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This supplement contains 11 sections of results. Section S1 provides details concern-
ing Tables II and III. Section S2 gives the proofs of the results in the paper. Section S3
introduces size-correction methods based on quantile adjustment. Section S4 provides
results concerning power comparisons of size-corrected (SC) tests. Section S5 provides
graphical illustrations of the critical value functions of fixed-critical-value (FCV), sub-
sampling, and hybrid tests. Section S6 gives graphical illustrations of power compar-
isons of SC-FCV, SC-Sub, and SC-Hyb tests. Section S7 introduces and gives results
for equal-tailed size-corrected tests. Section S8 defines a size-corrected combined (SC-
Com) test that combines the SC-Sub and SC-Hyb tests. Section S9 gives asymptotic and
finite-sample results for hybrid, SC, and PSC tests for the nuisance parameter near a
boundary example of Andrews and Guggenberger (2009a), hereafter AG1. Section S10
provides a table of asymptotic and finite-sample results for upper and lower one-sided
confidence intervals in the autoregressive parameter example considered in the paper.
Section S10 also verifies the assumptions for that example. Section S11 verifies the as-
sumptions for the conservative model selection example considered in the paper.

S1. DETAILS CONCERNING TABLES II AND III

TO IMPLEMENT the Kristensen and Linton (2006) estimator used in the results
of Table II, we use two Newton–Raphson iterations (see their equation (17)),
and to initialize the iteration we use their closed-form estimator (see p. 326), in
particular, their equation (10), implemented with w1 = w2 =w3 = 1/3 and with
their φ̂ winsorized to the interval [.001, .999]. In each iteration step, we initial-
ize the σ̂2

k�t (p. 329, line 5 from the bottom) by setting it equal to the squared
first data observation. For simplicity, this estimator has not been discretized
and the GARCH(1�1) process has not been truncated to conform to the the-
oretical results given in the Section 3.4 of Andrews and Guggenberger (2008)
for the asymptotic equivalence of feasible and infeasible quasi-GLS (QGLS)
statistics. The subsample statistics use the full-sample estimator of the condi-
tional heteroskedasticity {φ̂n�i : i ≤ n}� which is justified because feasible and
infeasible QGLS test statistics are asymptotically equivalent in the full sample
and in subsamples.

In Table II, the parameter space for ρ is taken to be [−�9�1�0] to minimize
the effect of the choice of the lower bound on the FS-Min values of the sub-
sampling and hybrid CIs because in most practical applications in economics,
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the parameter interval (−1�0�−�9] is not of interest. The effects are small. For
the parameter spaces [−�999�1�0] and [−�9�1�0]� the respective FS-Min values
of the symmetric subsampling CIs are 94�6 and 95�0 for case (i), 95�1 and 95�4
for case (ii), 92�8 and 94�6 for case (iv), and 95�6 and 95�8 for case (v). For the
symmetric hybrid CIs, they are 95�9 and 96�0 for case (iii), 93�7 and 94�6 for
case (iv), and 96�0 and 96�1 for case (v). For the equal-tailed hybrid CI, they
are 93�1 and 93�5 for case (iv). No other results are affected by the choice of
the lower bound of the parameter space.

The 119 subsamples used in Table III include 10 “wrap-around” subsamples
that contain observations at the end and beginning of the sample, for example,
observations indexed by (110� � � � �120�1). The choice of qn = 119 subsamples
is made because this reduces rounding errors when qn is small when comput-
ing the sample quantiles of the subsample statistics. The values να that solve
να/(qn + 1) = α for α = �025� �95, and �975 are the integers 3� 114� and 117�
In consequence, the �025� �95� and �975 sample quantiles are given by the 3rd,
114th, and 117th largest subsample statistics. See Hall (1992, p. 307) for a dis-
cussion of this choice in the context of the bootstrap.

S2. PROOFS

For notational simplicity, throughout this section, we let cg� ch� c∞� cn�b� and
cv abbreviate cg(1 − α)� ch(1 − α)� c∞(1 − α)� cn�b(1 − α)� and cv(1 − α)�
respectively.

S2.1. Proof of Lemma 1

LEMMA 1: Suppose Assumptions A–G, K, and T hold. Then either (i) the ad-
dition of c∞(1 − α) to the subsampling critical value is irrelevant asymptotically
(i.e., ch(1−α)≥ c∞(1−α) for all h ∈ H and MaxHyb(α)= MaxSub(α)) or (ii) the
nominal level α subsampling test over-rejects asymptotically (i.e., AsySz(θ0) > α)
and the hybrid test reduces the asymptotic over-rejection for at least one parameter
value (g�h) ∈GH.

PROOF: If ch ≥ c∞ for all h ∈ H� then MaxHyb(α) = MaxSub(α) and
Max−

Hyb(α) = Max−
Sub(α) follow immediately (where the latter three quantities

are defined in Assumptions P and T). In addition, Assumption T implies that
all of these quantities are equal. The latter, Theorem 1 of the paper, and The-
orem 1(ii) of AG1 imply that the quantities equal AsySz(θ0) for the hybrid and
subsampling tests.

On the other hand, suppose ch ≥ c∞ for all h ∈ H does not hold. Then, for
some g ∈ H� cg < c∞. Given g� define h1 = (h1�1� � � � �h1�p)

′ ∈ H1 by h1�m = +∞
if g1�m > 0� h1�m = −∞ if g1�m < 0� h1�m = +∞ or −∞ (chosen so that (g�h) ∈
GH) if g1�m = 0 for m = 1� � � � �p� and define h2 = g2. Let h = (h1�h2). By
construction, (g�h) ∈GH� By Assumption K, ch = c∞. Hence, we have

MaxSub(α)≥ 1 − Jh(cg) > α�(S2.1)



HYBRID AND SIZE-CORRECTED SUBSAMPLING METHODS 3

where the second inequality holds because cg < c∞ = ch and ch is the infimum
of values x such that Jh(x) ≥ 1 − α or, equivalently, 1 − Jh(x) ≤ α. Equa-
tion (S2.1) and Theorem 1(ii) of AG1 imply that AsySz(θ0) > α for the sub-
sampling test. The hybrid test reduces the asymptotic over-rejection of the
subsampling test at (g�h) from being at least 1 − Jh(cg) > α to being at most
1−Jh(c∞)= 1−Jh(ch)≤ α (with equality if Jh(·) is continuous at ch). Q.E.D.

S2.2. Proof of Lemma 2

LEMMA 2: Suppose Assumptions A–G, K, T, and Quant hold. Then, the hybrid
test based on Tn(θ0) has AsySz(θ0)= α.

PROOF: Suppose Assumption Quant(i) holds. Then,

MaxHyb(α) = sup
(g�h)∈GH

[
1 − Jh(max{cg� c∞})](S2.2)

= sup
h∈H

[1 − Jh(c∞)]

≤ sup
h∈H

[1 − Jh(ch)] = α�

where the second equality and the inequality hold by Assumption Quant(i)(a)
and the last equality holds because 1 − Jh(ch) ≤ α by definition of ch for all
h ∈ H and 1−J∞(c∞)= α by Assumption Quant(i)(b). By (S2.2) and Assump-
tion Quant(i)(b), MaxHyb(α)= suph∈H[1 − Jh(c∞)] ≥ 1 − J∞(c∞)= α.

Next, suppose Assumption Quant(ii) holds. By Assumption Quant(ii)(a),
p = 1� Hence, given (g�h) ∈GH, either (I) |h1�1| = ∞ or (II) |h1�1| <∞� When
(I) holds, Jh = J∞ by Assumption K and

1 − Jh(max{cg� c∞})≤ 1 − J∞(c∞)= α�(S2.3)

When (II) holds, g must equal h0 by the definition of GH� Hence,

1 − Jh(max{cg� c∞})≤ 1 − Jh(ch0)≤ sup
h∈H

[1 − Jh(ch)] = α�(S2.4)

where the second inequality holds because ch0 ≥ ch by Assumption Quant(ii)(b)
and the equality holds by Assumption Quant(ii)(c). Hence, MaxHyb(α) ≤ α. In
addition, MaxHyb(α)≥ 1 − J∞(c∞)= α by Assumption Quant(ii)(c). Q.E.D.

S2.3. Proof of Theorem 2

In this section, we prove Theorem 2 of the paper. For the reader’s con-
venience, we repeat the definition of the size-corrected (SC) tests here. The



4 D. W. K. ANDREWS AND P. GUGGENBERGER

size-corrected fixed-critical-value (SC-FCV), subsampling (SC-Sub), and hy-
brid (SC-Hyb) tests with nominal level α are defined to reject the null hypoth-
esis H0 :θ = θ0 when

Tn(θ0) > cv(1 − α)�(S2.5)

Tn(θ0) > cn�b(1 − α)+ κ(α)�

Tn(θ0) > max{cn�b(1 − α)� c∞(1 − α)+ κ∗(α)}�

respectively, where

cv(1 − α)= sup
h∈H

ch(1 − α)�(S2.6)

κ(α)= sup
(g�h)∈GH

[ch(1 − α)− cg(1 − α)]�

κ∗(α)= sup
h∈H∗

ch(1 − α)− c∞(1 − α)�

H∗ = {h ∈ H : for some (g�h) ∈ GH�cg(1 − α) < ch(1 − α)}�

If H∗ is empty, then κ∗(α)= −∞ by definition.

THEOREM 2: Suppose Assumptions A–G and K–M hold. Then the SC-FCV,
SC-Sub, and SC-Hyb tests satisfy AsySz(θ0)= α.

PROOF: First we note that Assumption L implies that cv� κ(α)� and κ∗(α)
are finite. Below we show that cv� κ(α)� and κ∗(α) satisfy

sup
h∈H

[1 − Jh(cv−)] ≤ α�(S2.7)

sup
(g�h)∈GH

(
1 − Jh

(
(cg + κ(α))−)) ≤ α�

sup
(g�h)∈GH

(
1 − Jh

(
max{cg� c∞ + κ∗(α)}−)) ≤ α�

respectively. Given (S2.7), Theorem 1(i) of AG1 applied with cFix = cv implies
that the SC-FCV test satisfies AsySz(θ0) ≤ suph∈H[1 − Jh(cv−)] ≤ α� where
the second inequality holds by (S2.7). Theorem 1(ii) of AG1 with cn�b + κ(α)
in place of cn�b implies that the SC-Sub test satisfies AsySz(θ0)≤ sup(g�h)∈H[1 −
Jh((cg + κ(α))−)] ≤ α� where the second inequality holds by (S2.7). Theo-
rem 1(ii) of AG1 with max{cn�b� c∞ +κ∗(α)} in place of cn�b implies that the SC-
Hyb test satisfies AsySz(θ0) ≤ sup(g�h)∈H[1 − Jh(max{cg� c∞ + κ∗(α)}−)] ≤ α�
where the second inequality holds by (S2.7). Hence, AsySz(θ0) ≤ α for SC-
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FCV, SC-Sub, and SC-Hyb tests. Below we show that the reverse inequality
also holds.

We now show that the first inequality in (S2.7) holds. For h ∈ H� if ch <
suph†∈H ch†� then

Jh
(

sup
h†∈H

ch†−
)

≥ Jh(ch)≥ 1 − α�(S2.8)

where the first inequality holds because Jh is nondecreasing and the second
inequality holds by the definition of ch� For h ∈H� if ch = suph†∈H ch†� then

Jh
(

sup
h†∈H

ch†−
)

= Jh(ch−) = 1 − α�(S2.9)

where the last equality holds by Assumption M(a)(ii). For cv defined in (S2.6),
(S2.8), and (S2.9), combine to give

sup
h∈H

[1 − Jh(cv−)] = sup
h∈H

[
1 − Jh

(
sup
h†∈H

ch†−
)]

≤ α�(S2.10)

Hence, cv satisfies (S2.7).
Next, we prove that the second inequality in (S2.7) holds. For (g�h) ∈ GH�

if ch= < cg + sup(g†�h†)∈GH[ch† − cg†]� then we have

Jh
(
(cg +κ(α))−) = Jh

((
cg + sup

(g†�h†)∈GH

[ch† −cg†]
)
−

)
≥ Jh(ch)≥ 1−α�(S2.11)

where the first inequality holds by the condition on (g�h) and the fact that Jh
is nondecreasing.

For (g�h) ∈GH� if ch= = cg + sup(g†�h†)∈GH[ch† − cg†]� then we have

Jh
(
(cg + κ(α))−) = Jh

((
cg + sup

(g†�h†)∈GH

[ch† − cg†]
)
−

)
(S2.12)

= Jh(ch−) = 1 − α�

where the second equality holds by the condition on (g�h) and the last
equality holds by Assumption M(b)(ii). Combining (S2.11) and (S2.12) gives
sup(g�h)∈GH[1 − Jh((cg + κ(α))−)] ≤ α� as desired.

The third inequality in (S2.7) holds by the following argument. Because
c∞ + κ∗(α) = suph∗∈H∗ ch∗� we need to show that sup(g�h)∈GH[1 − Jh(max{cg�
suph∗∈H∗ ch∗}−)] ≤ α� For all (g�h) ∈ GH� we have max{cg� suph∗∈H∗ ch∗} ≥
ch because max{cg� suph∗∈H∗ ch∗} < ch implies that cg < ch� which implies
that h ∈ H∗� which implies that suph∗∈H∗ ch∗ ≥ ch� which is a contradic-
tion. Now, for any (g�h) ∈ GH with max{cg� suph∗∈H∗ ch∗} > ch� we have
1 − Jh(max{cg� suph∗∈H∗ ch∗}−) ≤ 1 − Jh(ch) ≤ α� as desired. For any (g�h) ∈
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GH with max{cg� suph∗∈H∗ ch∗} = ch� Assumption M(c)(ii) implies that Jh(x) is
continuous at x = ch� Hence, 1 − Jh(max{cg� c∞ + κ∗(α)}−) = 1 − Jh(ch−) =
1−Jh(ch)= α� which completes the proof of the third inequality of (S2.7). This
concludes the proof that AsySz(θ0) ≤ α for the SC-FCV, SC-Sub, and SC-Hyb
tests.

We now prove that these tests satisfy AsySz(θ0) ≥ α� By Theorem 1(i) of
AG1 applied with cFix = cv� the SC-FCV test satisfies AsySz(θ0) ≥ suph∈H[1 −
Jh(cv)]� Using (S2.6) and Assumption M(a)(i), cv = suph∈H ch = ch∗ for some
h∗ ∈ H� Hence,

sup
h∈H

[1 − Jh(cv)] = sup
h∈H

[1 − Jh(ch∗)] ≥ 1 − Jh∗(ch∗)= α�(S2.13)

where the last equality holds by Assumption M(a)(ii). In consequence, for the
SC-FCV test, AsySz(θ0)≥ α�

Next, by Theorem 1(ii) of AG1 with cn�b + κ(α) in place of cn�b� the SC-
Sub test satisfies AsySz(θ0) ≥ sup(g�h)∈GH[1 − Jh(cg + κ(α))]� Using (S2.6) and
Assumption M(b)(i), κ(α) = ch∗ − cg∗ for some (g∗�h∗) ∈ GH as in Assump-
tion M(b)(i). Hence,

sup
(g�h)∈GH

[
1 − Jh(cg + κ(α))

] = sup
(g�h)∈GH

[1 − Jh(cg + ch∗ − cg∗)](S2.14)

≥ 1 − Jh∗(ch∗)= α�

where the last equality holds by Assumption M(b)(ii). In consequence, for the
SC-Sub test, AsySz(θ0)≥ α�

Last, Theorem 1(ii) of AG1 with max{cn�b� c∞ +κ∗(α)} in place of cn�b implies
that the SC-Hyb test satisfies

AsySz(θ0)≥ sup
(g�h)∈GH

[
1 − Jh

(
max{cg� c∞ + κ∗(α)})]�(S2.15)

If H∗ is not empty, then using (S2.6) and Assumption M(c)(i), κ∗(α)= ch∗ −c∞
for some h∗ ∈ H∗ as in Assumption M(c)(i). By the definition of H∗� there
exists g∗ such that (g∗�h∗) ∈ GH and cg∗ < ch∗ � In consequence, the right-hand
side of (S2.15) equals

sup
(g�h)∈GH

[
1 − Jh(max{cg� ch∗})] ≥ 1 − Jh∗(max{cg∗� ch∗})(S2.16)

= 1 − Jh∗(ch∗)= α�

where the first equality uses cg∗ < ch∗ and the last equality holds by As-
sumption M(c)(ii) because (g∗�h∗) ∈ GH satisfies ch∗ = suph∈H∗ ch = max{cg∗�
suph∈H∗ ch}� Combining (S2.15) and (S2.16) gives AsySz(θ0)≥ α�
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If H∗ is empty, then κ∗(α) = −∞� (h0�h0) ∈ GH� where h0 = (0�h2) for
arbitrary h2 ∈H2� and we have

sup
(g�h)∈GH

[
1 − Jh

(
max{cg� c∞ + κ∗(α)})](S2.17)

= sup
(g�h)∈GH

[1 − Jh(cg)] ≥ 1 − Jh0(ch0)= α�

where the last equality holds by Assumption M(c)(ii) because ch0 = max{ch0�
c∞ + κ∗(α)}� Combining (S2.15)–(S2.17) gives AsySz(θ0) ≥ α for the SC-Hyb
test. Q.E.D.

S2.4. Proof of Theorem 3

THEOREM 3: Suppose Assumptions A–G, K, L, N, and O hold. Then
(a) cvγ̂n�2(1 − α)− cvγn�2(1 − α)→p 0� κγ̂n�2(α)− κγn�2(α)→p 0� and κ∗

γ̂n�2
(α)−

κ∗
γn�2

(α) →p 0 under all sequences {γn = (γn�1�γn�2�γn�3) ∈ Γ :n ≥ 1} and (b) the
PSC-FCV, PSC-Sub, and PSC-Hyb tests satisfy AsySz(θ0)= α�

PROOF: The results of part (a) hold by an extension of Slutsky’s theorem
(to allow γn�2 to depend on n) using Assumption N and the uniform continuity
of the functions in Assumption O(a)(i), (b)(i), and (c)(i). The proof of part
(b) is split into two steps. In the first step, we consider the PSC tests with γ̂n�2

replaced by the true value γn�2� In this case, using parts (ii) and (iii) of Assump-
tion O(a), (b), and (c), the results of part (b) hold by a very similar argument
to that given in the proof of Theorem 2 of the paper. In the second step, the
results of parts (a) are combined with the results of the first step to obtain the
desired results. This step holds because the results of parts (a) lead to the same
limit distributions for the statistics in question whether they are based on γ̂n�2

or the true value γn�2 by the argument used in the proof of Theorem 1(ii) of
AG1. Q.E.D.

S2.5. Proof of Theorem 4

THEOREM 4(a): Suppose Assumptions A–G and P hold. Then a subsampling
test satisfies

lim
n→∞

AsySzn(θ0)= AsySz(θ0)�

PROOF: Under Assumptions A–G, Theorem 1 of AG1 combined with As-
sumption P(ii) shows that AsySz(θ0) = sup(g�h)∈GH(1 − Jh(cg))� First, we show
that lim infn→∞ AsySzn(θ0) ≥ AsySz(θ0)� Given (g�h) = ((g1�h2)� (h1�h2)) ∈
GH� we construct a sequence {hn = (hn�1�hn�2) ∈ H :n ≥ 1} such that (gn�
hn) → (g�h) as n → ∞� where gn = (gn�1� gn�2) = (δr

nhn�1�hn�2)� Define hn�2 =
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h2 for all n ≥ 1� We write h1 = (h1�1� � � � �h1�p)
′ and hn�1 = (hn�1�1� � � � �hn�1�p)

′�
For m= 1� � � � �p� define

hn�1�m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1�m� if g1�m = 0 and |h1�m| <∞,
(n/bn)

r/2� if g1�m = 0 and h1�m = ∞,
−(n/bn)

r/2� if g1�m = 0 and h1�m = −∞,
(n/bn)

rg1�m� if g1�m ∈ (0�∞) and h1�m = ∞,
(n/bn)

rg1�m� if g1�m ∈ (−∞�0) and h1�m = −∞,
(n/bn)

2r� if g1�m = ∞ and h1�m = ∞,
−(n/bn)

2r� if g1�m = −∞ and h1�m = −∞.

