1(ω
′)− eζ2ωh̃2(ω

′)

where

h̃1(ω
′) =

ζ2e
ζ2ω̄
(

ζ2e
ζ2(ω−ω′) − ζ1e

ζ1(ω−ω′)
)

(ρ+ q + δ)(ζ2 − ζ1)
(

eζ1ω+ζ2ω̄ − eζ1ω̄+ζ2ω
)

and h̃2(ω
′) =

ζ1e
ζ1ω̄
(

ζ2e
ζ2(ω−ω′) − ζ1e

ζ1(ω−ω′)
)

(ρ+ q + δ)(ζ2 − ζ1)
(

eζ1ω+ζ2ω̄ − eζ1ω̄+ζ2ω
) .

Thus for all ω′ < ω:

(ρ+ q + δ)Πω′(ω′;ω)− µΠω′ω(ω
′;ω)−

σ2

2
Πω′ωω(ω

′;ω)

=
[

(ρ+ q + δ)− ζ1µ− (ζ1)
2σ

2

2

]

eζ1ωh̃1(ω
′)−

[

(ρ+ q + δ)− ζ2µ− (ζ2)
2σ

2

2

]

eζ2ωh̃2(ω
′) = 0

where the last equality follow from the definition of the roots ζi . Hence

∫ ω

ω

R(ω′)

(

(ρ+ q + δ)Πω′(ω′;ω)− µΠω′ω(ω
′;ω)−

σ2

2
Πω′ωω(ω

′;ω)

)

dω′ = 0.

Using a symmetric calculation for ω′ > ω we have:

∫ ω̄

ω

R(ω′)

(

(ρ+ q + δ)Πω′(ω′;ω)− µΠω′ω(ω
′;ω)−

σ2

2
Πω′ωω(ω

′;ω)

)

dω′ = 0.

Next, differentiating Πω′(ω′;ω) when ω′ < ω and when ω′ > ω and let ω′ → ω from below

and from above, tedious—but straightforward—algebra, gives:

lim
ω′↑ω

Πω′ω(ω
′;ω)− lim

ω′↓ω
Πω′ω(ω

′;ω) = −
ζ1ζ2

ρ+ q + δ
.

Then use the expression for the roots: ζ1ζ2 = −(ρ + q + δ)/(σ2/2). Putting this together

proves the result. �

B.2 Industry Social Planner’s Problem

In this section we introduce a dynamic programming problem whose solution gives the equi-

librium value for the thresholds ω, ω̄. This problem has the interpretation of a fictitious social

planner located in a given industry who maximizes net consumer surplus by deciding how
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many of the agents currently located in the industry work and how many rest and whether

to adjust the number of workers in the industry. The equivalence of the solution to this

problem with the equilibrium value of an industry’s worker. First, it establishes that our

market decentralization is rich enough to attain an efficient equilibrium, despite the presence

of search frictions. Second, it gives an alternative argument to establish the uniqueness of the

equilibrium values for the thresholds ω and ω̄. Third, it connects our results with the decision

theoretic literature analyzing investment and labor demand model with costly reversibility.

The industry planner maximizes the net surplus from the production of the final good

in an industry with current log productivity x̃ and l workers, taking as given aggregate

consumption C and aggregate output Y . The choices for this planner are to increase the

number of workers located in this industry (hire), paying v̄ to the households for each or them,

or to decrease the number of workers located it the industry (fire), receiving a payment v

for each. Increases and decreases are non-negative, and the prices associated with them have

the dimension of an asset value, as opposed to a rental. We let M(x̃, l) be the value function

of this planner, hence:

M(x̃, l) = max
lh,lf

E

(
∫ ∞

0

e−(ρ+δ)t
((

S(x̃(t), l(t)) + vql(t)
)

dt − v̄dlh(t) + vdlf(t)
)

∣

∣

∣

∣

x̃(0) = x̃, l(0) = l

)

subject to dl(t) = −ql(t)dt + dlh(t)− dlf (t) and dx̃ = µxdt+ σxdz. (67)

The lh(t) and lf(t) are increasing processes describing the cumulative amount of “hiring” and

“firing” and hence dlh(t) and dlf(t) intuitively have the interpretation of hiring and firing

during period t. The term ql(t)dt represent the exogenous quits that happens in a period

of length dt. The planner discounts at rate ρ + δ, accounting both for the discount rate of

households and for the rate at which her industry disappears.

The function S(x̃, l) denotes the return function of the industry social planner per unit

of time and is given by

S(x̃, l) = max
E∈[0,l]

u′(C)

∫ Eex̃

0

(

Y

y

)
1
θ

dy + br(l −E) + δlv.

