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S1. INTRODUCTION

THIS PAPER CONTAINS the details of the model linearization and solution, the
nonlinear approximation and integration scheme, the details on the Smolyak
operator, the nonlinear solution iteration scheme, details on our proposed
nonlinear state space filter, the Metropolis—Hastings algorithm and its par-
allel extension, the convergence diagnostics for the Metropolis—Hastings al-
gorithms, the calculation of the marginal likelihood model selection criterion,
and details on the solver, likelihood evaluation, and estimation performance.

S2. ECONOMICS
S2.1. Model

The social planner allocates by solving the dynamic optimization

o N
max - U=EOZZﬁtUm
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forn=1,..., N countries and all future periods ¢ > 0. The welfare function U
is a discounted sum of country utilities
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2 V. WINSCHEL AND M. KRATZIG

with discount factor B, elasticity of intertemporal substitutions 7,, and con-
sumption and leisure substitution rates 6,.. The policy variables are consump-
tion ¢, , labor /, ;, and investment i, , for each country. The world budget con-
straint

N
Z(yn,t — Cyy — in,t) =0
n=1

restricts the world output 3,y,, to be either consumed or invested in one of
the countries. The production technologies

o= ek
depend on productivities a,_,, capital k, ,, labor /, ,, and technical substitution
rates «,. The capital and productivity transitions are
(S.1)  kp=in+ =8k, —0.5k,i

n,t?

(82) An,tr1 = Pnln,t + € t+15

where 8, are the depreciation rates and p, are the autocorrelation coefficients
for the productivity processes with normally distributed shocks e, , ~ N'(0, o,,)
independent across the countries and time. In the capital transition equa-
tion (S.1), we include capital adjustment costs parameterized by «,,.

We have implemented the algorithms for the general model class:

0 = f(sl: xt7 Zt; 0)7
2z, =B h(si, X1y €141, Sev15 X415 0),
Sip1 = 881, X1y 0415 0).

All functions depend on the structural parameters in 6. The model is for-
mulated in terms of the first-order equilibrium conditions f : Ré*dxtdz — Rdx]
expected functions f:Rétdetdetdstds . R gnd  state  transitions
g :Rds+detde 5 RAs The variables are states s, € S C R, policies x, € X € R%,
expected variables z, € Z C R¢, and stochastic shocks e,,;, which are usu-
ally specified to follow a normal distribution e,,; ~ N (0, 3,). As the structural
shocks are typically modeled to be independent, we assume a diagonal 3, from
now on.

Our solution approach is to solve for the policy functions x*: R% — R4 that
map states into policies. The algorithm is a function iteration scheme where we
repeatedly solve the first-order conditions f(s, xX**V E,A(...,x®,..) =0
for the next k + 1 iteration of the policy x**! for given expected variables
z=E,h(...,x%®,...) based on the previous policy x* in iteration step k. This
approach has the advantage that it decomposes one big system, when one
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solves for x in f(s,x,E.h(...,x,...)) =0, into several independent smaller
ones, for each grid point we solve one small system for all policies.

Since the numerical integration can be thought, of as a function approxi-
mation of the integrand with a subsequent analytically simple integration, we
can apply the Smolyak operator also to Gaussian quadrature of the rational
expectations integrals as

Eeh(...,e,...)=/h(...,e,...)p(e)de%Zw_,-h(...,ej,...),
J

where the continuous random variable e and its density p(e) are essentially
discretized into some realizations e; with weights w;.

The entire problem of solving the model is to approximate the policy func-
tion x*(s;) in

0= f(st, xX*(s), Y wy; 9>,
J

z, = h(s;, x*(s,), €j1+15 Sj,1+15 x*(sj,wrl); 0),

Sj41 = g(se, X*(8¢), € 1+15 0) Vj.
The variables and parameters of the example model correspond to the fol-
lowing variables of the general model class:
S = {kn,t, an,t},,N:p
- N
Xy = {Cn,t’ ln,t; ln,t}n:p
€= {en,t}i\[:]a

0= {Tna 0n7 Ay, 8n7 Pns Kns Uen}nNzl U {B}

In the next section we derive the optimality conditions and map them into
the general model functions f, 4, and g.

S2.2. Optimality

The Bellman equation for the allocation problem is

N N
V.= max (Z Un,t + BE Vi1 + Ap Z(yn,t — Cuyt — in,t)
n=1

{Cn,tylmt’in,tskn,ﬂrl ),/Y:] n=1

N
+ Z /\n(kn,t+1 - (1 - 6n)kn,t - in,t + 0~5Kni3,’t)>7
n=1
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where V., =V (ki ..., knst, G1s, - - -, an,; 8). The first-order conditions for n =
1,..., N are given by

v, U, ,
S.3 = ~ — =0,
(53) I, I, ?
0')1/1 &Unt é)ynt
S.4 — = ~+ A =~ =0
(S4) i Oy oL,
vV
(SS) ; ! = _AB + A;'L(Knin,t - 1) = 0’
Iy y
v, Vi
S.6 = BE +A,=0,
(5.6) Ik i1 P "9k i1
Vv,
(S.7) (9_; =kns1 — (1 = 8,k — in +0.5k,i, , = 0.

The last optimality condition is the budget constraint

av;

N
t .
= E (yn,l — Cnyr — ln,l) =0.
n=1

s8) o

The derivatives of the unknown value functions in equations (S.6) can be
derived by the envelope theorem. It allows us to write the derivatives for
n=1,...,N as

v, Iy,
t=)\B Yn,t

S.9
( ) (?kn’[ &kn’[

- )\n(1 - 8n)

since the derivatives of the policy variables with respect to k,, are zero by
optimality. The Lagrange multipliers A, in equation (S.9) can be substituted
by equations (S.5) and the multiplier Ap can be substituted by equation (S.3),
and consequently we arrive at

WV, U, [ 9V 1-38,
Ikn,  ICus \Fkn, 1 — Kpiy,

for n=1,...,N. These equations can then be forwarded one period and
plugged into equations (S.6) to obtain the Euler equations forn=1,..., N,

(SlO) 1 ‘9Un,t _ BE[(&Un,t+1 (ayn,ﬁrl + 1 - 521 >> _ 0

1-— Knly; 9Cp JCp 141 07kn,t+1 1-— Knln,i+1
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Equations (S.3) and (S.4) imply the intratemporal optimality conditions be-
tween consumption and labor supply forn=1,..., N,
aUn,l dUn,t &yn,l _ 0

S.11 =
( ) (91”’; (96,,’; ﬁln’[

Finally, we can substitute the Lagrange multiplier Az from the first of the N
equations (S.3) into the other N — 1 equations of (S.3) to arrive at N — 1 con-
ditions forn=2,..., N,

ﬁUl,t _ (?Un’[

dcy B ICuyy ’

(S.12)

which enforce equal marginal utilities across all the countries.

The 4N equations which determine the variables ¢, ;, [, in,, and k, ., are
the N Euler conditions (S.10), N intratemporal trade-offs between consump-
tion and labor (S.11), N — 1 equalities of marginal utilities (S.12), the budget
constraint (S.8), and the N capital transitions (S.7). A simplification is to solve
the trade-off in equations (S.11) for consumptions c¢,, and the budget con-
straint (S.8) for one investment i ,.

The mapping into the general model class is the following: The 2N — 1
equations (S.10) and (S.12) determine the policy variables /,,, ..., Iy, and
i, ..., Iy, in the general functions f. The general model functions /4 for N
forward looking variables are given by the arguments of the expected values
in the Euler equations (S.10). The N capital transitions (S.7) and the N pro-
ductivity transitions (S.2) form the state transition functions g of the general
model.

S2.3. Solution
S2.3.1. Approximation

The first step toward the nonlinear solution is to generate start values for
the policy functions. We use a linear approximation of the model around the
deterministic steady state.

S2.3.2. Linearization
The deterministic steady state s, x is defined by
0=f(s,x,h(,x,0,5,%)),
s=g(,x,0).

For the one country model with states a and k and labor policy /, the steady
states are

a=0,
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(a — 1)a1/(1_a)31/(1—a>(3(5 -1+ 1)a/<a—1)0
T —adBroBrabB-B-ab+l
(a—D(BGB-1)+1)0
af+B((a—1)s—ab+1)—1

k=

~|

The linearized model is given by

o ol S]]

where ds = s — 5 and dx = x — x. Primes denote the next period variables
{s’, x'} = {8,141, x:41}. The subscripted functions f, g, and & are Jacobians with
respect to the variables in the subscript evaluated at the steady state. The left
matrices on both sides of the equation can be decomposed by the generalized
Schur or QZ decomposition to arrive at the equation

v sl 2lle)-00 205 2]l
0 S» ze 7y cp 0 Tp za 7y Cl
This equation can then be solved for the linear policy function defined by

C = Z, Z;;' and the state transition matrix P = Z,,S;,' Ty, Z;;', as described in
Klein (2000). The linear solution of the model is finally given by

x,=x+C(s;—5),
Si1 =8+ P(s; — ).

S2.3.3. Nonlinear Solution

The nonlinear solution or policy functions x*(s) reside in the infinite-
dimensional space of all functions. In a practical approximation, we search
in the m; dimensional space of polynomials X*(s; ¢) = Z;":’] ¢ibj_i(s) char-
acterized by the coefficient vector c. We use orthogonal Chebyshev polyno-
mials as basis functions b;(s) defined by by(s) =1, b(s) = s, and b;;(s) =
2sb;(s) — bj_1(s) for j > 1. To identify the m; elements of the coefficient vec-
tor ¢, we use the same number of policy values at the grid s’ = {s{, s5, ..., s}, }.
In a one-dimensional approximation, for example, with m; = 3 coefficients, we
have to solve the linear equations

bo(s))  bi(s) ba(s) T [ x*(s)
(S.13) bo(sh) Dbi(sh) by(sh) e | = x*(sh)
bo(sy) bi(sy) ba(sh)d L6 x*(s5)

This requires the approximation on the left hand side to be exact for the pol-
icy values on the right hand side at the grid {s!, s}, si}. This equation can be
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solved accurately since the orthogonality property of the Chebyshev polynomi-
als guarantees that the basis matrix, defined as the basis polynomials evaluated
at the grid on the left hand side, is well conditioned for the calculation of its in-
verse. A good grid according to the numerical theory is the Gauss—Lobatto grid
defined by s; =0 and sj. =—cos(m(j—1)/(m;—1))forj=1,...,m;and i > 1.
The range of these points is from —1 to 1 and the grid in the desired approxi-
mation space is obtained by a simple linear transformation.