(S2.18)

As defined, (gn�1�hn�1)= (δr
nhn�1�hn�1) → (g1�h1) and (gn�hn)→ (g�h)�

We now have

lim inf
n→∞

AsySzn(θ0) = lim inf
n→∞

sup
h=(h1�h2)∈H

(
1 − Jh

(
c(δrnh1�h2)

))
(S2.19)

≥ lim inf
n→∞

(
1 − Jhn

(
c(δrnhn�1�hn�2)

))
= lim inf

n→∞
(
1 − Jhn

(
cgn

))
= 1 − Jh(cg)�

where the second equality holds by definition of gn and the last equality
holds by Assumption P because (gn�hn) → (g�h)� Using the expression for
AsySz(θ0) given above, this establishes the desired result because (S2.19) holds
for all (g�h) ∈GH�

Next, we show that lim supn→∞ AsySzn(θ0) ≤ AsySz(θ0)� For h = (h1�h2) ∈
H� let τn(h) = 1 − Jh(c(δrnh1�h2))� By definition, AsySzn(θ0) = suph∈H τn(h)�

There exists a sequence {hn ∈ H :n ≥ 1} such that lim supn→∞ suph∈H τn(h) =
lim supn→∞ τn(hn)� There exists a subsequence {un} of {n} such that
lim supn→∞ τn(hn) = limn→∞ τun(hun)� There exists a subsequence {vn} of {un}
such that (hvn�1�hvn�2� δ

r
vn
hvn�1) → (h∗

1�h
∗
2� g

∗
1) for some h∗

1 ∈ H1� h∗
2 ∈ H2�

g∗
1 ∈H1� where (g∗�h∗) = ((g∗

1�h
∗
2)� (h

∗
1�h

∗
2)) ∈GH� Hence,

lim sup
n→∞

AsySzn(θ0) = lim
n→∞

τun
(
hun

) = lim
n→∞

τvn
(
hvn

)
(S2.20)

= lim
n→∞

(
1 − Jhvn

(
c(δrvnhvn�1�hvn�2)

)) = 1 − Jh∗(cg∗)

≤ sup
(g�h)∈GH

(1 − Jh(cg))= AsySz(θ0)�

where the fourth equality holds by Assumption P and the results above. Q.E.D.
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THEOREM 4(b): Suppose Assumptions A–G, K–M, Q, and R hold. Then
(i) limn→∞ κ(δn�α) = κ(α) and limn→∞ κ∗(δn�α) = κ∗(α) and (ii) the ASC-Sub
and ASC-Hyb tests satisfy AsySz(θ0)= α.

PROOF: The first result of part (i) holds by the proof of Theorem 4(a) with
1 − Jh(c(δrnh1�h2)) and 1 − Jh(cg) replaced by c(h1�h2) − c(δrnh1�h2) and ch − cg� re-
spectively, using Assumption Q in place of Assumption P. Next, we show the
first result of part (ii). Using the first result of part (i), by the same argument
as used to prove Theorem 1(ii) of AG1, AsySz(θ0) for the ASC-Sub test equals
AsySz(θ0) for the SC-Sub test. By Theorem 2 of the paper, the latter equals α.

Now, we prove that the second result of part (i) holds with limn→∞ and =
replaced by lim infn→∞ and ≥� respectively, even without imposing Assump-
tion R. If H∗ is empty, then lim infn→∞ suph∈H∗(δn) ch ≥ −∞ = suph∈H∗ ch� If H∗

is nonempty, for any (g�h) ∈ GH such that h ∈ H∗� define (gn�hn) ∈ GH as
in (S2.18). By (gn�hn) → (g�h)� Assumption Q, and cg − ch < 0� we obtain
cgn − chn < 0 and hn ∈H∗(δn) for all n sufficiently large. Hence,

lim inf
n→∞

sup
h∈H∗(δn)

ch ≥ lim inf
n→∞

chn = ch�(S2.21)

where the equality uses hn → h and Assumption Q. This inequality holds for all
h ∈ H∗� Hence, lim infn→∞ suph∈H∗(δn) ch ≥ suph∈H∗ ch and the proof is complete.

Next, we show the second result of part (ii) holds with = replaced by ≤
even without imposing Assumption R. Using the second result of part (i) with
limn→∞ and = replaced by lim infn→∞ and ≥� respectively, the lim supn→∞ of
the rejection probability of the ASC-Hyb test is less than or equal to that of the
SC-Hyb test and the latter equals α by Theorem 1.

To show that the second result of part (i) holds, it remains to show that it
holds with = replaced by ≤. First suppose that H∗ is empty. Then κ∗(α) =
−∞� H∗(δ) is empty for δ > 0 close to zero by Assumption R, and κ∗(δn�α) =
−∞ for n sufficiently large. Next, suppose that H∗ is nonempty. Then, using
Assumption R, it suffices to show that lim supn→∞ suph∈H∗(δn) ch ≤ suph∈H† ch� As
in the last paragraph of the proof of Theorem 4(a) (given above), there exists a
sequence {hn ∈ H∗(δn) :n ≥ 1}� a subsequence {un} of {n}� and a subsequence
{vn} of {un} such that

lim sup
n→∞

sup
h∈H∗(δn)

ch = lim
n→∞

chvn �(S2.22) (
hvn�1�hvn�2

) → (h∗
1�h

∗
2)= h∗�(

δr
vn
hvn�1�hvn�2

) → (g∗
1�h

∗
2)= g∗

for some (g∗�h∗) ∈ GH� Since hvn = (hvn�1�hvn�2) ∈ H∗(δvn) for all n� we have
h∗ ∈ H† by definition of H†� This, (S2.22), and Assumption Q yield

lim sup
n→∞

sup
h∈H∗(δn)

ch = lim
n→∞

chvn = ch∗ ≤ sup
h∈H†

ch�(S2.23)
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which completes the proof of the second result of part (i). Given this, by the
same argument as used to prove Theorem 1(ii) of AG1 with cn�b replaced by
max{cn�b� c∞+κ∗(δn�α)}�AsySz(θ0) for the ASC-Hyb test is equal to AsySz(θ0)
for the SC-Hyb test. By Theorem 2, the latter equals α� Hence, the second
result of part (ii) holds. Q.E.D.

THEOREM 4(c): Suppose Assumptions A–G, K, L, N, O, Q, and S hold. Then
(i) κγ̂n�2(δn�α) − κγn�2(α) →p 0 and κ∗

γ̂n�2
(δn�α) − κ∗

γn�2
(α) →p 0 under all se-

quences {γn = (γn�1�γn�2�γn�3) ∈ Γ :n ≥ 1} and (ii) the APSC-Sub and APSC-
Hyb tests satisfy AsySz(θ0)= α.

PROOF: By Theorem 3, in part (a) it suffices to show that κγ̂n�2(δn�α) −
κγ̂n�2(α) →p 0 and κ∗

γ̂n�2
(δn�α)− κ∗

γ̂n�2
(α) →p 0� To do so, we use the result that

a sequence of random variables {Xn :n ≥ 1} satisfies Xn →p 0 if and only if
for every subsequence {un} of {n} there is a subsequence {vn} of {un} such that
Xvn → 0 a.s. We apply this result with Xn = κγ̂n�2(δn�α) − κγ̂n�2(α)� Hence, it
suffices to show that given any {un} there exists a subsequence {vn} of {un} such
that Xvn → 0 a.s. Given {un}� we apply the above subsequence result a sec-
ond time with Xn = γ̂n�2 − γn�2 to guarantee that there is a subsequence {vn}
of {un} for which γ̂vn�2 − γvn�2 → 0 a.s. using Assumption N. The subsequence
{vn} can be chosen such that γvn�2 → h2 for some h2 ∈ H2 because every se-
quence in H2 has a convergent subsequence given that H2 is closed with re-
spect to Rq

∞. Now, the argument in the proof of Theorem 4(a) applied to the
subsequence {vn} with 1 − Jh(c(δrvnh1�h2))� 1 − Jh(cg)� and hvn�2 = h2 replaced by
c(h1�γ̂vn�2)

−c(δrvnh1�γ̂vn�2)
� ch−cg� and hvn�2 = γ̂vn�2� respectively, and using Assump-

tion Q in place of Assumption P gives the desired result.
The second result of part (i) holds using similar subsequence arguments to

those above combined with variations of the proof of the second result of part
(i) of Theorem 4(b) with H∗� H∗(δn)� H

†� and Assumption R replaced by H∗
h2
�

H∗
γn�2

(δn)� H
†
h2
� and Assumption S, respectively.

Given the results of part (i), part (ii) is proved using the same argument as
used to prove part (ii) of Theorem 4(b). Q.E.D.

S3. SIZE CORRECTION BY QUANTILE ADJUSTMENT

We now briefly discuss SC methods based on quantile adjustment, as op-
posed to the method in Section 3 of the paper. Quantile-adjusted SC-Sub and
SC-Hyb tests with nominal level α reject the null hypothesis H0 :θ = θ0 when

Tn(θ0) > cn�b(1 − ξ(α))�(S3.1)

Tn(θ0) > c∗
n�b(1 − ξ∗(α))�
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respectively, where ξ(α) (∈ (0�α]) and ξ∗(α) (∈ (0�α]) are the largest con-
stants2 that satisfy

sup
(g�h)∈GH

(
1 − Jh

(
cg(1 − ξ(α))−)) ≤ α�(S3.2)

sup
(g�h)∈GH

(
1 − Jh

(
max

{
cg(1 − ξ∗(α))� c∞(1 − ξ∗(α))

}−)) ≤ α�

In many cases, the quantile adjustment and the size-correction method of Sec-
tion 3 give similar results. For many examples, we prefer the method based on
(S2.5) and (S2.6) to that of (S3.1) and (S3.2) because the former are based on
the explicit formulae for the adjustment factors κ(α) and κ∗(α) given in (S2.6).

S4. POWER COMPARISONS OF SIZE-CORRECTED TESTS

We now provide some results concerning power comparisons of SC tests
that are referred to in Section 3.2. We consider three alternative assumptions
concerning the shape of ch(1 − α). (“Quant” refers to quantile.)

ASSUMPTION Quant1: cg(1 − α)≥ ch(1 − α) for all (g�h) ∈ GH�

ASSUMPTION Quant2: cg(1 − α) ≤ ch(1 − α) for all (g�h) ∈ GH with strict
inequality for some (g�h)�

ASSUMPTION Quant3: (i) H = H1 = R+�∞� (ii) ch(1 − α) is uniquely maxi-
mized at h∗ ∈ (0�∞)� and (iii) ch(1 − α) is minimized at h= 0 or h= ∞�

THEOREM S1: Suppose Assumptions K and L hold.
(a) Suppose Assumption Quant1 holds. Then (i) cv(1 − α) =

suph2∈H2
c(0�h2)(1 − α)� (ii) κ(α) = 0� (iii) κ∗(α) = −∞� (iv) max{cg(1 −

α)� c∞(1−α)+κ∗(α)} = cg(1−α)+κ(α)� and (v) cg(1−α)+κ(α)≤ cv(1−α)
for all g ∈ H�

(b) Suppose Assumption Quant2 holds. Then (i) cv(1 − α) = c∞(1 − α)�
(ii) κ∗(α) = 0� (iii) max{cg(1 − α)� c∞(1 − α) + κ∗(α)} = cv(1 − α)� and
(iv) cv(1 − α)≤ cg(1 − α)+ κ(α) for all g ∈H�

(c) Suppose Assumption Quant3 holds. Then (i) cv(1 − α) = ch∗(1 − α)�
(ii) κ(α) = ch∗(1 − α) − c0(1 − α)� (iii) κ∗(α) = ch∗(1 − α) − c∞(1 − α)�
(iv) max{cg(1−α)� c∞(1−α)+κ∗(α)} = cv(1−α) for all g ∈ H� (v) cv(1−α)≤
cg(1 − α)+ κ(α) for all g ∈H such that cg(1 − α) ≥ c0(1 − α) (such as g = h∗),
and likewise with strict inequalities, and (vi) cv(1 − α) > cg(1 − α) + κ(α) for
all g ∈ H such that cg(1 − α) < c0(1 − α) (there is no such g ∈ H if ch(1 − α) is
minimized at h= 0).

2If no such largest value exists, we take some value that is arbitrarily close to the supremum of
the values that satisfy (S3.2).
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COMMENTS: (i) In this comment and the next, we assume Assumption M
holds, so that Theorem 2 holds. Theorem S1(a) shows that the subsampling
and hybrid tests have correct asymptotic size under Assumption Quant1 and
they have critical values less than or equal to that of the SC-FCV test. Theo-
rem S1(b) shows that the FCV and hybrid tests have correct asymptotic size un-
der Assumption Quant2 and they have critical values less than or equal to that
of the SC-Sub test. If Assumption Quant1 (Quant2) holds with a strict inequal-
ity for (g�h) = (h0�h) for some h= (h1�h2) ∈H� where h0 = (0�h2) ∈ H� then
Theorem S1(a)(v) (respectively, (b)(iv)) holds with a strict inequality with g
equal to this value of h�

(ii) Theorem S1(c)(iv) and (v) shows that under Assumption Quant3 the
SC-Hyb and SC-FCV tests are asymptotically equivalent and are always more
powerful than the SC-Sub test at some (g�h) ∈ GH. On the other hand, The-
orem S1(c)(vi) shows that under Assumption Quant3 the SC-Sub test can
be more powerful than the SC-Hyb and SC-FCV tests at some (g�h) ∈ GH
though not if ch(1 − α) is minimized at h= 0.

The results above are relevant when the subsample statistics satisfy Assump-
tion Sub1 (because then their asymptotic distribution typically is the same un-
der the null and the alternative). On the other hand, if Assumption Sub2 holds,
then the subsampling critical values typically diverge to infinity under fixed al-
ternatives (at rate b1/2 	 n1/2 when Tn(θ0) is a t statistic). For brevity, we do
not investigate the relative magnitudes of the critical values of the SC-FCV,
SC-Sub, and SC-Hyb tests for local alternatives when Assumption Sub2 holds.

In Section S8 below, we introduce a SC combined method that has power
at least as good as that of the SC subsampling and hybrid tests, but it reduces
to the SC hybrid test in most examples and, hence, may be of more interest
theoretically than practically.

PROOF OF THEOREM S1: Assumption L guarantees that cv� κ(α)� and
κ∗(α) are well defined. Part (a)(i) follows from the definition of cv in (S2.6)
and Assumption Quant1. Part (a)(ii) holds by definition of κ(α) in (S2.6) and
the fact that ch−cg ≤ 0 for all (g�h) ∈GH by Assumption Quant1 (with equal-
ity for some (g�h) ∈ GH). Part (a)(iii) holds by the definition of κ∗(α) in (S2.6)
for the case where H∗ is empty, because H∗ is empty by Assumption Quant1.
Part (a)(iv) follows from parts (a)(ii) and (a)(iii). Part (a)(v) follows from part
(a)(ii) and the definition of cv in (S2.6).

Next, we prove part (b)(i). Given any g = (g1� g2) = (g1�1� � � � � g1�p� g2) ∈ H�
let g∞ = (g∞

1 � g2) = (g∞
1�1� � � � � g

∞
1�p� g2) ∈ H be such that g∞

1�m = +∞ if g1�m > 0,
g∞

1�m = −∞ if g1�m < 0, and g∞
1�m = +∞ or −∞ (chosen so that g∞ ∈ H) if g1�m =

0 for m = 1� � � � �p� By Assumption Quant2, cg ≤ cg∞ because (g�g∞) ∈ GH�
By Assumption K, cg∞ = c∞ for all g ∈ H� Hence, cv = suph∈H ch = c∞� which
proves part (b)(i).
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We now prove part (b)(ii). By Assumptions Quant2 and K, H∗ is not empty
and suph∈H∗ ch = c∞� In consequence, κ∗(α)= 0 by definition of κ∗(α) in (S2.6).
Part (b)(iii) follows from parts (b)(i) and (b)(ii), and cg ≤ c∞ follows by As-
sumptions Quant2 and K. We now prove part (b)(iv). By part (b)(i), it suf-
fices to show that cg + κ(α) ≥ c∞ for all g ∈ H. By the definition of κ(α)
in (S2.6) and Assumptions Quant2 and K, κ(α) = c∞ − infh2∈H2 c(0�h2)� Hence,
cg + κ(α) = cg + c∞ − infh2∈H2 c(0�h2) ≥ c∞, where the inequality uses Assump-
tion Quant2. This establishes part (b)(iv).

Part (c)(i) holds by Assumption Quant3(ii). Part (c)(ii) holds by definition of
κ(α) in (S2.6) and Assumption Quant3(ii) and (iii). Part (c)(iii) holds by defin-
ition of κ∗(α) in (S2.6) and Assumption Quant3(ii). Part (c)(iv) holds because
max{cg� c∞ + κ∗(α)} = max{cg� ch∗} = ch∗ = cv using parts (c)(i) and (c)(iii).
Parts (c)(v) and (c)(vi) hold because cv = ch∗ by part (c)(i) and cg + κ(α) =
ch∗ + cg − c0 by part (c)(ii). Q.E.D.

S5. CRITICAL VALUE FUNCTIONS

In this section, we use graphs given in Figure S-1 to illustrate the asymptotic
critical value (c.v.) functions of the hybrid, FCV, and subsampling tests for the
case where γ = γ1 ∈ R+� (i.e., no subvectors γ2 or γ3 appear, p = 1� and H =
R+�∞). The argument of the cv functions is g ∈ H� For example, the asymptotic
subsampling c.v. function is cg(1 − α) for g ∈ H� In Figure S-1, the curved line
is the subsampling c.v. function, the horizontal line is the FCV c.v. function
(i.e., the constant c∞(1 − α)), and the hybrid c.v. function is the maximum of
the two.

In Figure S-1(a), the subsampling and hybrid c.v. functions are the same
and the corresponding tests have the desired asymptotic size α� (The latter
holds because c∞(1 − α) is less than or equal to the c.v. function at g for all
g ∈ R+� c0(1 − α) is greater than or equal to the c.v. function at g for all g ∈
R+� and these two conditions are necessary and sufficient for a test to have
asymptotic size α, assuming continuity of Jh(·) by Theorem 1 of AG1.) On the
other hand, in Figure S-1(a), the FCV test has asymptotic size greater than α�
In Figure S-1(b) and (d), the hybrid c.v. function equals the FCV c.v. function;
both of these tests have asymptotic size α� whereas the subsampling test has
asymptotic size greater than α� Figure S-1(a) and (b) illustrate the results of
Lemma 1(i) and (ii), respectively.

Figure S-1(c) illustrates a case where the hybrid test has asymptotic size α�
but both the FCV and subsampling tests have asymptotic size greater than α�
In Figure S-1(a)–(d), Assumption Quant holds, so the hybrid test has correct
asymptotic size, as established in Lemma 1.

Figure S-1(e) and (f) illustrate cases in which the function cg(1 − α) is max-
imized at an interior point g ∈ (0�∞)� In these cases, the hybrid, FCV, and
subsampling tests all have asymptotic size greater than α� Figure S-1(e) and
(f) illustrate the results of Lemma 1(ii) and (i), respectively. In particular, in
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(a) (b)

(c) (d)

FIGURE S-1.—Hybrid, FCV, and subsample critical values as a function of g ∈ H : hybrid =
max{curved line, horizontal line}; FCV = horizontal line; subsample = curved line.

Figure S-1(e), the over-rejection of the subsampling test for g close to zero is
reduced for the hybrid test because its c.v. function is larger.

S6. GRAPHICAL POWER COMPARISONS

Next, we use graphs given in Figure S-2 to illustrate the power comparison
between SC-FCV, SC-Sub, and SC-Hyb tests. Theorem S1 shows that (a) if
cg(1 − α) ≥ ch(1 − α) for all (g�h) ∈ GH� then the SC-Sub, SC-Hyb, Sub, and
Hyb tests are equivalent asymptotically and are more powerful than the SC-
FCV test (see Figure S-2(a)); (b) if cg(1 − α) ≤ ch(1 − α) for all (g�h) ∈ GH�
then the SC-FCV, SC-Hyb, FCV, and Hyb tests are equivalent asymptotically
and are more powerful than the SC-Sub test (see Figure S-2(b)); and (c) if H =
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(e) (f)

FIGURE S-1.—(Continued.)

H1 = R+�∞ and ch(1 − α) is uniquely maximized at h∗ ∈ (0�∞)� then the SC-
FCV and SC-Hyb tests are asymptotically equivalent and are either (i) more
powerful than the SC-Sub test (see Figure S-2(e)) or (ii) more powerful than
the SC-Sub test for some values of (g�h) ∈ GH but less powerful for other
values of (g�h) ∈GH (see Figure S-2(f)).

Figure S-2(c) illustrates the case where cg(1−α) is not monotone but is max-
imized at g = 0� the Hyb and SC-Hyb c.v. functions are the same, the Hyb c.v.
function is lower than both the SC-Sub and SC-FCV c.v. functions, and so the
Hyb test is more powerful than the SC-Sub and SC-FCV tests. Figure S-2(d)
illustrates the case where cg(1−α) is not monotone but is maximized at g = ∞�
the Hyb, SC-Hyb, FCV, and SC-FCV c.v. functions are the same, the Hyb c.v.
function is lower than the SC-Sub c.v. function, and so the Hyb test is more
powerful than the SC-Sub test.