The first term is the consumer’s surplus associated with the particular good, obtained by

the output produced by E workers with log productivity x̃. The second term is value of the

workers that the planner chooses to send back to the household, receiving v for each. The

third term is the value of the “sale” of all the workers if the industry shuts down. Setting

q = δ = br = 0 our problem is formally equivalent to Bentolila and Bertola’s (1990) model

of a firm deciding employment subject to a hiring and firing cost and to Abel and Eberly’s

(1996) model of optimal investment subject to costly irreversibility, i.e. a different buying
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and selling price for capital.

Using the envelope theorem, we find that the marginal value of an additional worker is:

Sl(x̃, l) = max

{

u′(C)

(

Y (ex̃)θ−1

l

)
1
θ

, br

}

+ δv (68)

≡ s

(

(θ − 1)x̃+ log Y − log l

θ
+ log u′(C)

)

where the function s(·) is given by s(ω) = max{eω, br}+ δv and is identical to the expression

for the per-period value of a worker in our equilibrium, except that δv is in place of (q+ δ)v.

This is critical to the equivalence between the two problems.

To prove this equivalence, we write the industry social planner’s Hamilton-Jacobi-Bellman

equation. For each x̃, there are two thresholds, l(x̃) and l̄(x̃) defining the range of inac-

tion. The value function M(·) and thresholds functions {l(·), l̄(·)} solve the Hamilton-Jacobi-

Bellman equation if the following two conditions are met:

1. For all x̃, and l ∈ (l(x̃), l̄(x̃)) employment decays exponentially with the quits at rate

q and hence the value function M solves

(ρ+ δ)M(x̃, l) = S(x̃, l)− qMl(x̃, l) + µxMx̃(x̃, l) +
σ2
x

2
Mx̃x̃(x̃, l). (69)

2. For all (x̃, l) outside the interior of the range of inaction,

(ρ+ δ)M(x̃, l) + qlMl(x̃, l)− µxMx̃(x̃, l)−
σ2
x

2
Mx̃x̃(x̃, l) ≤ S(x̃, l), (70)

v = Ml(x̃, l) ∀l ≥ l̄(x̃), and v̄ = Ml(x̃, l) ∀l ≤ l(x̃) (71)

Equation (71) is also referred to as smooth pasting. Since M(x̃, ·) is linear outside the range

of inaction, a twice-continuously differentiable solution implies super-contact, or that for all

x̃ :

0 = Mll(x̃, l̄(x̃)) = Mll(x̃, l(x̃)). (72)

According to Verification Theorem 4.1, Section VIII in Fleming and Soner (1993), a twice-

continuously differentiable function M(x̃, l) satisfying equations (69), (71), and (72) solves

the industry social planner’s problem.

If M is sufficiently smooth, finding the optimal thresholds functions {l(·), l̄(·)} can be

stated as a boundary problem in terms of the functionMl(x̃, l) and its derivatives. To see this,
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differentiate both sides of equation (69) with respect to l and replace Sl using equation (68):

(ρ+ δ + q)Ml(x̃, l) = s

(

(θ − 1)x̃+ log Y − log l

θ
+ log u′(C)

)

− qlMll(x̃, l) + µxMx̃l(x̃, l) +
σ2
x

2
Mx̃x̃l(x̃, l). (73)

If the required partial derivatives exist, any solution to the industry social planner’s problem

must solve equations (71)–(73). Moreover, there is a clear relationship between the value

function v(ω) in the decentralized problem and the marginal value of a worker Ml in the

industry social planner’s problem:

Lemma 3. Assume that θ 6= 1 and that the functions Ml(·) and v(·) satisfy

Ml(x̃, l) = v(ω), where ω =
log Y + (θ − 1)x̃− log l

θ
+ log u′(C) (74)

and that thresholds functions {l(·), l̄(·)} and the thresholds levels {ω, ω̄} satisfy

log l̄(x̃) = log Y + (θ − 1)x̃− θ(ω − log u′(C)) (75)

log l(x̃) = log Y + (θ − 1)x̃− θ(ω̄ − log u′(C)). (76)

Then, Ml(·) and {l(·), l̄(·)} solve equations (71)–(73) for all x̃ and l ∈ [l(x̃), l̄(x̃)] if and only

if v(·) and {ω, ω̄} solve equations (12).

Proof. Differentiate equation (74) with respect to x̃ and l to get

Mlx̃(x̃, l) = v′(ω)
θ − 1

θ
, Mlx̃x̃(x̃, l) = v′′(ω)

(

θ − 1

θ

)2

and Mll(x̃, l) = −v′(ω)
1

θ
.

