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This supplementary appendix provides complete proofs of the lemmas and
theorems presented in the paper.

A. PROOFS OF THEOREM 3.1 AND TWO LEMMAS

PROOF OF THEOREM 3.1: First, we prove existence of the equilibrium.
The analysis leading to Theorem 3.1 has proven that if V obeys (3.7), then
V and the optimal choices G(μ) exist. In Section 6, we characterize the steady
state distribution of workers. Thus, for existence of an equilibrium it suffices
to show that Assumption 2 is sufficient for all matches to be accepted, in which
case V indeed obeys (3.7).

Consider a worker with beliefs μ ∈ M who obtains a match in submar-
ket x ∈ X . Accepting the match yields the present value, Je(φ(μ)�W (x)),
and rejecting the match yields V (φ(μ)). The worker strictly prefers to ac-
cept the match if and only if Je(φ(μ)�W (x)) > V (φ(μ)). Using (3.5), we can
rewrite the latter condition as W (x) > (r + σ)V (φ(μ)). Since W ′(x) < 0 and
φ(μ) ≤ aH , a sufficient condition for this requirement to hold for all x and μ
is

W (a−1
H ) > (r + σ)V (aH)�

Substituting V (aH) from (A.1) in Lemma A.1 below, we rewrite the condition
as

(y − b)/c > [A+ aHxH]λ′(x∗)− aHλ(xH)�

where x∗ is defined by λ′(x∗)= aHλ(a
−1
H ) and xH = g(aH). Since the right-hand

side of the inequality is maximized at xH = x∗, Assumption 2 is sufficient for
the inequality to hold and, hence, for all matches to be accepted.

Second, we prove that g(μ) > 0 for all g(μ) ∈ G(μ) and all μ ∈ M . Let
μ ∈ M be arbitrary beliefs and let g(μ) be an arbitrary selection from the set
of optimal choices, G(μ). Suppose that g(μ) = 0, contrary to the theorem. In
this case, (3.6) and (3.7) yield R(0�μ) = V (μ) = b/(r + σ). Consider a choice
x > 0. Because it is always feasible for the worker to choose x′ = 0 in the future,
the future value function satisfies V (μ′)≥ b/(r+σ) for all posterior beliefs μ′.
Thus, for all μ, the choice x yields at least the payoff

R̃(x�μ) = xμ

A

[
W (x)

1 − σ
+ δb

r + σ

]
+ (1 − xμ)

b

r + σ
�
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Note that R̃(x�μ) is differentiable and strictly concave in x. Substituting W (·)
from (3.10), we can verify that R̃1(0�μ) > 0 if and only if (y − b)/c > Aλ′(0).
Since the latter condition is satisfied (see Remark 1), then maxx R̃(x�μ) >
R̃(0�μ)= b/(r + σ). This is a contradiction. Therefore, g(μ) > 0 for all μ.

Third, we prove that V is strictly increasing. Let TV (μ) denote the right-
hand side of (3.7). Since T is a contraction mapping on the space of continuous
functions on M (with the sup norm), it suffices to prove that T maps contin-
uous and increasing functions on M into continuous and strictly increasing
functions on M (see Stokey, Lucas, and Prescott (1989)). Namely, we prove
that TV (μa) > TV (μb) for any continuous and increasing function V on M
and for arbitrary μa�μb ∈ M , with μa > μb. Denote gi = g(μi) ∈ G(μi), where
i ∈ {a�b}. We have

R(ga�μa)−R(gb�μb)

≥R(gb�μa)−R(gb�μb)

≥ gb(μa −μb)

{
W (gb)

A(1 − σ)
+ δ

A
V (φ(μb))− V (H(gb�μb))

}

> gb(μa −μb)[V (φ(μb))− V (H(gb�μb))]
≥ 0�

The first inequality comes from the fact that gi ∈ arg maxx R(x�μi) and the
second inequality comes from V (H(gb�μa)) ≥ V (H(gb�μb)). The strict in-
equality uses the fact that gb > 0 and that Assumption 2 implies W (x) >
(r+σ)V (φ(μ)) for all x and μ (see the second paragraph of the current proof
of Theorem 3.1). The last inequality comes from φ(μb) ≥ H(gb�μb). Hence,
TV (μa) > TV (μb).