S7. EQUAL-TAILED SIZE-CORRECTED TESTS

This section introduces equal-tailed size-corrected FCV, subsampling, and
hybrid t tests. It also introduces finite-sample adjusted asymptotics for equal-
tailed tests. We suppose that Tn(θ0)= τn(θ̂n − θ0)/σ̂n�

Let cFix(1 − α/2) and cFix(α/2) denote the critical values of the equal-tailed
FCV test before size correction. Equal-tailed (i) SC-FCV, (ii) SC-Sub, and
(iii) SC-Hyb tests are defined by (5.1) of the paper with the critical val-
ues c∗

n�b(1 − α/2) and c∗∗
n�b(α/2) replaced by (i) cFix(1 − α/2) + κET�Fix(α) and

cFix(α/2) − κET�Fix(α)� (ii) cn�b(1 − α/2) + κET(α) and cn�b(α/2) − κET(α), and
(iii) max{cn�b(1 − α/2)� c∞(1 − α/2) + κ∗

ET(α)} and min{cn�b(α/2)� c∞(α/2) −
κ∗

ET(α)}� respectively.
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(a) (b)

(c) (d)

FIGURE S-2.—Critical values as a function of g ∈ H for SC-Sub, SC-FCV, and SC-Hyb tests.
In each panel the lower curve is cg(1 − α) and the lower horizontal is the FCV critical value. (a)
Curve: SC-Sub and SC-Hyb, horizontal: SC-FCV. (b) Horizontal: SC-Hyb and SC-FCV, upper
curve: SC-Sub. (c) Max{Lower Horizontal, Lower Curve}: SC-Hyb and SC-FCV, upper curve:
SC-Sub, upper horizontal: SC-FCV. (d) Horizontal: SC-Hyb and SC-FCV, upper curve: SC-Sub.
(e) Upper horizontal: SC-Hyb and SC-FCV, upper curve: SC-Sub. (f) Upper horizontal: SC-Hyb
and SC-FCV, upper curve: SC-Sub.

By definition, the SC factors κET�Fix(α) (∈ [0�∞)), κET(α) (∈ [0�∞)), and
κ∗

ET(α) (∈ {−∞} ∪ [0�∞)), respectively, are the smallest values that satisfy

sup
h∈H

[
1 − Jh

(
(cFix(1 − α/2)+ κET�Fix(α))−

)
(S7.1)

+ Jh(cFix(α/2)− κET�Fix(α))
] ≤ α�
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(e) (f)

FIGURE S-2.—(Continued.)

sup
(g�h)∈GH

[
1 − Jh

(
(cg(1 − α/2)+ κET(α))−

)
+ Jh(cg(α/2)− κET(α))

] ≤ α�

sup
(g�h)∈GH

[
1 − Jh

(
max{cg(1 − α/2)� c∞(1 − α/2)+ κ∗

ET(α)}−
)

+ Jh
(
min{cg(α/2)� c∞(α/2)− κ∗

ET(α)}
)] ≤ α�

(If no such smallest value exists, we take some value that is arbitrarily close to
the infimum. If no value that satisfies (S7.1) exists, then size correction is not
possible.)

For each test, the condition in (S7.1) guarantees that the “overall” as-
ymptotic size of the test is less than or equal to α� It does not guarantee
that the maximum (asymptotic) rejection probability in each tail is less than
or equal to α/2� If the latter is desired, then one should size-correct the
lower and upper critical values of the equal-tailed test in the same way as
one-sided t tests are size-corrected in the paper. (This can yield the over-
all size of the test to be strictly less than α if the (g�h) vector that max-
imizes the rejection probability is different for the lower and upper critical
values.)

Given SC factors that satisfy (S7.1), the equal-tailed SC-FCV, SC-Sub, and
SC-Hyb t tests have AsySz(θ0) ≤ α under Assumptions A–E, G, and J by the
proofs of Corollary 2 of AG1 and Corollary 1 of the paper. (Only Assumptions
A and B are needed for the SC-FCV tests.) Under continuity conditions on
Jh(x) at suitable (h�x) such that the inequalities in (S7.1) hold as equalities,
these tests have AsySz(θ0)= α�
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An alternative way to size-correct equal-tailed tests is the following method.
This method has the advantage that if it is possible to produce an equal-tailed
size-corrected test, then the procedure does so. Its disadvantage is that it is
somewhat more complicated to implement.

First, let κET�Fix�1(α) ∈ [0�∞)� κET�1(α) ∈ [0�∞), and κ∗
ET�1(α) ∈ {−∞} ∪

[0�∞) denote the smallest values such that

sup
h∈H

[
1 − Jh

(
(cFix(1 − α/2)+ κET�Fix�1(α))−

)] ≤ α/2�(S7.2)

sup
(g�h)∈GH

(
1 − Jh

(
(cg(1 − α/2)+ κET�1(α))−

)) ≤ α/2�

sup
(g�h)∈GH

(
1 − Jh

(
max{cg(1 − α/2)� c∞(1 − α/2)+ κ∗

ET�1(α)}−
)) ≤ α/2�

Next, let κET�Fix�2(α) ∈ R� κET�2(α) ∈ R, and κ∗
ET�2(α) ∈ {−∞} ∪ R denote the

smallest values such that

sup
h∈H

[
1 − Jh

(
(cFix(1 − α/2)+ κET�Fix�1(α))−

)
(S7.3)

+ Jh(cFix(α/2)− κET�Fix�2(α))
] ≤ α�

sup
(g�h)∈GH

[
1 − Jh

(
(cg(1 − α/2)+ κET�1(α))−

)
+ Jh(cg(α/2)− κET�2(α))

] ≤ α�

sup
(g�h)∈GH

[
1 − Jh

(
max{cg(1 − α/2)� c∞(1 − α/2)+ κ∗

ET�1(α)}−
)

+ Jh
(
min{cg(α/2)� c∞(α/2)− κ∗

ET�2(α)}
)] ≤ α�

The “alternative” SC equal-tailed FCV test rejects H0 if Tn(θ0) > cFix(1 −
α/2)+κET�Fix�1(α) or Tn(θ0) < cFix(α/2)−κET�Fix�2(α)� The alternative SC equal-
tailed Sub and Hyb tests are defined analogously. We use alternative SC equal-
tailed tests in the parameter of interest near a boundary example in Andrews
and Guggenberger (2010). For all of the other examples, we use the SC equal-
tailed tests defined in (S7.1).

If a parameter γ2 appears in γ and γ2 is consistently estimable, then PSC
tests are more powerful asymptotically than SC tests (because they lead to
smaller critical values under some distributions but still have the correct as-
ymptotic size). Equal-tailed (i) PSC-FCV, (ii) PSC-Sub, and (iii) PSC-Hyb
tests are defined as the SC versions are defined above, but with κET�Fix(α),
κET(α), and κ∗

ET(α) replaced by κET�Fix�γ̂n�2(α), κET�γ̂n�2(α), and κ∗
ET�γ̂n�2

(α), re-
spectively. Here, the PSC factors κET�Fix�h2(α) (∈ [0�∞)), κET�h2(α) (∈ [0�∞)),
and κ∗

ET�h2
(α) (∈ {−∞} ∪ [0�∞)) are defined to be the smallest values that
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satisfy

sup
h1∈H1

[
1 − J(h1�h2)

((
cFix(1 − α/2)+ κET�Fix�h2(α)

)−)
(S7.4)

+ J(h1�h2)

(
cFix(α/2)− κET�Fix�h2(α)

)] ≤ α�

sup
g1�h1∈H1 : ((g1�h2)�(h1�h2))∈GH

[
1 − J(h1�h2)

((
c(g1�h2)(1 − α/2)+ κET�h2(α)

)−)
+ J(h1�h2)

(
c(g1�h2)(α/2)− κET�h2(α)

)] ≤ α�

sup
g1�h1∈H1 : ((g1�h2)�(h1�h2))∈GH

[
1

− J(h1�h2)

(
max

{
c(g1�h2)(1 − α/2)� c∞(1 − α/2)+ κ∗

ET�h2
(α)

}−)
+ J(h1�h2)

(
min

{
c(g1�h2)(α/2)� c∞(α/2)− κ∗

ET�h2
(α)

})] ≤ α�

The (i) PSC-FCV, (ii) PSC-Sub, and (iii) PSC-Hyb equal-tailed tests all have
AsySz(θ0) ≤ α under Assumptions N plus (i) Assumptions A and B, (ii) As-
sumptions A–E, G, and J, and (iii) Assumptions A–E, G, J, and K, respectively.
(The proof is analogous to the proof of Theorem 3 combined with the proof
of Theorem 2.) These tests have AsySz(θ0) = α provided the inequalities in
(S7.4) hold as equalities.

The finite-sample adjustments introduced in Section 4 of the paper do not
cover equal-tailed tests. For equal-tailed subsampling tests, we define the fol-
lowing finite-sample adjustment to AsySz(θ0):

AsySzn(θ0)= sup
h∈H

[
1 − Jh

(
c(δrnh1�h2)(1 − α/2)−) + Jh

(
c(δrnh1�h2)(α/2)

)]
�(S7.5)

Define Maxr−ET�Sub(α) as MaxET�Hyb(α) is defined in (5.2) of the paper with
c∗
g(1 − α/2) and c∗∗

g (α/2) replaced by cg(1 − α/2) and cg(α/2)−� respectively,
where “−” indicates the limit from the left. Define Max�−ET�Sub(α) analogously
with c∗

g(1 − α/2) and c∗∗
g (α/2) replaced by cg(1 − α/2)− and cg(α/2)� With

the function that appears in Assumption P(i) altered to (g�h) → Jh(cg(1 −
α/2)−) − Jh(cg(α/2)) and with Maxr−ET�Sub(α) = Max�−ET�Sub(α) in place of As-
sumption P(ii), the result of Theorem 4(a) (viz., AsySzn(θ0) → AsySz(θ0))
holds for equal-tailed subsampling tests. An analogous result holds for equal-
tailed hybrid tests.

Based on (S7.5), we introduce finite-sample adjustments that can improve
the asymptotic approximations upon which the equal-tailed SC and PSC sub-
sampling and hybrid tests rely. Equal-tailed ASC and APSC subsampling and
hybrid tests are defined just as SC and PSC subsampling and hybrid tests are
defined, but using κET(δn�α)� κ∗

ET(δn�α)� κET�γ̂n�2(δn�α)� and κ∗
ET�γ̂n�2

(δn�α)

in place of κET(α) and κ∗
ET(α)� The ASC factors κET(δ�α) (∈ [0�∞)) and
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κ∗
ET(δ�α) (∈ {−∞} ∪ [0�∞)) are defined to be the smallest values that satisfy

sup
(h1�h2)∈H

[
1 − J(h1�h2)

((
c(δrh1�h2)(1 − α/2)+ κET(δ�α)

)−)
(S7.6)

+ J(h1�h2)

(
c(δrh1�h2)(α/2)− κET(δ�α)

)] ≤ α�

sup
(h1�h2)∈H

[
1

− J(h1�h2)

(
max

{
c(δrh1�h2)(1 − α/2)� c∞(1 − α/2)+ κ∗

ET(δ�α)
}−)

+ J(h1�h2)

(
min

{
c(δrh1�h2)(α/2)� c∞(α/2)− κ∗

ET(δ�α)
})] ≤ α�

The APSC factors κET�h2(δ�α) (∈ [0�∞)) and κ∗
ET�h2

(δ�α) (∈ {−∞}∪[0�∞))
are defined to be the smallest values that satisfy

sup
h1∈H1

[
1 − J(h1�h2)

((
c(δrh1�h2)(1 − α/2)+ κET�h2(δ�α)

)−)
(S7.7)

+ J(h1�h2)

(
c(δrh1�h2)(α/2)− κET�h2(δ�α)

)] ≤ α�

sup
h1∈H1

[
1

− J(h1�h2)

(
max

{
c(δrh1�h2)(1 − α/2)� c∞(1 − α/2)+ κ∗

ET�h2
(δ�α)

}−)
+ J(h1�h2)

(
min

{
c(δrh1�h2)(α/2)� c∞(α/2)− κ∗

ET�h2
(δ�α)

})] ≤ α�

The ASC and APSC tests have AsySz(θ0)= α under conditions that are sim-
ilar to those given in Section 4 of the paper. For brevity, we do not give details.

S8. SIZE-CORRECTED COMBINED TEST

Theorem S1(c)(iv)–(vi) and Figure S-2(f) show that in some contexts the
SC-Hyb test can be more powerful than the SC-Sub test for some (g�h) ∈ GH
and vice versa for other (g�h) ∈ GH� This implies that a test that combines the
SC-Hyb and SC-Sub tests can be more powerful than both. In this section, we
introduce such a test. It is called the size-corrected combined (SC-Com) test.
This test has power advantages over the SC-Hyb and SC-Sub tests in some
cases. This is illustrated in Figure S-2(f) where the critical-value function of
the SC-Com test is the minimum of the upper horizontal SC-Hyb critical-value
function and the upper curved SC-Sub critical-value function. On the other
hand, the SC-Com test has computational disadvantages because it requires
computation of the critical values for both the SC-Sub and SC-Hyb tests, which
requires calculation of κ(α) and κ∗(α) in cases where both the subsampling
and hybrid tests need size correction. Furthermore, in most contexts, the SC-
Hyb test is more powerful than the SC-Sub for all (g�h) ∈GH� so the SC-Com
test just reduces to the SC-Hyb test.
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The size-corrected combined (SC-Com) test rejects H0 :θ = θ0 when

Tn(θ0) > cn�Com(1 − α)� where(S8.1)

cn�Com(1 − α)

= min
{
cn�b(1 − α)+ κ(α)�max{cn�b(1 − α)� c∞(1 − α)+ κ∗(α)}}�

where the constants κ(α) and κ∗(α) are defined in (3.2) of the paper.
The following result shows that the SC-Com test has AsySz(θ0)= α.

THEOREM S2: Suppose Assumptions A–G and K–M hold. Then the SC-Com
test satisfies AsySz(θ0)= α.

COMMENTS: (i) By definition, the critical value, cn�Com(1 − α)� of the SC-
Com test is less than or equal to those of the SC-Sub and SC-Hyb tests. By
(3.2) of the paper, it is less than or equal to that of the SC-FCV test as well.
Hence, the SC-Com test is at least as powerful as the SC-Sub, SC-Hyb, and
SC-FCV tests.

(ii) A PSC-Com test can be defined as in (S8.1) with κ(α) and κ∗(α) re-
placed by κγ̂n�2(α) and κ∗

γ̂n�2
(α)�

(iii) An ASC-Com test can be defined as in (S8.1) with κ(α) and κ∗(α) re-
placed by κ(δn�α) and κ∗(δn�α)� respectively. Suppose Assumptions A–G, K–
M, and Q hold. Then the ASC-Com test satisfies AsySz(θ0) = α� This holds
by the argument in the proof of Theorem 4(b) (see above) using the results of
Theorem 4(b)(i).

(iv) An APSC-Com test can be defined as in (S8.1) with κ(α) and κ∗(α) re-
placed by κγ̂2�n(δn�α) and κ∗

γ̂2�n
(δn�α)� respectively. Suppose Assumptions A–

G, K, L, N, O, R, and Q hold. Then the APSC-Com test satisfies AsySz(θ0)= α�
This holds by the argument in the proof of Theorem 4(c) (see above) using the
results of Theorem 4(c)(i).

PROOF OF THEOREM S2: By the same argument as in the proof of Theo-
rem 1(ii) of AG1, the SC-Com test satisfies

AsySz(θ0) ≤ sup
(g�h)∈GH

[
1 − Jh

(
min

{
cg(1 − α)+ κ(α)�(S8.2)

max{cg(1 − α)� c∞(1 − α)+ κ∗(α)}}−)]
�

By the proof of Theorem 2, the constants κ(α) and κ∗(α) defined in (3.2) of
the paper are such that (S2.7) above holds and hence for all (g�h) ∈ GH�

1 − Jh(cg(1 − α)+ κ(α)−)≤ α�(S8.3)

1 − Jh
(
max{cg(1 − α)� c∞(1 − α)+ κ∗(α)}−) ≤ α�
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Equations (S8.2) and (S8.3) combine to give AsySz(θ0)≤ α.
The SC-Com test has AsySz(θ0)≥ α because its AsySz(θ0) is greater than or

equal to that of the SC-Sub test (because its critical value is no larger) and the
latter equals α by Theorem 2. Q.E.D.

S9. TESTING WHEN A NUISANCE PARAMETER MAY BE NEAR A BOUNDARY

This example is a continuation of an example in AG1. It is a testing prob-
lem where a nuisance parameter may be near the boundary of the parameter
space under the null hypothesis. The observations are {Xi ∈ R2 : i ≤ n}� which
are i.i.d. with distribution F� Xi = (Xi1�Xi2)

′� EFXi = (θ�μ)′� and (Xi1�Xi2)
have correlation ρ� The null hypothesis is H0 :θ = 0� that is, θ0 = 0� The para-
meter space for the nuisance parameter μ is [0�∞)� The test statistic Tn(θ0)
equals T ∗

n (θ0)� −T ∗
n (θ0)� or |T ∗

n (θ0)|� where T ∗
n (θ0) is a t statistic based on the

Gaussian quasi-maximum likelihood estimator of θ that imposes the restriction
that μ ∈ [0�∞) and uses any consistent estimators of the standard deviations
and correlation of Xi1 and Xi2 in the quasi-likelihood; see AG1 for details. In
AG1, Assumptions A–G are verified.

Table S-I reports maximum (over h1 = limn→∞ n1/2μn�h/σn�h�2) null rejection
probabilities (as percentages) for several fixed values of h2 (= limn→∞ ρn�h) for
hybrid and several other nominal 5% tests.3 Depending on the column, the
probabilities are asymptotic or finite sample. The finite sample results are for
the case of n = 120 and b= 12 with σ̂n1� σ̂n2� and ρ̂n being the sample standard
deviations and correlation of Xi1 and Xi2� To dramatically increase computa-
tional speed, here and in all of the tables below, finite-sample subsampling and
hybrid results are based on qn = 119 subsamples of consecutive observations.4
Hence, only a small fraction of the “120 choose 12” available subsamples are
used. In cases where subsampling and hybrid tests have correct asymptotic size,
their finite-sample performance is expected to be better when all available sub-
samples are used than when only qn = 119 are used. This should be taken into
account when assessing the results of the tables. Panels (a), (b), and (c) of Ta-
ble S-I give results for upper one-sided, symmetric two-sided, and equal-tailed

3The finite-sample results in Table S-I are based on 20,000 simulation repetitions. The asymp-
totic results are based on 50,000 simulation repetitions. For the asymptotic results, the search
over h1 is done with step size �05 on [0�10] and also includes the value h1 = 9,999,999,999� For
the finite-sample results, the search over h1 is done with step size �001 on [0� �5]� with step size
�05 on [�5�1�0]� and with step size 1�0 on [1�0�10]� Calculations indicate that these step sizes are
sufficiently small to yield accuracy to within ±�1�

4This includes 10 wrap-around subsamples that contain observations at the end and beginning
of the sample, for example, observations indexed by (110� � � � �120�1)� The choice of qn = 119
subsamples is made because this reduces rounding errors when qn is small when computing the
sample quantiles of the subsample statistics. The values να that solve να/(qn + 1) = α for α =
�025� �95, and �975 are the integers 3� 114� and 117� In consequence, the �025� �95� and �975
sample quantiles are given by the 3rd, 114th, and 117th largest subsample statistics. See Hall
(1992, p. 307) for a discussion of this choice in the context of the bootstrap.
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TABLE S-I

NUISANCE PARAMETER NEAR A BOUNDARY EXAMPLE: MAXIMUM (OVER h1) NULL
REJECTION PROBABILITIES (×100) FOR DIFFERENT VALUES OF THE CORRELATION h2

FOR VARIOUS NOMINAL 5% TESTS FOR n = 120 AND b = 12, WHERE THE PROBABILITIES
ARE ASYMPTOTIC, FINITE-SAMPLE ADJUSTED ASYMPTOTIC, AND EXACT

Tests and Probabilities

Sub PSC-Sub APSC-Sub FCV PSC-FCV Hyb

h2 Asy Adj-Asy Exact Exact Exact Asy Exact Exact Asy Adj-Asy Exact

(a) Upper One-Sided Tests
−1�0 50�2 49�5 49�8 4.9 13�5 5.0 5.2 5.1 5.0 5.0 5.2
−�95 33�8 22�9 25�6 5.1 9�0 5.0 5.2 5.1 5.0 5.0 5.2
−�80 20�2 12�1 13�1 3.1 6�2 5.0 5.1 4.9 5.0 5.0 4.7
−�40 8�3 6�5 5�9 4.8 4�6 5.0 4.9 4.8 5.0 5.0 3.7

.00 5�0 5�0 5�0 4.9 4�9 5.0 5.2 5.0 5.0 5.0 3.7

.20 5�0 5�0 4�9 5.2 4�9 5.6 5.7 5.2 5.0 5.0 3.8

.40 5�0 5�0 5�0 5.0 5�0 5.8 5.8 5.0 5.0 5.0 3.8

.60 5�0 5�0 5�3 5.3 5�3 5.6 5.7 5.1 5.0 5.0 3.9

.90 5�0 5�0 4�9 4.9 4�9 5.0 5.0 4.9 5.0 5.0 3.4
1.00 5�0 5�0 4�8 4.9 4�8 5.0 5.0 4.9 5.0 5.0 3.5

Max 50�2 49�5 49�8 5.3 13�5 5.8 5.8 5.2 5.0 5.0 5.2

(b) Symmetric Two-Sided Tests
.00 5�0 5�0 5�2 5.1 5�1 5.0 5.4 — 5.0 5.0 3.5
.20 5�2 5�2 5�2 4.9 5�0 5.0 5.3 — 5.0 5.0 3.5
.40 6�0 5�6 5�4 4.5 4�8 5.0 5.2 — 5.0 5.0 3.5
.60 7�5 6�5 6�0 4.0 4�6 5.0 5.3 — 5.0 5.0 3.7
.80 9�6 8�3 6�9 3.7 4�5 5.0 5.2 — 5.0 5.0 3.9
.95 10�1 10�0 8�3 4.2 4�2 5.0 5.7 — 5.0 5.0 4.5

1.00 10�1 10�1 8�4 4.1 4�1 5.0 5.1 — 5.0 5.0 4.2

Max 10�1 10�1 8�4 5.1 5�1 5.0 5.7 — 5.0 5.0 4.5

(c) Equal-Tailed Two-Sided Tests
.00 5�0 5�0 5�7 5.5 5�5 5.0 5.4 — 5.0 5.0 3.5
.20 5�4 5�2 5�9 5.4 5�6 5.0 5.3 — 5.0 5.0 3.6
.40 6�7 5�8 6�2 4.5 5�4 5.0 5.2 — 5.0 5.0 3.4
.60 9�9 7�0 7�8 3.9 5�7 5.0 5.3 — 5.0 5.0 3.8
.80 17�3 10�3 12�4 3.2 6�5 5.0 5.2 — 5.0 5.0 4.1
.95 32�4 21�0 24�3 3.5 9�1 5.0 5.7 — 5.0 5.0 4.7

1.00 52�7 51�8 52�7 4.6 13�5 5.0 5.1 — 5.0 5.0 4.2

Max 52�7 51�8 52�7 5.5 13�5 5.0 5.7 — 5.0 5.0 4.7

two-sided tests, respectively. The results for lower one-sided tests are the same
as for the upper tests with the sign of h2 changed (by symmetry) and, hence,
are not given. The rows labeled Max give the size (asymptotic or n = 120) of
the test considered. For brevity, we refer below to the numbers given in the
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tables as though they are precise, but of course they are subject to simulation
error.