S2.3.4. Tensor Operator

If the functions to be approximated or integrated depend on several vari-
ables, we need a rule for how to extend a univariate approximation operator to
many dimensions. The usual extension uses the tensor operator. It combines
each element of the univariate grids and basis functions with each other.

The univariate approximation operator for function x:[0, 1] - R is

U'x) =) aix(sh),

j=1

where i € N is the approximation level and s} € [-1, 1] are the grid points. In
the case of a function approximation, a; e Cfor j=1,...,J are functions of s;
in the case of numerical integration, aj. are the weights. The Clenshaw—Curtis

function m; =1 and m; = 2"-!' + 1 for i > 1 translates the approximation level
i into the polynomial degree of the approximation.

The multidimensional (d > 1) approximation operator based on the tensor
product ® is defined as

ml‘1 mid

U@ QU =Y -y () @ ®a)x(s],....si).

=1 Jja=1

. . . 1 . .
To construct this approximation, we need ]_[;.:1 m;; function evaluations

x(s.;i yenes s}j). This establishes the exponentially growing costs of the approxi-
mation, a phenomenon called the curse of dimensionality.

The multivariate Chebyshev approximation can be expressed as the ma-
trix equation B(s')c = x(s'), where the approximation level is given by i =
{i1, is, ..., 14} and the basis matrix is given by B(s') = b(s') ® --- ® b(s).
The grid s’ = s x -+ x s is constructed by the Cartesian product of the uni-
variate grids.

The tensor product based multivariate Gaussian quadrature extends the uni-
variate grids by the Cartesian product. The associated weights are multiplied.
Since the Gaussian quadrature can be thought of as approximating the inte-
grand by a polynomial with a subsequent trivial integration, the Smolyak oper-
ator for the function approximation also applies for the Gaussian quadrature.
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S2.3.5. Smolyak Operator

The usual formulation of the Smolyak operator is

Aga(x) = Z (_1)qlil(;__|%|)(Uil®"~®Uid)a
q—d+1<lil<q

where d is the dimensionality of the function to be approximated, g is the level
of approximation, and the multiindex i translates the approximation level into
the univariate approximation levels. This formula highlights the fact that the
Smolyak operator is a simple linear combination of some lower level tensor
products and that a straightforward implementation of this operator is not
complicated.

The Smolyak operator constructs the multivariate grid as a combina-
tion of some lower level Cartesian products x of the univariate grids s =

i ij
{slja e sl‘ilij},

(S14) Hya= |J ("% xs,

g—d+1=lil=q

analogous to the construction of the multivariate polynomial A4, 4.

For alternative presentations of the operator, see Kiibler and Kriiger (2004)
and Heiss and Winschel (2008). For the integration, as in Heiss and Winschel
(2008), we use the Kronrod-Patterson univariate grids derived according to
Genz and Keister (1996) and combine them by the Smolyak operator for a
multivariate integration.

S3. SMOLYAK EXAMPLE

The following example is given to clarify the difficult notation of the Smolyak
algorithm.

The starting point is the index set. For a d = 2 dimensional approximation
at level g = 4, the index set is given by all two-dimensional vectors whose el-
ements sum is between ¢ — d + 1 = 3 and g = 4. These vectors are given in
Table S.I in the two left columns captioned “Index.” The two columns to the
right, captioned “CC,” show the Clenshaw—Curtis function values of the index
elements. For each index vector, we build a tensor product shown in the col-
umn “Tensor.” For example, the first CC vector [3, 1] means that we have to
combine the univariate Chebyshev polynomial in the first dimension with de-
grees from 0 to 2 with the Chebyshev polynomials for degrees from 0 to 0. This
gives the tensor products [[0, 0], [1, 0], [2, 0]] that represent the three bivariate
polynomials [by(s1)bo(s2), b1(s1)bo(s2), b2(s1)bo(s2)], where s; and s, are val-
ues in the first and the second dimensions, respectively. The column captioned
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TABLE S.I
SMOLYAK POLYNOMIAL A, s FOR d =2 AND g =4

Index CcC Tensor Smolyak
151 i2 m,—l m,-2 Ni jz 15l jz Polynomial
2 1 3 1 0 0 0 0 bo(Sl)b(J(Sz)Cl
1 0 1 0 b1(s1)bo(s2)c2
2 0 2 0 bz(Sl)b(J(Sz)C3
1 2 1 3 0 0
0 1 0 1 bo(s1)b1(s2)cy
0 2 0 2 bo(s1)b1(s2)¢s
3 1 5 1 0 0
1 0
2 0
3 0 3 0 b3(S1)b0(S2)C(,
4 0 4 0 by(s1)bo(s2)c7
2 2 3 3 0 0
0 1
0 2
1 0
1 1 1 1 b1(s1)b1(s2)cs
1 2 1 2 b](S])bz(Sz)Cg
2 0
2 1 2 1 by(s1)b1(s2)cro
2 2 2 2 by(s1)by(s2)cn
1 3 5 1 0 0
0 1
0 2
0 3 0 3 bo(s1)b3(s2)ca
0 4 0 4 bo(s1)bs(s2)c13

“Smolyak” finally gives the degrees of nonrepeating bivariate polynomial com-
binations which are shown in the last column. This repetitive pattern is cap-
tured by the binomial coefficient term (—1)7" (;_"L) Thus, the Smolyak ap-
proximation A, is characterized by 13 coefficients cy, ..., ¢;3 and needs func-
tion evaluations at 13 grid points to identify them in the two-dimensional space.
The approximating polynomial is finally given as the sum of the last column:
X(81,82) = bo(s1)bo(s2)c1 + b1(s1)bo(82)C2 + - - - + by (51)ba(82) C13.

Table S.II shows how the grid is constructed. The operation is similar to the
operations on the basis functions. Apparently, the “Index” and “CC” columns
are identical in both tables. The one-dimensional grids are [0] for a one point
grid, [—1, 0, 1] for a three points grid, and [—1, —1/\/5, 0, l/ﬁ, 1] for a five
point grid.

The basis matrix can now be calculated using both tables. The Smolyak col-
umn of Table S.I represents the rows of the basis matrix and each row is eval-
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TABLE S.IT
SMOLYAK GRID A, 4 FORd =2 AND g =4

Index CcC Tensor Smolyak
i i mj mi, Ji I i 1)
2 1 3 1 -1 0 -1 0
0 0 0 0
1 0 1 0
1 2 1 3 0 -1 0 -1
0 0
0 1 0 1
3 1 5 1 —1 0
—1//2 0 —1//2 0
0 0
1/3/2 0 1/7/2 0
1 0
2 2 3 3 -1 -1 -1 -1
-1 0
-1 1 -1 1
0 -1
0 0
0 1
1 -1 1 -1
1 0
1 1 1 1
1 3 5 1 0 -1
0 —1/4/2 0 —1/V2
0 0
0 1/+/2 0 1/4/2
0 1

uated at the vectors of the rows of the Smolyak column of Table S.II. The in-
verted 13 x 13 basis matrix identifies 13 coefficients in

a bo(—1)bo(0) ... bo(—1)bs(0) 77"
Q| bo(0)bo(0) ... bo(0)by(0)
ci3 bo(0)by(1/3/2) ... by(0)by(1/4/2)

f(0,0)

£(0,1/3/2)
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S3.1. Iteration

There are two complications in the approximation of the solution. The first
is rational expectations, which we approximate by a Smolyak based Gaussian
quadrature. The second is that the functions we want to approximate are the
unknown solutions of the functional. Therefore, we cannot obtain function val-
ues at the grid by simple function evaluations, as we assume on the right hand
side of equation (S.13). The policy values are given only implicitly and a root
finder or a function iteration has to improve a start value. Table S.III summa-
rizes the iterative procedures.

Approximation step 1 and interpolation step 2(a)ii are given for the ten-
sor product, but they are analogous for a Smolyak approximation. Efficient
algorithms in the literature are often constructed to optimize the interpolation
step as a combined construction of approximation coefficients and interpola-
tion. Implicit in the coefficient calculation is the basis matrix inversion. In our
iterative application, we need to invert the basis matrix only once, since it is
not changed over iterations and structural parameters.

The choice between the function iteration in 3(a) and the root finding algo-
rithm in 3(b) involves a trade-off between a few iterations over one big root
finding system in 3(b) and iterations over several small systems in 3(a). For
example, in a model with d, = 1000 grid points and d, = 20 policy functions,
the complete system to be solved has d, x d, = 20,000 equations. In the func-
tion iteration routine, on the other hand, the solution x**" can be obtained
pointwise. Instead of solving one large system for all d, x d, policy values,
we solve d, systems with d, equations. But since the function iteration usually
needs more iterations, the overall gain is not clear-cut. Moreover, analytical

TABLE S.II1
FUNCTION ITERATION AND ROOT FINDING

0. Initial policy: x® at grid s’
. Approximate policy function ¢® = B(s") 1 x©
. Rational expectations:
(a) For all discrete shock realizations j=1,...,J
i. State transition: s; = g(s*, x*), ¢))
ii. Next policy: x; = B(s)c®
(b) Expected variables: z=}"; wih(s', x, €}, 8, X5)
3. Iteration:
(a) Function iteration:
i. Solve for x**V in (s, x**D z(x®)) =0
ii. Residual: R = xk+1) — x®
(b) Root finding:
i. Residuals: R = f(s', x®, z(x®))
ii. Iteration: x*+D =x® — (9R/9x)"'R
4. k=k+1,gotostep 1 until R~0

N —
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Jacobians are available for the small systems. In JBendge, the Jacobians are
automatically derived by a symbolic differentiation engine and do not need to
be supplied by the user. A restriction of the function iteration scheme is that
we need all policy functions to appear in the contemporary policy vector x in
f(s, x, z) = 0; otherwise we cannot solve for them (the Jacobians become sin-
gular).

However, the main advantage of the function iteration is probably that it can
be parallelized since the policies at each grid point are independent of each
other and the d, small systems of size d, can be solved on parallel CPUs. By
now, we solve these systems sequentially with a standard Newton root finder
with analytical derivatives and a line search for the optimal step size.

S3.2. Error

An approximation procedure has to be accompanied by error estimates so as
to control its accuracy. The exact policy functions would imply zero residuals
in the complete state space and any deviation is, therefore, due to the policy
function approximation.

Judd (1992) proposed to normalize the residual for an economic interpreta-
tion. Dividing the residual by (1 — [,,(s,)) == /(k,i, , — 1) and taking it to
the power of 1/(6,(1 — 7,) — 1) gives the Euler equation in terms of consump-
tion,

BE.h(s, x*(s), e, 5, x*(s'); 0) )" """
(1 = 1,(8))1=00=0) /(i ,0,, , — 1) )

s’ =g(s, x"(s), €).

r'(s) = c,(s) — (

The Euler error is finally given by r* = [r°(s)/c.(s)|. A log,, error of —3 means
that the utility loss due to the approximation is less than 1 per 1000 dollars.