Finally, (weak) convexity of V follows from standard arguments (e.g.,
Nyarko (1994, Proposition 3.2)). Because a convex function is almost every-
where differentiable (see Royden (1988, pp. 113–114)), V is almost everywhere
differentiable. Q.E.D.

The following lemmas (duplicated from the main text) are used in the proofs
of other results.

LEMMA A.1: Denote xi = g(ai), where i ∈ {H�L}. The following results hold:
(i) The optimal choice xi is unique and satisfies R1(xi� ai)≥ 0, with strict inequal-
ity only if xi = 1/aH . The value function satisfies

V (ai)= Ab+ aixiW (xi)

(r + σ)[A+ aixi] �(A.1)

(ii) Condition (4.2) is necessary and sufficient for xH < 1/aH . Also, xL ≥ xH with
strict inequality if xH < 1/aH . (iii) δ/A < V ′(a+

L)/V
′(a−

H) for all δ ≤ δ̄, where δ̄
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is the smallest positive solution to Ω(δ)= 0 and Ω is defined as

Ω(δ) = r + σ

1 − σ

(
r + σ

1 − σ
+ δ

)2

− δ

[(
1 + aL

aH

)(
r + σ

1 − σ
+ δ

)
+ aL

aH

]
�(A.2)

PROOF: (i) Since the proofs are similar for the cases i = H and i = L, we
only give the proof for i = H. Noting that φ(aH)= H(x�aH)= aH for all x, we
get

R(x�aH)= xaH

A

[
W (x)

1 − σ
+ δV (aH)

]
+ (1 − xaH)V (aH)

and (1+ r)V (aH)= b+ (1−σ)maxx R(x�aH). Condition (iii) in (3.11) implies
that R(x�aH) is strictly concave in x and so the optimal choice, xH , is unique.
Since R(x�aH) is differentiable with respect to x and since xH > 0 by Theo-
rem 3.1, then xH satisfies the condition R1(xH�aH) ≥ 0 with strictly inequality
only if xH = 1/aH . The Bellman equation (1+r)V (aH)= b+(1−σ)R(xH�aH)
yields (A.1) for i = H.

(ii) From part (i), it is clear that xH < 1/aH if and only if R1(a
−1
H �aH) < 0,

which can be rewritten as

W (a−1
H )+ a−1

H W ′(a−1
H ) < (r + σ)V (aH)�(A.3)

Substituting V (aH) from (A.1) and W (x) from (3.10), we find that (A.3) is
equivalent to

(y − b)/c < [A+ aHxH]λ′(a−1
H )− aHλ(xH)�

The right-hand side is an increasing function of xH and its value at xH = 1/aH

is equal to the right-hand side of (4.2). Since xH ≤ 1/aH , (4.2) is necessary for
the above condition and, hence, necessary for xH < 1/aH . On the other hand,
if xH = 1/aH , then R1(a

−1
H �aH) ≥ 0, and V (aH) is given by (A.1) with i = H

and xH = 1/aH . Substituting this value of V (aH), we find that the condition
R1(a

−1
H �aH)≥ 0 violates (4.2). Thus, (4.2) is also sufficient for xH < 1/aH .

The condition R1(xi� ai) ≥ 0 holds for both i = H and L. Inspecting this
condition and using strict monotonicity of the value function, we can deduce
that xL ≥ xH , where the inequality is strict if xH < 1/aH .

(iii) First, we derive an upper bound on V ′(a−
H) and a lower bound on V ′(a+

L).
These one-sided derivatives exist because V is continuous and convex (see
Royden (1988, pp. 113–114)). Let ε > 0 be a sufficiently small number. For
V ′(a−

H), we can compute

1 + r

1 − σ
[V (aH)− V (aH − ε)] = R(xH�aH)−R(g(aH − ε)�aH − ε)

≤ R(xH�aH)−R(xH�aH − ε)�
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Dividing by ε and taking the limit ε ↓ 0, we obtain (1 + r)V ′(a−
H) ≤ (1 −

σ)R2(xH�a
−
H). Using the facts φ(aH)= aH =H(xH�aH), φ′(aH)= aL/aH , and

H2(xH�aH)= (1 − xHaL)/(1 − xHaH), we can compute

R2(xH�a
−
H) = xH

(1 − σ)A
[W (xH)− (r + σ)V (a−

H)]