Recall that a solution of equation (12) is equivalent to a solution to equations (39), (40), and

v(ω̄) = v̄ and v(ω) = v. The equivalence between equation (12) and equations (71)–(73) is

immediate, recalling the definitions of µ and σ. �

This lemma has important implications. First, it establishes, not surprisingly, that the

equilibrium allocation is Pareto Optimal. Second, since the industry social planner’s prob-

lem is a maximization problem, the solution is easy to characterize. For instance, since the

problem is convex, it has at most one solution and hence the equilibrium value of a worker is

uniquely defined, for given u′(C) and Y . The fact that v is increasing is then equivalent to the

concavity of S(x̃, ·). Finally, notice that Proposition 1 establishes existence and uniqueness
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of the solution to equation (12) only under mild conditions on s(·), i.e. that it was weakly

increasing and bounded below. Proposition 1 can be used to extend the uniqueness and exis-

tence results of the literature of costly irreversible investment to a wider class of production

functions. Currently the literature uses that the production function is of the form xax lal

for some constants ax and al, with 0 < al < 1, as in Abel and Eberly (1996). Proposition 1

shows that the only assumption required is that the production function be concave in l, and

that the marginal productivity of the factor l can be written as a function of the ratio of the

quantity of the input l to (a power of) the productivity shock x.

B.3 Heterogeneous Industries

This section extends the directed search model to include heterogeneity in households’ human

capital. In equilibrium, industries can be divided into different classes. Industries that

attract households with high human capital pay high wages, but the stochastic process for

their wages is a scaled version of the one for an industry that attracts households with less

human capital. Still, all industries have the same process for the log full employment wage

ω (measured in utils) and the same rest and search unemployment rates. This justifies our

fixed effect treatment of US industry wage data in Section 6.1.

We prove in this section that in the directed search model with logarithmic utility, the

values of the thresholds ω and ω̄ are the same across industries, although the level of con-

sumption, and hence the wage in units of goods, is different. We omit a proof of a similar

result in the random search model, under the assumption that workers with a particular

human capital level contact other workers with the same human capital level at rate α, at

which point they may join the workers’ industry.

We turn now to a description of the directed search model. Households are indexed

by one of K human capital types, denoted by hk satisfying 0 < h1 and hk < hk+1, for

k = 1, 2, ..., K−1, with hK = 1. For notational convenience, let h0 = 0 and ∆hk ≡ hk−hk−1.

Let Hk denote the cumulative distribution of households’ human capital types, so that there

are Hk households with human capital hj ≤ hk, and there are ∆Hk ≡ Hk −Hk−1 household

with human capital type hk for k = 1, ..., K.

Recall that industries are indexed by j which belong to [0, 1]. The meaning of type hk

human capital is that such household can work in any industry labeled j ∈ (0, hk]. Assume

∆Hk+1

∆hk+1
<

∆Hk

∆hk
, (77)

for k = 1, ..., K − 1. We then look for an equilibrium where type hk households work in

industries of type j ∈ (hk−1, hk]. In this equilibrium, we talk of both household and industries
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of type k. For workers to sort themselves across industries in this way, it must be the case

that wages are increasing in industry type, and equation (77) insures that labor supply is in

fact decreasing in industry type.

Let Lk denote the fraction of members of type k households who are located in type k

industries and L0,k denote the fraction located in newly created industries within the k class.

Thus Lk(∆Hk/∆hk) is the number of household members per type k industry, either working

or in rest unemployment.

Households with different human capital have different consumption, and hence different

marginal utility. Letting Ck be the consumption per household for those with human capital

k, we have that the log full-employment wage for household of type k follows:

ωk(t) ≡
log Y + (θ − 1) log x(t)− log l(t)

θ
+ log u′(Ck) (78)

where Y is aggregate output, x(t) is industry productivity, and l(t) is the number of workers

in the industry. We characterize an equilibrium where the process for ωk is identical for all

k.

Proposition 7. Assume log utility, u(C) ≡ logC, and that equation (77) holds. Let

(L∗, ω∗, ω̄∗) be the equilibrium values for the model without heterogeneity. Then there is an

equilibrium of the model with heterogeneity with (Lk, ω̄k, ωk) = (L∗, ω̄∗, ω∗) for all k and

Ck

Ck′
=

(

∆hk∆Hk′

∆Hk∆hk′

)1/θ

.

Proof. For the processes {ωk(t)} to be identical across industries, the difference in the log

of the marginal utilities must be compensated by a difference in the level of the employment

per industry, so that any two industries in classes k and k′ created at the same time and with

the same history of shocks have employment lk and lk′ satisfying

log lk(t)− log lk′(t) = θ(log u′(Ck)− log u′(Ck′)).

Aggregating across shocks and using the logarithmic utility assumption and the conjecture

about the nature of equilibrium, the number of workers located in type k industries is

L∗∆HkC
θ
k

∆hk
≡ β (79)

for all k = 1, ..., K and some constant β.
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The distribution f evaluated at the upper bound still satisfies

σ2

2
f ′(ω̄)−

(

µ+
θσ2

2

)

f(ω̄) = δ
L∗
0

L∗
, (80)

where L∗
0 is the fraction of workers in a new industry, independent of k in the proposed

equilibrium. The requirement that the log full-employment wages is ω̄ in new industries

implies
L∗
0∆HkC

θ
k

∆hk
= Y xθ−1

0 e−θω̄. (81)

From equation (79), the left hand side is βL∗
0/L

∗. Eliminate L∗
0/L

∗ using equation (80) to

get

β = φ1Y , where φ1 ≡
δxθ−1

0 e−θω̄

σ2

2
f ′(ω̄)−

(

µ+ θσ2

2

)

f(ω̄)
. (82)

In each industry class k we can solve for the productivity consistent with (l, ω, Y, Ck) as:

x = ξ(l, ω, Y, Ck) ≡

(

leθωCθ
k

Y

)
1

θ−1

. (83)

Then using the production function, output in a industry in such an industry class, with l

workers and log full-employment wage ω, is

Q(l, ξ(l, ω, Y, Ck)) = Y
−1
θ−1 (eωlCk)

θ
θ−1 min{1, eω/br}

θ. (84)

Using this notation, we can write the analog of equation (48) as

Y =

(

K
∑

k=1

∫ hk

hk−1

Q
(

l(j, t), ξ(l(j, t), ω(j, t), Y, Ck)
)

θ−1
θ dj

)
θ

θ−1

=

(

K
∑

k=1

∫ hk

hk−1

Q

(

L∗∆Hk

∆hk
, ξ

(

L∗∆Hk

∆hk
, ω(j, t), Y, Ck

))
θ−1
θ l(j, t)

L∗∆Hk

∆hk

dj

)
θ

θ−1

.

The second equation follows because Q(·, ξ(·, ω, Y, Ck))
θ−1
θ is linear in l (equation 84). To

solve this, we change the variable of integration from the name of the industry j to its log

full-employment wage ω and number of workers l. Let f̃(ω, l) be the density of the joint

invariant distribution of workers in industries (ω, l), as discussed in Appendix A.4. Notice
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that under our hypothesis this distribution is the same for all k. Then

Y =

(

K
∑

k=1

∆hk

∫ ω̄

ω

∫ ∞

0

Q

(

L∗∆Hk

∆hk
, ξ

(

L∗∆Hk

∆hk
, ω, Y, Ck

))
θ−1
θ l

L∗∆Hk

∆hk

f̃(ω, l) dl dω

)
θ

θ−1

.

Since f(ω) =
∫∞

0
l∆hk

L∗∆Hk
f̃(ω, l) dl, we can solve the inner integral to obtain

Y =

(

K
∑

k=1

∆hk

∫ ω̄

ω

Q

(

L∗∆Hk

∆hk
, ξ

(

L∗∆Hk

∆hk
, ω, Y, Ck

))
θ−1
θ

f(ω)dω

)
θ

θ−1

,

without characterizing the joint density f̃ . Using equation (84) and simplifying,

Y = L∗

(

K
∑

k=1

∆HkCk

)(

∫ ω̄

ω

eω min{1, eω/br}
θ−1f(ω)dω

)

. (85)

Since total output in the economy is consumed by the households,

Y =
K
∑

k=1

∆HkCk. (86)

Then equation (85) implies

L∗ =

(

∫ ω̄

ω

eω min{1, eω/br}
θ−1f(ω)dω

)−1

. (87)

This defines L∗. Next, substitute for Ck in equation (86) using equation (79):

Y θ =
β

L∗

(

K
∑

k=1

∆H
θ−1
θ

k ∆h
1
θ

k

)θ

. (88)

Eliminate β using equation (82) to get an expression for total output.

Y =

(

φ1

L∗

)
1

θ−1

(

K
∑

k=1

∆H
θ−1
θ

k ∆h
1
θ

k

)
θ

θ−1

. (89)

This defines Y . Finally, one can go back to equation (82) to determine β and then to

equation (79) to pin down Ck, closing the model. Note that assumption (77) implies con-

sumption is increasing in k.
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To prove that a type k household prefer to work on industry k to other industries j =

1, ..., k − 1, we show that wages are increasing in k. This follows because, with logarithmic

utility, the actual wage is the product of ω, whose distribution is independent of k, and

consumption. �
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