SUPPLEMENT TO "GENERALIZED METHOD OF MOMENTS WITH MANY WEAK MOMENT CONDITIONS"

(Econometrica, Vol. 77, No. 3, May 2009, 687–719)

BY WHITNEY K. NEWEY AND FRANK WINDMEIJER

APPENDIX: PROOFS

THROUGHOUT THE APPENDICES, let C denote a generic positive constant that may be different in different uses. Let CS, M, and T denote the Cauchy–Schwarz, Markov, and triangle inequalities, respectively. Let S denote the Slutzky lemma and CMT denote the continuous mapping theorem. Also, let CM denote the conditional Markov inequality that if $E[|A_n||B_n] = O_p(\varepsilon_n)$, then $A_n = O_p(\varepsilon_n)$, and let w.p.a.1 stand for "with probability approaching 1." The following standard matrix result is used repeatedly.

LEMMA A0: If A and B are symmetric, positive semidefinite matrices, then

$$|\xi_{\min}(A) - \xi_{\min}(B)| \le ||A - B||, \quad |\xi_{\max}(A) - \xi_{\max}(B)| \le ||A - B||.$$

Also, if $\|\hat{A} - A\| \xrightarrow{p} 0$, $\xi_{\min}(A) \ge 1/C$, and $\xi_{\max}(A) \le C$, then w.p.a.1 $\xi_{\min}(\hat{A}) \ge 1/2C$ and $\xi_{\max}(\hat{A}) \le 2C$.

A.1. Consistency Proofs for General CUE

For Lemmas A1 and A10, let Y_i , Z_i (i = 1, ..., n) be i.i.d. $m \times 1$ random vectors that depend on n and have fourth moments but where we suppress an n subscript for notational convenience. Also, let

$$\bar{Y} = \sum_{i=1}^{n} Y_i / n, \quad \mu_Y = E[Y_i], \quad \Sigma_{YY} = E[Y_i Y_i'], \quad \Sigma_{YZ} = E[Y_i Z_i']$$

and let objects with Z in place of Y be defined in the corresponding way.

LEMMA A1: If
$$(Y_i, Z_i)$$
 $(i = 1, ..., n)$ are i.i.d., $\xi_{\max}(AA') \leq C$, $\xi_{\max}(A'A) \leq C$, $\xi_{\max}(\Sigma_{YY}) \leq C$, $\xi_{\max}(\Sigma_{ZZ}) \leq C$, $m/a_n^2 \longrightarrow 0$, $a_n/n \leq C$, $E[(Y_i'Y_i)^2]/na_n^2 \longrightarrow 0$, $E[(Z_i'Z_i)^2]/na_n^2 \longrightarrow 0$, $n\mu_Y'\mu_Y/a_n^2 \longrightarrow 0$, and $n\mu_Z'\mu_Z/a_n^2 \longrightarrow 0$, then

$$n\bar{Y}'A\bar{Z}/a_n = \operatorname{tr}(A\Sigma'_{YZ})/a_n + n\mu'_YA\mu_Z/a_n + o_p(1).$$

PROOF: Let
$$W_i = AZ_i$$
. Then $A\Sigma'_{YZ} = \Sigma'_{YW}$, $A\mu_Z = \mu_W$,

$$\xi_{\max}(E[W_iW_i']) = \xi_{\max}(A\Sigma_{ZZ}A') \le C\xi_{\max}(AA') \le C,$$

$$E[(W_i'W_i)^2]/na_n^2 = E[(Z_i'A'AZ_i)^2]/na_n^2 \le CE[(Z_i'Z_i)^2]/na_n^2 \longrightarrow 0.$$

DOI: 10.3982/ECTA6224

Thus the hypotheses and conclusion are satisfied with W in place of Z and A = I. Therefore, it suffices to show the result with A = I. Note that

$$\begin{split} E[(Y_i'Z_i)^2] &\leq E[(Y_i'Y_i)^2] + E[(Z_i'Z_i)^2], \\ E[Y_i'Z_jZ_j'Y_i] &= E[Y_i'\Sigma_{ZZ}Y_i] \leq CE[Y_i'Y_i] = C\operatorname{tr}(\Sigma_{YY}) \leq Cm, \\ |E[Y_i'Z_jY_i'Z_i]| &\leq C(E[Y_i'Z_jZ_i'Y_i] + E[Y_i'Z_iZ_i'Y_j]) \leq Cm. \end{split}$$

For the moment suppose $\mu_Y = \mu_Z = 0$. Let $W_n = n\bar{Y}'\bar{Z}/a_n$. Then $E[W_n] = E[Y_i'Z_i]/a_n = \text{tr}(\Sigma_{YZ})/a_n$ and

$$E[W_n]^2/n \le E[(Y_i'Z_i)^2]/na_n^2$$

\$\leq \{E[(Y_i'Y_i)^2] + E[(Z_i'Z_i)^2]\}/na_n^2 \leftrightarrow 0.