+
[

1 − (r + σ)xHaL

(1 − σ)A

]
V ′(a−

H)�

Substituting V (aH) from (A.1) and substituting the result into the inequality,
(1 + r)V ′(a−

H)≤ (1 − σ)R2(xH�a
−
H), we get

V ′(a−
H)≤ AxH[W (xH)− b]

(r + σ)[A+ xHaL][A+ aHxH] �

Similarly, we can derive the lower bound

V ′(a+
L) ≥ AxL[W (xL)− b]

(r + σ)[A+ xLaH][A+ aLxL] �

Next, we prove that δ/A < V ′(a+
L)/V

′(a−
H) for all δ ≤ δ̄. Substituting the

above bounds on V ′(a−
H) and V ′(a+

L), we find that

V ′(a+
L)

V ′(a−
H)

≥ xL[W (xL)− b][A+ xHaL][A+ aHxH]
xH[W (xH)− b][A+ xLaH][A+ aLxL] �

Recall that xi satisfies R1(xi� ai) ≥ 0 for i ∈ {H�L} and the value function sat-
isfies V (ai) > b/(r +σ). Using these results, we can verify that x[W (x)− b] is
strictly increasing in x for x ∈ [xH�xL]. Because xL ≥ xH (see the proof of (ii)
above), xL[W (xL)− b] ≥ xH[W (xH)− b]. Substituting this result and the facts
that xH > 0 and xL ≤ 1/aH , we conclude that

V ′(a+
L)

V ′(a−
H)

>
A2

[A+ 1]
[
A+ aL

aH

] �

Substituting this bound, we find that a sufficient condition for δ/A < V ′(a+
L)/

V ′(a−
H) is Ω(δ) ≥ 0, where Ω(δ) is defined in (A.2). The function Ω(δ) is

quadratic and involves only the parameters of the model. Because Ω(0) > 0,
there exists δ̄ > 0 such that Ω(δ) ≥ 0 for all δ ∈ [0� δ̄]. Thus, δ/A <
V ′(a+

L)/V
′(a−

H) for all δ ∈ [0� δ̄]. Q.E.D.

LEMMA A.2: For any given z, the functions μV (φ(μ)) and (1 + zμ)V ×
(H(−z�μ)) are convex in μ if V (·) is convex, and strictly convex in μ if V (·)
is strictly convex.
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PROOF: Assume that V is convex. Take arbitrary μa and μb in M , with
μa > μb. Let γ be an arbitrary number in (0�1) and define μγ = γμa + (1 −
γ)μb. We first prove that μγV (φ(μγ))≤ γμaV (φ(μa))+ (1 −γ)μbV (φ(μb)),
which establishes convexity of μV (φ(μ)). Shorten the notation φ(μi) to φi,
where i ∈ {a�b�γ}. Denote κ = (φγ − φb)/(φa − φb). Clearly, κ ∈ [0�1] and
φγ = κφa + (1 − κ)φb. Moreover, since μφ(μ) is a linear function of μ, we
can verify that κμγ = γμa and (1 − κ)μγ = (1 − γ)μb. Thus,

μγV (φγ) = μγV (κφa + (1 − κ)φb)

≤ μγ[κV (φa)+ (1 − κ)V (φb)]
= γμaV (φa)+ (1 − γ)μbV (φb)�

The inequality comes from convexity of V and the fact that μγ > 0. The last
equality comes from the facts that κμγ = γμa and (1 − κ)μγ = (1 − γ)μb. If V
is strictly convex, then the above inequality is strict, in which case μV (φ(μ)) is
strictly convex.

Note that the function (1 + zμ)H(−z�μ) is also linear in μ for any given z.
A similar proof as the above establishes that this function is convex if V is
convex and is strictly convex if V is strictly convex. Q.E.D.