S9.1. FCV, Subsampling, and Hybrid Tests

Column 2 of Table S-I shows that subsampling tests have very large as-
ymptotic size distortions for upper one-sided and equal-tailed two-sided tests
(nominal 5% tests have asymptotic levels 50.2% and 52.7%, respectively), and
moderate size distortions for symmetric two-sided tests (the nominal 5% test
has asymptotic level 10.1%). Also, column 7 of Table S-I shows that the FCV
tests have very small asymptotic size distortions for upper one-sided tests (the
nominal 5% test has asymptotic level 5.8%), and no size distortions for sym-
metric and equal-tailed two-sided tests.

Column 10 of Table S-I shows that the nominal 5% hybrid test has asymptotic
size of 5% for upper, symmetric, and equal-tailed tests. So, the hybrid test has
correct asymptotic size for all three types of tests in this example.

Finite-sample results for the Sub, FCV, and Hyb tests are given in columns 4,
8, and 12 of Table S-I, respectively. For Hyb tests, the asymptotic approxima-
tions are fairly accurate, but tend to overestimate the finite-sample rejection
rates somewhat for some values of h2: finite-sample values vary between 3.4%
and 5.2% compared to the asymptotic values of 5�0%� For FCV tests, the as-
ymptotic approximations are found to be very accurate for upper tests and
quite accurate for symmetric and equal-tailed tests.

The asymptotic approximations for the Sub test are found to be quite good
for h2 values where the (maximum) asymptotic probabilities equal 5.0%, but
for h2 values where they exceed 5�0%� they tend to overestimate the finite-
sample values—sometimes significantly so (e.g., 33.8% versus 25.6% for h2 =
−�95 with upper Sub tests). Nevertheless, in the worst case scenarios (i.e., for
h2 values of 1�0 or −1�0� which yield the greatest asymptotic rejection prob-
abilities), the asymptotic approximations are quite good. Hence, the asymp-
totic sizes and finite-sample sizes are close—50.2% versus 49.8%, 10.1% ver-
sus 8.4%, and 52.7% versus 52.7% for upper, symmetric, and equal-tailed tests,
respectively.

The results in Table S-I for the columns headed Adj-Asy, PSC-Sub, APSC-
Sub are discussed below.

S9.2. Plug-In Tests

The upper, symmetric, and equal-tailed subsampling tests and the upper
FCV test need size correction in this example. Plug-in size correction is possi-
ble because estimation of the correlation parameter ρ is straightforward using
the usual sample correlation estimator. Columns 5 and 9 of Table S-I provide
the finite-sample (maximum) rejection probabilities of the nominal 5% PSC-
Sub and PSC-FCV tests. Results for the symmetric and equal-tailed PSC-FCV
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tests are not given because the PSC-FCV and FCV tests are the same in these
cases since the FCV test has correct asymptotic size. Results for the PSC-Hyb
test are not given because it is the same as the Hyb test.

The results for the PSC-Sub tests are impressive. The finite-sample sizes of
the upper, symmetric, and equal-tailed tests are 5.3%, 5.1%, and 5.5%, respec-
tively, whereas the finite-sample sizes of the Sub tests are 49.8%, 8.4%, and
52.7%. The plug-in feature of the size-correction method yields (maximum)
rejection probabilities across different h2 values that are all reasonably close to
5.0%—ranging from 3.1% to 5.5%, with most being between 4.5% and 5.5%.
Having these values all close to 5% is desirable from a power perspective.

The upper FCV test only requires minor size correction given that its asymp-
totic and finite-sample size is 5�8%� The PSC-FCV test provides improvement.
Its finite-sample size is 5�2%�

S9.3. Finite-Sample Adjusted Tests

Column 3 of Table S-I gives the finite-sample adjusted-asymptotic rejection
probabilities (×100) of the subsampling test. These values are noticeably closer
to the finite-sample values given in column 4 than are the (unadjusted) as-
ymptotic rejection probabilities given in column 2. For example, for the up-
per subsampling test and h2 = −�95� the values for Adj-Asy, n = 120, and
Asy are 22.9%, 25.6%, and 33.8%, respectively. Hence, the adjustment works
pretty well for the subsampling test here. For the hybrid test, the adjusted-
asymptotic and unadjusted-asymptotic rejection rates are all 5.0%, so the ad-
justment makes no difference for the hybrid test in this example.

Column 6 of Table S-I reports the finite-sample rejection probabilities of the
APSC-Sub test. For upper and equal-tailed tests, the adjustment leads to over-
correction of the Sub test when the finite-sample correlation, denoted here
by h2� is close to −1 and 1� respectively, and appropriate size correction for
other values of h2� In consequence, for these cases the PSC-Sub test (see col-
umn 5) has better finite-sample size (viz., 5.3% and 5�5%) than the APSC-Sub
test (13.5% and 13.5%). For symmetric tests, both of these size-corrected tests
perform well.

In conclusion, in this example, the hybrid and PSC-Sub tests perform quite
well in terms of finite-sample size for upper, symmetric, and equal-tailed tests.
The APSC-Sub test performs well for the symmetric test, but not so well for
upper and equal-tailed tests.

S10. AUTOREGRESSION EXAMPLE

This section provides results for the conditionally heteroskedastic autore-
gression example.
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S10.1. Upper and Lower One-Sided CIs

First, we discuss Table S-II, which is analogous to Table II of the paper but
provides results for upper and lower one-sided CIs rather than symmetric and
equal-tailed two-sided CIs. (See the footnote to Table II of the paper and Sec-
tion S1 above for details concerning the construction of Table II, which also
apply to Table S-II.)

Due to the asymmetry of the asymptotic distribution J∗
h of the test statistic

T ∗
n (θ0)� the results for upper and lower one-sided CIs are quite different. Ta-

ble S-II shows that upper one-sided FCV CIs have correct asymptotic size (up
to simulation error). The same is true of upper one-sided hybrid CIs. Upper

TABLE S-II

AR EXAMPLE: CI COVERAGE PROBABILITIES (×100) FOR NOMINAL 95% CIS

Data
Generating

Process
n= 131
or Asy

Upper CIs Lower CIs

Case FCV Sub Hyb FCV Sub Hyb

(i) GARCH −�90 90.0 93.9 94.4 95.0 94.1 96.1
MA = �15, −�50 92.8 92.7 94.7 92.6 92.6 94.4
AR = �80 .00 93.8 89.9 94.5 91.8 95.1 95.6
h27 = �86 ρ = �70 95.9 83.6 95.9 88.4 97.7 97.7

.80 96.7 83.2 96.7 86.7 97.8 97.8

.90 97.7 83.9 97.7 84.0 97.9 97.9

.97 98.9 89.2 98.9 74.7 97.5 97.5
1.0 99.6 95.5 99.6 53.6 95.1 95.1

FS-Min 90.0 83.2 93.9 53.6 92.4 94.4
Asy 95.0 57.3 95.0 63.9 95.0 95.0

Adj-Asy — 82.6 95.3 — 95.0 95.2

(ii) IGARCH FS-Min 90.7 82.2 93.9 56.2 92.4 94.6
MA = �20,
AR = �80

(iii) GARCH FS-Min 90.4 86.2 94.1 60.6 92.9 95.0
MA=.70, Asy 95.0 77.2 95.0 79.2 95.0 95.0
AR=.20 Adj-Asy — 88.7 95.3 — 94.8 95.1
h27 = �54

(iv) i.i.d. FS-Min 90.5 82.8 94.0 50.4 92.7 94.3
h27 = 1 Asy 95.2 47.4 95.0 53.4 95.0 95.0

Adj-Asy — 78.8 95.0 — 95.1 95.0

(v) ARCH4 FS-Min 90.5 84.4 93.9 58.8 92.8 94.8
(�3� �2� �2� �2) Asy 95.0 77.2 95.0 79.2 95.0 95.0
h27 = �54 Adj-Asy — 88.7 95.3 — 94.8 95.1

(vi) IARCH4 FS-Min 90.5 84.0 93.9 60.8 92.4 94.7
(�3� �3� �2� �2)

Min over Asy 94.8 47.5 94.8 54.5 94.9 94.9
h27 ∈ [0�1] Adj-Asy — 78.8 95.1 — 94.8 95.0
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one-sided subsampling CIs, however, exhibit substantial asymptotic size distor-
tion. The Adj-Asy size distortion of the subsampling CIs is noticeably smaller
than the asymptotic size distortion and gives a better approximation to the
finite-sample size distortion for sample size n= 131� The reason for the results
just described for the upper one-sided FCV, hybrid, and subsampling CIs is
that the upper tail of the asymptotic distribution J∗

h gets thinner as h1 goes to
zero. In consequence, the 1 − α quantile of J∗

h is increasing in h1� which leads
to size distortion for the subsampling CI but not the FCV CI.

For lower one-sided CIs, the opposite is true. The lower tail of J∗
h gets thicker

as h1 goes to zero. In consequence, the lower one-sided FCV exhibits substan-
tial asymptotic size distortion, whereas the subsampling and hybrid CIs have
correct asymptotic size.

S10.2. Verification of Assumptions for CI for an Autoregressive Parameter

In this section, we verify the assumptions of Corollary 2 of the paper, namely
Assumptions A–G, J, K–M, T, and TET, for the AR(1) example. We use
Lemma 4 of AG1 to verify Assumption G. Lemma 4 of AG1 requires verifica-
tion of Assumptions t1, Sub1, A, BB, C, DD, EE, and HH. Note that the latter
assumptions imply Assumptions B and D. Corollary 2 of the paper establishes
the desired results for the hybrid test. For the FCV and subsampling tests, the
desired results hold under the same conditions by Corollary 1 in Appendix A2
of Andrews and Guggenberger (2009).

Assumptions BB(a) and (c) are verified by Proposition S1, stated below, that
is proved in Andrews and Guggenberger (2008), hereafter AG-AR. Assump-
tions t1, Sub1, A, C, DD, F, J, T, M, TET, K, L, and BB(b) are verified in the
next sub-section. Verifications of Assumptions E and EE are given in Sections
S10.2.4 and S10.2.5 below for Model 1. For brevity, we do not verify these as-
sumptions for Model 2. Finally, Assumption HH is verified in Section S10.2.6.

S10.2.1. Verification of Assumptions t1, Sub1, A, C, DD, F,
J, T, M, TET, K, L, and BB(b)

Assumption t1 holds with τn = n1/2 by definition of T ∗
n (θ0)� Assumptions

Sub1 and A clearly hold. Assumption C holds by the choice of bn� Assump-
tion DD holds when the AR parameter is less than 1 by the assumption of a
strictly stationary initial condition. In the unit root case, it holds by the i.i.d. as-
sumption on the innovations for i = 1� � � � � n and the fact that the test statistic
T ∗
n (θ0) is invariant to the initial condition. Assumption F holds because J∗

h and
−J∗

h are strictly increasing on R for all h ∈ H, and |J∗
h| is strictly increasing on

R+ and has support R+ for all h ∈ H� For the same reason, Assumption J holds
for Jh = J∗

h� Assumption T holds for Jh = J∗
h and Jh = −J∗

h because J∗
h is contin-

uous on R and has support R for all h ∈ H� Assumption T holds for Jh = |J∗
h|

because |J∗
h| is continuous on R+ and has support R+ for all h ∈ H� For the
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same reasons, Assumption M(a)(ii), (b)(ii), and (c)(ii) hold for Jh = J∗
h�−J∗

h�
and |J∗

h|, and Assumption TET holds.
Assumption K holds because J∗

h is N(0�1) for all h = (h1�h2) ∈ H with h1 =
∞�

Assumption L holds by properties of the Ornstein–Uhlenbeck process. Nu-
merical calculations indicate that the supremum and infimum in this assump-
tion are attained at h1 = 0 or h1 = ∞ (depending upon whether the supremum
or infimum is being considered and whether Jh = J∗

h�−J∗
h� or |J∗

h|). This indi-
cates that Assumption M(a)(i) holds. Numerical calculations also indicate that
the supremum in Assumption M(b)(i) is attained at h1 = (0�∞) or (0�0) for
all h2 ∈ H2 depending upon whether Jh = J∗

h�−J∗
h� or |J∗

h|; hence, this assump-
tion holds. Assumption M(c)(i) holds because ch(1 − α) is monotone in h1 for
each h2 ∈ H2 = Γ2 (based on numerical calculations), which implies that either
H∗ is empty or H∗ = {h ∈ H :h1 > 0}, depending on whether Jh = J∗

h�−J∗
h� or

|J∗
h|� When H∗ is nonempty, suph∈H∗ ch(1 − α) is attained at h1 = ∞�
Assumption BB(b) holds because Pγ(σ̂n�bn�j > 0) = 1 for all n�bn ≥ 4� j =

1� � � � � qn� and γ ∈ Γ�

S10.2.2. Normalization Constants

In this subsection, we specify the normalization constants an and dn for
which an(ρ̂n − ρn) and dnσ̂n have nondegenerate asymptotic distributions un-
der {γn�h :n ≥ 1}� These constants appear in Assumptions BB, EE, and HH.
The constants are rather complicated when the innovations exhibit conditional
heteroskedasticity, so we show below how they simplify under conditional ho-
moskedasticity, which should make them easier to interpret.

The normalization constants an and dn depend on γn�h and are denoted
an(γn�h) and dn(γn�h)� They are defined as follows. Let {wn :n ≥ 1} be any sub-
sequence of {n}� Let {γn = (γn�1�γn�2�γn�3) ∈ Γ : n ≥ 1} be a sequence for which
wnγn�1 → ∞ or wnγn�1 → h1 < ∞� Let ρn = 1 − γn�1� Define the 2-vectors

X1 = (Y ∗
n�0/φn�1�φ

−1
n�1)

′�(S10.1)

Z = (
1�−EFn(Y

∗
n�0/φ

2
n�1)/EFn(φ

−2
n�1)

)′
�

Define

awn(γn)=w1/2
n dwn(γn)�(S10.2)

dwn(γn)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

EFn(Y
∗2
n�0/φ

2
n�1)− (EFn(Y

∗
n�0/φ

2
n�1))

2/EFn(φ
−2
n�1)

(Z′EFn(X
1X1′U2

n�1/φ
2
n�1)Z)1/2

�

if wnγn�1 → ∞�

w1/2
n �

if wnγn�1 → h1 <∞�
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To simplify notation in this paragraph, we delete the subscript n in most
expressions below and we omit the subscript Fn on expectations. In the case
where wnγn�1 → ∞ and ρ→ 1� the constants awn and dwn in (S10.2) simplify to

awn =w1/2
n

E(Y ∗2
0 /φ2

1)

(E(Y ∗2
0 U2

1/φ
4
1))

1/2
and dwn = E(Y ∗2

0 /φ2
1)

(E(Y ∗2
0 U2

1/φ
4
1))

1/2
(S10.3)

up to lower order terms. This holds because by Lemma S1 below

Z′E(X1X1′U2
1/φ

2
1)Z = E(Y ∗2

0 U2
1/φ

4
1)(S10.4)

− 2E(Y ∗
0 U

2
1/φ

4
1)E(Y

∗
0 /φ

2
1)/E(φ

−2
1 )

+ (E(Y ∗
0 /φ

2
1))

2E(U2
1/φ

4
1)/(E(φ

−2
1 ))2

= E(Y ∗2
0 U2

1/φ
4
1)(1 +O(1 − ρ))

and

E(Y ∗2
0 /φ2

1)− (E(Y ∗
0 /φ

2
1))

2/E(φ−2
1 )=E(Y ∗2

0 /φ2
1)(1 +O(1 − ρ))�(S10.5)

If, in addition, {Ui : i = � � � �0�1� � � �} are i.i.d. with mean 0, variance σ2
U ∈

(0�∞), and distribution F and φi = 1� then the constants awn and dwn simplify
to

awn =w1/2
n (1 − ρ2

n)
−1/2 and dwn = (1 − ρ2

n)
−1/2�(S10.6)

This follows because in the present case φ2
i = 1� EY ∗2

0 = ∑∞
j=0 ρ

2jEU2
−j = (1 −

ρ2)−1σ2
U� and E(Y ∗2

0 U2
1/φ

2
1)= (1 − ρ2)−1σ4

U�
Given the definitions of an(·) and dn(·)� τn = an(γn�h)/dn(γn�h) = n1/2 does

not depend on γn�h� as is required.

S10.2.3. Preliminary Results From AG-AR

In this subsection, we state the result proved in AG-AR that verifies As-
sumption B of the paper and Assumption BB(a) of AG1. We also state some
other results proved in AG-AR because they are used below when verifying
Assumptions E, EE, and HH.

We start by stating an assumption, Assumption INNOV, that specifies
certain properties for the innovations Ui = Un�i and φ2

i = φ2
n�i� Assump-

tion INNOV automatically holds when one is considering any sequence
{γn�h :n ≥ 1}� This follows from the definition of the parameter space F(γ2)
and the definition of a sequence {γn�h :n ≥ 1}� Hence, when showing below
that a property holds under a sequence {γn�h :n ≥ 1}� it is sufficient to show
that it holds under Assumption INNOV.

ASSUMPTION INNOV: (i) For each n ≥ 1� {(Un�i�φ
2
n�i) : i = � � � �0�1� � � �} are

stationary and strong mixing with E(Un�i|Gn�i−1) = 0 a.s., E(U2
n�i|Gn�i−1) = σ2

n�i
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a.s. where Gn�i is some nondecreasing sequence of σ-fields for i = � � � �1�2� � � �
for n ≥ 1 for which (Un�j�φ

2
n�j+1) ∈ Gn�i for all j ≤ i� (ii) the strong-mixing num-

bers {αn(m) :m ≥ 1} satisfy α(m) = supn≥1 αn(m) = O(m−3ζ/(ζ−3)) as m → ∞
for some ζ > 3� (iv) supn�i�s�t�u�v�A EFn |

∏
a∈A a|ζ < ∞� where 0 ≤ i� s� t�u� v < ∞�

n ≥ 1� and A is any nonempty subset of {Un�i−s�Un�i−t �U
2
n�i+1�Un�−u�Un�−v�U

2
n�1}�

(v) φ2
i ≥ δ > 0 a.s., (vi) λminE(X

1X1′U2
n�1/φ

2
n�1)≥ δ > 0� where X1 = (Y ∗

n�0/φn�1�

φ−1
n�1)

′� and (vii) the following limits exist and are positive: h2�1 = limn→∞ EU2
n�i�

h2�2 = limn→∞ E(U2
n�i/φ

4
n�i)� h2�3 = limn→∞ E(U2

n�i/φ
2
n�i)� h2�4 = limn→∞ Eφ−1

n�i�

h2�5 = limn→∞ Eφ−2
n�i� and h2�6 = limn→∞ Eφ−4

n�i�

Given that φn�i is bounded away from zero by Assumption INNOV(v), As-
sumption INNOV(iv) implies that supn�i�s�t�u�v�A∗ EFn |

∏
a∈A∗ a|ζ <∞� where 0 ≤

i� s� t�u� v < ∞� n ≥ 1� and A∗ is a nonempty subset of {Un�i−s�Un�i−t �U
2
n�i+1/

φ4
n�i+1�Un�−u�Un�−v� U

2
n�1/φ

4
n�1} or a subset of {Un�i−s� Un�i−t �φ

−k
n�i+1�Un�−u�Un�−v�

φ−k
n�1} for k= 2�3�4� The uniform bound on these expectations is needed in the

application of the mixing inequality in (S10.15) used below in the verification
of Assumption E.