We also have

$$\begin{split} E[W_n^2] &= E\bigg[\sum_{i,j,k,\ell} Y_i' Z_j Y_k' Z_\ell / n^2 a_n^2\bigg] \\ &= E[(Y_i' Z_i)^2] / n a_n^2 \\ &\quad + (1 - 1/n) \big\{ E[W_n]^2 + E[Y_i' Z_j Y_j' Z_i] / a_n^2 + E[Y_i' Z_j Z_j' Y_i] / a_n^2 \big\} \\ &= E[W_n]^2 + o(1), \end{split}$$

so that by M,

$$W_n = \operatorname{tr}(\Sigma'_{YZ})/a_n + o_p(1).$$

In general, when μ_Y or μ_Z is nonzero, note that $E[\{(Y_i - \mu_Y)'(Y_i - \mu_Y)\}^2] \le CE[(Y_i'Y_i)^2]$ and $\xi_{\max}(\text{Var}(Y_i)) \le \xi_{\max}(\Sigma_{YY})$, so the hypotheses are satisfied with $Y_i - \mu_Y$ replacing Y_i and $Z_i - \mu_Z$ replacing Y_i and Z_i , respectively. Also,

(A.1)
$$W_n = n\bar{Y}'\bar{Z}/a_n = n(\bar{Y} - \mu_Y)'(\bar{Z} - \mu_Z)/a_n + n\mu_Y'(\bar{Z} - \mu_Z)/a_n + n(\bar{Y} - \mu_Y)'\mu_Z/a_n + n\mu_Y'\mu_Z/a_n.$$

Note that

$$\begin{split} E\big[\{n\mu_Y'(\bar{Z}-\mu_Z)/a_n\}^2\big] &= n\mu_Y'(\Sigma_{ZZ}-\mu_Z\mu_Z')\mu_Y/a_n^2 \le n\mu_Y'\Sigma_{ZZ}\mu_Y/a_n^2 \\ &\le Cn\mu_Y'\mu_Y/a_n^2 \longrightarrow 0, \end{split}$$

so by M, the second and third terms in eq. (A.1) (with Y and Z interchanged) are $o_p(1)$. Also, $\operatorname{tr}(\mu_Z \mu_Y')/a_n = a_n n^{-1} (n \mu_Y' \mu_Z/a_n^2) \longrightarrow 0$. Applying the result

for the zero mean case then gives

It is useful to work with a reparameterization

$$\delta = S_n'(\beta - \beta_0)/\mu_n.$$

For notational simplicity we simply change the argument to denote the reparameterized functions, for example, $\hat{Q}(\delta)$ will denote $\hat{Q}(\beta_0 + \mu_n S_n^{-1}\delta)$. Let $\hat{Q}^*(\delta) = \hat{g}(\delta)'\hat{\Omega}(\delta)^{-1}\hat{g}(\delta)/2$ be the objective function for quadratic $\rho(v)$, let $\tilde{Q}(\delta) = \hat{g}(\delta)'\Omega(\delta)^{-1}\hat{g}(\delta)/2$, and let $Q(\delta) = \bar{g}(\delta)'\Omega(\delta)^{-1}\bar{g}(\delta)/2 + m/2n$.

LEMMA A2: If Assumption 3 is satisfied, then for any C > 0, $\sup_{\beta \in B, \|\delta\| \le C} \mu_n^{-2} \times n |\hat{Q}^*(\delta) - Q(\delta)| \stackrel{p}{\longrightarrow} 0$.