B. PROOF OF THEOREM 4.1

First, we prove that R̂(z�μ) is strictly supermodular. Take arbitrary za,
zb ∈ −X and arbitrary μa, μb ∈ M , with za > zb and μa > μb. Denote

D= [R̂(za�μa)− R̂(za�μb)] − [R̂(zb�μa)− R̂(zb�μb)]�
We need to show D > 0. Temporarily denote φj = φ(μj), Hij = H(−zi�μj),
and Vij = V (Hij), where i� j ∈ {a�b}. Computing D, we have

D= D1 − δ

A
[V (φa)− V (φb)](za − zb)�

where

D1 = (za +μ−1
a )Vaa − (zb +μ−1

a )Vba − (za +μ−1
b )Vab + (zb +μ−1

b )Vbb�

Denote H̃ = min{Hba�Hab}. Because H(−z�μ) is a strictly increasing function
of z and μ for all μ ∈ (aL�aH), then Haa > H̃ ≥ Hbb. Because V is convex, we
have

min
{

Vaa − Vba

Haa −Hba

�
Vaa − Vab

Haa −Hab

}
≥ Vaa − V (H̃)

Haa − H̃
≥ Vaa − Vbb

Haa −Hbb

�
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Substituting Vba, Vab, and Vbb from these inequalities, and substituting H, we
have

D1 ≥ Vaa − V (H̃)

Haa − H̃

{
1
μa

[(1 + zaμa)Haa − (1 + zbμa)Hba]

− 1
μb

[(1 + zaμb)Hab − (1 + zbμb)Hbb]
}

= Vaa − V (H̃)

Haa − H̃
(za − zb)(φa −φb)�

Thus, D> 0 if

δ

A
<

[
Vaa − V (H̃)

Haa − H̃

]/[
V (φa)− V (φb)

φa −φb

]
�

Because V is convex, then

Vaa − V (H̃)

Haa − H̃
≥ V ′(a+

L);
V (φa)− V (φb)

φa −φb

≤ V ′(a−
H)�

where V ′(μ+) is the right derivative and V ′(μ−) is the left derivative of V at μ.
Hence, a sufficient condition for D> 0 is δ/A < V ′(a+

L)/V
′(a−

H), which is im-
plied by Assumption 3 (see Lemma A.1).

Thus, the function R̂(z�μ) is strictly supermodular. Because −X is a lattice,
the monotone selection theorem in Topkis (1998, Theorem 2.8.4, p. 79) implies
that every selection from Z(μ) is increasing. As a result, every selection g(μ)
from G(μ) is decreasing and w(μ)=W (g(μ)) is increasing.

Finally, we establish that statements (i)–(v) in Theorem 4.1 are equivalent.
(i) ⇐⇒ (ii) Optimal learning has the following standard property (see

Nyarko (1994, Proposition 4.1)): The value function is strictly convex in be-
liefs if and only if there do not exist μa and μb in M , with μa > μb, and a choice
z0 such that z0 ∈Z(μ) for all μ ∈ [μb�μa]. Since z(μ) is an increasing function,
as proven above, the standard property implies that V is strictly convex if and
only if every selection z(μ) is strictly increasing for all μ.

(ii) 
⇒ (iii) Suppose {−a−1
H } ∈ Z(μa) for some μa > aL so that (iii) is vi-

olated. Because every selection z(μ) is increasing, Z(μ) contains only the
singleton {−a−1

H } for all μ < μa. In this case, (ii) does not hold for μ ≤ μa.
Note that since z(μ) < 0 by Theorem 3.1, the result {−a−1

H } /∈ Z(μ) implies
that Z(μ) is interior.

(iii) 
⇒ (iv) This follows from aH > aL.
(iv) ⇐⇒ (v) See part (ii) of Lemma A.1.
(iv) 
⇒ (i) We prove that a violation of (i) implies that {−a−1

H } ∈ Z(aH),
which violates (iv). Suppose that V is not strictly convex. Proposition 4.1 in
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Nyarko (1994) implies that there exist μa and μb in M , with μa > μb, and a
choice z0 such that z0 ∈ Z(μ) and V (μ) is linear for all μ ∈ [μb�μa]. Since
μa > μb, let μb > aL and μa < aH without loss of generality. (If μa or μb is at
the boundary, we can find μ′

a and μ′
b, with μa > μ′

a > μ′
b > μb.) We deduce that

V (μ) is linear for all μ ∈ [φ(μb)�φ(μa)]: If V (μ) were strictly convex in any
subinterval of [φ(μb)�φ(μa)], Lemma A.2 above would imply that R(−z0�μ)
is strictly convex μ in some subinterval of [μb�μa]. Similarly, V (μ) is linear for
all μ ∈ [Hb�Ha], where Hi denotes H(−z0�μi) for i ∈ {a�b}. Denote the slope
of V as V ′(φb) for μ ∈ [φ(μb)�φ(μa)] and V ′(Hb) for μ ∈ [Hb�Hb]. For all
μ ∈ [μb�μa], we have