S4. ECONOMETRICS

The Bayesian estimation based on models M = {M;, ..., M,,} can be sum-
marized by the factorization of the joint density

p(@,y, 0, IM;) = p(wly, Ou,, M;) p(¥10u,, M) p(0,1M;).

The models can explain the observables by different unobservables, functional
forms of their relations, and shock distributions. The unobservables include
the parameters and the states 60,, = {6} U {s}. The functions and the shock dis-
tributions that describe the variables of interest p(wly, 0,, M;), the density
of observables (or likelihood) p(y|6y,, M;), and the prior density of unobserv-
ables p(0,,|M;) factorize the joint density p(w, y, 0y, |M,).
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In the Bayesian formula, the likelihood contains the evidence in the data and
transforms the prior into the posterior density of the unobservables

PY0um,, M;) p(0y,|M;)
O 1y, M;) = ! ! .
P01y, M) POIM)

The marginal likelihood

p(yIMi)=/p(y|0M,-,Mi)p(9M,-lMi) doy,

allows the data to assign probabilities to model M,

p(yIM;) p(M;) _ p(yIM;) p(M;)

Py " '
> pOIM) p(M))

j=1

p(M;ly) =

The ratio of two marginal likelihoods is the Bayes factor. It transforms the
model prior into the posterior odds ratio

p(M;ly) _ p(M;) p(yIM;)
p(M;ly)  p(M;) p(yIM;)

S4.1. Filtering

The policy functions x*(s) that solve the model can be used to substitute the
policy variables in the state transition equation. Augmented with a measure-
ment equation, we obtain the model’s empirical implication for the observables
in terms of a nonlinear state space model

S =8 (821, X" (8-1), ¢) =g(si-1,€) & p(Silsi—1),
Ve=m (S, x*(s)) + e, =m(s;)+& & pOyelse),

where we also switch to a more convenient density representation of the model
for the econometric discussion: with distributional assumptions for the state
and measurement shocks, e, and g,, the state space equations can be ex-
pressed in terms of state and measurement densities. For notational conve-
nience the conditioning of these densities on the parameter vector 6 is sup-
pressed.

The filtering approach evaluates the likelihood of this model by the pre-
diction and filtering steps. These steps transform the posterior density of un-
observed states p(s,_i|yi,_1) into the next posterior p(s;|y;,) by recursively
processing new data y, for each period ¢. As a by-product, we get a likelihood
value. The notation yy,, is a shorthand for {yi, ..., y;}.
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For a given parameter vector, we start at time 0 with the prior information
about the state

P(so) = p(solyo)-
The prediction step generates the prior density according to the Chapman-—

Kolmogorov equation

(515) P(Sidyie-1) = / P(Se, Se—1|yie—1) ds,_

zfp(stlsz1)p(st1|y1;t1)dsz1,

where the state density p(s,|s,_;) is weighted by the last posterior density
p(si_1|y14-1). The new posterior is obtained in the filtering step, where new
data y, allow us to update the prediction density

(S16)  p(silyn) = pGso Yy _ — pOuls) p(sidyia-1)

PYilyri-1) /p(yt|st)p(st|y1;t1)dst

This equation is the result of a repeated application of the Bayes formula.
The normalizing constant

(S-17) l, = / PYuls) p(silyri—1) ds; = p(Yilyi—1)

is the period’s contribution to the likelihood of the complete sample

T T
(S.18)  L(6; yi.r) = p(yrl6) = Hp(ytb’lrt*l’ 0) = l_[l"

=1 t=1

The state posterior density p(s;.r|y;.7) can be the end of an estimation or just
a means to obtain the likelihood. The likelihood can then be either maximized
over the parameter vector or used to base the inference on the parameter pos-
terior density

P(Y1:T|9)P(9).

0ly.1) =
p(0ly..r) POer)

The particle filter estimates and updates the complete posterior density of
the unobserved states represented by a sample of the states, called particles.
This is done by a costly sequential importance sampling with an inaccurate but
simply implementable proposal density. This filter is computationally costly
because the proposal density does not use the available information from the
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current observation. Moreover, as a Monte Carlo approach, it does not use any
information, like smoothness, of the involved functions.

Our first new filter is the Smolyak Kalman filter, which assumes that the
prediction p(s,|y;,_1) and the posterior densities p(s,|y;.,) are Gaussian. We
therefore need to approximate only the first two moments of the densities
and can then use the Kalman update in the filtering step. The moments
needed for the Kalman step can be calculated as expected values of nonlinearly
transformed random variables. Hence, we can use a deterministic Smolyak
Gaussian quadrature for the approximation of these moments. This filter is
very fast but the price may be an undesirably high approximation error.

The second new filter is the Smolyak particle filter. This approach improves
the particle filter by combining it with the Smolyak Kalman filter. We use the
posterior densities obtained by the Smolyak Kalman filter, represented by the
deterministically integrated first two moments of the states, as a proposal den-
sity for the importance sampling of the particle filter. This procedure incorpo-
rates the latest information obtained from the data. It combines the advantages
of both filters, the accurate but slow sampling particle filter and the potentially
inaccurate but fast deterministic filter.

The last filter we present is based on a Gaussian sum approximation of the
involved densities. The filter is again very fast and purely deterministic. It ef-
fectively runs several Smolyak Kalman filters in parallel.

These new filters are used to assure robustness of the simplest Smolyak
Kalman filter and to demonstrate some alternatives to the computationally
costly particle filter. A nice overview for the various approaches can be found
in Arulampalam, Maskell, Gordon, and Clapp (2002).

S4.1.1. Smolyak Kalman Filter

The extended Kalman filter linearizes the state space equations and then ap-
plies the Kalman (1960) filter. A widely used improvement is the deterministic
unscented filter by Julier and Uhlmann (1997).

The idea of the unscented filter is that approximating a density is easier
than approximating a function. The unscented filter approximates the first two
moments needed for the Kalman update. The approximation is some kind of
Gaussian quadrature where the number of grid points is taken to be 2d + 1,
where d is the dimension of the integrand. This is an attempt to solve, but not
yet a solution to, the curse of dimensionality since the curse in terms of the
number of grid points is effectively transformed into another analogous curse
in terms of the approximation error. As the unscented filter raises the number
of points only linearly, the effect is that accordingly the accuracy of the nu-
merical integration decreases with the dimensionality and nonlinearity of the
integrands. Therefore, the unscented filter’s error of the likelihood approxi-
mation comes from restricting the approximation to two moments and their
ad hoc approximation. The unscented filter is, therefore, restricted to a low
polynomial exactness and a small number of states.
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The Smolyak Kalman filter avoids this ad hoc moment approximation and
instead uses a Smolyak Gaussian quadrature. The moments are then updated
in the usual way by the Kalman gain in the filtering step. An advantage of this
procedure compared to the unscented filter is that the approximation level can
be chosen according to the problem at hand and that the filter is also useful for
other than normally distributed shocks. An approach to non-Gaussian densi-
ties is implemented in the so-called scaled unscented transform which extends
the unscented transform by parameters to control higher moments different
from the ones of the Gaussian density.

We assume that the initial state density is N (so; s, >5). The notation
N(x; u, Y) is a shorthand for a Gaussian density with argument x, mean p,
and covariance 3. Assuming that the previous posterior density is Gaussian,

PCSi—1lYi-1) =N(SH; St—1t-15 2?—1\:—1)’
the prior density

P(8ilyr-1) =N (g(si-1, € Si—1, 35,1)

is characterized by its first two moments,

(819) Stje—1 = /fg(stl, €t)N(S,,1; Si—1t-15 Eifl‘t,l)N(et; 0, Ze)dszfl dez,

(520) 3, = / / 85t €8 (St e)TN (St Sttt Sry)
x N(e:; 0, 3.)ds,_ de, — sy1s],_y,

where T denotes a transpose and 3, is the covariance matrix of the state
shocks. The measurement density of the observables is given by

Pilyi—) = N(yt§ Yee-15 2f|;_1)7

where the expected value is

(S21)  yya = / m(s[)j\/'(s,; Sti—15 Ef“_l) ds,
and the covariance is
(S-22) f\zq = / m(s,)m(s,)TN(s,; Stit—15 Ef‘,_l) ds, + Ee — ,Yt|z—1ytft_1,

where 3, is the covariance matrix of the measurement shocks. We also need
the covariance between the observed and the unobserved variables

(823) 3 = / sem(s) N (s 8qe-1, 35,_1) dS; — Sye—1V,_1.-
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The recursion is closed by the filtering step (S.16) and we obtain the next pos-
terior density

(S24)  p(silyr) =N (s 500, 35,),

1

K, = Em 1( ti— 1)7 >
St = Syje—1 + K, (yt - yt\tfl),
Ef\t = Eflt—l - KtzfnfleT

according to a usual Kalman update. The numerical problem to be solved for
this filter is evaluation of the integrals for the expected value and covariance
of the state prediction in equations (S.19) and (S.20), the expected value of the
observables in equation (S.21), the innovation covariance in equation (S.22),
and the covariance between the states and observations in equation (S.23).
The integrals involved have the form f F(ON (s, w, ) ds and can, therefore,
be approximated by a Smolyak Gaussian quadrature with some nodes s and
weights w® by YN w@f(s?).