Define hn�1 by γn�h�1 = hn�1/n� Then hn�1 → h1 as n → ∞ because nγn�h�1 →
h1� In this example, hn�1 = 0 corresponds to a unit root, that is, ρn = 1−γn�h�1 =
1 − hn�1/n = 1. If hn�1 = 0� then the initial condition Y ∗

n�0 is arbitrary. If hn�1 >
0� then under the assumptions in the paper the initial condition satisfies the
following stationarity condition:

ASSUMPTION STAT: Y ∗
n�0 = ∑∞

j=0 ρ
j
nUn�−j� where ρn = 1 − hn�1/n�

Let W (·) and W2(·) be independent standard Brownian motions on [0�1]
and let Z1 be a standard normal random variable that is independent of W (·)
and W2(·)� By definition,

Ih(r)=
∫ r

0
exp(−(r − s)h1)dW (s)�(S10.7)

I∗
h(r)=

⎧⎨⎩ Ih(r)+ 1√
2h1

exp(−h1r)Z1 for h1 > 0,

W (r) for h1 = 0,

I∗
D�h(r) = I∗

h(r)−
∫ 1

0
I∗
h(s)ds�

Z2 =
(∫ 1

0
I∗
D�h(r)

2 dr

)−1/2 ∫ 1

0
I∗
D�h(r)dW2(r)�

Note that Z2 has a N(0�1) distribution conditional on (Z1�W (·))� Hence, Z2

has an unconditional N(0�1) distribution and is independent of (Z1�W (·))�
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AG-AR proved the following proposition.

PROPOSITION S1: Suppose (i) Assumption INNOV holds, (ii) Assump-
tion STAT holds when ρn < 1� (iii) ρn ∈ [−1 + ε�1] for some 0 < ε < 2� and
(iv) ρn = 1 − hn�1/n and hn�1 → h1 ∈ [0�∞]� Then

an(ρ̂n − ρn)→d Vh� dnσ̂n →d Qh�
an(ρ̂n − ρn)

dnσ̂n

→d Jh�

where an� dn� Vh� Qh� and Jh are defined as follows.
(a) In Model 1, for h1 ∈ [0�∞)� an = n� dn = n1/2� Vh is the distribution of

h2�7

∫ 1

0
I∗
D�h(r)dW (r)

h1/2
2�2h

1/2
2�1

∫ 1

0
I∗
D�h(r)

2 dr

+ (1 − h2
2�7)

1/2

∫ 1

0
I∗
D�h(r)dW2(r)

h1/2
2�2h

1/2
2�1

∫ 1

0
I∗
D�h(r)

2 dr

�(S10.8)

Qh is the distribution of

h−1/2
2�2 h−1/2

2�1

[∫ 1

0
I∗
D�h(r)

2 dr

]−1/2

�(S10.9)

and Jh is the distribution of

h2�7

∫ 1

0
I∗
D�h(r)dW (r)(∫ 1

0
I∗
D�h(r)

2 dr

)1/2 + (1 − h2
2�7)

1/2Z2�(S10.10)

(b) In Model 1, for h1 = ∞� an and dn are defined as in (S10.2) with n in place
of wn� Vh is a N(0�1) distribution, Qh is the distribution of the constant one, and
Jh is a N(0�1) distribution.

In the remainder of this subsection, we state several other results that are
proved in AG-AR and are used below when verifying Assumptions E, EE, and
HH. In the proof of Proposition S1 for the case n(1−ρ)→ ∞� AG-AR showed
the following results. If ρ→ 1�

n−1/2X ′
1PX2U

(E(Y ∗2
0 U2

1/φ
4
1))

1/2
→p 0 and

n∑
i=1

ζi →d N(0�1)� where(S10.11)

ζi = n−1/2 Y ∗
i−1Ui/φ

2
i

(E(Y ∗2
0 U2

1/φ
4
1))

1/2
�
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Furthermore,

n−1X ′
1X1

E(Y ∗2
0 /φ2

1)
→p 1�

n−1X ′
1PX2X1

E(Y ∗2
0 /φ2

1)
→p 0�(S10.12)

n−1X ′
1MX2�

2MX2X1

E(Y ∗2
0 U2

1/φ
4
1)

→p 1�

If ρ→ ρ∗ < 1� we have

n−1X ′
1MX2X1

E(Y ∗2
0 /φ2

1)− (E(Y ∗
0 /φ

2
1))

2/E(φ−2
1 )

→p 1�(S10.13)

AG-AR proved the following lemma which is helpful in determining the or-
der of the normalization sequences an(γn�h) and dn(γn�h) in the case where
h= ∞.

LEMMA S1: Suppose n(1 − ρ) → ∞� ρ → 1� and Assumptions INNOV and
STAT hold. Then we have

E(Y ∗2
0 U2

1/φ
4
1)− (1 − ρ2)−1(EU2

1 )
2/φ4

1 =O(1)�

E(Y ∗2
0 /φ2

1)− (1 − ρ2)−1EU2
1Eφ

−2
1 =O(1)�

E(Y ∗
0 /φ

2
1)= O(1)�

E(Y ∗
0 U

2
1/φ

4
1)=O(1)�

A more detailed version of the following lemma is proven in AG-AR as well.

LEMMA S2: Suppose Assumptions INNOV and STAT hold, and ρn ∈ (−1�1]�
ρn = 1−hn�1/n, where hn�1 → h1 ∈ (0�∞). Then the following results hold jointly:

(a) n−1
∑n

i=1 φ
−j
n�i →p limn→∞ EFnφ

−j
n�i = h2�(j+3) for j = 1�2�4.

(b) n−1
∑n

i=1 U
2
n�i/φ

4
n�i →p limn→∞ EFn(U

2
n�i/φ

4
n�i)= h2�2.

(c) n−3/2
∑n

i=1 Y
∗
n�i−1/φ

2
n�i =Op(1) and n−3/2

∑n

i=1 Y
∗
n�i−1U

2
n�i/φ

4
n�i = Op(1).

When ρn = 1 − hn�1/n� where hn�1 → h1 <∞� it is shown in AG-AR that

n−2
n∑

i=1

Y ∗2
i−1Û

2
i /φ

4
i = n−2

n∑
i=1

Y ∗2
i−1U

2
i /φ

4
i + op(1)�(S10.14)

n−3/2
n∑

i=1

Y ∗
i−1Û

2
i /φ

4
i = n−3/2

n∑
i=1

Y ∗
i−1U

2
i /φ

4
i + op(1)�

n−1
n∑

i=1

Û2
i /φ

4
i = n−1

n∑
i=1

U2
i /φ

4
i + op(1)�
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where Ûi/φi is the ith residual from the LS regression of Yi/φi on Yi−1/φi and
1/φi.

S10.2.4. Verification of Assumption E

In this section, we verify Assumption E for Model 1. We make repeated
use of the following well-known strong-mixing covariance inequality (see, e.g.,
Doukhan (1994, Theorem 3, p. 9)). Let X and Y be strong-mixing random
variables with respect to sigma algebras F j

i (for integers i ≤ j) such that X ∈
F n

−∞ and Y ∈ F ∞
n+k with strong-mixing numbers {α(k) :k ≥ 1}� For p�q > 0

such that 1 − p−1 − q−1 > 0� let ‖X‖p = (E|X|p)1/p and ‖Y‖q = (E|Y |q)1/q�
Then the following inequality holds:

Cov(X�Y) ≤ 8‖X‖p‖Y‖qα(k)
1−p−1−q−1

�(S10.15)

Below we apply the mixing inequality (S10.15) with p = q = ζ > 3� where ζ
appears in Assumption INNOV. Assumption INNOV(iv) will imply that the
expression ‖X‖p‖Y‖q on the r.h.s. of the inequality is O(1).

For verification of Assumption E, as argued in the next paragraph, it
is enough to show that for all x ∈ R� Un�bn(x) − EγnUn�bn(x) →p 0 under
{γn :n ≥ 1} for all sequences {γn = (1 − ρn�γ

′
n�2�γ

′
n�3)

′ ∈ Γ :n ≥ 1} that satisfy
n(1 − ρn) → h1� b(1 − ρn) → g1� and γn�2 → h2 ∈ Γ2 for (g�h) ∈ GH� where
g = (g1�h2) and h= (h1�h2)�

To show Un�bn(x) − EγnUn�bn(x) →p 0 under an arbitrary sequence {γn ∈
Γ :n ≥ 1} it is enough to show that for any subsequence {tn} there is a sub-
subsequence {sn} such that Usn�bsn

(x)−Eγsn
Usn�bsn

(x) →p 0 under {γsn ∈ Γ :n≥
1}� Given any subsequence {tn}, we can always construct a sub-subsequence {sn}
such that sn(1 − ρsn) → h1� bsn(1 − ρsn) → g1� and γsn�2 → h2 for (g�h) ∈ GH�
Proceeding as in the proof of Lemma 6(iii) in AG1, we can define a sequence
{γ∗

n :n≥ 1} such that n(1 −ρ∗
n)→ h1� b(1 −ρ∗

n)→ g1� γ
∗
n�2 → h2� and γ∗

sn
= γsn�

It follows that Un�bn(x)−EγnUn�bn(x) →p 0 holds under {γ∗
n :n ≥ 1} and there-

fore Usn�bsn
(x)−Eγsn

Usn�bsn
(x) →p 0 holds under {γsn ∈ Γ :n≥ 1}�

For notational simplicity, in the rest of this section we let ρ denote ρn�
It is sufficient to show that for any given x ∈ R� Var(Un�bn(x)) → 0 un-

der all sequences {γn ∈ Γ :n ≥ 1} that satisfy the conditions in the second
paragraph of this subsection. Recall that Tn�b�k(ρ) denotes the studentized
t statistic based on the kth subsample and the full-sample version is de-
fined as T ∗

n (θn) = n1/2(ρ̂− ρn)/σ̂� where ρ̂ = (X ′
1MX2X1)

−1X ′
1MX2Y and σ̂2 =

(n−1X ′
1MX2X1)

−2(n−1X ′
1MX2�

2MX2X1).5 We write Tn�k instead of Tn�b�k(ρ) to
simplify notation. Define

Ib�k = 1{Tn�k ≤ x}�(S10.16)

5Here we deal with the upper one-sided case, so that Tn�b�k(ρ) = T ∗
n�b�k(ρ)� The lower one-sided

and symmetric two-sided cases can be dealt with using the same approach.
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Stationarity of Ib�k in k implies that

Var(Un�bn(x))= q−1
n Var(Ib�0)+ 2q−2

n

qn−1∑
k=1

(qn − k)Cov(Ib�0� Ib�k)�(S10.17)

In this example, qn = n− b+ 1� Thus, it suffices to show n−1
∑n

k=0 |Cov(Ib�0�
Ib�k)| → 0� This is implied by

sup
k≥kn

|Cov(Ib�0� Ib�k)| → 0(S10.18)

as n → ∞ for some sequence kn → ∞ such that kn/n → 0�
By definition Tn�k = b1/2(ρ̂n�b�k − ρ)/σ̂n�b�k� Below we show that for all k ≥ kn

we can write

Tn�k = T̃n�k +ηn�k(S10.19)

for some random variables T̃n�k and ηn�k that are defined such that (i) T̃n�k

and Tn�0 are based on innovations, Ui� that are separated by at least b time
periods and (ii) ηn�k = op(1) uniformly in k≥ kn (by which we mean that ∀ε >
0� supk≥kn

Pr(|ηn�k| > ε) → 0). (Likewise, for an array an�k of real numbers, we
say that an�k is o(1) uniformly in k ≥ kn if supk≥kn

|an�k| → 0 as n → ∞.) Note
that the largest index of any Ui appearing in Tn�0 is i = b�

Using (S10.19), we show below that

sup
k≥kn

|P(T̃n�k ≤ x)− P(Tn�k ≤ x)| → 0�(S10.20)

sup
k≥kn

|P(Tn�0 ≤ x & Tn�k ≤ x)− P(Tn�0 ≤ x & T̃n�k ≤ x)| → 0�

Using these results, we obtain

Cov(Ib�0� Ib�k) = EIb�0Ib�k −EIb�0EIb�k(S10.21)

= P(Tn�0 ≤ x & Tn�k ≤ x)− P(Tn�0 ≤ x)P(Tn�k ≤ x)

= P(Tn�0 ≤ x & T̃n�k ≤ x)− P(Tn�0 ≤ x)P(T̃n�k ≤ x)

+ o(1)

≤ α(b)+ o(1)

= o(1)�

where the third equality holds by (S10.20), the fourth equality holds by
the definition of the α-mixing numbers {αn(m) :m = 1�2� � � �} of {Un�i : i =
� � � �0�1� � � �}� where α(m) = supn≥1 αn(m)� and the fact that T̃n�k and Tn�0 are
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separated by at least b time periods, the last equality holds by the strong-mixing
assumption in the definition of F(γ2)� and the o(1) expression is uniform in
k≥ kn by (S10.20). Therefore (S10.18) holds and the proof is complete except
for the verifications of (S10.19) and (S10.20).

Equation (S10.20) is established as follows. Equation (S10.19) and P(Tn�k ≤
x) → Jh(x) as n → ∞ where Jh is continuous (see Proposition S1) imply that
for all ε > 0 there exist δ > 0 and n0 ∈ N such that for n ≥ n0 we have

sup
k≥kn

P(|T̃n�k − Tn�k|> δ) < ε/2�(S10.22)

P(Tn�k ≤ x+ δ)≤ P(Tn�k ≤ x)+ ε/2�

P(Tn�k ≤ x) ≤ P(Tn�k ≤ x− δ)+ ε/2�

The latter two inequalities hold for all k because Tn�k is identically distributed
across k� These results lead to

sup
k≥kn

|P(T̃n�k ≤ x)− P(Tn�k ≤ x)|(S10.23)

= sup
k≥kn

max
{
P(T̃n�k ≤ x)− P(Tn�k ≤ x)�

− P(T̃n�k ≤ x)+ P(Tn�k ≤ x)
}

≤ sup
k≥kn

max
{
P(T̃n�k ≤ x)− P(Tn�k ≤ x+ δ)�

− P(T̃n�k ≤ x)+ P(Tn�k ≤ x− δ)
} + ε/2

≤ sup
k≥kn

P(|T̃n�k − Tn�k|> δ)+ ε/2 ≤ ε�

which proves the first result in (S10.20). The second result in (S10.20) can be
proved in the same way. For example, the analogue of the third equation in
(S10.22) holds because

P(Tn�0 ≤ x & Tn�k ≤ x)− P(Tn�0 ≤ x & Tn�k ≤ x− δ)(S10.24)

≤ P(x− δ < Tn�k ≤ x) = P(x− δ < Tn�0 ≤ x) < ε/2

for all k� for δ > 0 small enough. This completes the proof of (S10.20).
It remains to establish (S10.19). We consider several cases: (i) b(1 − ρ) →

∞ with two subcases ρ → 1 and ρ → ρ∗ < 1� (ii) b(1 − ρ) → h1 ∈ (0�∞)�
(iii) b(1 − ρ)→ 0 and n(1 − ρ)→ ∞� and (iv) n(1 − ρ)→ h1 ∈ [0�∞)�



36 D. W. K. ANDREWS AND P. GUGGENBERGER

PROOF OF (S10.19)—Case (i). b(1 − ρ) → ∞: By Proposition S1, we know
that for

db = EFn(Y
∗2
0 /φ2

1)− (EFn(Y
∗
0 /φ

2
1))

2/EFn(φ
−2
1 )

(Z′EFn(X
1X1′U2

1/φ
2
1)Z)1/2

= db1

d1/2
b2

and(S10.25)

ab = b1/2db�

we have dbσ̂n�b�k →p 1� Also, by (S10.12) and (S10.13) we have d−1
b1 b

−1X ′
1MX2 ×

X1 →p 1� where here (with abuse of notation) X1 and X2 denote b-vectors
containing data from the kth subsample. This implies that, uniformly in k,

Tn�k = b−1/2d−1/2
b2

b∑
i=1

Y ∗
k+i−1Uk+i/φ

2
k+i −

(
b−1d−1/2

b2

b∑
j=1

Y ∗
k+j−1/φ

2
k+j

)
(S10.26)

×
(
b−1

b∑
j=1

φ−2
k+j

)−1

b−1/2
b∑

i=1

Uk+i/φ
2
k+i + op(1)�

Consider first the subcase where ρ→ 1� In that case, (S10.11) implies further
that, uniformly in k,

Tn�k = b−1/2d−1/2
b2

b∑
i=1

Y ∗
k+i−1Uk+i/φ

2
k+i + op(1)�(S10.27)

Note that

b∑
i=1

Y ∗
k+i−1Uk+i/φ

2
k+i =

b∑
i=1

∞∑
s=0

ρsUk+i−1−sUk+i/φ
2
k+i�(S10.28)

Set

T̃n�k = b−1/2d−1/2
b2

b∑
i=1

k+i−2b−2∑
s=0

ρsUk+i−1−sUk+i/φ
2
k+i(S10.29)

and note that the smallest index of any Ui appearing in T̃n�k is i = 2b − 1� We
are just left with showing that

Tn�k − T̃n�k = b−1/2d−1/2
b2

b∑
i=1

∞∑
s=k+i−2b−1

ρsUk+i−1−sUk+i/φ
2
k+i + op(1)(S10.30)

= op(1)�
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To show (S10.30), note that by Markov’s inequality, we have

P

(∣∣∣∣∣b−1/2d−1/2
b2

b∑
i=1

∞∑
s=k+i−2b−1

ρsUk+i−1−sUk+i/φ
2
k+i

∣∣∣∣∣> ε

)
(S10.31)

≤ ε−2b−1d−1
b2

b∑
i�j=1

∞∑
s=k+i−2b−1
t=k+j−2b−1

ρs+tEUk+i−1−s

× (Uk+i/φ
2
k+i)Uk+j−1−tUk+j/φ

2
k+j

=O(b−1(1 − ρ))

b∑
i=1

∞∑
s�t=k+i−2b−1

ρs+tEUk+i−1−sUk+i−1−tU
2
k+i/φ

4
k+i�

where the equality holds by Lemma S1 and the fact that E(Uk+i−1−s(Uk+i/
φ2

k+i)Uk+j−1−tUk+j/φ
2
k+j) = 0 for i �= j� The contribution of all terms with s = t

is o(1) because

∞∑
s=k+i−2b−1

ρ2s =
∞∑
s=0

ρ2(s+k+i−2b−1) ≤ ρi

∞∑
s=0

ρs = ρi(1 − ρ)−1(S10.32)

and b−1
∑b

i=1 ρ
i = op(1) since b(1 − ρ) → ∞� For the contributions with s > t�

using (S10.15) and Assumption INNOV(iv), the r.h.s. of (S10.31) equals

O(b−1(1 − ρ))

b∑
i=1

∞∑
s>t=k+i−2b−1

ρs+t(s − t)−3−ε(S10.33)

=O(b−1(1 − ρ))

b∑
i=1

ρi

∞∑
s>t=0

ρs+t(s − t)−3−ε

=O(b−1)

b∑
i=1

ρi

= o(1)�

where the first equality holds by the change of variables s → s+k+ i− 2b− 1
and similarly for t, and the last equality uses b(1 − ρ)→ ∞�

Next consider the subcase where ρ→ ρ∗ < 1� In this case, define

T̃n�k = b−1/2d−1/2
b2

b∑
i=1

k+i−2b−2∑
s=0

ρsUk+i−1−sUk+i/φ
2
k+i(S10.34)
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−
(
b−1d−1/2

b2

b∑
j=1

k+j−2b−2∑
s=0

ρsUk+j−1−s/φ
2
k+j

)

×
(
b−1

b∑
j=1

φ−2
k+j

)−1

b−1/2
b∑

i=1

Uk+i/φ
2
k+i�

Note that (b−1
∑b

j=1 φ
−2
k+j)

−1� b−1/2
∑b

i=1 Uk+i/φ
2
k+i� and d−1/2

b2 are all Op(1)�
(The first quantity is Op(1) by Lemma S2(a) and h2�5 ≥ ε2 > 0� the sec-
ond quantity is Op(1) by a CLT, and the third quantity is Op(1) by Assump-
tion INNOV(iv).) Therefore, it is enough to show that

b−1/2
b∑

i=1

∞∑
s=k+i−2b−1

ρsUk+i−1−sUk+i/φ
2
k+i = op(1)�(S10.35)

b−1
b∑

i=1

∞∑
s=k+i−2b−1

ρsUk+i−1−s/φ
2
k+i = op(1)�

Using Markov’s inequality we have

P

(∣∣∣∣∣b−1/2
b∑

i=1

∞∑
s=k+i−2b−1

ρsUk+i−1−sUk+i/φ
2
k+i

∣∣∣∣∣> ε

)
(S10.36)

=O(b−1)

b∑
i�j=1

∞∑
s=k+i−2b−1
t=k+j−2b−1

ρs+tEUk+i−1−sUk+i/φ
2
k+iUk+j−1−tUk+j/φ

2
k+j

=O(b−1)

b∑
i=1

∞∑
s�t=k+i−2b−1

ρs+t

=O(b−1)

b∑
i=1

∞∑
s�t=0

ρs+t+2k+2i−4b−2

=O(b−1)

b∑
i=1

ρ2i
∞∑

s�t=0

ρs+t

= o(1)�

where in the second equality we use Assumption INNOV(iv). The second term
in (S10.35) can be handled analogously. This completes the proof for case (i).
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For cases (ii)–(iv) we proceed as follows to establish (S10.19). Define

ck = b−1
b∑

j=1

φ−2
k+j�(S10.37)

fk�i = Y ∗
k+i−1 − c−1

k b−1
b∑

j=1

Y ∗
k+j−1/φ

2
k+j�

Note that

Tn�k = b1/2(ρ̂n�b�k − ρ)/σ̂n�b�k = S1�k/S
1/2
2�k� where(S10.38)

S1�k = b−1
b∑

i=1

fk�iUk+i/φ
2
k+i� S2�k = b−2

b∑
i=1

f 2
k�iÛ

2
k+i/φ

4
k+i�

and Û =MXU�6 We show below that S1�k and S2�k can be written as

S1�k = S̃1�k + ξ1�k and S2�k = S̃2�k + ξ2�k�(S10.39)

where S̃1�k and S̃2�k are separated from S1�0 and S2�0 by b time periods ∀k ≥ kn,
ξ1�k = op(1), and ξ2�k = op(1).