R̂(z�μ) = − zW (−z)

(1 − σ)A
− δz

A

{
V (φ(μb))+ V ′(φb)[φ(μ)−φ(μb)]

}

+ 1
μ
(1 + zμ)

{
V (Hb)+ V ′(Hb)[H(−z�μ)−Hb]

}
�

Because (1 + zμ)H(−z�μ) is linear in z, the last two terms in the above ex-
pression are linear in z. In this case, part (iii) in (3.11) implies that R̂(z�μ)
is strictly concave in z and twice continuously differentiable in z and μ for all
μ ∈ [μb�μa]. Thus, the optimal choice z(μ) is unique. By the supposition, this
optimal choice is z(μ)= z0 for all μ ∈ [μb�μa]. Using these results and the fact
that z0 < 0 (see Theorem 3.1), we conclude that z0 satisfies the complemen-
tary slackness condition R̂1(z0�μ)≤ 0 and z0 ≥ −1/aH . Moreover, in this case,
strict supermodularity of R̂ implies R̂12(z�μ) > 0 and strictly concavity of R̂ in
z implies R̂11(z�μ) < 0 for all μ ∈ [μb�μa]. If z0 > −1/aH , then R̂1(z0�μ) = 0,
which implies dz0/dμ= −R̂12/R̂11 > 0. This contradicts the supposition that z0

is constant for all μ ∈ [μb�μa]. Thus, z0 = −1/aH .
Repeat the above argument for all μ ∈ [φi(μb)�φ

i(μa)], where φi(μ) =
φ(φi−1(μ)) and i = 1�2� � � � � For such μ, V is linear and Z(μ) is the single-
ton {−a−1

H }.
Take an arbitrary μc ∈ (μb�μa). Since Z(φi(μc)) = {−a−1

H } for all pos-
itive integers i, then limi→∞ Z(φi(μc)) = {−a−1

H }. From the definition of
φ(μ), it is clear that φ(aH) = aH , φ(aL) = aL, and φ(μ) > μ for all μ ∈
(aL�aH). Thus, limi→∞ φi(μ) = aH for every μ ∈ (aL�aH) and, particularly,
for μ = μc . Because Z is upper hemicontinuous, we conclude that {−a−1

H } ∈
Z(aH). Q.E.D.

B.1. The Relationship Between Single Crossing and Supermodularity

The original objective function of a worker’s maximization problem is

R(−z�μ) = −zμ

A

[
W (−z)

1 − σ
+ δV (φ(μ))

]
+ (zμ+ 1)V (H(−z�μ))�



8 F. M. GONZALEZ AND S. SHI

The transformed function is R̂(z�μ) = 1
μ
R(−z�μ). Consider arbitrary za,

zb ∈ −X and arbitrary μa, μb ∈M , with za > zb and μa > μb. The original func-
tion R has strict single crossing in (z�μ) if

R(−za�μb) ≥R(−zb�μb) 
⇒ R(−za�μa) > R(−zb�μa)�

The transformed function R̂ is strictly supermodular in (z�μ) if

D≡ [R̂(za�μa)− R̂(zb�μa)] − [R̂(za�μb)− R̂(zb�μb)]> 0�

CLAIM 1: Strict supermodularity of R̂(z�μ) is sufficient but not necessary for
strict single crossing of R(−z�μ).

PROOF: Consider arbitrary za, zb, μa, and μb in the above definitions. Sub-
stituting R̂=R/μ into the definition of D and rearranging terms, we have

R(−za�μa)−R(−zb�μa)= μaD+ μa

μb

[R(−za�μb)−R(−zb�μb)]�

Suppose that R̂(z�μ) is strictly supermodular in (z�μ), that is, D > 0. If
R(−za�μb) ≥ R(−zb�μb), then the above equation clearly implies R(−za�
μa) > R(−zb�μa), which establishes strict single crossing of R. The converse is
not true. If R has strict single crossing, then μa

μb
[R(−za�μb) − R(−zb�μb)] ≥ 0

implies [R(−za�μa) − R(−za�μa)] > 0. However, the first difference can be
greater than the second difference, in which case D< 0. Q.E.D.

In practice, verifying strict supermodularity of R̂ is the operational way to
verify strict single crossing of R, although the former is not necessary for the
latter. To see why, suppose that R(−za�μb) ≥ R(−zb�μb). To verify that R
has strict single crossing, we need to verify that R(−za�μa)− R(−zb�μa) > 0.
The latter difference involves the term [zaW (−za) − zbW (−zb)]. For arbi-
trary (za� zb), this term is unrelated to (μa�μb) and it can be either posi-
tive or negative (because the function zW (−z) is not monotone). The oper-
ational way to verify strict single crossing of R is to use the hypothesis in strict
single crossing to substitute the above term. That is, rewrite the hypothesis
R(−za�μb)≥R(−zb�μb) as

zaW (−za)− zbW (−zb)

A(1 − σ)

≤ δV (φ(μb))

A
[za − zb]

+
[(

za + 1
μb

)
V (H(−za�μb))−

(
zb + 1

μb

)
V (H(−zb�μb))

]
�
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Using this inequality to substitute [zaW (−za)− zbW (−zb)], we obtain

R(−za�μa)−R(−zb�μa)≥ μaD�

Working on the above inequality to verify R(−za�μa) > R(−zb�μa) amounts
to proving the sufficient condition, D> 0, which is strict supermodularity of R̂.

C. PROOF OF THEOREM 5.1

Fix μ ∈ (aL�aH) and use the notation h(μ) =H(−z(μ)�μ).
(i) Because H(−z�μ) is increasing in z, H(−z+(μ)�μ) = h+(μ) and

H(−z−(μ)�μ) = h−(μ). Note that the convex function V has left and right
derivatives. Because W (−z) is continuous, V is continuous and convex, and H
is continuously differentiable, then

R̂1(z
+(μ)�μ) = z(μ)W ′(−z(μ))−W (−z(μ))

A(1 − σ)
− δ

A
V (φ(μ))

+ V (h(μ))− (μ−1 + z(μ))V ′(h+(μ))H1(−z(μ)�μ)�

R̂1(z
−(μ)�μ) is given similarly with h−(μ) replacing h+(μ). Recall that H1 de-

notes the derivative of H(−z�μ) with respect to −z, rather than to z. Since
H1 < 0 and V is convex, we can deduce that R̂1(z

+(μ)�μ) ≥ R̂1(z
−(μ)�μ).

However, because z(μ) is optimal, R̂1(z
+(μ)�μ) ≤ 0 ≤ R̂1(z

−(μ)�μ). It
must be true that R̂1(z

−(μ)�μ) = R̂1(z
+(μ)�μ) = 0, which requires that

V ′(h−(μ))= V ′(h+(μ)) = V ′(h(μ)).
(ii) Let {μi} be a sequence with μi → μ and μi ≥ μi+1 ≥ μ for all i. Be-

cause z̄(μ) is an increasing function, {z̄(μi)} is a decreasing sequence and
z̄(μi) ≥ z̄(μ) for all i. Thus, z̄(μi) ↓ zc for some zc ≥ z̄(μ). On the other
hand, the theorem of the maximum implies that the correspondence Z(μ)
is upper hemicontinuous (see Stokey, Lucas, and Prescott (1989, p. 62)). Be-
cause μi → μ, and z̄(μi) ∈ Z(μi) for each i, upper hemicontinuity of Z im-
plies that there is a subsequence of {z̄(μi)} that converges to an element
in Z(μ). This element must be zc , because all convergent subsequences of
a convergent sequence must have the same limit. Thus, zc ∈ Z(μ) and so
zc ≤ maxZ(μ) = z̄(μ). Therefore, z̄(μi) ↓ zc = z̄(μ), which shows that z̄(μ)
is right-continuous. Similarly, by examining the sequence {μi} with μi → μ and
μ≥ μi+1 ≥ μi for all i, we can show that z is left-continuous.

(iii) Let μa be another arbitrary value in the interior of (aL�aH). Because
z̄(μ) maximizes R(−z�μ) for each given μ, then

(1 + r)V (μa) = b+ (1 − σ)R(−z̄(μa)�μa)

≥ b+ (1 − σ)R(−z̄(μ)�μa)�

(1 + r)V (μ)= b+ (1 − σ)R(−z̄(μ)�μ)≥ b+ (1 − σ)R(−z̄(μa)�μ)�
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For μa > μ, we have

R(−z̄(μ)�μa)−R(−z̄(μ)�μ)

(1 + r)(μa −μ)
≤ V (μa)− V (μ)

(1 − σ)(μa −μ)

≤ R(−z̄(μa)�μa)−R(−z̄(μa)�μ)

(1 + r)(μa −μ)
�

Take the limit μa ↓ μ. Under (4.2), V ′(H(−z̄(μa)�μa)) exists for each μa (see
part (i)). Because z̄(μa) is right-continuous, limμa↓μ z̄(μa) = z̄(μ). Thus, all
three ratios above converge to the same limit, 1

1−σ
V ′(μ+)= 1

1+r
R2(−z̄(μ)�μ+),

where

R2(−z̄(μ)�μ+)

= z̄(μ)

[
−W (−z̄(μ))

(1 − σ)A
− δ

A
V (φ(μ))+ V (H(−z̄(μ)�μ))

]

− μz̄(μ)δ

A
V ′(φ+(μ))φ′(μ)

+ [μz̄(μ)+ 1]V ′(H(−z̄(μ)�μ)
)
H2(−z̄(μ)�μ)�

Now conduct the above exercise with z replacing z̄. For μa < μ, we have

R(−z(μa)�μa)−R(−z(μa)�μ)

μa −μ
≤ (1 + r)[V (μa)− V (μ)]

(1 − σ)(μa −μ)

≤ R(−z(μ)�μa)−R(−z(μ)�μ)

μa −μ
�

Taking the limit μa ↑ μ and using left-continuity of z(μa), we have (1 +
r)V ′(μ−)= (1 − σ)R2(−z(μ)�μ−).

(iv) Convexity of V implies that V ′(μ+) ≥ V ′(μ−). To find the conditions
for V to be differentiable at μ, use the definition R(−z�μ)= μR̂(z�μ) to com-
pute

R2(−z(μ)�μ) = R̂(z(μ)�μ)+μR̂2(z(μ)�μ)�

Note the following features. First, because R̂(z�μ) is strictly supermodu-
lar, R̂2(z̄(μ)�μ) ≥ R̂2(z(μ)�μ), where the inequality is strict if and only
if z̄(μ) > z(μ). Second, μ+ appears in the expression for R2(−z(μ)�μ+)
only through the term V ′(φ+(μ)), and μ− appears in the expression for
R2(−z(μ)�μ−) only through the term V ′(φ−(μ)). Since V is strictly convex
(and z� z̄ < 0), we have R2(−z(μ)�μ+) ≥ R2(−z(μ)�μ−) for all z(μ) ∈ Z(μ),
where the inequality is strict if and only if V ′(φ+(μ)) > V ′(φ−(μ)). Third,
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R̂(z̄(μ)�μ) = R̂(z(μ)�μ), since both z̄(μ) and z(μ) maximize R̂(z�μ). These
features imply

R2(−z̄(μ)�μ+) ≥ R2(−z̄(μ)�μ−)

≥ R̂(z(μ)�μ−)+μR̂2(z(μ)�μ
−)= R2(−z(μ)�μ−)�

The first inequality comes from strict convexity of V , and it is strict if and only
if V ′(φ+(μ)) > V ′(φ−(μ)). The second inequality comes from strict super-
modularity of R̂(z�μ), and it is strict if and only if z̄(μ) > z(μ). Therefore,
V ′(μ+)= V ′(μ−) if and only if V ′(φ(μ)) exists and z̄(μ) = z(μ).

(v) Assume that V ′(μa) exists for a particular (interior) μa, such as
μa = h(μ) for any arbitrary interior μ. By part (iv), z(μa) is unique and
V ′(φ(μa)) exists. Recall that V ′(h(μa)) always exists, by part (i). Since V is
now differentiable at all posterior beliefs reached from μa under the opti-
mal choice, we can take each of these subsequent nodes and repeat the ar-
gument. This shows that the optimal choice is unique and the value function
is differentiable at all nodes on the tree generated from μa in the equilib-
rium. Q.E.D.
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