The integrals for the mean and the variance of the prior density in equa-
tions (S.19) and (S.20), respectively, can be approximated by the nodes and
weights for the joint density of the states and shocks as the weighted sum

N
_ (i) (1) (i)
See-1 = Z w g(st—llt—l7 € )7

N
s (0 <z> 0) (i) T T
=1 — Z w g t—1)t—1> €, )g(sl,l,,,], €, ) - St\t—lsz\t—l'

The assumption of a normal density allows us to generate nodes and weights
from the density N (s;; 8,1, ZilH) and to calculate the moments of the mea-
surement density in equations (S.21) and (S.22) as

(t>
Y- 1_Zw m t|tl

D, (z) i \T T
t\t 1= Z w t|t 1 (St|t71) + Ee - yl\tflythf—l'

The covariance between states and measurements in equation (S.23) can be
approximated by the sum

Z (@ g(0) (:) r T
t\t 1= w t\t lm tt— 1) —S;|[71y,|t,1-
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S4.1.2. Particle Filter

In the Smolyak Kalman filter, we assumed that the state prior and posterior
densities are Gaussian. In general they might be nonstandard and even mul-
timodal. The particle filter provides a general approximation of the posterior
density

N
(825)  p(soulyr) =Y w8 (so, — si.))

i=1
by a sample of states {s\,}Y, and corresponding weights {w"}Y,6 with
Zl_wﬁ’) = 1, where 8 is the Dirac delta function defined by f_ozo f(x)é6(x —
a)dx = f(a). A

We can use importance sampling to draw a sample s\ from an importance

density q(so.|y1..) and to calculate the weights in (S.25) as

(5.26)  w® o PLelYie).
CI(SO:tlyl;t)

For a recursive algorithm we need to factorize the importance density

(827)  q(Soulyr) = q(SilSo-1 Y1:) G (So:e-11Y1:-1).-
This allows us to augment the previous sample {s\,_,}¥, with a sample of
th(; next state s ~ q (81801, Y1) for i =1, ..., N to obtain the next sample
{séf; g

In the following text, we derive two equations for a sequential update of the
weights. In the first variant for the particle filter, the posterior density can be
written as
PYilSo:05 Yi—1) P(Soue| Yr:e—1)

PYilyri-1)
P00 Yie-1) P(SelS0.e-15 Yi:e—1) P(So:0-11Y1:6-1)
PYelyri-1)
P8 p(selsi—1) p(So:e—1|Y1e—1)
PYelyri-1)

o p(YVelSe) p(SelSi—1) p(So:—11Y1:-1)-

(S28)  p(sulyre) =

The identities p(y[So:, Y1) = p(yls)) and p(s,[o.i-1, Y1) = p(silsi-1) fol-
low from the Markov properties of the processes y, and s,. By substituting
(S.27) and (S.28) into (S.26), the weight equation becomes

P(Sor i) POl sl

() ) (D) ?
CI(S()?F] |y1:t—1) Q(stl |Sof,71, y1:z)

w” o
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which can be written recursively as

() (1)) o)

i i N s, |s
(S29)  w}’ “wil_)lp(m(;) )5( 19y .
C](S[ |s0:t—17 yl:t)

The importance density is often chosen to depend only on s,_; and y,. This
simplifies the proposal to q(s|So._1, Y1..) = q(s:|s,_1, y;) and frees us from
the need to save the history of the processes s, and y, during the recur-
sion.

The second representation of the weights will be used to derive the recursive
algorithm for the Smolyak particle filter in the next section. Using

S0:0-15 4-1)
P(Sou—11Y1) = P(Sou—1|Y1:e-1, Ye) = P ;Eyltbitzlyi)[ .

_ PCSou-11Y1-1) PVl Yi—15 So:-1)
PYilyri-1)

and
P(Sts Yi—11S0:-15 Y1)
PYr-1lS0.-1, Y1)
PYr—1lSi; So.u-1, Y1)
PVre-1lS0.-1, Y1)
= p(Se[So:t—15 Ye)»

P(SilSo:—15 Yi:t) = P(SilSou—15 Yist—1, Y1) =

= p(8/S0.—1, Y1)

the density p(sy.|y1.) can be factorized as

P (S0l y:e) = P(Se, Sou—1|Y1:e) = P(SilSou—15 Yi:e) P(S0:1-11Y1:0)
_ PSilSo.—15 ) P(YilSo:e—15 Y1:—1) P(So.e—1|Y1:-1)
B PYelyre-1)
X p(SelSi—1, Y P(YelSe—1) p(So:0-1|Y1:0-1)

and we obtain the update equation for the weights:

l- 5 POuls D p(sP 1, v
(830)  w!” ocw?

(D)
Q(Stl |s();1715 Yi:t)

A serious problem with the particle filter is that after a few iterations, most
particles will have weights close to zero. This means that many particles stop
contributing to the approximation. A brute force solution is to increase the
number of the particles and so to waste most of the computational resources.
A more efficient and essentially genetic solution is to resample the particles
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according to their weights, and then reproduce those with the highest weights
and drop the others. If we resample in each iteration, the weight update equa-
tions (S.29) and (S.30) become

(i) @) (D
(i) P(%|Stl )P(Szl |stl—1
w,” X

(S8.31) -
q(st( )|S[():;—1’ yl:t)
and
@ [(OIW0!
(S.32) w;i) - P(Yt|S,_1)p(i()S; |st_1,yt)'

(i)
‘I(Szl |S0;t71 ) yl:z)

We are often interested in an estimate of the posterior density p(s,|y;,) in-
stead of p(so.|y:.,). Again, the Markov property of s, allows us to factorize the
posterior density into

P(soalyi) = p(Soualyr-1) plsilyr) =+~ = p(so) [ | p(silyny)-

j=1
Since in

p(SO:t |y1:l)

t—1

plso) [ [ pCsilyia)

i=1

P(Selyie) =

the denominator is constant at ¢, it follows that

P(Silyi) o< p(So.|yre)

and we can use the weights given in (S.31) and (S.32) to approximate

N
P(Si|yi) = Z w;i)é(sl — s;i)).

i=1

The simplest choice for the importance density g(s,|So.,_1, Y1) is the state
transition p(s,|s,_1). It is very easy to sample from this proposal density. More-
over, it simplifies the weights in equation (S.31) to w” o p(y|s”). The par-
ticles are, therefore, weighted according to their likelihood. Small measure-
ment errors, therefore, aggravate the problem of degenerating particles and
enforce the need for resampling. Note, that due to this method of calculating
the weights, the filter cannot handle state space models without measurement
errors. Resampling, in turn, introduces a bias into the particle filter; see, for

example, Berzuini, Best, Gilks, and Larizza (1997).
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The recursion for the particle filter is given by the following three steps.
We start with an equally weighted sample from the previous posterior den-
sity

S[(i)lfvp(stfﬂy]:tf]) for i:17-'-7N~

Step 1. In the prediction step, the state transition density is used as a pro-

posal density to generate N particles

sO~ p(ss”)) for i=1,...,N.

This is done by evaluating the state transition equation g(sf?l, ey for each

particle s\, with randomly drawn shocks e.” from the model’s state shock dis-
tribution.

Step 2. In the filtering step, the particles are weighted with

w;” = p(vls;”).
This is done by first evaluating the measurement equation y” = m(s\").
With additive measurement shocks, we know the distribution of the differ-

0

ence to the observed data. In case of Gaussian errors, we have y, — y,
N(gt; 0,3,).

Step 3. The particles are then resampled according to their normalized
weights

w!”

The resampled particles finally represent an equally weighted sample from the
next posterior

s~ p(sdyi) for i=1,...,N.

The period likelihood is then given by the mean of the weights in Step 2:

g .
NZp(ytlsf”)%//p(stlsz_l)p(st_lIylzt_l)p(ytlst)dstdst_l

n=1
= p(VelYi-1)-

These likelihoods are obtained recursively for each period and at the end of

the complete sample, we arrive at the sample likelihood in equation (S.18).
The problem of the filter is that the available observation y, is not taken into

account in the importance density p(s;|s,_;). The consequence is that we may
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sample in very low probability regions of the state’s density with many implied
particle weights close to zero. This is inefficient and the next filter uses a better
proposal density.

S4.1.3. Smolyak Particle Filter

Our idea to improve the particle filter is similar to that in Amisano and Tris-
tani (2007), where the proposal density for the particle filter is generated by
an algorithm similar to the extended Kalman filter. Another related filter is
the unscented particle filter by van der Merwe, Doucet, de Freitas, and Wan
(2000), where the unscented Kalman filter is used to generate a proposal den-
sity.

The information about the current observation is embedded in the posterior
of the Smolyak Kalman filter. We use this posterior as the proposal density in
the particle filter. This is more accurate than the proposal generated by the
extended Kalman filter, and is more accurate and more general than in the
unscented filter. The proposal density is now

q(siIS0.-15 i) = P(silsiy, ) ~ p(silsi”y, yi).
The weights in equation (S.32) can be updated as

(i)

w(z) p(st|sz I,Yz)P(y;IS
PCsilsy, v

If we do not correct the error that results from the approximative proposal, we
can calculate the weights as

0 o plyls).

We construct the proposal density p(s,|s'”,, y,) similarly to the posterior of
the Smolyak Kalman filter, starting with an equally weighted sample from the
previous posterior density

50y~ p(silyi—r) for i=1,...,N

In the prediction step, we calculate the mean and the variance of the state
prediction by Gaussian quadrature over the state shocks {e"”, wU)}L1

p(silsy, yiuet) zf (sels2) P (5211 yiem) de ~ N (ses 851, )

(t) 0) (l) 0))
z\t 1= Zw —1>€ )’

J

s(i) ) (t) ) (t) ) T
i = Zw Pg(sr,e”)g(s), et ) = SH-18-1-

j=1
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The moments of the observables

(S.33) p(ytISE?l,ylzt_l)=/p(ytlst)p(stlsgpym_l)det%N(yt,y,(’,) L300,
Vi = Zw(j)m( (i1, €?)),
=1
i({nl _ Zwmm s(’)l, e(j)))m(g(s(')l, e<j>))T 43— yf|t—1y§t—1’

J
Ef\yt(i)1zzw(j) (t) e(/)) (g( O] e(j))) _sl\lflytft—l

allow us to calculate the Kalman gain and to update the prediction moments
to those of the proposal density

P(sz|st(l)17 i) &N (s t(\lt)v i\(l”)’
Ko=37 f\zfl)il’
St(\lt) = sf\lz) 1+KI(J’t yt(|lt) 1)
Zi\(tl) = 2;(;11 -K Zf\(zl)lKT
from which we draw the next state particle:
Sii) ~ ﬁ(stlst(i)l’ J’m)-
In the filtering step, we weight these new particles according to

(l) _P()"t|st 1,}"” ])

If we assume a normal density for p(y|s'”,, y1.,_1), we can evaluate the weights
at the already calculated density in equation (S.33):

)

Finally, we resample the new particles according to their normalized weights

(@)
i w;
w =
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These steps again transform one posterior into the next, and the period likeli-
hood can be approximated by the mean of the unnormalized weights

1 < ,.
NZP(YASE)])%//P(SASII,Yz)p(szl|YI:zl)p(Yt|Stl)dstdstl
n=1

= p(YilYiu-1)-

Note that the Smolyak particle filter is applicable in state space models with-
out measurement errors since the weights do not need to be evaluated at the
measurement shock density.

S4.1.4. Smolyak Sum Filter

The last filter we present is based on a sum of Gaussian densities for the ap-
proximation of the posterior and prediction densities. The idea can be traced
back to Alsbach and Sorenson (1972). More recently, Kotecha and Djuri¢
(2003) revived this approach, but they used importance sampling to approx-
imate the involved integrals as they do in their Gaussian particle filter. Instead
we propose to use Smolyak Gaussian quadrature again.