PROOF: Note that by Assumption 3(ii), $\mu_n^{-2} n E[\|\hat{g}(0)\|^2] = \mu_n^{-2} \operatorname{tr}(\Omega(\beta_0)) \le C$, so by Assumption 3(v) and T,

$$\sup_{\|\hat{g}\| < C} \|\hat{g}(\delta)\| \le \|\hat{g}(0)\| + \sup_{\|\delta\| < C} \|\hat{g}(\delta) - \hat{g}(0)\| = O_p(\mu_n / \sqrt{n}).$$

Let $\hat{a}(\delta) = \mu_n^{-1} \sqrt{n} \Omega(\delta)^{-1} \hat{g}(\delta)$. By Assumption 3(ii),

$$\|\hat{a}(\delta)\|^{2} = \mu_{n}^{-2} n \hat{g}(\delta)' \Omega(\delta)^{-1/2} \Omega(\delta)^{-1} \Omega(\delta)^{-1/2} \hat{g}(\delta) \leq C \mu_{n}^{-2} n \|\hat{g}(\delta)\|^{2},$$

so that $\sup_{\|\delta\| < C} \|\hat{a}(\delta)\| = O_p(1)$. Also, by Assumption 3(iii) we have

$$\left|\xi_{\min}(\hat{\varOmega}(\delta)) - \xi_{\min}(\varOmega(\delta))\right| \leq \sup_{\|\delta\| < C} \|\hat{\varOmega}(\delta) - \varOmega(\delta)\| \stackrel{p}{\longrightarrow} 0,$$

so that $\xi_{\min}(\hat{\Omega}(\delta)) \geq C$, and hence $\xi_{\max}(\hat{\Omega}(\delta)^{-1}) \leq C$ for all $\|\delta\| \leq C$, w.p.a.1. Therefore,

$$\begin{split} &\mu_n^{-2} n |\hat{Q}^*(\delta) - \tilde{Q}(\delta)| \\ &\leq \left| \hat{a}(\delta)' [\hat{\Omega}(\delta) - \Omega(\delta)] \hat{a}(\delta) \right| \\ &+ \left| \hat{a}(\delta)' [\hat{\Omega}(\delta) - \Omega(\delta)] \hat{\Omega}(\delta)^{-1} [\hat{\Omega}(\delta) - \Omega(\delta)] \hat{a}(\delta) \right| \\ &\leq \|\hat{a}(\delta)\|^2 \big(\|\hat{\Omega}(\delta) - \Omega(\delta)\| + C \|\hat{\Omega}(\delta) - \Omega(\delta)\|^2 \big) \overset{p}{\longrightarrow} 0. \end{split}$$

Next, let $a(\tilde{\delta}, \delta) = \mu_n^{-1} \sqrt{n} \Omega(\delta)^{-1} \bar{g}(\tilde{\delta})$ and $Q(\tilde{\delta}, \delta) = \bar{g}(\tilde{\delta})' \Omega(\delta)^{-1} \bar{g}(\tilde{\delta})/2 + m/2n$. By Assumption 3, $\sup_{\|\tilde{\delta}\| \le C, \|\tilde{\delta}\| \le C} \|a(\delta, \tilde{\delta})\| \le C$. Then by Assumption 3(iv), for $\|\delta\| \le C$ and $\|\tilde{\delta}\| \le C$, it follows by $\mu_n S_n^{-1}$ bounded that

$$\begin{split} \mu_n^{-2} n |Q(\tilde{\delta}, \tilde{\delta}) - Q(\tilde{\delta}, \delta)| &= \left| a(\tilde{\delta}, \tilde{\delta})' [\Omega(\tilde{\delta}) - \Omega(\delta)] a(\tilde{\delta}, \delta) \right| \\ &\leq C \|\mu_n S_n^{-1}(\tilde{\delta} - \delta)\| \leq C \|\tilde{\delta} - \delta\|. \end{split}$$

Also, by T and Assumption 3, for $\|\delta\| \le C$ and $\|\tilde{\delta}\| \le C$,

$$\begin{split} & \mu_n^{-2} n |Q(\tilde{\delta}, \delta) - Q(\delta, \delta)| \\ & \leq C \mu_n^{-2} n \left(\|\bar{g}(\tilde{\delta}) - \bar{g}(\delta)\|^2 + \|\bar{g}(\delta)\| \|\bar{g}(\tilde{\delta}) - \bar{g}(\delta)\| \right) \\ & \leq C \|\tilde{\delta} - \delta\|. \end{split}$$