Note that

fk�i =
∞∑
s=0

ρsUk+i−1−s − c−1
k b−1

b∑
j=1

∞∑
s=0

ρsUk+j−1−s/φ
2
k+j(S10.40)

=
∞∑

s=i−1

ρsUk+i−1−s − c−1
k b−1

b∑
j=1

∞∑
s=j−1

ρsUk+j−1−s/φ
2
k+j

+
i−2∑
s=0

ρsUk+i−1−s − c−1
k b−1

b∑
j=1

j−2∑
s=0

ρsUk+j−1−s/φ
2
k+j

= ρi−1
∞∑
s=0

ρsUk−s − c−1
k b−1

b−1∑
j=0

ρj

∞∑
s=0

ρsUk−s/φ
2
k+j+1

+
i−1∑
s=1

ρ−s+i−1Uk+s − c−1
k b−1

b−2∑
s=0

b−(s+1)∑
j=1

ρsUk+j/φ
2
k+j+s+1�

6Strictly speaking, all sums over i = 1� � � � � b should be over i = 1� � � � � b−1 because one obser-
vation from a block of length b is used as an initial observation given that lagged Yi is a regressor.
For notational simplicity, here and below, we sum to b rather than b− 1�
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where we used the transformation s �→ −s + i − 1 for the first sum of the last
row, changed the sequence of summation over j and s, and applied the trans-
formation j �→ j + s in the second sum of the last row. Therefore, changing
back the sequence of summation over j and s in the second sum, it follows that
for ρ < 1,

fk�i = ak�i

∞∑
j=0

ρjUk−j +
b−1∑
j=1

ck�i�jUk+j� where(S10.41)

ak�i = ρi−1 − c−1
k

b

b−1∑
l=0

ρl

φ2
k+l+1

�

ck�i�j = 1(j ≤ i− 1)ρi−j−1 − c−1
k

b

b−(j+1)∑
l=0

ρl

φ2
k+j+l+1

�

Note that ak�i is random. When ρ= 1� (S10.41) simplifies to

fk�i =
b−1∑
j=1

(
1(j ≤ i− 1)− c−1

k

b

b−(j+1)∑
l=0

φ−2
k+j+l+1

)
Uk+j�(S10.42)

By (S10.38) and (S10.45) below, (S10.42) implies that Tn�k is separated from
Tn�0 by at least b time periods when k > 2b� Thus, if ρ = 1 for all n� (S10.19)
holds immediately. This leads us to only consider cases where ρ < 1 for all n�
(Sequences in which ρ= 1 for some n and ρ < 1 for some n can be handled by
analyzing subsequences.)

We now truncate the infinite sum in fk�i and for k > 2b define

f t
k�i = ak�i

k−2b−1∑
j=0

ρjUk−j +
b−1∑
j=1

ck�i�jUk+j(S10.43)

= Y ∗t
k+i−1 − c−1

k b−1
b∑

j=1

Y ∗t
k+j−1/φ

2
k+j� where

Y ∗t
l−1 =

l−2b−2∑
s=0

ρsUl−1−s�

Note that f t
k�i is obtained from fk�i by deleting all Up with subindices p< 2b+1�

Define

S̃1�k = b−1
b∑

i=1

f t
k�iUk+i/φ

2
k+i�(S10.44)
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ξ1�k = b−1
b∑

i=1

(fk�i − f t
k�i)Uk+i/φ

2
k+i

= b−1
b∑

i=1

ak�i(Uk+i/φ
2
k+i)

∞∑
j=k−2b

ρjUk−j�

For k > 2b� S̃1�k depends only on innovations Up for p > 2b, and S1�0 and S2�0

depend only on innovations Up for p ≤ b� Thus, for k > 2b� S̃1�k is separated
from S1�0 and S2�0 by at least b time periods.

Regarding S2�k� note that by (S10.14) and the definition in (S10.37) we have

S2�k = b−2
b∑

i=1

f 2
k�iU

2
k+i/φ

4
k+i + op(1)�(S10.45)

Set

S̃2�k = b−2
b∑

i=1

(f t
k�i)

2U2
k+i/φ

4
k+i�(S10.46)

For k> 2b� S̃2�k depends only on innovations Up for p> 2b� By definition,

ξ2�k = b−2
b∑

i=1

(f 2
k�i − (f t

k�i)
2)U2

k+i/φ
4
k+i + op(1)�(S10.47)

We now show that ξ1�k = op(1) and ξ2�k = op(1) uniformly for k ≥ kn for
some sequence kn → ∞ such that kn/n → 0�

Case (ii). b(1 − ρ) → h1 ∈ (0�∞): We first show that ξ1�k = op(1)� Clearly,
it is enough to show that

b−1
b∑

i=1

ρi−1Uk+i/φ
2
k+i

∞∑
j=k−2b

ρjUk−j = op(1)�(S10.48)

(
(c−1

k /b)

b−1∑
l=0

ρlφ−2
k+l+1

)(
b−1

b∑
i=1

Uk+i/φ
2
k+i

)( ∞∑
j=k−2b

ρjUk−j

)
= op(1)�

Note that by Lemma S2(a), c−1
k and b−1

∑b−1
l=0 ρ

lφ−2
k+l+1 are both Op(1). Applying

Markov’s inequality, it is therefore enough to show that the following quantity
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is op(1):

b−2
b∑

i�j=1

∞∑
l�m=k−2b

ρl+mE(Uk+i/φ
2
k+i)(Uk+j/φ

2
k+j)Uk−lUk−m(S10.49)

=O(1)b−2
b∑

i=1

∞∑
l�m=k−2b

ρl+mEUk−lUk−mU
2
k+i/φ

4
k+i�

where the equality uses E(Uk+i/φ
2
k+i)(Uk+j/φ

2
k+j)Uk−lUk−m = 0 for k> 2b un-

less i = j� by the martingale difference property of Ui�
Consider first the contribution of the summands in (S10.49) when l =m:

b−2
b∑

i=1

∞∑
l=k−2b

ρ2lEU2
k−lU

2
k+i/φ

4
k+i = O(b−2)

b∑
i=1

∞∑
l=k−2b

ρ2l(S10.50)

= O
(
ρk−2b(b(1 − ρ))−1

)
�

where in the first equality we use Assumption INNOV(iv). Define h∗
n�1 by

ρ = exp(−h∗
n�1/n)� Because b(1 − ρ) → h1 ∈ (0�∞)� we have h∗

n�1 → ∞�
In consequence, there exists a sequence {kn :n ≥ 1} such that kn/b → ∞�
kn/n → 0, and h∗

n�1kn/n → ∞� For this sequence, h∗
n�1(kn − 2b)/n → ∞�

ρkn−2b = exp(−h∗
n�1(kn − 2b)/n)→ 0� and supk≥kn

ρ2(k−2b) → 0� This shows that
the expression in (S10.50) is o(1)�

Therefore, we only need to consider the contributions in (S10.49) with l >m�
We have

b−2
b∑

i=1

∞∑
l>m=k−2b

ρl+mEUk−lUk−mU
2
k+i/φ

4
k+i(S10.51)

=O(1)b−2
b∑

i=1

∞∑
l>m=k−2b

ρl+m(l −m)−3−ε

=O(1)ρk−2bb−2
b∑

i=1

∞∑
l>m=0

ρm(l −m)−3−ε

= o(1)�

where in the first equality we use (S10.15) and Assumption INNOV(iv).
Next we show ξ2�k = op(1)� Note that up to a op(1) term, ξ2�k = ξ21�k −

2ξ22�k + ξ23�k� where

ξ21�k = b−2
b∑

i=1

(Y ∗2
k+i−1 −Y ∗t2

k+i−1)U
2
k+i/φ

4
k+i�(S10.52)
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ξ22�k = c−1
k b−3/2

b∑
i=1

(
Y ∗

k+i−1

(
b−3/2

b∑
j=1

Y ∗
k+j−1/φ

2
k+j

)

−Y ∗t
k+i−1

(
b−3/2

b∑
j=1

Y ∗t
k+j−1/φ

2
k+j

))
U2

k+i/φ
4
k+i�

ξ23�k =
((

b−3/2
b∑

j=1

Y ∗
k+j−1/φ

2
k+j

)2

−
(
b−3/2

b∑
j=1

Y ∗t
k+j−1/φ

2
k+j

)2)

× c−2
k b−1

b∑
i=1

U2
k+i/φ

4
k+i�

To show ξ21�k = op(1)� note that

ξ21�k = b−2
b∑

i=1

∞∑
s�t=0�

s or t≥k+i−2b−1

ρs+tUk+i−1−sUk+i−1−tU
2
k+i/φ

4
k+i(S10.53)

(where the second sum is over all s� t = 0� � � � for which s ≥ k + i − 2b − 1 or
t ≥ k+ i− 2b− 1). By Markov’s inequality, we have

P(|ξ21�k|> ε)(S10.54)

≤ ε−2b−4
b∑

i�j=1

∞∑
s�t=0�

s or t≥k+i−2b−1

∞∑
u�v=0�

u or v≥k+i−2b−1

ρs+t+u+v

×E(U2
k+i/φ

4
k+i)(U

2
k+j/φ

4
k+j)

×Uk+i−1−sUk+i−1−tUk+j−1−uUk+j−1−v�

Using (S10.15), Assumption INNOV(iv), and ρk−2b → 0� one can show that
the contribution of all summands for which at least two of the indices k + i −
1 − s� k + i − 1 − t� k + j − 1 − u� or k + j − 1 − v coincide is o(1)� In what
follows, we can therefore assume that these indices are all different. We can
then assume i ≥ j� s > t� and u > v� One has to separately investigate several
cases regarding the order of the six indices k+ i− 1 − s < k+ i− 1 − t < k+ i
and k+ j−1−u < k+ j−1−v < k+ j� We will only deal with the case where,
in the ordering of the indices (k+ i−1−s�k+ i−1− t�k+j−1−u�k+j−1−
v�k+ j�k+ i), the subindex k+ i−1−s is followed immediately by k+ i−1− t
and the subindex k+j−1−u is directly followed by k+j−1−v�k+ i−1−s �=
k + j� and k + j − 1 − u �= k + i� The other cases are dealt with analogously.
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Equation (S10.15) and Assumption INNOV(iv) yield

EUk+i−1−sUk+i−1−tUk+j−1−uUk+j−1−v(U
2
k+j/φ

4
k+j)U

2
k+i/φ

4
k+i(S10.55)

≤O(max{s − t� u− v})−3−ε�

Therefore, the summands in (S10.54) equal

O(b−4)

b∑
i≥j=1

∞∑
s>t=0�

s≥k+i−2b−1

∞∑
u>v=0�

u≥k+i−2b−1

ρs+t+u+v(max{s − t� u− v})−3−ε(S10.56)

=O(b−4ρk−2b)

b∑
i≥j=1

∞∑
s>t=0�

s≥k+i−2b−1

ρt(s − t)(−3−ε)/2

×
∞∑

u>v=0
u≥k+i−2b−1

ρv(u− v)(−3−ε)/2

= o(b−2)

( ∞∑
t=0

ρt

∞∑
s=t+1

(s − t)(−3−ε)/2

)2

�

By a change of variable s → s + t + 1� the r.h.s. of (S10.56) equals

o(b−2)

( ∞∑
t=0

ρt

∞∑
s=1

s(−3−ε)/2

)2

= o(b−2)

( ∞∑
t=0

ρ2t

)2

(S10.57)

= o(b−2(1 − ρ)−2)= o(1)�

Next we deal with ξ22�k� Note that by Lemma S2(a) and (c) we have c−1
k =

Op(1) and b−3/2
∑b

j=1 Y
∗
k+j−1/φ

2
k+j = Op(1)� We add and subtract Y ∗t

k+i−1b
−3/2 ×∑b

j=1 Y
∗
k+j−1/φ

2
k+j which implies that it is enough to show that

b−3/2
b∑

i=1

(Y ∗
k+i−1 −Y ∗t

k+i−1)U
2
k+i/φ

4
k+i = op(1)�(S10.58)

b−3/2
b∑

j=1

(Y ∗
k+j−1 −Y ∗t

k+j−1)/φ
2
k+j = op(1)�

b−3/2
b∑

i=1

Y ∗t
k+i−1U

2
k+i/φ

4
k+i =Op(1)�
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The third statement holds by the first one and by Lemma S2(c). To prove the
first two statements, note that

Y ∗
k+i−1 −Y ∗t

k+i−1 =
∞∑

s=k+i−2b−1

ρsUk+i−1−s�(S10.59)

To show (S10.58), by Markov’s inequality it is sufficient to show that

b−3
b∑

i�j=1

∞∑
s=k+i−2b−1�
t=k+i−2b−1

ρs+tEUk+i−1−sUk+j−1−t(U
2
k+i/φ

4
k+i)U

2
k+j/φ

4
k+j = o(1)(S10.60)

b−3
b∑

i�j=1

∞∑
s=k+i−2b−1�
t=k+i−2b−1

ρs+tEUk+i−1−sUk+j−1−tφ
−2
k+iφ

−2
k+j = o(1)�

These can be shown using the method employed above. Finally, ξ23�k = op(1)
follows by similar steps to the ones above and Lemma S2(b). This completes
the proof of case (ii).

Case (iii). b(1 − ρ) → 0 & n(1 − ρ) → ∞: Define h∗
n�1 and hn�1 by ρ =

exp(−h∗
n�1/n) and ρ = 1 − hn�1/n� Let tn = bh∗

n�1/n� For notational simplicity,
we write h∗

n�1 and hn�1 as h∗
n and hn� respectively, in the remainder of the verifi-

cation of Assumption E. Then we have

ρb = exp(−bh∗
n/n) = exp(−tn)� 1 + ρ= 2 − hn/n�(S10.61)

b(1 − ρ)= bhn/n = tn(hn/h
∗
n)�

We have b(1 − ρ) → 0 ⇒ ρ → 1 ⇒ h∗
n/n → 0 ⇒ h∗

n/hn → 1, where the
last implication follows from a mean-value expansion of exp(−h∗

n/n) about
0. In addition, b(1 − ρ) → 0 ⇒ bhn/n → 0� Combining these results gives
tn = (bhn/n)(h

∗
n/hn) → 0� Also, n(1 − ρ) → ∞ implies that hn → ∞ and

h∗
n → ∞�
Because bhn/n = b(1 − ρ) → 0, it follows that hn = o(n/b)� This and

h∗
n/hn → 1 yield h∗

n = o(n/b)� By an expansion of exp(−h∗
n/n) about 0� we

obtain

0 = ρ− ρ= exp(−h∗
n/n)− (1 − hn/n)(S10.62)

= −h∗
n/n+ 2−1(h∗

n/n)
2 − 6−1 exp(−h∗∗

n /n)(h
∗
n/n)

3 + hn/n�

where h∗∗
n /n = o(1/b) because h∗

n = o(n/b). Hence,

1 − hn/h
∗
n = 2−1h∗

n/n− 6−1(h∗
n/n)

2 exp(−h∗∗
n /n)�(S10.63)
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We first verify (S10.39) for ξ1�k = b−1
∑b

i=1 ak�i(Uk+i/φ
2
k+i)

∑∞
j=k−2b ρ

jUk−j de-
fined in (S10.44). Note that by Markov’s inequality we have

P

(∣∣∣∣∣
∞∑

s=k−2b

ρsUk−s

∣∣∣∣∣>M(1 − ρ)−1/2

)
≤ M−2(1 − ρ)

∞∑
s=k−2b

ρ2sEU2
k−s(S10.64)

= O(M−2)

by Assumption INNOV(iv) and because Ui is a martingale difference se-
quence. Therefore,

(1 − ρ)1/2
∞∑

s=k−2b

ρsUk−s =Op(1)�(S10.65)

To show ξ1�k = op(1), it is thus sufficient to show that

ζ1 = (1 − ρ)−1/2b−1
b∑

i=1

ak�i(Uk+i/φ
2
k+i)= op(1)�(S10.66)

By adding and subtracting 1, we can write

ak�i = (ρi−1 − 1)− c−1
k b−1

b−1∑
l=0

(ρl − 1)φ−2
k+l+1�(S10.67)

Therefore,

ζ1 = (1 − ρ)−1/2b−1(S10.68)

×
b∑

i=1

(
(ρi−1 − 1)− c−1

k b−1
b−1∑
l=0

(ρl − 1)φ−2
k+l+1

)
(Uk+i/φ

2
k+i)

and it is enough to show that

ζ11 = (1 − ρ)−1/2b−1
b∑

i=1

(ρi−1 − 1)(Uk+i/φ
2
k+i)= op(1)�(S10.69)

ζ12 = (1 − ρ)−1/2b−1/2

(
c−1
k b−1

b−1∑
l=0

(ρl − 1)φ−2
k+l+1

)
b−1/2

b∑
i=1

(Uk+i/φ
2
k+i)

= op(1)�



HYBRID AND SIZE-CORRECTED SUBSAMPLING METHODS 47

To show ζ11 = op(1)� by Markov’s inequality, it is enough to show that

(1 − ρ)−1b−2
b∑

i=1

(ρi−1 − 1)2 = o(1)�(S10.70)

where we use the fact that Uk+i/φ
2
k+i is a martingale difference sequence and

E(U2
k+i/φ

4
k+i) is uniformly bounded by Assumption INNOV(iv). Writing the

sum in (S10.70) in closed form, it follows that it is enough to show that

1 − ρ2b − 2(1 − ρb)(1 + ρ)+ b(1 − ρ)(1 + ρ)

b2(1 − ρ)2
= o(1)�(S10.71)

Using (S10.61) and (S10.63) the l.h.s. of (S10.71) equals

1 − exp(−2tn)− 2(1 − exp(−tn))(1 + ρ)+ tn(hn/h
∗
n)(1 + ρ)

(tn(hn/h∗
n))

2
�(S10.72)

We first show that replacing (1 + ρ) by 2 and (hn/h
∗
n) by 1 in (S10.72) is negli-

gible in the sense that

t−2
n

[−2(1 − exp(−tn))(1 + ρ− 2)+ tn((hn/h
∗
n)(1 + ρ)− 2)

] = o(1)�(S10.73)

To show (S10.73), note that by (S10.63) hn/h
∗
n = 1 − 2−1h∗

n/n + 6−1(h∗
n/n)

2 ×
exp(−h∗∗

n /n)� where h∗∗
n /n → 0� By a Taylor expansion for ρ = exp(−h∗

n/n)
we have ρ − 1 = −h∗

n/n + 2−1(h∗
n/n)