The basic idea is that any density of practical concern can be approximated
as a sum of normal densities

1 I
P~ oN(xpl,3) with > o=1
i=1 i=1

The steps for the filter are similar to the steps of the Smolyak Kalman filter.
The difference is that now we effectively run several Smolyak Kalman filters in
parallel. The prediction density is approximated as a sum of normal densities

p(st|y1:t—1)=/p(stlst—l)p(st—l|y1:t—1)dst—l

I
~ / Z wi-1 PSS )N (8121, St 1j—15 Z,lr;t—l\lfl) ds;—1
i1
I
= Z Wi;—1 / P(Sz|St—1)N(St—1, St 1j—1> Eg;t—llt—l) ds—1
i1

1
- Z wi;tfl-/\/‘(sn S;”_l, le;tlt—l)'

i=1

This is simply a parallel evaluation of several Smolyak Kalman filter steps
so as to calculate the mean s;,_, and the variance 3, , according to equa-
tions (S.19) and (S.20), respectively. Anderson and Moore (1979) presented
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this approach to nonlinear filtering for a model with additive noise in the mea-
surement and state equations. We therefore have an implicit assumption that
the weights are preserved during the prediction step. For nonadditive state
shocks, this assumption deserves some further elaboration in future research.

The filtering steps involved are again the same as those toward the density
in equation (S.24):

P(sidyre) o< pOilsON (si, 85,15 2yiy)

1
~ / Z wi:t—lp(sz|st—1)N(St—l, s;‘[_p Eé;m—l) ds,_
i=1
1
= Z/ wi;t—lp(st|st71 )N(Stfl ’ s;‘z,1 ’ Eé;[‘l,]) dst—l
i=1

1
=" i p(silsON (511, 8,10 3L y) dsicy.

i=1
The weights are updated according to

Wi 1

1 b
E Wi 1y
i=1

where a;., is the likelihood contribution of each summand of the Gaussian sum.

This extension to the Smolyak Kalman filter is simple to program and
amounts to a parallel evaluation of several Smolyak Kalman filters that allows
us to parallelize this filter.

wi;t =

S4.2. Posterior Density

Once the likelihood for a given parameter vector is evaluated, we can use it
to derive an estimator. The information accumulation in the Bayesian frame-
work is described by the Bayes formula and the object of interest is the poste-
rior of unobservables 6:

0)p(6 0)p(6
p(oly) = PANOPO) _ pOIOPO) i) n(0),

P) / p(y16) p(6) d6

An analytical expression is not available for either the likelihood or the poste-
rior, but a random number generator that draws from this density can provide
a histogram as an approximation.
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S4.2.1. Metropolis—Hastings

The Metropolis—Hastings algorithm allows us to generate draws from a tar-
get density. As opposed to importance sampling, no proposal density is needed.
The only prerequisite is that the target density can be evaluated at any point
of its domain. The algorithm described in Chib and Greenberg (1995) samples
so that the histogram of the sequence of draws 6.y approximates the target
density for large N.

The algorithm is summarized in Table S.IV. The parameter space is tra-
versed by a random walk. The newly generated candidate parameter vector (:)j;
is accepted if its posterior is higher than the posterior of the last accepted pa-
rameter vector é,,_l. This qualifies the algorithm as a maximizer, but even if
the candidate’s posterior is smaller still, there is a chance for it to be accepted.
This makes the algorithm a global maximizer. The survival according to the
parameter vector’s fitness, measured by the posterior value, qualifies it as a ge-
netic algorithm. If the acceptance ratio is tuned by the random walk variances
to be around 30%, we obtain a representative sample from the target density
after convergence.

The critical choices of the algorithm are the starting value 6, the density to
generate candidates 67, and the number of draws N. The choice of 6, drives
the number of draws before convergence. The start value might be far from a
representative draw of the target density, and many draws are needed to get
into the representative region. The distributional choice is often a random walk
with normal shocks. For a normal target density, the optimal choice of the inno-
vation variance is 3, = Cov(#0). It has to be scaled so that the acceptance ratio
is around 0.3. For a normal target density, this is achieved by y* =2.38/+/D,
where D is the number of estimated parameters. Of course, the target den-
sity and its covariance Cov(6) are not known because they are the objects of
interest.

TABLE S.IV
METROPOLIS-HASTINGS ALGORITHM

1. Choose start value 6, and 3, for an acceptance ratio of ~ 30%
2. Forn=2,whilen—J <N,n=n+1

(a) Candidate: 6 = 6, | + &, where N'(&; 0, 3,)

(b) Acceptance:

On = Prel 051) P(61)
é,,, | otherwise

(c) Decide on J by diagnostic tests
3. Disregard burn-in draws éu
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The chosen variances in 3, influence the region covered by the sequence.
Sampling around the mode of the posterior with large variances will generate
candidates far from the current value and a low acceptance probability. Smaller
variances increase the acceptance ratio but decrease the region being covered
so that low probability regions may be undersampled. The recommended ac-
ceptance ratio results from the attempt to balance this trade-off.

The next section discusses the diagnostic test aimed at deciding on conver-
gence. The decision is about the number J that determines how many burn-in
draws 6;.; are to be ignored. Formal convergence tests are an important part of
the analysis together with eyeballing, and after some estimations, one acquires
a visual feeling for convergence.

S4.2.2. Convergence Test

A convergence test can be based on one subdivided sequence or on several
parallel sequences. In general, we diagnose convergence if the sequences ap-
pear to be drawn from the same distribution. Examining only one sequence will
result in overly optimistic diagnostic tests. Gelman and Rubin (1992) pointed
out that lack of convergence, in many problems, can easily be detected from
many but not from one sequence.

In both cases, the diagnostic test is calculated from a three-dimensional ten-
sor 6 of size N x D x M with elements éj;’,m, where D is the number of estimated
parameters, N is the number of draws, and M is the number of sequences. ,, ,,

is a 1 x D vector that represents the nth draw in the mth sequence and 9:,,,, is
a N x D matrix that represents all draws in sequence m.

Brooks and Gelman (1998) proposed the multivariate potential scale reduc-
tion factor R as a diagnostic test. The general idea is to check within- and
between-sequence variances and diagnose convergence if they are close to each
other. The within-sequence variance is the D x D matrix

1 M N . _ . _
W= m ZZ(en,m - em) (en,m - Hm)a

m=1 n=1

- N 2 . . .
where 6,, = ~ >, 6, is the 1 x D mean vector in sequence m; W is the
mean of the variances in each sequence. The between-sequence variance B/N
is the D x D matrix

s__1 i(é 6) (6,, — 0)
N~ M-14

where 6 = i ZZ:] 6,, is the 1 x D mean of all draws. The combined variance
can be estimated as
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Convergence is detected for similar 1 and W. A distance measure is calculated
by the multivariate potential scale reduction factor

N-1 M+1 4%
R= N + T+Amax, where A = max ZWL;.

Amax can be obtained by taking the largest absolute eigenvalue of W~'B/N.
The following conditions for convergence should be checked: IV and W should
be similar and stable, and R should be below 1.1.

These test statistics can be calculated recursively after each draw. Once the
conditions are met, the burn-in sequence length J is found and the draws there-
after are taken to represent draws from the posterior of structural parameters.

S4.2.3. Parallel Extension

The variances of the random walk shocks 3, have to be tuned for an ac-
ceptance ratio of around 0.3. It is quite demanding to find good values for
all parameters simultaneously; usually many costly training sequences are
needed. The variances can then be estimated from these runs. Moreover,
as in Fernandez-Villaverde and Rubio-Ramirez (2004), robustness should be
checked by running several sequences with different start vectors.

We propose to run multiple sequences simultaneously and not sequentially.
There by we can assure robustness with respect to start values, calculate un-
biased convergence diagnostic tests, estimate the innovation variance on the
fly, and, finally, implement ideas from evolutionary algorithms to improve
the search for the modus of the posterior in the beginning of the sampling.
The pseudo code for this parallel Metropolis—Hastings algorithm is given in
Table S.V.

TABLE S.V
PARALLEL METROPOLIS-HASTINGS ALGORITHM

1. Choose start values 91,,,, forallm=1,..., M and b, y°E for an acceptance ratio of ~ 30%
2. Forn=1,whilen—J <N,n=n+1
(a) Repeatform=1,...,M
i. Draw m, and m, such that m; #m, #m
ii. Candidate: 8%, = 6,y + Y E(Omyn — Omyn) + & N'(£;0, bI)
iii. Acceptance:

. £16%) p(6
) b ifU0,1) < PG116,)p0,)
gn,m = P()’1z|0m)P(9m)
@),,,,,, otherwise
(b) Decide on J by diagnostic tests
3. Disregard burn-in draws 91:], M
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The problem of choosing all variances of the random walk shocks is reduced
in the proposed parallel variant to the choice of only two scalars b and ySE
In the estimated models for this paper, the optimal parameters were almost
identical for the linear and nonlinear estimations. This means that fast linear
estimations can be used to tune the parameters for a more expensive nonlinear
estimation run. .

The parameter draws are again collected in a N x D x M tensor 6 with
elements Gd with M sequences of N draws for D parameters.

Our proposal is to add another source of innovation for the generation of
the candidate draw ijml_ in sequence m;. One source is common to the random
walk algorithm, where a random shock is added to the previous parameter
draw. The second, additional source of innovation we propose is the scaled
difference between two parameter vectors from randomly chosen sequences
m, and m,. Parameter y°F and the shock variance b determine the relative
weight of mixing and random walk innovations.

If the variance of the target density is 3 = Cov(0), then the variance of the
difference of two population parameter vectors from the sequences m; and m,
is E[(6,,, — 0n,)(0,n, — 0,,,)'1 =23. In case of a converged sequence, we get by
the law of large numbers limy_, o, ij:](émm1 — 9,,,,,12)(9,1,,7,1 - An Omy) =223.

The intuition behind this procedure is that the variance of the difference
between two randomly drawn parameters is optimal given that the sequence
has converged. Our idea originated from the diagnosis test where the within-
and between-sequence variances are examined, and convergence is detected
when they are of a similar size. ter Braak (2006) derived the same candidate by
analogy to the global evolutionary optimization algorithm, called differential
evolution, by Storn and Price (1997).

A useful by-product of this parallel Metropolis—Hastings algorithm is that it
allows a simple parallelization of the code for the estimation on a computer
cluster. Each CPU generates only some sequences and the only information
the CPUs need to exchange is the matrix 6, 1., of accepted draws. Its size is
only D x M, so overhead costs are driven by the synchronicity of the parallel
posterior evaluations.

We have implemented these parallel executions in JBendge, thus reducing
the computing costs to almost proportional to the number of CPUs.

S4.3. Marginal Likelihood

One of the challenges in model selection is that models of interest are of-
ten not nested and do not emerge from each other through simple parameter
restrictions. In practice, functional forms, the number of estimated and cali-
brated parameters, the unobserved states, or the shock distributions may differ
across candidate models. Consequently, classical likelihood ratio tests are not
of much help.
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Given some models {M, ..., M,,} with parameter priors and the density of
observables, the unobservables can be integrated out to obtain the marginal
likelihood

p(yIM;) = / P(¥10r,, M;) p(61,1M;) d Oy,

O,

The parameter posterior is used for inference, conditional on the adequacy of
the model, whereas the marginal likelihood is used for a criticism of the model
in light of the data.

Most of the work for calculating the marginal likelihood was already done
once the Metropolis—Hastings algorithm converged and generated parameter
draws from the posterior density and the associated posterior values. Gelfand
and Dey (1994) showed that with any density /(6,,|M;), we can write

h(0y,I1M;)
Epou, .m0 (

P(Y10u;s M) p(Ou,|M;)

2/ h(6y,|M,;)
Oy, POy, Mi)p(eM,- |M;)

/ h(6y,|M,;)
Oy, POy, Mi)p(eM,- |M;)

POy, M;) p(0r,IM;)
f P(16u,, M) p(By | M) by,
O,

P(HM,-D’, Mi) dHMi

dOy,

i

| nowimasy,
O,

/ p(y|0M,-aMi)p(0Mi|Mi) dGMi
O,

=p(yIM)~".

According to the last equation, all we have to do is calculate a weighted mean
of the Metropolis—Hastings sequence. Geweke (1999) proposed the following
procedure: Calculate the mean and covariance of the parameter draws for each
model M;:

) 1N 1N ) A o
Om, = N ; Onm1;5 ZMi = N Z(en,Mi - OMi)(OnsMi - eMi) .

n=1
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If D denotes the number of estimated parameters of a model, define a y? criti-
cal value for quantile p to assure robustness over the quantiles p =0.1,...,0.9
with

O, =1{0:(0—01,) 33/ (60— Ou,) < xi_, (D)}
With density A(-),

h(e) — pf] (27T)7D/2 IZMI ‘—1/2
1 - _
X exp(—E(O — Ou,) 33, (60— eMi))I@Mi (),
where [ is the indicator function with I¢(s) =1 if s € S and =0 otherwise, we
can finally estimate the marginal likelihood by
N

o -1
. 1 h(0,.,)
p(yIM;) = (NZ ad ) .

— p(Y10nrs,s Mi) p(Bryps, M)

S5. RESULTS

In solution Section S5.1, we compare the performance of the Smolyak and
the tensor operator within the solution algorithm. In estimation Section S5.2.1,
we compare the likelihood values obtained by the Smolyak Kalman, Smolyak
sum, Smolyak particle, and particle filter. Then in Section S5.2.2, we estimate
the smallest one country model on simulated data to document the overall
performance of the algorithms and filters.

All results are calculated on a cluster with 16 Xeon CPUs at 2.7 GHz with
hyperthreading. The software is the GNU/Linux openSUSE 10.2 operating sys-
tem, the Java virtual machine 1.6.0, and the 1.4 beta version of JBendge. Since
JBendge is completely programmed in Java, it is platform independent and
runs on any operating system with the Java virtual machine. The Metropolis—
Hastings algorithm is parallelized and runs on all 16 CPUs simultaneously in
separate threads.

The model is parameterized equally for all countries by a = 0.4, 8 = 0.99,
6 =0.02, p =0.95, 0 =0.357, = 2.0, and o, = 0.007. The solutions for the
multicountry models are calculated for k = 0.01. The estimations are done
only for the smallest one country model where we use the parameterization
7=>50.0 and o, = 0.035. To simplify the estimation, we set capital adjustment
costs to zero (k = 0) and obtain analytical expressions for the steady state
values given in Section S2.3.2. The parameterization implies the steady states
a=0.0, k =23.2683, ¢ = 1.28563, i = 0.465366, / = 0.312104, and y = 1.751.
They are independent of 7 or ¢,. The missing investment costs also allow us
to compare our estimations to those obtained by Fernandez-Villaverde and
Rubio-Ramirez (2005).
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S5.1. Solution

The performance of the Smolyak and tensor operators is measured by the
number of grid points, the running time for a solution, and the maximal ab-
solute Euler error evaluated at 10,000 random points in the approximation
space.

We calculate all solutions with the same Smolyak level for the function ap-
proximation and for the numerical integration of the rational expectations.
The tolerance level for the change of the policy function during the function
iteration is set to 1E—5. The bounds of the approximation space are critical
parameters of the solution process. We simulate several data sets to find out
the regions visited by the system, and we set the bounds to [20; 26] for capital
and [—0.06; 0.06] for productivity.

The tensor approximation is constructed from univariate approximations
with at least three points. This is necessary for the approximation to be nonlin-
ear; otherwise only linear terms are present. Therefore, the number of points
for the simplest tensor approximation is given by 3¢, where d is the number of
states. The Smolyak approximation, on the other hand, starts from the very be-
ginning with nonlinear second-order polynomials. For example, the bivariate
terms in the Smolyak approximation A;, are byby, byb1, bob,, b1by, and b,by.

Table S.VI documents the results. We use Smolyak levels 2, 3, and 4 for
the models with four and six states, and afterward use only levels 2 and 3.
The Smolyak operator is already superior to the tensor operator for a small
model with four states, where the Euler error on a 41 point Smolyak grid is
smaller than the error on a tensor grid with 81 points, although the solution
time is the same. For the next level with a similar error, the Smolyak operator is
more than three times faster and uses about five times less points (137 vs. 625).

The efficiency gain for the model with six states is even more dramatic. Here
the Smolyak operator needs only 85 compared to 729 points of the tensor op-
erator for a similar approximation accuracy. The running times are accordingly
about 4 times lower for the Smolyak operator.

The tensor operator breaks down for models beyond six states, whereas the
Smolyak operator is still doing fine. The biggest model we are able to solve has
22 states and takes around 68 minutes for an approximation error of 1.7E—S5.

S5.2. Estimation

In the next subsection, we compare the likelihood values of the Smolyak
Kalman filter, Smolyak particle filter, Smolyak sum, and particle filter. We
simulate data sets of 100 observations, starting from the deterministic steady
states’ generated by very accurate nonlinear solutions of the one country model
with the states’ productivity a and capital k, and one labor decision /. The ob-
servables in the measurement model are investment i, labor /, and output y.
The measurement shocks are assumed to be additive.
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TABLE S.VI
SMOLYAK AND TENSOR BASED SOLUTIONS

33

States Operator Points Error Time
4 Smolyak 9 6.6E—4 0.3
41 8.1E—6 2.5
137 9.3E-17 24.0
Tensor 81 49E-5 2.5
625 1.8E-7 88.5
6 Smolyak 13 6.2E—4 0.7
85 5.1E-5 12.5
389 9.3E-17 201.5

Tensor 729 6.5E—5 54.09
8 Smolyak 17 S59E—-4 1.3
145 3.5E-5 29.9
10 21 7.5E—-4 2.3
221 4.0E-5 69.2
12 25 44E—-4 3.8
313 4.8E-5 157.8
14 29 43E-4 5.7
421 3.7E-5 339.1
16 33 4.5E—-4 8.5
545 4.0E-5 724.1
18 37 3.7TE-4 12.2
685 2.6E-5 1819.4
20 41 33E-4 17.1
841 1.9E-5 2107.4

22 45 33E-4 23.31
1013 1.7E-5 4087.4

We present the estimates of two variants of the models: one with small and
one with large measurement errors. Their standard deviations are summarized
in Table S.VII. The large standard deviations are set to 1% of the steady state
values and the small errors to the values in Ferndndez-Villaverde and Rubio-

TABLE S.VII
MEASUREMENT ERRORS
Small Large
o 8.66E—4 4.65E-3
oy 1.10E-3 3.12E-3

y 1.58E—4 1.75E-2
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FIGURE S.1.—Likelihood at true parameters for 7 =50.0 and o, = 0.035.

Ramirez (2005), who used the same model to illustrate and test their algo-
rithms.

S5.2.1. Likelihood

The particle filter is run with 40,000 particles, and the Smolyak Kalman filter
is run with integration level 3 for both the time and the measurement steps.
The Smolyak particle filter is run with integration level 2 and 500 particles, and
the Smolyak sum filter is run with integration level 3 for both the time and the
measurement updates and 20 Gaussian summands. All solutions are calculated
with level 3 for the policy approximation and the rational expectation integrals.

Figures S.1 and S.2 show slices through the multidimensional likelihood.
The left plots show likelihood values from the data with small measurement er-
rors; the right plots show values with large measurement errors. We set all pa-
rameters to their true values and vary 7 at the abscissas, and plot them against
the likelihood values at the ordinates. The results are rather encouraging for
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FIGURE S.2.—Likelihood at true parameters for 7 =2.0 and o, = 0.007.
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all our filters, as the values are very similar. It is interesting to see that the
particle filter gets into trouble for small measurement errors in the model with
7=50.0 and o, = 0.035 in the left plot of Figure S.1.

The running times for the filters are very different: the particle filter is hardly
useful in combination with a Chebyshev approximation. The construction of
the basis matrix for as many as 40,000 particles is very costly and it takes around
120 seconds for one likelihood evaluation. It probably pays off to use a finite
element approximation instead, where the trade-off is a more costly approx-
imation due to a larger grid, but a less costly likelihood evaluation due to a
cheap finite element interpolation. The Smolyak Kalman filter is very fast and
it takes around 0.2 seconds for one likelihood evaluation. The Smolyak particle
filter is slower and needs around 6 seconds. The Smolyak sum filter is very fast
and needs only 0.5 seconds. The likelihood evaluation by a linear Kalman filter
takes 0.015 seconds and the extended Kalman filter needs 0.2 seconds.

S5.2.2. Parameters

We have implemented an interactive sampling environment in JBendge
where the Metropolis—Hastings parameters driving the innovation variance
v°E and b can be changed while sampling. Together with a regular update
of the sequence plots and diagnostic tests, the estimation process becomes
very flexible and comfortable. Some of the sequences with the lowest poste-
rior values or lowest acceptance ratios can be restarted at the parameter val-
ues of other sequences. This serves the purpose of manually cancelling some
sequences that no longer improve. A more advanced global maximization al-
gorithm could do this, of course, automatically. The second situation when a
restart is useful happens while fine tuning the Metropolis—Hastings parameters
¥©E and b. Their effect on the acceptance ratio can usually be inferred from
the first few draws and, therefore, restarts are helpful while searching for the
appropriate values.

The usual procedure within our framework has three stages. The first stage
searches for the posterior mode. At this stage, the mixing parameter y°F can be
rather large—between 0.8 and 2.0 according to the prescription for the differ-
ential evolution algorithm of Storn and Price (1997). During this stage, the ac-
ceptance ratio is usually very low, even for parameters y°F and b which would
later achieve the needed acceptance ratio. There is, therefore, no use to fine
tune these parameters at this stage. During the second stage, we sample until
the diagnostic tests signal convergence and we also fine tune the parameters
v°E and b to obtain an acceptance ratio around 0.3. For all estimations, para-
meter b is set to 1E—6 and y°F is set between 0.1 and 0.4. Both parameters are
remarkably stable especially across the linear and nonlinear estimations. This
helps find the appropriate values for the nonlinear estimation by fast linear
estimation runs. Once the convergence of the sampler is detected, we get into
the third stage where we sample 50,000 draws.
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TABLE S.VIII
BOUNDS OF A UNIFORM PRIOR

Low Hi Low Hi
a 0.00 1.00 o, 0.0 0.1
B 0.75 1.00 o; 0.0 0.1
6 0.00 0.05 oy 0.0 0.1
p 0.00 1.00 ay, 0.0 0.1
T 0.00 100
0 0.00 1.00

We run the estimation with approximately two times more sequences than
parameters. The estimated model has 13 parameters and we therefore use 32
sequences for a balanced work load on our 16 CPUs. The usual CPU load on
our cluster after convergence is around 800% for the nonlinear and 1500% for
the linear estimation. A CPU load of 100% corresponds to one CPU. Since the
sequences have to be synchronized and the running times of posterior density
evaluations for the parallel draws are different, an exactly linear scaling cannot
be expected. However, it is still a dramatic improvement over a run on a single
CPU.

For all estimations the Metropolis—Hastings sequences were initiated at ran-
dom draws from the prior densities. They are taken to be uniform within the
bounds in Table S.VIII.

It takes approximately 1000-2000 draws for each of the 32 sequences to
find the mode of the posterior density and another 1000-4000 draws to de-
tect the convergence according to the R, V', and W statistics. We sometimes
restarted half of the sequences during the maximization process. The complete
estimation process takes around 5 minutes for the linear estimation, around
2 hours for the nonlinear estimation with the Smolyak Kalman filter, 4 hours
with the Smolyak sum filter, and 20 hours with the Smolyak particle filter. We
only present estimations with these three filters since the particle filter is much
too slow to be of practical use. In all of the following tables the “Mean” col-
umn shows the mean and “SD” shows the standard deviation of the poste-
rior density, while the “ML’ column shows the maximum likelihood estimates.
The numbers themselves are coded as x, = x x 10°.

We report only estimates of the model with 7 =50 and o, = 0.35 for small
and large measurement errors. The data are generated via a very accurate so-
lution with integration and solution approximation level 5, and a function iter-
ation tolerance of 1E—10. The approximation error is around 1E—10.

Linear versus Nonlinear Estimation. 'We compare the linear and the nonlin-
ear estimations based on nonlinearly simulated data and the simple Smolyak
Kalman filter.
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TABLE S.IX
KALMAN AND SMOLYAK KALMAN FILTER, SMALL ERRORS

True Mean SD ML Mean SD ML
0 3.57 4 3.496_, 195 3.487_4 3.569_, 2.6_3 3.572 4
B 9.90_, 9.957_4 5.5 9.960_, 9.906_, 4.4 4 9.933_,
« 4.00_4 3.839_, 513 3.815_, 4.003_, 6.7 ;3 4.010_,4
p 9.50_ 9.641_, 3.0; 9.659_, 9.506_, 1.6_; 9.523
1 2.00_, 1.796_, 124 1.737_, 1.957_, 534 1.934_,
T 5.00,, 1.946,,  27., 1784, 5255, T.6. @ 4447,
a, 3.50_, 3.716_, 2.73 3.798_, 3.604_, 1.7 5 3.704_,
oy 1.58_4 8.521 4 7.0_4 1.730_4 8.724_, 4.0_4 1.061 _3
o; 8.66_4 1.996_; 34, 2.030_; 4.981_4 2.8_4 4.057_4
a; 1.10_; 1.438_; 1.14 1.395_; 1.199 5 8.4_;5 1.168_3

Table S.IX shows estimations with small measurement errors. The solution
and integration Smolyak levels are set to 4 for the rational expectations and
the filter integrals. On the left side we report the estimates obtained by the
Kalman filter and on the right side we have the estimates from the Smolyak
Kalman filter. The likelihood value for the Kalman filter is —54,201 at the
true parameters. The minimal and maximal likelihoods obtained during the
Metropolis—Hastings sampling after convergence are 1077 and 1098, respec-
tively. The values for the Smolyak Kalman filter are 1197 at the true parame-
ters, 1185 at minimum, and 1200 at maximum.

The estimates clearly indicate the superior performance of the nonlinear
filter. While the mean of the nonlinear posterior estimates and the maximum
likelihood values is close to the true parameters of the data generating process,
the Kalman filter shows clear biases. The nonlinear filter has problems accu-
rately estimating the parameter 7, which is biased and exhibits a large stan-
dard deviation of the posterior. The measurement error standard deviations
of output and investment are hardly identified with large standard errors 4.0_,
and 2.8_, of the same magnitude as the estimates themselves. The standard
deviation of the labor measurement error is estimated more accurately. Fig-
ure S.3 shows the posterior density estimated by the Smolyak Kalman filter.
Black vertical bars indicate the true parameter values.

Lower Nonlinear Accuracy. The next calculations show the accuracy needed
for the nonlinear solution approximation and the Smolyak Kalman filter.

Table S.X shows, on the left side, estimates with solution, rational expecta-
tions, and filter integration level 3. The results hardly change compared to the
more accurate nonlinear solution and filter in the previous table. We do not
report the results of the estimates with a solution level 3 and filter level 2 since
they hardly differ. On the right hand side of the table, we report the estimates
with solution and filter level 2. Here we see clear biases, and can conclude that
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filter integration levels 2 and 3 imply similar results, but solution level 2 is not
sufficient for an accurate estimation. The log likelihood values for the accurate
Smolyak Kalman filter are 1169 at the true parameters, 1186 at minimum, and
1201 at maximum. The respective values for the other filters are —6546, 1141,

and 1160.
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TABLE S.X
SMOLYAK KALMAN FILTERS, SMALL ERRORS

True Mean SD ML Mean SD ML
0 3.57 4 3.586_; 2.6_3 3.596_, 3.436_, 2.4 5 3.430_,
B 9.90_, 9.914_, 4.7 5 9.948_, 9.529_, 7.9_; 9.608_;
« 4.00_4 4.047_,4 6.7_3 4.074_4 3.641_, 6.8 3 3.625_,
p 9.50_ 9.501_, 1.9, 9.513_, 9.552_,4 1.2, 9.559_,4
1 2.00_, 1.996_, 6.1_4 2.004_, 1.936_, 7.4_4 1.889_,
T 5.00,, 5516, L1,  4.690,, 6.708,1  83.  5.901
a, 3.50_, 3.700_, 1.83 3.790_, 3.802_, 2.6_3 3.821,
oy 1.58_4 8.012_4 4.1 4 1.080_3 1.551 5 514 1.833_;
o; 8.66_4 5.291 4 2.8_4 3.087_4 6.005_4 4.0_4 4.822 ;5
a; 1.10_; 1.194 _; 8.35 1.160_5 1.211 5 9.5_;5 1.204_;

Nonlinear Filters Comparison. This paragraph compares the Smolyak Kal-
man filter with the Smolyak particle filter.

Table S.XI shows the other two nonlinear filters. On the left side of the table,
we have the Smolyak sum filter with the solution and the rational expectation
approximations at level 3, level 2 for the Smolyak Kalman filter, and five sum-
mands to approximate the densities involved. On the right hand side, we see
the Smolyak particle filter with the same levels and 500 particles. Both filters
deliver comparable estimates. The likelihood values are 1169 at the true para-
meters for the sum filter, 1185 at minimum, and 1201 at maximum. The num-
bers for the Smolyak particle filter are 1172 at the true parameters, 1185 at
minimum, and 1203 at maximum.

The result of the nonlinear estimation for the data with small measurement
errors is that we obtain accurate estimates for all parameters except 7 and the

TABLE S.XI
SMOLYAK SUM AND SMOLYAK PARTICLE FILTERS, SMALL ERRORS

True Mean SD ML Mean SD ML
0 3.57_4 3.593 2.0_5 3.611_ 3.560_ 3.75 3.607_4
B 9.90_, 9.927 4 4.5 3 9.968_,; 9.870_; 6.8_;3 9.952_,
el 4.00_, 4.063_; 5.1, 4112, 3.978_, 993 4.103_,
p 9.50_4 9.505_, 2.4 5 9.513_, 9.503_, 1.5 9.498
6 2.00_, 2.011_, 6.3, 2.043_, 1.973_, 6.7_4 2.047_,
T 5.00,, 5372, 1.5, 4.463,, 5467,  69. 5244,
a, 3.50_, 3.647_, 1.9; 3.765_, 3.619_, 1.8; 3.704_,
oy 1.58_4 9.368_4 3.3, 1.080_3 9.005_4 3.6_4 1.124 4
a; 8.66_4 4.941_, 2.6_4 2.873_4 5.201_4 2.8_4 3.638_4

o 1.10_3 1.191_; 9.0_s 1.141 5 1.184_; 9.2_5 1.119_;
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TABLE S.XII
KALMAN AND EXTENDED KALMAN FILTERS, SMALL ERRORS

True Mean SD ML Mean SD ML
% 3.57 4 3.496_, 1.9; 3.487 4 3.526_4 1.6_3 3.515,
B 9.90_, 9.957_4 5.5, 9.960_, 9.950_, 2.8_4 9.950_,;
e 4.00_4 3.839_, 513 3.815_, 3.890_, 4.2 5 3.861_4
p 9.50_ 9.641_, 3.0; 9.659_,; 9.631_, 1.0_; 9.633_,
[ 2.00_, 1.796_, 125 1.737_, 1.817_, 8.0_4 1.773_,
T 5.0044 1.946., 2. 710 1.784 4 2.045,, 1.540 1.982 4
o, 3.50_, 3.716_, 2.7_5 3.798_, 3.517 ., 223 3.408_,
oy 1.58_4 8.521 4 7.0_4 1.730_4 8.735_4 6.7_4 1.044 _5
o 8.66_4 1.996_; 34, 2.030_; 1.673_; 3.0_4 1.844_;
oy 1.10_5 1.438 5 1.1, 1.395 5 1.448 5 1.0_4 14114

measurement error standard deviations of output and investment. The esti-
mates are essentially the same for all our nonlinear filters.

Extended Kalman Filter. 1n Table S.XII we present the comparison between
the Kalman filter estimation and an estimation with the extended Kalman filter
based on a solution with level 3. The estimates are similar, especially those of .

The next estimations process data generated with large measurement errors.

Nonlinear Filters Comparison. The first of these estimations is in Ta-
ble S.XIII, which compares the Smolyak Kalman filter with solution and inte-
gration level 4 and the Smolyak particle filter with solution level 3, filter level 2,
and 500 particles. Both results are again very similar and differ only in the max-
imum likelihood estimates of 7. Given the high inaccuracy for this parameter,
indicated by the high standard deviation of the posterior, this difference is

TABLE S.XIII
SMOLYAK SUM AND SMOLYAK PARTICLE FILTERS, LARGE ERRORS

True Mean SD ML Mean SD ML
0 3.57 4 3.562_4 523 3.572, 3.543_, 6.8 3 3.575_
B 9.90_, 9.873_4 7.7_5 9.822_4 9.864_, 8.6_3 9.897_4
e’ 4.00_, 3.979_,4 1.4, 4.007_4 3.928_; 1.8, 4.016_,
p 9.50_4 9.437_4 8.4 3 9.400_, 9.472_,4 8.9 ; 9.444_,
8 2.00_, 2.038_, 224 2.053_, 1.966_, 3.0_; 2.085_,
T 5.00,, 5719, 19, 8012, 5403, 20,  4.873,
o, 3.50_, 3.357, 2.7 5 3.303_, 3.385_, 244 3422,
gy 8.75_3 1680_2 2.1_3 1597_2 1696_2 2.1_3 1745_2
o 233, 4969 5 255 5671 47265 245 5044,

o 1.56_3 2.873_; 214 2.700_3 2.882_3 214 2.888_3
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not very surprising. Compared to the estimation with small measurement er-
rors, we observe that the means of the posterior and the maximum likelihood
estimates are similar and hardly deteriorate with large measurement errors.
The difference is that, of course, the standard deviations of the posterior sub-
stantially increase for most estimates. The likelihood values for the Smolyak
Kalman filter are 851 at the true parameters, 832 at minimum, and 853 at max-
imum. For the Smolyak particle filter, these numbers are 851, 841, and 852.
Again the measurement shocks are hardly identified and the parameter 7 is
badly estimated as well.

Smolyak Sum Filter. 'The last nonlinear estimation we report in Table S.XIV
tests whether increasing the number of summands in the Smolyak sum filter im-
proves the estimation. Both estimations are run with solution level 3 and filter
level 2. On the left side, we see the results of the filter with 5 summands, while
the right side shows the results from the filter with 20 summands. The results
are very similar: the only difference is again the maximum likelihood estimates
of 7, which can be attributed to the high inaccuracy of the estimator. The like-
lihood values for the Smolyak sum filter with 5 summands are 851, 838, and
853: for 20 summands they are 851, 837, and 853.

Nonidentification of . We finally investigate whether the problem we en-
counter with the estimation of 7 is due to the errors of the approximations or a
property of the model. Table S.XV shows the first approach to this issue where
we estimate the parameters with the Kalman filter from the data generated
with the linearized model. The estimation is, therefore, not confounded by any
approximation error. The estimates for 7 are of similar inaccuracy as for the
nonlinear estimations. Moreover, we can see that the standard deviations of
the output and investment measurement errors are poorly estimated as well.

TABLE S.XIV
SMOLYAK SUM FILTERS, LARGE ERRORS

True Mean SD ML Mean SD ML
0 3.57_4 3.570_, 5.9, 3.553_, 3.558_4 6.6_3 3.551,
B 9.90_, 9.885_; 7.4_3 9.845_, 9.873_,4 6.8_;3 9.813_,
el 4.00_, 3.998_, 1.5, 3.954_, 3.966_; 1.7, 3.947_4
p 9.50_4 9.450_,4 8.53 9.450_,4 9.451 4 9.3 ; 9.436_,
6 2.00_, 2.023_, 2.9, 1.945_, 2.014_, 3.1 2.060_,
T 5.00,, 6.060,, 2.0,  7.046,, 5777, 19,  6.039,,
a, 3.50_, 3.364_, 235 3.345_, 3.373, 2.5; 3.283 .,
gy 8.75_3 1671_2 2.2_3 1742_2 1738_2 2.0_3 1739_2
o, 233, 5027, 265 3332, 4393, 25, 4414,

oy 1.56_3 2.878_3 2.2, 29514 2.872_; 2.1, 2.866_3
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TABLE S.XV
KALMAN FILTER, LINEAR MODEL, SMALL ERRORS

True Mean SD ML Mean SD ML
% 3.57 4 3.615_, 3.0_; 3.583_, 3.615_, 3.0_; 3.583_,
B 9.90_, 9.885_; 1.5; 9.903_, 9.885_; 1.5; 9.903_,
e 4.00_4 4.125_,4 7.8_3 4.040_, 4.125_,4 7.8_3 4.040_,
p 9.50_ 9.451_,4 5.0 9.509_, 9.451_,4 5.0; 9.509_,
[ 2.00_, 2.267_, 1.8; 2.063_, 2.267_, 1.83 2.063_,
T 5.0044 6.086. 1 2.04 3.786.4 6.086, 2.04 3.786,1
o, 3.50_, 3.260_, 223 3.155, 3.260_, 223 3.155,
oy 1.58_4 8.753_4 4.1 4 2.369_4 8.753_4 4.1 4 2.369_4
o 8.66_4 5.518 4 2.84 8.196_4 5.518 4 2.8_4 8.196_4
oy 1.10_5 1.145_ 5 8.55 1.095_; 1.145_; 8.55 1.095_;

A more convincing point is made in Table S.XVI. It also demonstrates that
peaked likelihood slices are not necessarily informative with regard to the stan-
dard deviation of a parameter estimate, since the likelihood slices seem to be
properly peaked for 7 at the true parameter values in the left plot of Figure S.1.
The left column “Smallest 7” shows the figures with the smallest 7 of the pos-
terior sequences. It exhibits a usual likelihood value of 1193 for this estimation
obtained by the Smolyak Kalman filter based on the third level solution and
integrations (1197 at true parameters, 1185 at minimum, 1200 at maximum).
The particle filter with 40,000 particles delivers a similar value. If we evalu-
ate the likelihood at the “True Values” except for 7, where we use the small-
est value of 31.88, the log likelihood collapses. If, in addition to 7, we change

TABLE S.XVI
POOR IDENTIFICATION OF 7

Smallest 7 True Values Changes
0 3.581_4 3.570_4 3.570_4
B 9.964_, 9.900_, 9.964_,
«a 4.028_,4 4.000_, 4.000_,
p 9.552_,4 9.500_4 9.552_,4
[ 1911, 2.000_, 1911,
T 3.18841 3.18844 3.18844
g, 3.919 , 3.500_, 3.500_,
oy 1.149_5 1.580_4 1.580_4
g; 3.173_4 8.660_4 8.660_4
o 1.260_5 1.100_5 1.100_5

Log Likelihood

Smolyak Kalman 1193 —8167 1164

Particle 1189 —10761 1159
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the parameters 3, p, and 6 toward those we obtained together with the small-
est 7, the likelihood value recovers. This is done in column “Change,” where
bold faced numbers show the changed parameters compared to the true values.
Further changes of the parameters toward the “Smallest 7 parameterization
bring us back to the likelihood of 1193 and 1189.

We conclude that the poor estimates of 7 are not a problem of our nonlinear
filters, but a feature of the model, and thanks to good global search proper-
ties of our parallel Metropolis—Hastings algorithm, we are able to find these
parameters.

Nonidentification of o,. A substantial change of the parameter o, from
1.58_4 to 1.149_; in the parameterization of column “Changes” does not very
much influence the likelihood value. It changes from 1164 to 1169 for the
Smolyak Kalman filter and from 1160 to 1169 for the particle filter. In Ta-
ble S.XVII we finally look at the likelihood slice for o, at the true parameters.
The o, values are between the minimal and maximal values of the posterior
sample. The variations between 1167 and 1174 for the Smolyak Kalman filter
and 1169 and 1177 for the particle filter indicate a flat likelihood, in the sense
that this variation is close to the variation of the log likelihood we usually see
during Metropolis—Hastings sampling. We ascribe the problem with measure-
ment errors to lack of proper identification of this model and to the ad hoc
solution of adding some measurement errors. The identification problem was
also discussed by Fernandez-Villaverde and Rubio-Ramirez (2007), who ob-
tained more accurate estimates, however.

Marginal Likelihood. The last calculation is the marginal likelihood in Ta-
ble S.XVIII. The upper part shows the results of the estimations based on data
with small measurement errors. The numbers are the differences of the mar-
ginal log likelihoods between the Smolyak Kalman filter with solution and fil-
ter level 4 and other filters. A positive number favors the Smolyak Kalman
filter; a negative number indicates superiority of other filters. The upper three

TABLE S.XVII
LIKELIHOOD SLICE AT a,

ay Particle Smolyak Kalman
3.78_p4 1169 1170
5.67_ 4 1172 1171
7.56_04 1174 1172
9.45_, 1177 1174
1.13 3 1175 1172
1.32_¢3 1177 1171
1.51 03 1175 1169

1.70_¢3 1171 1167
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TABLE S.XVIII
MARGINAL LIKELIHOOD

Small Measurement Errors: Smolyak Kalman versus

p Kalman Smolyak Sum Smolyak Particle
0.1 104.5 -13 -2.1
0.5 104.0 -1.4 -25
0.9 104.2 -1.1 -1.9

Large Measurement Errors: Smolyak Kalman versus

p Smolyak Sum Smolyak Particle
0.1 0.4 0.4
0.5 0.3 0.3
0.9 0.5 0.2

columns show that the Smolyak Kalman filter clearly outperforms the Kalman
filter (104.5, 104.0, 104.2). The Smolyak sum, calculated with solution level 3
and 5 summands with integration level 2, outperforms the Smolyak Kalman
filter. Finally, we have the Smolyak particle filter with solution level 3, integra-
tion level 2, and 500 particles. We see a further improvement in the marginal
likelihood compared to the Smolyak Kalman filter.

The lower part of the table shows that in the case of large measurement
errors, the performances of the filters are very similar.
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