Then by T it follows that $\mu_n^{-2}n|Q(\tilde{\delta})-Q(\delta)|=\mu_n^{-2}n|Q(\tilde{\delta},\tilde{\delta})-Q(\delta,\delta)|\leq C\|\tilde{\delta}-\delta\|$. Therefore, $\mu_n^{-2}nQ(\delta)$ is equicontinuous on $\|\tilde{\delta}\|\leq C$ and $\|\delta\|\leq C$. An analogous argument with $\hat{a}(\tilde{\delta},\delta)=\mu_n^{-1}\sqrt{n}\Omega(\delta)^{-1}\hat{g}(\tilde{\delta})$ and $\tilde{Q}(\tilde{\delta},\delta)=\hat{g}(\tilde{\delta})'\Omega(\delta)^{-1}\hat{g}(\tilde{\delta})$ replacing $a(\tilde{\delta},\delta)$ and $Q(\tilde{\delta},\delta)$, respectively, implies that $\mu_n^{-2}n|\tilde{Q}(\tilde{\delta})-\tilde{Q}(\delta)|=\mu_n^{-2}n|\tilde{Q}(\tilde{\delta},\tilde{\delta})-\tilde{Q}(\delta,\delta)|\leq \hat{M}\|\tilde{\delta}-\delta\|$ on $\|\tilde{\delta}\|\leq C$ and $\|\delta\|\leq C$, with $\hat{M}=O_p(1)$, giving stochastic equicontinuity of $\mu_n^{-2}n\tilde{Q}(\delta)$.

Since $\mu_n^{-2}n\tilde{Q}(\delta)$ and $\mu_n^{-2}nQ(\delta)$ are stochastically equicontinuous, it suffices by Newey (1991, Theorem 2.1) to show that $\mu_n^{-2}n\tilde{Q}(\delta) = \mu_n^{-2}nQ(\delta) + o_p(1)$ for each δ . Apply Lemma A1 with $Y_i = Z_i = g_i(\delta)$, $A = \Omega(\delta)^{-1}$, and $a_n = \mu_n^2$. By Assumption 3, $\xi_{\max}(A'A) = \xi_{\max}(AA') = \xi_{\max}(\Omega(\delta)^{-2}) \leq C$, $\xi_{\max}(\Sigma_{YY}) = \xi_{\max}(\Omega(\delta)) \leq C$, $E[(Y_i'Y_i)^2]/na_n^2 = E[\{g_i(\delta)'g_i(\delta)\}^2]/n\mu_n^4 \longrightarrow 0$, and $n\mu_Y'\mu_Y/a_n^2 \leq Cn\bar{g}(\delta)'\Omega(\delta)^{-1}\bar{g}(\delta)/\mu_n^4 = C(nQ(\delta)/\mu_n^2 - m/\mu_n^2)/\mu_n^2 \longrightarrow 0$, where the last expression follows by equicontinuity of $\mu_n^{-2}nQ(\delta)$. Thus, the hypotheses of Lemma A1 are satisfied. Note that $A\Sigma_{YZ}' = A\Sigma_{ZZ} = A\Sigma_{YY} = mI_m/\mu_n^2$, so by the conclusion of Lemma A1,

$$\mu_n^{-2} n \tilde{Q}(\delta) = \text{tr}(I_m) / \mu_n^2 + \mu_n^{-2} n \bar{g}(\delta)' \Omega(\delta)^{-1} \bar{g}(\delta) + o_p(1)$$

$$= \mu_n^{-2} n Q(\delta) + o_p(1). \qquad Q.E.D.$$

Let
$$\hat{P}(\beta, \lambda) = \sum_{i=1}^{n} \rho(\lambda' g_i(\beta))/n$$
.

LEMMA A3: If Assumptions 3 and 4 are satisfied, then w.p.a.1 $\hat{\beta} = \arg\min_{\beta \in B} \hat{Q}(\beta)$, $\hat{\lambda} = \arg\max_{\lambda \in \hat{L}_n(\hat{\beta})} \hat{P}(\hat{\beta}, \lambda)$, and $\tilde{\lambda} = \arg\max_{\lambda \in \hat{L}(\beta_0)} \hat{P}(\beta_0, \lambda)$ exist, $\|\tilde{\lambda}\| = O_p(\sqrt{m/n})$, $\|\hat{\lambda}\| = O_p(\sqrt{m/n})$, $\|\hat{g}(\hat{\beta})\| = O_p(\sqrt{m/n})$, and $\hat{Q}^*(\hat{\beta}) \leq \hat{Q}^*(\beta_0) + o_p(m/n)$.

PROOF: Let $b_i = \sup_{\beta \in B} \|g_i(\beta)\|$. A standard result gives $\max_{i \le n} b_i = O_p(n^{1/\gamma}(E[b_i^{\gamma}])^{1/\gamma})$. Also, by Assumption 4 there exists τ_n such that $\sqrt{m/n} = o(\tau_n)$ and $\tau_n = o(n^{-1/\gamma}(E[b_i^{\gamma}])^{-1/\gamma})$. Let $L_n = \{\lambda : \|\lambda\| \le \tau_n\}$. Note that

$$\sup_{\lambda \in L_n, \beta \in B, i < n} |\lambda' g_i(\beta)| \le \tau_n \max_{i \le n} b_i = O_p \left(\tau_n n^{1/\gamma} (E[b_i^{\gamma}])^{1/\gamma} \right) \longrightarrow 0.$$

Then there is C such that w.p.a.1, for all $\beta \in B$, $\lambda \in L_n$, and $i \le n$, we have

$$L_n \subset \hat{L}(\beta), \quad -C \leq \rho_2(\lambda'g_i(\beta)) \leq -C^{-1}, \quad \left|\rho_3(\lambda'g_i(\beta))\right| \leq C.$$

By a Taylor expansion around $\lambda = 0$ with Lagrange remainder, for all $\lambda \in L_n$,

$$\hat{P}(\beta,\lambda) = -\lambda' \hat{g}(\beta) + \lambda' \left[\sum_{i=1}^{n} \rho_2(\bar{\lambda}' g_i(\beta)) g_i(\beta) g_i(\beta)' / n \right] \lambda,$$

where $\bar{\lambda}$ lies on the line joining λ and 0. Then by Lemma A0, w.p.a.1 for all $\beta \in B$ and $\lambda \in L_n$,

(A.2)
$$-\lambda' \hat{g}(\beta) - C \|\lambda\|^2 \le \hat{P}(\beta, \lambda) \le -\lambda' \hat{g}(\beta) - C^{-1} \|\lambda\|^2$$

$$\le \|\lambda\| \|\hat{g}(\beta)\| - C^{-1} \|\lambda\|^2.$$

Let $\tilde{g}=\hat{g}(\beta_0)$ and $\tilde{\lambda}=\arg\max_{\lambda\in L_n}\hat{P}(\beta_0,\lambda)$. By $\xi_{\max}(\Omega(\beta_0))\leq C$ it follows that $E[\|\tilde{g}\|^2]=\operatorname{tr}(\Omega)/n\leq Cm/n$, so by M, $\|\tilde{g}\|=O_p(\sqrt{m/n})$. By the right-hand side inequality in eq. (A.2),

$$0 = \hat{P}(\beta_0, 0) \le \hat{P}(\beta_0, \tilde{\lambda}) \le ||\tilde{\lambda}|| ||\tilde{g}|| - C^{-1} ||\tilde{\lambda}||^2.$$

Subtracting $C^{-1}\|\tilde{\lambda}\|^2$ from both sides and dividing through by $C^{-1}\|\tilde{\lambda}\|$ gives

$$\|\tilde{\lambda}\| \le C \|\tilde{g}\| = O_p(\sqrt{m/n}).$$

Since $\sqrt{m/n} = o(\tau_n)$ it follows that, w.p.a.1, $\tilde{\lambda} \in \text{int}(L_n)$ and is therefore a local maximum of $\hat{P}(\beta_0, \lambda)$ in $\hat{L}(\beta)$. By concavity of $P(\beta_0, \lambda)$ in λ , a local maximum is a global maximum, that is,

$$\hat{P}(\beta_0, \tilde{\lambda}) = \max_{\lambda \in \hat{L}(\beta_0)} \hat{P}(\beta_0, \lambda) = \hat{Q}(\beta_0).$$

Summarizing, w.p.a.1 $\tilde{\lambda} = \arg\max_{\lambda \in \hat{L}(\beta_0)} \hat{P}(\beta_0, \lambda)$ exists and $\|\tilde{\lambda}\| = O_p(\sqrt{m/n})$. Also, plugging $\tilde{\lambda}$ back into the previous inequality gives

$$\hat{Q}(\beta_0) = O_p(m/n).$$

Next, let $\hat{Q}_{\tau_n}(\beta) = \max_{\lambda \in L_n} \hat{P}(\beta, \lambda)$. By continuity of $g_i(\beta)$ and $\rho(v)$, and by the theorem of the maximum, $\hat{Q}_{\tau_n}(\beta)$ is continuous on B, so $\hat{\beta}_{\tau_n} = \arg\min_{\beta \in B} \hat{Q}_{\tau_n}(\beta)$ exists by compactness of B. Let $\hat{g}_{\tau_n} = \hat{g}(\hat{\beta}_{\tau_n})$. By the left-hand side inequality in eq. (A.2), for all $\lambda \in L_n$,

$$(A.3) -\lambda' \hat{g}_{\tau_n} - C \|\lambda\|^2 \le \hat{P}(\hat{\beta}_{\tau_n}, \lambda) \le \hat{Q}_{\tau_n}(\hat{\beta}_{\tau_n}) \le \hat{Q}_{\tau_n}(\beta_0) \le \hat{Q}(\beta_0)$$
$$= O_p(m/n).$$

Consider $\lambda = -(\hat{g}_{\tau_n}/\|\hat{g}_{\tau_n}\|)\tau_n$. Plugging this into eq. (A.3) gives

$$\tau_n \|\hat{g}_{\tau_n}\| - c\tau_n^2 = O_p(m/n).$$

Note that for *n* large enough, $m/n \le C\tau_n^2$, so that dividing by τ_n^2 gives

$$\|\hat{g}_{\tau_n}\| \le O_p(\tau_n^{-1}m/n) + C\tau_n = O_p(\tau_n).$$

Consider any $\alpha_n \longrightarrow 0$ and let $\check{\lambda} = -\alpha_n \hat{g}_{\tau_n}$. Then $\|\check{\lambda}\| = o_p(\tau_n)$ so that $\check{\lambda} \in L_n$ w.p.a.1. Substituting this $\check{\lambda}$ in the above inequality gives

$$\alpha_n \|\hat{g}_{\tau_n}\|^2 - C\alpha_n^2 \|\hat{g}_{\tau_n}\|^2 = \alpha_n (1 - C\alpha_n) \|\hat{g}_{\tau_n}\|^2 = O_p \left(\frac{m}{n}\right).$$

Note that $1 - C\alpha_n \to 1$, so that this inequality implies that $\alpha_n \|\hat{g}_{\tau_n}\|^2 = O_p(m/n)$. Since α_n goes to zero as slowly as desired, it follows that

$$\|\hat{g}(\hat{\beta}_{\tau_n})\| = \|\hat{g}_{\tau_n}\| = O_p(\sqrt{m/n}).$$

Let $\hat{\lambda} = \arg \max_{\lambda \in L_n} \hat{P}(\hat{\beta}_{\tau_n}, \lambda)$. It follows exactly as for $\tilde{\lambda}$, with $\hat{\beta}_{\tau_n}$ replacing β_0 , that $\|\hat{\lambda}\| = O_p(\sqrt{m/n})$ and, w.p.a.1, $\hat{\lambda} = \arg \max_{\lambda \in \hat{L}(\beta)} \hat{P}(\hat{\beta}_{\tau_n}, \lambda)$, so that

$$\hat{Q}_{\tau_n}\big(\hat{\beta}_{\tau_n}\big) = \hat{P}\big(\hat{\beta}_{\tau_n},\,\hat{\lambda}\big) = \max_{\lambda \in \hat{L}(\beta)} \hat{P}\big(\hat{\beta}_{\tau_n},\,\lambda\big) = \hat{Q}\big(\hat{\beta}_{\tau_n}\big).$$

Then w.p.a.1, by the definition of $\hat{Q}_{\tau_n}(\beta)$ and $\hat{\beta}_{\tau_n}$, for all $\beta \in B$,

$$\hat{Q}(\hat{\beta}_{\tau_n}) = \hat{Q}_{\tau_n}(\hat{\beta}_{\tau_n}) \leq \hat{Q}_{\tau_n}(\beta) = \max_{\lambda \in I} \hat{P}(\beta, \lambda) \leq \hat{Q}(\beta).$$

Thus, w.p.a.1 we can take $\hat{\beta} = \hat{\beta}_{\tau_n}$.

Now expand around $\lambda = 0$ to obtain, for $\hat{g}_i = g_i(\hat{\beta})$ and $\hat{\Omega} = \hat{\Omega}(\hat{\beta})$, w.p.a.1,

$$\hat{Q}(\hat{\beta}) = \hat{P}(\hat{\beta}, \hat{\lambda}) = -\hat{g}'\hat{\lambda} - \frac{1}{2}\hat{\lambda}'\hat{\Omega}\hat{\lambda} + \hat{r}, \quad \hat{r} = \frac{1}{6}\sum \rho_3(\bar{\lambda}'\hat{g}_i)(\hat{\lambda}'\hat{g}_i)^3/n,$$

where $\|\bar{\lambda}\| \leq \|\hat{\lambda}\|$ and $\hat{r} = 0$ for the CUE (where $\rho(v)$ is quadratic). When $\hat{\beta}$ is not the CUE, w.p.a.1,

$$\begin{aligned} |\hat{r}| &\leq \|\hat{\lambda}\| \max_{i} b_{i} C \hat{\lambda}' \hat{\Omega}(\hat{\beta}) \hat{\lambda} \leq O_{p} \left(\sqrt{m/n} n^{1/\gamma} (E[b_{i}^{\gamma}])^{1/\gamma} \right) C \|\bar{\lambda}\|^{2} \\ &= o_{p}(m/n). \end{aligned}$$

Also, $\hat{\lambda}$ satisfies the first-order conditions $\sum_{i=1}^n \rho_1(\hat{\lambda}'\hat{g}_i)\hat{g}_i/n = 0$. By an expansion, $\rho_1(\hat{\lambda}'\hat{g}_i) = -1 - \hat{\lambda}'\hat{g}_i + \rho_3(\bar{v}_i)(\lambda'\hat{g}_i)^2/2$, where \bar{v}_i lies in between 0 and $\lambda'\hat{g}_i$ and either $\rho_3(\bar{v}_i) = 0$ for the CUE or $\max_{i \leq n} |\bar{v}_i| \leq \max_{i \leq n} |\hat{\lambda}'\hat{g}_i| \leq \tau_n \longrightarrow 0$. Expanding around $\lambda = 0$ gives

$$0 = -\hat{g} - \hat{\Omega}\hat{\lambda} + \hat{R}, \quad \hat{R} = \frac{1}{2} \sum_{i=1}^{n} \rho_{3}(\bar{v}_{i})(\hat{\lambda}'\hat{g}_{i})^{2}\hat{g}_{i}/n = 0.$$

Then either $\hat{R} = 0$ for the CUE or we have

$$\|\hat{R}\| \leq C \max_{i} b_{i} |\rho_{3}(\bar{v}_{i})| \hat{\lambda}' \hat{\Omega} \hat{\lambda} = O_{p} \left(n^{1/\gamma} (E[b_{i}^{\gamma}])^{1/\gamma} m/n \right) = o_{p} (\sqrt{m/n}).$$

Solving for $\hat{\lambda} = \hat{\Omega}^{-1}(-\hat{g} + \hat{R})$ and plugging into the expansion for $\hat{Q}(\hat{\beta})$ gives

$$\begin{split} \hat{Q}(\hat{\beta}) &= -\hat{g}'\hat{\Omega}^{-1}(-\hat{g}+\hat{R}) - \frac{1}{2}(-\hat{g}+\hat{R})'\hat{\Omega}^{-1}(-\hat{g}+\hat{R}) + o_p(m/n) \\ &= \hat{Q}^*(\hat{\beta}) - \hat{R}'\hat{\Omega}^{-1}\hat{R}/2 + o_p(m/n) = \hat{Q}^*(\hat{\beta}) + o_p(m/n). \end{split}$$

An exactly analogous expansion, replacing $\hat{\beta}$ with β_0 , gives

$$\hat{Q}(\hat{\beta}) = \hat{Q}^*(\beta_0) + o_p(m/n).$$

Then by the definition of $\hat{\beta}$,

$$\hat{Q}^{*}(\hat{\beta}) = \hat{Q}(\hat{\beta}) + o_{p}(m/n) \le \hat{Q}(\beta_{0}) + o_{p}(m/n)$$

$$= \hat{Q}^{*}(\beta_{0}) + o_{p}(m/n).$$
Q.E.D.

LEMMA A4: If Assumptions 2–4 are satisfied, then $\|\hat{\delta}\| = O_p(1)$.

PROOF: By Lemma A3, w.p.a.1, $\|\hat{g}(\hat{\beta})\| = O_p(\sqrt{m/n})$, so that Assumption 2(iii) and $m/\mu_n^2 \le C$ give

$$\|\hat{\delta}\| \leq C\mu_n^{-1}\sqrt{n}\|\hat{g}(\hat{\beta})\| + O_p(1) = O_p(\sqrt{m}/\mu_n) + O_p(1) = O_p(1).$$
Q.E.D.

PROOF OF THEOREM 1: By Lemma A3 and $m/\mu_n^2 \le C$ it follows that, parameterizing in terms of $\delta = S'_n(\beta - \beta_0)/\mu_n$ (where $\delta_0 = 0$),

$$\mu_n^{-2} n \hat{Q}^*(\hat{\delta}) \le \mu_n^{-2} n \hat{Q}^*(0) + o_p(1).$$

Consider any ε , $\gamma > 0$. By Lemma A4 there is C such that $\Pr(\mathcal{A}_1) \geq 1 - \varepsilon/3$ for $\mathcal{A}_1 = \{\|\hat{\delta}\| \leq C\}$. In the notation of Lemma A2 let $\mathcal{A}_2 = \{\sup_{\|\delta\| \leq C} \mu_n^{-2} n | \hat{Q}^*(\delta) - Q(\delta)| < \gamma/3 \}$ and $\mathcal{A}_3 = \{\mu_n^{-2} n \hat{Q}^*(\hat{\delta}) \leq \mu_n^{-2} n \hat{Q}^*(0) + \gamma/3 \}$. By Lemma A2, for all n large enough, $\Pr(\mathcal{A}_2) \geq 1 - \varepsilon/3$ and by Lemma A3, $\Pr(\mathcal{A}_3) \geq 1 - \varepsilon/3$. Then $\Pr(\mathcal{A}_1 \cap \mathcal{A}_2 \cap \mathcal{A}_3) \geq 1 - \varepsilon$ and on $\mathcal{A}_1 \cap \mathcal{A}_2 \cap \mathcal{A}_3$,

$$\mu_n^{-2} n Q(\hat{\delta}) \le \mu_n^{-2} n \hat{Q}^*(\hat{\delta}) + \gamma/3 \le \mu_n^{-2} n \hat{Q}^*(0) + 2\gamma/3$$

$$\le \mu_n^{-2} n Q(0) + \gamma = m/\mu_n^2 + \gamma,$$

where the second inequality follows by $\hat{\delta} \in \mathcal{A}_3$. Subtracting m/μ_n^2 from both sides it follows that \mathcal{A} implies $\mu_n^{-2} n \bar{g}(\hat{\delta})' \Omega(\hat{\delta})^{-1} \bar{g}(\hat{\delta}) \leq \gamma$. Since ε , γ can be any positive constants, we have $\mu_n^{-2} n \bar{g}(\hat{\delta})' \Omega(\hat{\delta})^{-1} \bar{g}(\hat{\delta}) \stackrel{p}{\longrightarrow} 0$. Then, by Assumptions 2(ii) and 3(ii),

$$\mu_n^{-2} n \bar{g}(\hat{\delta})' \Omega(\hat{\delta})^{-1} \bar{g}(\hat{\delta}) \ge C \mu_n^{-2} n \bar{g}(\bar{\beta})' \bar{g}(\bar{\beta}) \ge C \|\hat{\delta}\|^2,$$

so that $\|\hat{\delta}\| \stackrel{p}{\longrightarrow} 0$.

A.2. Conditions for the Linear Model

O.E.D.

LEMMA A5: If Assumption 5 is satisfied, then $\xi_{\min}(E[(y_i - x_i'\beta)^2 | Z_i, Y_i]) \ge C$. Also, for $X_i = (y_i, x_i')'$, $E[||X_i||^4 | Z_i, Y_i] \le C$.

PROOF: Let $\Delta = \beta_0 - \beta$ and let $\tilde{\Delta}$ be the elements of Δ corresponding to the vector $\tilde{\eta}_i$ of nonzero elements of η_i from Assumption 5. Then $y_i - x_i'\beta = \varepsilon_i + \tilde{\eta}_i'\tilde{\Delta} + Y_i'\Delta$, so that

$$\begin{split} E[(y_i - x_i'\beta)^2 | Z_i, Y_i] &\geq E[(\varepsilon_i + \tilde{\eta}_i'\tilde{\Delta})^2 | Z_i, Y_i] \\ &= (1, \tilde{\Delta}') \Sigma_i (1, \tilde{\Delta}')' \geq \xi_{\min}(\Sigma_i) (1 + \tilde{\Delta}'\tilde{\Delta}) \geq C, \end{split}$$

giving the first conclusion. Also, $E[\|x_i\|^4|Z_i, Y_i] \leq CE[\|\eta_i\|^4|Z_i, