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S.1. DOMAINS WITH CONVEX CLOSURE

SAKS AND YU (2005) PROVED that if D is convex, then every monotone de-
terministic allocation rule is implementable. We prove in this supplement the
following generalization of their result:

THEOREM S1: Every domain with a convex closure is a proper monotonicity
domain.

S.1.1. Preparations

First we recall the definitions of monotonicity and cyclic monotonicity. An
allocation rule f is called monotone if

〈f (v)− f (w)�v −w〉 ≥ 0 for every v�w ∈ D�(S1)

and f is called cyclically monotone if for every k ≥ 2, for every k vectors in D
(not necessarily distinct), v1� v2� � � � � vk� the inequality

k∑
i=1

〈vi − vi+1� f (vi)〉 ≥ 0�(S2)

holds, where vk+1 is defined to be v1. By taking k= 2 in (S2) it can be seen that
every cyclically monotone allocation rule is monotone.

Let f :D → Z̄(A) be monotone and finite-valued, where D is an arbitrary
set. Let y1� � � � � ym ∈ RA be the distinct values of f . That is, for every v ∈ D,
there exists 1 ≤ j ≤ m such that f (v) = yj , and every yj is attained at some
valuation. If m> 1, for j �= k define

δ(j�k)= δD�f (j�k)= inf
v∈D�f(v)=yj

〈v� yj − yk〉�(S3)

If w ∈ D satisfies f (w) = yk, then, by monotonicity, 〈v� yj − yk〉 ≥ 〈w�yj − yk〉.
Therefore, δ(j�k) >−∞. Furthermore,

δ(j�k)≥ sup
v∈D�f(v)=yk

〈v� yj − yk〉 = −δ(k� j)�

Hence,

δ(j�k)+ δ(k� j)≥ 0 ∀j �= k�(S4)
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As (S2) can be written

k∑
i=1

〈vi� f (vi)− f (vi−1)〉 ≥ 0�(S5)

where v0 is defined to be vk, the following useful lemma has been noted by
many authors (see, e.g., Heydenreich et al. (2009) and Saks and Yu (2005)).

LEMMA S2: Let f :D→ Z̄(A) be finite-valued and monotone.
(a) f is cyclically monotone if and only if for every sequence j1� j2� � � � � jk, k ≥

2, such that js �= js+1 for 1 ≤ s < k the inequality

k∑
i=1

δ(ji� ji+1)≥ 0(S6)

holds, where jk+1 is defined to be j1.
(b) If, in addition to the monotonicity, δ(j�k) + δ(k� j) = 0 for every j �= k,

then f is cyclically monotone if and only if the inequalities (S6) are satisfied as
equalities.

For every j, let

Dj = {v ∈ D | 〈v� yj − yk〉 ≥ δ(j�k) ∀k� k �= j}�
Obviously, f (v) = yj implies v ∈Dj . Hence, D = ⋃m

j=1 Dj .
The following sufficient condition will be useful.

LEMMA S3: Let f :D→ Z̄(A) be finite-valued and monotone. If
⋂m

j=1 Dj �= ∅,
then f is cyclically monotone.

PROOF: Let v ∈D be in the intersection. Hence 〈v� yj − yk〉 ≥ δ(j�k) for all
j �= k. We claim that

〈v� yj − yk〉 = δ(j�k) for all j �= k�(S7)

Indeed, v ∈ Dj implies 〈v� yj − yk〉 ≥ δ(j�k), and v ∈ Dk implies 〈v� yk − yj〉 ≥
δ(k� j). Therefore, from (S4) we obtain (S7). By plugging (S7) in (S6) it follows
that (S6) is satisfied with equality for every sequence of indices, and hence f is
cyclically monotone. Q.E.D.

We next show that to prove that a set is a proper monotonicity domain, it
suffices to prove that its closure is a proper monotonicity domain. For a domain
D, we denote its closure by cl(D).
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LEMMA S4: If cl(D) is a proper monotonicity domain, so is D.

PROOF: Suppose cl(D) is a proper monotonicity domain and let f :D →
Z̄(A) be a finite-valued monotone function on D. Extend f to cl(D) as fol-
lows: For every v ∈ cl(D) \ D, there exists a sequence vn, n ≥ 1, in D such
that vn → v. For some j, there exists an infinite numbers of indices n such that
f (vn)= yj . Hence for every v ∈ cl(D) \D, there exists j and a sequence vn ∈ D
such that vn → v and f (vn) = yj for every n ≥ 1. Let f (v) = yj for such arbi-
trary j. It is easily verified that the extension of f is monotone on cl(D). There-
fore, it is cyclically monotone on cl(D) and, therefore, f is cyclically monotone
on D. Q.E.D.

We will use a characterization of cyclically monotone functions that can eas-
ily be derived from Section 24 in Rockafellar (1970).

THEOREM S5—Rockafellar: Let D ⊆RA be a convex and nonempty subset of
valuations, and let f :D→ Z̄(A).

(a) f is cyclically monotone on D if and only if there exists a real-valued func-
tion U on D such that1

U(v2)−U(v1)≥ 〈f (v1)� v2 − v1〉 ∀v1� v2 ∈D�(S8)

(b) If each of the functions U1�U2 :D → R satisfies (S8), then the functions
differ by a constant. That is, there exists a real number α such that

U1(v)= U2(v)+ α ∀v ∈ D�(S9)

(c) Suppose that U :D → R satisfies (S8) and let v1 �= v2 ∈ D. Then the real-
valued function

φ(t)= 〈
f (v1 + t(v2 − v1))� v2 − v1

〉
�(S10)

defined for every t ∈ [0�1], is nondecreasing and

U(v2)−U(v1)=
∫ 1

0
φ(t)dt�(S11)

where the integral is computed in the sense of Riemann.2

The main tool in proving Theorem S1 is the following theorem.

1U(v) can be interpreted as the utility function of the agent when her valuation is v.
2A nondecreasing function is Riemann integrable. It is also Borel measurable and, therefore,

its Riemann integral equals its Lebesgue integral.
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THEOREM S6: Let D =H1 ∪H2 be a closed convex set, where each Hi is closed
convex and nonempty. Let f :D → Z̄(A) be monotone (not necessarily finite-
valued). If f is cyclically monotone on every Hi then f is cyclically monotone
on D.

PROOF: Because D and the sets Hi are closed, H1 ∩H2 �= ∅. Let v∗ be a fixed
valuation in H1 ∩ H2. By part (a) of Theorem S5, there exists U1 on H1 that
satisfies (S8) on H1. By adding a constant, we can choose U1 such that U1(v

∗)=
0. Similarly there exists U2 :H2 → R that satisfies (S8) on H2 and U2(v

∗)= 0. By
part (b) of Theorem S5, U1 =U2 on H1 ∩H2. Hence we can define a function U
on D by U(v) = Ui(v) for v ∈ Hi. To show that f is cyclically monotone on D,
it suffices by part (a) to show that (S8) is satisfied by U on D. Let then v1 �= v2

in D. Obviously we can consider only the cases v1 ∈ H1 \H2 and v2 ∈ H2 \H1.
Because H1, H2, and D are closed, and v1 ∈ H1 \ H2 and v2 ∈ H2 \ H1, the
interval (v1� v2) intersects H1 ∩ H2, say w = v1 + s(v2 − v1), 0 < s < 1, is a
valuation at the intersection. By applying part (c) of Theorem S5 to v1 and w
in H1, and by a simple change of variables, we get

U(w)−U(v1) =
∫ s

0

〈
f (v1 + t(v2 − v1))� v2 − v1

〉
dt

and, similarly,

U(v2)−U(w) =
∫ 1

s

〈
f (v1 + t(v2 − v1))� v2 − v1

〉
dt�

Therefore,

U(v2)−U(v1)=
∫ 1

0

〈
f (v1 + t(v2 − v1))� v2 − v1

〉
dt�

By the monotonicity of f , the integrand is nondecreasing in t and, therefore,
the integral is greater than or equal to the value of the integrand at t = 0.
Hence,

U(v2)−U(v1)≥ 〈f (v1)� v2 − v1〉� Q.E.D.

S.1.2. Proof of Theorem S1

We first show that it suffices to prove that every compact convex set is a
proper monotonicity domain. Let D be a set such that cl(D) is convex. By
Lemma S4 it suffices to prove that cl(D) is a proper monotonicity domain.

Assume the result holds for every compact convex set, and assume to the
negative that f : cl(D) → Z̄(A) is a finite-valued monotone randomized alloca-
tion rule, which is not cyclically monotone. Therefore, there exist v1� v2� � � � � vk
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in cl(D) that contradict (S2). Let K be the convex hull of these valuations.
Then f is finite-valued and monotone on K, and it is not cyclically monotone,
contradicting our assumption that the assertion holds for compact convex sets.

We prove the theorem for compact convex sets by a double induction
process. The first induction is on the number of distinct values, m(D�f ) of
f on D. If m(D�f ) = 1, then obviously f is cyclically monotone. Let m > 1,
and assume we have already proven that for every compact convex D and for
every monotone randomized allocation rule f :D → Z̄(A) with m(f�D) <m,
f is cyclically monotone on D. We proceed to prove it for every m(D�f ) =m.

For every (D�f ) with f (D) = {y1� � � � � ym}, let r(D�f ) be the maximal num-
ber r, 1 ≤ r ≤ m, for which, for every set F of r distinct values in {1� � � � �m},
the intersection

⋂
j∈F Dj �= ∅. We prove our result by induction on r(D�f ). Let

then r(D�f ) = 1. Since m> 1, there exists j �= k such that Dj ∩Dk = ∅. Since
Dj and Dk are compact and convex, we can strongly separate them. That is,
there exist 0 �= y ∈RA and α ∈R such that

〈v� y〉<α< 〈w�y〉 ∀v ∈Dj�∀w ∈ Dk�

Denote H1 = {v ∈ D | 〈v� y〉 ≤ α} and H2 = {v ∈ D | 〈v� y〉 ≥ α}. On each Hi,
the function f takes at most m− 1 values and, therefore, by the first induction
hypothesis f is cyclically monotone on each Hi. By Theorem S6, f is cyclically
monotone on D. Suppose the theorem is proved for 1� � � � � r − 1, 2 ≤ r ≤ m.
We now prove it for r(D�f ) = r. If r = m, the result follows from Lemma S3.
If r <m, there exists a set of indices of cardinality r + 1, which, without loss of
generality we take to be {1� � � � � r + 1}, such that

⋂r

j=1 Dj �= ∅ and
⋂r+1

j=1 Dj = ∅.
The convex compact sets

⋂r

j=1 Dj and Dr+1 must be strongly separated. That
is, there exist 0 �= y ∈ RA and α ∈R such that

〈v� y〉<α< 〈w�y〉 ∀v ∈
r⋂

j=1

Dj�∀w ∈Dr+1�

Let H1 = {v ∈D | 〈v� y〉 ≤ α} and H2 = {v ∈ D | 〈v� y〉 ≥ α}. On H1, the function
f does not take the value yr+1 and, therefore, by our first induction hypothesis,
f is cyclically monotone. On H2, if m(H2� f ) <m, then f is implementable on
H2 by the first induction hypothesis. Suppose m(H2� f ) = m. Since H2 ⊆ D,
δH2�f (j�k)≥ δD�f (j�k) for every j �= k. Therefore, for every j, H2j ⊆Dj , where
H2j = {v ∈ H2 | 〈v� yj − yk〉 ≥ δH2�f (j�k)}. Hence,

⋂r

j=1 H2j ⊆ H2 ∩ (
⋂r

j=1 Dj) =
∅, implying r(H2� f ) < r. Therefore, by our second induction hypothesis, f is
cyclically monotone on H2. Hence f is cyclically monotone on D by Theo-
rem S6. Q.E.D.
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S.1.3. A Note on General Monotone Allocation Rules

The definitions of monotonicity and cyclic monotonicity are not restricted to
functions that take only subprobability values. Hence, every function f :D →
RA that satisfies (S1) ((S2)) is called monotone (cyclically monotone). Such gen-
eral functions can be used, for example, in models with divisible goods. It is,
therefore, interesting to note that without any change in the proofs, Theo-
rem S1 holds for such functions. Therefore, the following result holds.

THEOREM S7: Let D ⊆ RA be a domain with a convex closure. Every finite-
valued monotone function f :D→ RA is cyclically monotone.
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