2 exp(−h++
n /n) for some h++

n such that
h++
n /n → 0� By a Taylor expansion for exp(−tn) we have 1 − exp(−tn) = tn −

2−1t2
n exp(t∗n) for some t∗n such that t∗n → 0� Multiplying out shows that the l.h.s.

in (S10.73) is of order t−2
n (O(tn(h

∗
n/n)

2)+O(t2
nh

∗
n/n)) which is o(1)�

By applying l’Hopital’s rule twice, the limit of the expression in (S10.72) with
(1 + ρ) replaced by 2 and (hn/h

∗
n) replaced by 1 equals 0 which completes the

proof of ζ11 = op(1)�
To show ζ12 = op(1)� a central limit theorem for martingale difference se-

quences shows that b−1/2
∑b

i=1 (Uk+i/φ
2
k+i)=Op(1)� Furthermore, by Assump-

tion INNOV(v) and (vii) we have c−1
k b−1

∑b−1
l=0 (ρ

l − 1)φ−2
k+l+1 = Op(1)b−1 ×∑b−1

l=0 (ρ
l − 1) and it is therefore enough to show that

(1 − ρ)−1/2b−1/2b−1
b−1∑
l=0

(ρl − 1)= o(1) or(S10.74)

b−3/2(1 − ρ)−3/2(1 − ρb − b(1 − ρ)) = o(1)�

Using analogous steps as in the proof for ζ11 = op(1) above then shows ζ12 =
op(1)� This completes the verification of (S10.39) for ξ1�k�
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We are left with showing that the component b−2
∑b

i=1(f
2
k�i−(f t

k�i)
2)U2

k+i/φ
4
k+i

of ξ2�k in (S10.47) is op(1)� Using the definitions of fk�i and f t
k�i in (S10.41) and

(S10.43), it follows that

f 2
k�i − (f t

k�i)
2(S10.75)

= a2
k�i

( ∞∑
j=0

ρjUk−j

)2

− a2
k�i

(
k−2b−1∑

j=0

ρjUk−j

)2

+ 2
b−1∑
j=1

ck�i�jUk+j

(
ak�i

∞∑
s=k−2b

ρsUk−s

)

= a2
k�i

∞∑
j��=0�

j or �=≥k−2b

ρj+lUk−jUk−l + 2
∞∑

s=k−2b

ρsUk−s

b−1∑
j=1

ak�ick�i�jUk+j

= f1�k�i + f2�k�i�

We first show that the contributions of f1�k�i to ξ2�k are op(1)� Note that

b−2
b∑

i=1

f1�k�iU
2
k+i/φ

4
k+i(S10.76)

=
∞∑

j��=0�
j or �=≥k−2b

ρj+lUk−jUk−lb
−2

b∑
i=1

a2
k�iU

2
k+i/φ

4
k+i

=Op((1 − ρ)−1)b−2
b∑

i=1

a2
k�iU

2
k+i/φ

4
k+i�

Using (S10.67), it is therefore enough to show that

(1 − ρ)−1b−2
b∑

i=1

(ρi−1 − 1)2U2
k+i/φ

4
k+i = op(1)�(S10.77)

(1 − ρ)−1b−2

(
c−1
k b−1

b−1∑
l=0

(ρl − 1)φ−2
k+l+1

)
b∑

i=1

(ρi−1 − 1)U2
k+i/φ

4
k+i

= op(1)�

(1 − ρ)−1b−2

(
c−1
k b−1

b−1∑
l=0

(ρl − 1)φ−2
k+l+1

)2 b∑
i=1

U2
k+i/φ

4
k+i = op(1)�
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To deal with the first term, it is enough to show that the law of large num-
bers (LLN) b−1

∑b

i=1 Zbi = Op(1) applies with Zbi = (b(1 − ρ))−2 (ρi−1 −
1)2U2

k+i/φ
4
k+i. The LLN holds by White (1984, Theorem 3.47 with r = δ= 3/2)

because Zbi is α-mixing of size 3, has finite mean by Assumption INNOV(iv)
and because (ρb − 1)(b(1 − ρ))−1 = O(1), and because

∑∞
i=1(i

−3E|Zbi −
EZbi|3)2/3 < ∞� The latter holds because by (ρb − 1)(b(1 − ρ))−1 = O(1) and
Assumption INNOV(iv), E|Zbi −EZbi|3 is uniformly bounded.

The proofs for the second and third terms in (S10.77) are analogous. Just
note that c−1

k = Op(1) by Lemma S2(a) and that

b−1
b−1∑
l=0

Z∗
bl = Op(1)(S10.78)

applies also with Z∗
bl = (b(1 − ρ))−1(ρl − 1)φ−2

k+l+1� Z∗
bl = (b(1 − ρ))−1(ρl −

1)U2
k+i/φ

4
k+i� and Z∗

bl = U2
k+i/φ

4
k+i by White (1984, Theorem 3.47 with r = δ =

3/2).
We next show that the contributions of f2�k�i to ξ2�k are op(1). By (S10.65)

and (S10.75) it is sufficient to show that

(1 − ρ)−1/2b−2
b−1∑
j=1

b∑
i=1

ak�ick�i�j(U
2
k+i/φ

4
k+i)Uk+j = op(1)�(S10.79)

By replacing ak�i and ck�i�j by their definitions we have

b−1∑
j=1

b∑
i=1

ak�ick�i�j

(
U2

k+i

φ4
k+i

)
Uk+j(S10.80)

=
b−1∑
j=1

b∑
i=1

(
(ρi−1 − 1)− c−1

k b−1
b−1∑
l=0

(ρl − 1)φ−2
k+l+1

)

×
(

1(j ≤ i− 1)ρi−j−1 − c−1
k

b

b−(j+1)∑
l=0

ρl

φ2
k+j+l+1

)(
U2

k+i

φ4
k+i

)
Uk+j�

Multiplying out in (S10.80), it is clear that to show (S10.79), it is sufficient to
show that the following expressions multiplied by (1 − ρ)−1/2b−2 are all op(1):

b−1∑
j=1

b∑
i=1

(ρi−1 − 1)1(j ≤ i− 1)ρi−j−1(U2
k+i/φ

4
k+i)Uk+j�(S10.81)

b−1∑
j=1

b∑
i=1

c−1
k b−1

b−1∑
l=0

(ρl − 1)φ−2
k+l+11(j ≤ i− 1)ρi−j−1

(
U2

k+i

φ4
k+i

)
Uk+j�
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b∑

i=1

(ρi−1 − 1)(U2
k+i/φ

4
k+i)

)
b−1∑
j=1

(
c−1
k

b

b−(j+1)∑
l=0

ρl

φ2
k+j+l+1

)
Uk+j�

(
c−1
k b−1

b−1∑
l=0

(ρl − 1)φ−2
k+l+1

)

×
(

b−1∑
j=1

c−1
k

b

b−(j+1)∑
l=0

ρl

φ2
k+j+l+1

Uk+j

)
b∑

i=1

(
U2

k+i

φ4
k+i

)
�

From the LLN in (S10.78) and from c−1
k = Op(1) it follows that to show that the

expressions in (S10.81) multiplied by (1 −ρ)−1/2b−2 are op(1), it is sufficient to
show that

(1 − ρ)1/2b−1
b−1∑
j=1

b∑
i=j+1

ρi−1 − 1
b(1 − ρ)

ρi−j−1

(
U2

k+i

φ4
k+i

)
Uk+j = op(1)�(S10.82)

(1 − ρ)1/2b−1
b−1∑
j=1

b∑
i=j+1

ρi−j−1

(
U2

k+i

φ4
k+i

)
Uk+j = op(1)�

(1 − ρ)1/2b−1
b−1∑
j=1

b−(j+1)∑
l=0

ρlφ−2
k+j+l+1Uk+j = op(1)�

To see this, note that the first row in (S10.81) is clearly implied by the first
row in (S10.82). The second row in (S10.81) is implied by the second row in
(S10.82) because in (S10.81) we apply the LLN in (S10.78) to b−1

∑b−1
l=0 (ρ

l −
1)φ−2

k+l+1, which is thus Op(b(1 − ρ))� The same LLN argument applied to
b−1

∑b

i=1(ρ
i−1 −1)(U2

k+i/φ
4
k+i) shows that the third row in (S10.81) is implied by

the third row in (S10.82). The fourth row in (S10.81) is implied by the previous
arguments and b−1

∑b

i=1(U
2
k+i/φ

4
k+i)=Op(1)�

For the third term in (S10.82), by Markov’s inequality, it is enough to show
that

(1 − ρ)b−2
b−1∑
j=1

b−(j+1)∑
l=0

b−1∑
i=1

b−(i+1)∑
m=0

ρl+mEφ−2
k+j+l+1Uk+jφ

−2
k+i+m+1Uk+i(S10.83)

= o(1)�

We can assume that i �= j because the contributions of all summands with
i = j can be bounded by (1−ρ)b−2

∑b−1
i=1

∑b−(i+1)
l�m=0 Eφ−2

k+j+l+1φ
−2
k+i+m+1U

2
k+i, which

is o(1) because Eφ−2
k+j+l+1φ

−2
k+i+m+1U

2
k+i is uniformly bounded by Assump-

tion INNOV(iv) and (1 − ρ)b−2b3 = o(1)� Using the same argument we can
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assume that all subindices k + j + l + 1�k + i + m + 1, k + j, and k + i are
different and also that i > j. We have to distinguish two subcases, namely
k+ j+ l+1 > k+ i and k+ j+ l+1 <k+ i� The contributions of all summands
in the l.h.s. of (S10.83) satisfying k+ j + l + 1 > k+ i can be bounded by

O(1)(1 − ρ)b−2
b−1∑
i>j=1

b−(j+1)∑
l=0

b−(i+1)∑
m=0�
m �=l

(i− j)−3−ε = O(1 − ρ)

b−1∑
i>j=1

(i− j)−3−ε(S10.84)

= o(1)�

where the first expression uses the strong-mixing inequality (S10.15) and As-
sumption INNOV(iv) and the last equality uses b(1 − ρ) → 0� The contribu-
tions of all summands in the l.h.s. of (S10.83) satisfying k + j + l + 1 ≤ k + i
can be bounded by

O(1)(1 − ρ)b−2
b−1∑
i>j=1

b−(j+1)∑
l=0

b−(i+1)∑
m=0�
m �=l

(m+ 1)−3−ε(S10.85)

=O(1 − ρ)b

b∑
m=0

(m+ 1)−3−ε = o(1)�

The first and second terms in (S10.82) are handled in exactly the same way. For
the first term, recall that (b(1 − ρ))−1(ρi−1 − 1) is O(1) uniformly in i�

Case (iv). n(1 − ρ) → h1 ∈ [0�∞): Because n(1 − ρ) = hn → h1 < ∞� it
follows that hn = O(1) and ρn → 1� Hence, exp(−h∗

n/n) = ρn → 1 and h∗
n =

o(n)� By a mean-value expansion of exp(−h∗
n/n) about 0�

0 = ρn −ρn = exp(−h∗
n/n)− (1 −hn/n) = hn/n− exp(−h∗∗

n /n)h
∗
n/n�(S10.86)

where h∗∗
n = o(n) given that h∗

n = o(n). Hence, hn − (1 + o(1))h∗
n = 0 and thus

h∗
n/hn → 1. Hence, h∗

n = O(1) and tn = bh∗
n/n → 0� The proof for ξ1�k = op(1)

and ξ2�k = op(1) used in case (iii) then goes through. Q.E.D.

S10.2.5. Verification of Assumption EE

In this section, we verify Assumption EE for Model 1. We verify Assump-
tion EE using the same argument as for Assumption E given above, but with
Tn�k = S1�kS

−1/2
2�k replaced by dbn(γn�h)σ̂n�bn�k� where dbn(γn�h) is the normaliza-

tion constant that appears in Assumption BB and is defined in (S10.2). In
case (i) of the verification of Assumption E above, where b(1 − ρ) → ∞�
we have dbn(γn�h)σ̂n�bn�k →p 1 by Proposition S1(b). Thus, (S10.19) trivially
holds in this case. In cases (ii)–(iv), we have dbn(γn�h)σ̂n�bn�k = S1/2

2�kS
−1
3�k for
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S3�k = b−2X ′
1MX2X1� where as above (with abuse of notation) X1 and X2 de-

note b-vectors containing data from the kth subsample. It is sufficient to show
the equivalent of (S10.39) for S3�k:

S3�k = S̃3�k + ξ3�k(S10.87)

for some S̃3�k that is separated from S3�0 by

b time periods ∀k ≥ kn and ξ3�k = op(1)�

Easy calculations show that S3�k = b−2
∑b

i=1 f
2
k�i/φ

2
k+i� Set S̃3�k = b−2

∑b

i=1(f
t
k�i)

2/

φ2
k+i and ξ3�k = b−2

∑b

i=1(f
2
k�i − (f t

k�i)
2)/φ2

k+i� Then, proceeding exactly as in
the verification of S2�k = S̃2�k + ξ2�k in (S10.39) in the proof of Assumption E,
(S10.87) follows.

S10.2.6. Verification of Assumption HH

Given the definitions in (S10.2), Assumption HH holds by the following cal-
culations. For all sequences {γn�h = (γn�h�1�γn�h�2�γn�h�3) ∈ Γ :n ≥ 1} for which
bnγn�h�1 → g1 for some g1 ∈ R+�∞� if bnγn�h�1 → g1 = ∞� then nγn�h�1 → ∞ and

abn(γn�h)

an(γn�h)
= b1/2

n dbn(γn�h)

n1/2dn(γn�h)
=

(
bn

n

)1/2

→ 0(S10.88)

using Assumption C(ii). If nγn�h�1 → h1 = ∞ and bnγn�h�1 → g1 < ∞� let
hn�1 = n(1 −ρ) and let h∗

n�1 be defined by ρ= exp(−h∗
n�1/n)� By Lemma S1 and

(S10.3), bn/(n
1/2dn(γn�h)) = O((1 − ρ)1/2bn/n

1/2) = O((hn�1/n)
1/2bn/n

1/2) =
O(h1/2

n�1bn/n)� Given that nγn�h�1 → h1 = ∞ and bnγn�h�1 → g1 < ∞ we are ei-
ther in case (ii) or case (iii) of the proof of Assumption E. In case (iii), we
showed above that tn = bnh

∗
n�1/n→ 0, hn�1/h

∗
n�1 → 1, and hn�1 → ∞� Therefore,

O(h1/2
n�1bn/n) = O(tnh

−1/2
n�1 ) = o(1)� In case (ii), tn = (bnhn�1/n)(h

∗
n�1/hn�1) → g1

and thus O(h1/2
n�1bn/n) =O(tnh

−1/2
n�1 )= o(1) because hn�1 → ∞� Therefore,

abn(γn�h)

an(γn�h)
= bn

n1/2dn(γn�h)
→ 0�(S10.89)

If nγn�h�1 → h1 < ∞� then

abn(γn�h)

an(γn�h)
= bn

n
→ 0(S10.90)

using Assumption C(ii).
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S11. CONSERVATIVE MODEL-SELECTION EXAMPLE

S11.1. The Model

Here we establish the asymptotic distribution of the test statistic T ∗
n (θ0) and

verify Assumption G for this example.
The model is

yi = x∗
1iθ+ x∗

2iβ2 + x∗′
3iβ3 + σεi for i = 1� � � � � n� where(S11.1)

x∗
i = (x∗

1i� x
∗
2i� x

∗′
3i)

′ ∈Rk� β= (θ�β2�β
′
3)

′ ∈ Rk�

x∗
1i� x

∗
2i� θ�β2�σ�εi ∈ R� and x∗

3i�β3 ∈ Rk−2� The observations {(yi� x∗
i ) : i =

1� � � � � n} are i.i.d. The scaled error εi has mean 0 and variance 1 conditional
on x∗

i � We consider testing H0 :θ = θ0 after carrying out a model-selection pro-
cedure to determine whether x∗

2i should enter the model. The model-selection
procedure is based on a t test of H∗

0 :β2 = 0�
The inference problem described above covers the following (seemingly

more general) inference problem. Consider the model

yi = z′
iτ + σεi for i = 1� � � � � n� where(S11.2)

zi = (z′
1i� z2i)

′ ∈Rk� τ = (τ′
1� τ2)

′ ∈ Rk�

z1i� τ1 ∈ Rk−1� and z2i� τ2 ∈ R� We are interested in testing H0 :a′τ = θ0 for a
given vector a ∈ Rk with a �= ek� where ek = (0� � � � �0�1)′� after using a (fixed-
critical-value) t test to determine whether z2i should enter the model. This
testing problem can be transformed into the former one by writing

θ = a′τ� β2 = τ2� β3 = B′τ(S11.3)

for some matrix B ∈ Rk×(k−2) such that D = [a :ek :B] ∈ Rk×k is nonsingular.
As defined, β = D′τ� Define x∗

i = D−1zi� Then x∗′
i β = z′

iτ and H0 :θ = θ0 is
equivalent to H0 :a′τ = θ0�

We now return to the model in (S11.1). To define the test statistic T ∗
n (θ0)� we

write the variables in matrix notation, and define the first and second regressors
after projecting out the remaining regressors using finite-sample projections:

Y = (y1� � � � � yn)
′�(S11.4)

X∗
j = (x∗

j1� � � � � x
∗
jn)

′ ∈Rn for j = 1�2�

X∗
3 = [x∗

31 : · · · :x∗
3n]′ ∈ Rn×(k−2)�

Xj =MX∗
3
X∗

j ∈Rn for j = 1�2�

X = [X1 :X2] ∈ Rn×2�

where MX∗
3
= In − PX∗

3
and PX∗

3
= X∗

3 (X
∗′
3 X

∗
3 )

−1X∗′
3 � The n-vectors X1 and X2

correspond to the n-vectors X∗
1 and X∗

2 � respectively, with X∗
3 projected out.
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The restricted and unrestricted least squares (LS) estimators of θ and the
unrestricted LS estimator of β2 are

θ̃ = (X ′
1X1)

−1X ′
1Y�(S11.5)

θ̂ = (X ′
1MX2X1)

−1X ′
1MX2Y�

β̂2 = (X ′
2MX1X2)

−1X ′
2MX1Y�

The model-selection test rejects H∗
0 :β2 = 0 if

|Tn�2| =
∣∣∣∣ n1/2β̂2

σ̂(n−1X ′
2MX1X2)−1/2

∣∣∣∣ > c� where(S11.6)

σ̂2 = (n− k)−1Y ′M[X∗
1 : X∗

2 : X∗
3 ]Y

and c > 0 is a given critical value that does not depend on n� Typically, c =
z1−α/2 for some α > 0� The estimator σ̂2 of σ2 is the standard (unrestricted)
unbiased estimator.

The test statistic, T ∗
n (θ0)� for testing H0 :θ = θ0 is a t statistic based on the

restricted LS estimator of θ when the null hypothesis H∗
0 :β2 = 0 is not rejected

and the unrestricted LS estimator when it is rejected:

T ∗
n (θ0)= T̃n�1(θ0)1(|Tn�2| ≤ c)+ T̂n�1(θ0)1(|Tn�2|> c)� where(S11.7)

T̃n�1(θ0)= n1/2(θ̃− θ0)

σ̂(n−1X ′
1X1)−1/2

�

T̂n�1(θ0)= n1/2(θ̂− θ0)

σ̂(n−1X ′
1MX2X1)−1/2

�

Note that both T̃n�1(θ0) and T̂n�1(θ0) are defined using the unrestricted estima-
tor σ̂ of σ� One could define T̃n�1(θ0) using the restricted LS estimator of σ�
but this is not desirable because it leads to an inconsistent estimator of σ under
sequences of parameters {β2 = β2n :n≥ 1} that satisfy β2n → 0 and n1/2β2n � 0
as n → ∞� For subsampling tests, one could define T̃n�1(θ0) and T̂n�1(θ0) with
σ̂ deleted because the scale of the subsample statistics offsets that of the origi-
nal sample statistic. This does not work for hybrid tests because Assumption K
fails if σ̂ is deleted.

The “model-selection” estimator, θ� of θ is

θ = θ̃1(|Tn�2| ≤ c)+ θ̂1(|Tn�2|> c)�(S11.8)

This estimator is used to recenter the subsample statistics. (One could also use
the unrestricted estimator θ̂ to recenter the subsample statistics.)
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S11.2. Proof of the Asymptotic Distributions of the Test Statistics

In this section, we establish the asymptotic distribution J∗
h of T ∗

n (θ0) under
a sequence of parameters {γn = (γn�1�γn�2�γn�3) :n ≥ 1} (where n1/2γn�1 → h1�
γn�2 → h2� and γn�3 ∈ Γ3(γn�1�γn�2) for all n). Parts of the proof are closely re-
lated to calculations in Leeb (2006) and Leeb and Pötscher (2005). No pa-
pers in the literature that we are aware of consider subsampling methods for
post-model-selection inference. For FCV tests, the main differences from Leeb
(2006) are that here we consider (i) model selection among two models, (ii) er-
rors that may be nonnormal, (iii) i.i.d. regressors, and (iv) t statistics, and
(v) we prove the asymptotic results directly. In contrast, Leeb (2006) consid-
ered (i) multiple models, (ii) normal errors, (iii) fixed regressors, and (iv) nor-
malized estimators, and (v) he proved the asymptotic results by establishing
finite-sample results for the normal error case and taking their limits. The re-
sults in Leeb and Pötscher (2005) are a two-model special case of those given
in Leeb (2006).

Using the definition of T ∗
n (θ0) in this example, we have

Pθ0�γn(T
∗
n (θ0)≤ x) = Pθ0�γn(T̃n�1(θ0)≤ x & |Tn�2| ≤ c)(S11.9)

+ Pθ0�γn(T̂n�1(θ0)≤ x & |Tn�2| > c)�

Hence, it suffices to determine the limits of the two summands on the right-
hand side. With this in mind, we show below that under {γn :n ≥ 1}� when
|h1|<∞�(

T̃n�1(θ0)

Tn�2

)
d→

(
Z̃h�1

Zh�2

)
∼ N

((−h1h2(1 − h2
2)

−1/2

h1

)
�

(
1 0
0 1

))
�(S11.10) (

T̂n�1(θ0)

Tn�2

)
d→

(
Ẑh�1

Zh�2

)
∼ N

((
0
h1

)
�

(
1 h2

h2 1

))
�

Given this, we have

Pθ0�γn(T̃n�1(θ0)≤ x & |Tn�2| ≤ c)(S11.11)

→ P(Z̃h�1 ≤ x & |Zh�2| ≤ c)

=Φ
(
x+ h1h2(1 − h2

2)
−1/2

)
�(h1� c)� where

�(a�b)= Φ(a+ b)−Φ(a− b)�

the equality uses the independence of Z̃h�1 and Zh�2 and the normality of their
distributions, and �(a�b) = �(−a�b)� In addition, we have

Pθ0�γn(T̂n�1(θ0)≤ x & |Tn�2|> c)→ P(Ẑh�1 ≤ x & |Zh�2|> c)�(S11.12)
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Next, we calculate the limiting probability in (S11.12). Let f (z2|z1) denote
the conditional density of Zh�2 given Ẑh�1� Let φ(z1) denote the standard nor-
mal density. Given that(

Ẑh�1

Zh�2

)
∼N

((
0
h1

)
�

(
1 h2

h2 1

))
�(S11.13)

the conditional distribution of Zh�2 given Ẑh�1 = z1 is N(h1 + h2z1�1 − h2
2)� We

have

P(Ẑh�1 ≤ x & |Zh�2|> c)(S11.14)

=
∫ x

−∞

∫
|z2|>c

f (z2|z1)φ(z1)dz2 dz1

=
∫ x

−∞

(
1 −

∫
|z2|≤c

(1 − h2
2)

−1/2φ

(
z2 − (h1 + h2z1)

(1 − h2
2)

1/2

)
dz2

)
φ(z1)dz1

=
∫ x

−∞

(
1 −

∫
|z2|≤c(1−h2

2)
−1/2

φ

(
z2 − h1 + h2z1

(1 − h2
2)

1/2

)
dz2

)
φ(z1)dz1

=
∫ x

−∞

(
1 −�

(
h1 + h2z

(1 − h2
2)

1/2
�

c

(1 − h2
2)

1/2

))
φ(z)dz�

where the second equality holds by (S11.13), the third equality holds by change
of variables with z2 = z2(1−h2

2)
−1/2� and the last equality holds by the definition

of �(a�b)�
Combining (S11.11), (S11.12), and (S11.14) gives the desired result,

J∗
h(x) = Φ

(
x+ h1h2(1 − h2

2)
−1/2

)
�(h1� c)(S11.15)

+
∫ x

−∞

(
1 −�

(
h1 + h2t

(1 − h2
2)

1/2
�

c

(1 − h2
2)

1/2

))
φ(t)dt�

when |h1| < ∞� When |h1| = ∞� J∗
h(x) = Φ(x) (which equals the limit as

|h1| → ∞ of J∗
h(x) defined in (S11.15)). The proof of the latter result is given

below in the paragraph containing (S11.29).
We now show that under {γn :n ≥ 1}� when |h1| < ∞� (S11.10) holds. Let

X⊥
j = (x⊥

j1� � � � � x
⊥
jn)

′ ∈ Rn for j = 1�2 and X⊥ = (X⊥
1 �X

⊥
2 )

′ ∈ Rn×2� We use the
following lemma.

LEMMA S3: Given the assumptions stated in Section 2.2 of the paper, under
a sequence of parameters {γn = (γn�1�γn�2�γn�3) :n ≥ 1} (where n1/2γn�1 → h1�
γn�2 → h2� and γn�3 ∈ Γ3(γ1�γ2) for all n), and for Q = Qn as defined in (2.7) of
the paper with the (j�m) element denoted Qn�jm� we have (a) n−1X ′X−Qn →p 0�
(b) n−1X ′

2MX1X2 − (Qn�22 − Q2
n�12Q

−1
n�11) →p 0� (c) n−1X ′

1MX2X1 − (Qn�11 −
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Q2
n�12Q

−1
n�22) →p 0� (d) σ̂/σn →p 1� and (e) n−1/2X ′

jε = n−1/2X⊥′
j ε + op(1) =

Op(1) for j = 1�2�

PROOF: The proofs of parts (a)–(d) are standard using a weak law of large
numbers (WLLN) for L1+δ-bounded independent random variables for some
δ > 0 and taking into account the fact that Xj =MX∗

3
X∗

j for j = 1�2�
Next, we prove part (e). By definition of Xj� we have

n−1/2X ′
jε = n−1/2X∗′

j ε− n−1X∗′
j X

∗
3 (n

−1X∗′
3 X

∗
3 )

−1n−1/2X∗′
3 ε(S11.16)

= n−1/2X∗′
j ε−EGnx

∗
jix

∗′
3i

(
EGnx

∗
3ix

∗′
3i

)−1
n−1/2X∗′

3 ε+ op(1)

= n−1/2X⊥
j

′ε+ op(1)�

where Gn denotes the distribution of (εi� x
∗
i ) under γn� the second equal-

ity holds by the same WLLN as above combined with the Lindeberg trian-
gular array central limit theorem (CLT) applied to n−1/2X∗′

3 ε� which yields
n−1/2X∗′

3 ε = Op(1)� and the third equality uses the definition that x⊥
ji = x∗

ji −
EGnx

∗
jix

∗′
3i(EGnx

∗
3ix

∗′
3i)

−1x∗
3i� The second equality of part (e) holds by the Linde-

berg CLT. The Lindeberg condition is implied by a Liapounov condition, which
holds by the moment bound in Γ3(γ1�γ2)� Q.E.D.

We now prove the first result of (S11.10) (which assumes |h1| < ∞). Using
(S11.5) and (S11.6), we have

Tn�2 = n1/2β2/σn + (n−1X ′
2MX1X2)

−1n−1/2X ′
2MX1ε

(σ̂/σn)(n−1X ′
2MX1X2)−1/2

(S11.17)

= n1/2 β2

σn(Q22
n )

1/2
(1 + op(1))

+ (Q22
n )

1/2n−1/2X ′
2

(
In − PX1

)
ε(1 + op(1))

= n1/2γn�1(1 + op(1))

+ (Q22
n )

1/2(e2 −Qn�12Q
−1
n�11e1)

′n−1/2X ′ε(1 + op(1))

= h1 + (Q22
n )

1/2(e2 −Qn�12Q
−1
n�11e1)

′n−1/2X⊥′ε+ op(1)�

where ε = (ε1� � � � � εn)
′� e1 = (1�0)′� e2 = (0�1)′� Qn = EGnx

⊥
i x

⊥′
i � Q

22
n is the

(2�2) element of Q−1
n � the second equality uses Lemma S3(b) and (d), the

fact that Q22
n = (Qn�22 − Q2

n�12Q
−1
n�11)

−1� and the fact that λmin(Qn) ≥ κ > 0
by definition of Γ3(γ1�γ2)� the third equality uses the definition of γn�1 and
Lemma S3(a), and the fourth equality holds by the assumption that n1/2γn�1 →
h1 and Lemma S3(e).
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Using (S11.5) and (S11.7), we have

T̃n�1(θ0) = n1/2(n−1X ′
1X1)

−1n−1X ′
1X2β2/σn + (n−1X ′

1X1)
−1n−1/2X ′

1ε

(σ̂/σn)(n−1X ′
1X1)−1/2

(S11.18)

= n1/2Qn�12β2

σnQ
1/2
n�11

(1 + op(1))+Q−1/2
n�11 n

−1/2e′
1X

′ε(1 + op(1))

= h1
Qn�12(Q

22
n )

1/2

Q1/2
n�11

+Q−1/2
n�11 n

−1/2e′
1X

⊥′ε+ op(1)�

where the second equality uses Lemma S3(a) and (d), and the third equality
uses the assumption that n1/2γn�1 = n1/2β2/(σ

2
nQ

22
n )

1/2 → h1 and Lemma S3(e).
We have

Q−1
n = 1

Qn�11Qn�22 −Q2
n�12

[
Qn�22 −Qn�12

−Qn�12 Qn�11

]
and so(S11.19)

γn�2 = Q12
n

(Q11
n Q

22
n )

1/2
= −Qn�12

(Qn�11Qn�22)1/2
�

Q22
n = Qn�11

Qn�11Qn�22 −Q2
n�12

= (Qn�22)
−1(1 − γ2

n�2)
−1�

where the first equality in the second line holds by the definition of γn�2 in (2.6)
of the paper. This yields

Qn�12(Q
22
n )

1/2

Q1/2
n�11

= Qn�12(1 − γ2
n�2)

−1/2

Q1/2
n�11Q

1/2
n�22

(S11.20)

= −γn�2(1 − γ2
n�2)

−1/2 = −h2(1 − h2
2)

−1/2 + o(1)�

Combining (S11.17), (S11.18), and (S11.20) gives(
T̃n�1(θ0)

Tn�2

)
=

( −h1h2(1 − h2
2)

−1/2 +Q−1/2
n�11 n

−1/2e′
1X

⊥′ε

h1 + (Q22
n )

1/2(e2 −Qn�12Q
−1
n�11e1)

′n−1/2X⊥′ε

)
+ op(1)�(S11.21)

The first result of (S11.10) holds by (S11.21), the Lindeberg CLT, and the
Cramér–Wold device. The Lindeberg condition is implied by a Liapounov con-
dition, which holds by the moment bound in Γ3(γ1�γ2)� The asymptotic co-
variance matrix is I2 by the following calculations. The (1�2) element of the
asymptotic covariance matrix equals

EGnQ
−1/2
n�11 e

′
1n

−1X⊥′X⊥(e2 −Qn�12Q
−1
n�11e1)(Q

22
n )

1/2(S11.22)

=Q−1/2
n�11 e

′
1Qn(e2 −Qn�12Q

−1
n�11e1)(Q

22
n )

1/2 = 0�
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where the first equality holds because EGnx
⊥
i x

⊥′
i = Qn and the second equality

holds by algebra. The (1�1) element equals

EGnQ
−1/2
n�11 e

′
1n

−1X⊥′X⊥e1Q
−1/2
n�11 =Q−1/2

n�11 e
′
1Qne1Q

−1/2
n�11 = 1�(S11.23)

The (2�2) element equals

EGn(Q
22
n )

1/2(e2 −Qn�12Q
−1
n�11e1)

′n−1X⊥′X⊥(e2 −Qn�12Q
−1
n�11e1)(Q

22
n )

1/2(S11.24)

= (Q22
n )

1/2(e2 −Qn�12Q
−1
n�11e1)

′Qn(e2 −Qn�12Q
−1
n�11e1)(Q

22
n )

1/2

= (Q22
n )

1/2(Qn�22(1 − γ2
n�2))(Q

22
n )

1/2 = 1�

where the second equality holds by algebra and the definition of γn�2 and the
third equality holds by the third result in (S11.19). This completes the proof of
the first result in (S11.10).

Next, we prove the second result in (S11.10). Using (S11.7), we have

T̂n�1(θ0) = (n−1X ′
1MX2X1)

−1n−1/2X ′
1MX2ε

(σ̂/σn)(n−1X ′
1MX2X1)−1/2

(S11.25)

= (Q11
n )

1/2(e1 −Qn�12Q
−1
n�22e2)

′n−1/2X⊥′ε+ op(1)�

where the second equality holds analogously to (S11.17). Combining (S11.17)
and (S11.25) gives(

T̂n�1(θ0)

Tn�2

)
=

(
(Q11

n )
1/2(e1 −Qn�12Q

−1
n�22e2)

′n−1/2X⊥′ε

h1 + (Q22
n )

1/2(e2 −Qn�12Q
−1
n�11e1)

′n−1/2X⊥′ε

)
+ op(1)�(S11.26)

The second result of (S11.10) holds by (S11.26), the Lindeberg CLT, and the
Cramér–Wold device. The Lindeberg condition holds as above. The 2 × 2 as-
ymptotic covariance matrix has off-diagonal element h2 and diagonal elements
equal to 1 by the following calculations. The (1�2) element equals

EGn(Q
11
n )

1/2(e1 −Qn�12Q
−1
n�22e2)

′n−1X⊥′X⊥(e2 −Qn�12Q
−1
n�11e1)(Q

22
n )

1/2(S11.27)

= (Q11
n )

1/2(e1 −Qn�12Q
−1
n�22e2)

′Qn(e2 −Qn�12Q
−1
n�11e1)(Q

22
n )

1/2

= (Q11
n )

1/2(−Qn�12(1 −Q2
n�12Q

−1
n�11Q

−1
n�22))(Q

22
n )

1/2

= (Qn�11(1 − γ2
n�2))

−1/2(−Qn�12(1 − γ2
n�2))(Qn�22(1 − γ2

n�2))
−1/2

= −Qn�12

(Qn�11Qn�22)1/2
= Q12

n

(Q11
n Q

22
n )

1/2
= γn�2 = h2 + o(1)�

where the second equality holds by algebra, the third equality holds by the
second and third results of (S11.19) and the third result of (S11.19) with 22 and
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11 interchanged, and the fifth and sixth equalities hold by the second result of
(S11.19).

The (1�1) element equals

EGn(Q
11
n )

1/2(e1 −Qn�12Q
−1
n�22e2)

′n−1X⊥′X⊥(e1 −Qn�12Q
−1
n�22e2)(Q

11
n )

1/2(S11.28)

= (Q11
n )

1/2(e1 −Qn�12Q
−1
n�22e2)

′Qn(e1 −Qn�12Q
−1
n�22e2)(Q

11
n )

1/2 = 1�

where the second equality holds by an analogous argument to that in (S11.24).
The (2�2) element equals 1 by (S11.24). This completes the proof of the second
result in (S11.10).

Finally, we show that J∗
h(x) = Φ(x) when |h1| = ∞� Equations (S11.25) and

(S11.28) hold in this case, so T̂n�1(θ0)
d→ N(0�1) under {γn :n ≥ 1}� The first

three equalities of (S11.17) hold when |h1| = ∞ and show that |Tn�2| p→ ∞�
These results combine to yield

Pθ0�γn(T̃n�1(θ0)≤ x & |Tn�2| ≤ c)= o(1)�(S11.29)

Pθ0�γn(T̂n�1(θ0)≤ x & |Tn�2|> c)= Pθ0�γn(T̂n�1(θ0)≤ x)+ o(1)→ Φ(x)

for all x ∈ R� This and (S11.9) combine to give Pθ0�γn(T
∗
n (θ0)≤ x) →Φ(x) and

J∗
h(x) =Φ(x) when |h1| = ∞�

S11.3. Verification of Assumption G

Assumption G is verified in the conservative model-selection example by
using a variant of the argument in the proof of Lemma 4 in AG1 with τn =
an = n1/2 and dn = 1� In the present case, (8.16) of AG1 holds with

Rn(t)= q−1
n

qn∑
j=1

1
(∣∣b1/2

n (θ− θ0)/σ̂
(1)
n�b�j

∣∣ ≥ t
)

(S11.30)

+ q−1
n

qn∑
j=1

1
(∣∣b1/2

n (θ− θ0)/σ̂
(2)
n�b�j

∣∣ ≥ t
)
� where

σ̂ (1)
n�b�j = σ̂n�b�j(b

−1
n X ′

1�n�b�jX1�n�b�j)
−1/2�

σ̂(2)
n�b�j = σ̂n�b�j(b

−1
n X ′

1�n�b�jMX2�n�b�jX1�n�b�j)
−1/2�

and (X1�n�b�j�X2�n�b�j� σ̂n�b�j) denotes (X1�X2� σ̂) based on the jth subsample
rather than the full sample. (Equation (8.16) of AG1 holds with Rn(t) defined
as in (S11.30) for all three versions of the tests: Tn(θ0) = T ∗

n (θ0)� −T ∗
n (θ0)�

and |T ∗
n (θ0)|�) As in the proof of Lemma 4 of AG1, it suffices to show that

Rn(t) converges in probability to zero under all sequences {γn�h :n ≥ 1} for all
t > 0� The assumption that bn/n → 0 and the result established below that
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n1/2(θ − θ0)/σn = Op(1) under all sequences {γn�h :n ≥ 1} imply that for all
δ > 0� with probability approaching 1,

Rn(t)≤ R(1)
n (δ� t)+R(2)

n (δ� t)� where(S11.31)

R(m)
n (δ� t)= q−1

n

qn∑
j=1

1
(
δσn/σ̂

(m)
n�b�j ≥ t

)
for m = 1�2� The variance of R(m)

n (δ� t) goes to zero under {γn�h :n ≥ 1} by the
same U-statistic argument for i.i.d. observations as used to establish Assump-
tion E of AG1 in the i.i.d. case; see Section 3.3 of AG1. The expectation of
R(m)

n (δ� t) equals Pθ0�γn�h(σ̂
(m)
n�b�j/σn ≤ δ/t)� We have

σ̂ (1)
n�b�j/σn = (σ̂n�b�j/σn)

[
(b−1

n X ′
1�n�b�jX1�n�b�j)

−1/2 −Q−1/2
n�11 +Q−1/2

n�11

]
(S11.32)

= Q−1/2
n�11 + op(1)�

where the second equality holds by Lemma S3 (or, more precisely, by the same
argument as used to prove Lemma S3). In addition, Q−1/2

n�11 is bounded away
from zero as n → ∞ by the definition of Γ3(γ1�γ2)� In consequence, the ex-
pectation of R(1)

n (δ� t) goes to zero for all δ sufficiently small. Since the mean
and variance of R(1)

n (δ� t) go to zero, R(1)
n (δ� t) →p 0 for δ > 0 sufficient small.

An analogous argument shows that R(2)
n (δ� t) →p 0 for δ > 0 sufficient small.

These results and (S11.31) yield Rn(t) →p 0 under all sequences {γn�h :n ≥ 1}�
as desired.

It remains to show that n1/2(θ − θ0)/σn = Op(1) under all sequences
{γn�h :n ≥ 1}� We consider two cases: |h1| = ∞ and |h1| < ∞� First, sup-
pose |h1| = ∞� Then the first three equalities of (S11.17) hold and show
that |Tn�2| →p ∞� In addition, n1/2(θ̂ − θ0)/σn = (σ̂/σn)(n

−1X ′
1MX2X1)

−1/2 ×
T̂n�1(θ0) = Op(1) by (S11.10), Lemma S3(c), and the definition of Γ3(γ1�γ2)�
Combining these results gives that when |h1| = ∞�

n1/2(θ− θ0)/σn = [
n1/2(θ̃− θ0)/σn

]
1(|Tn�2| ≤ c)(S11.33)

+ [
n1/2(θ̂− θ0)/σn

]
1(|Tn�2| > c)

= op(1)+Op(1)�

Next, suppose |h1| < ∞. Then T̂n�1(θ0) = Op(1) and T̃n�1(θ0) = Op(1) by
(S11.10). In addition, σ̂/σn →p 1� (n−1X ′

1X1)
−1/2 = Op(1)� and (n−1X ′

1MX2 ×
X1)

−1/2 = Op(1) by Lemma S3 and the definition of Γ3(γ1�γ2)� Combining
these results gives that when |h1|< ∞�

n1/2(θ− θ0)/σn = [
n1/2(θ̃− θ0)/σn

]
1(|Tn�2| ≤ c)(S11.34)

+ [
n1/2(θ̂− θ0)/σn

]
1(|Tn�2| > c)
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= (σ̂/σn)(n
−1X ′

1X1)
−1/2T̃n�1(θ0)1(|Tn�2| ≤ c)

+ (σ̂/σn)(n
−1X ′

1MX2X1)
−1/2T̂n�1(θ0)1(|Tn�2|> c)

= Op(1)�

which completes the verification of Assumption G.
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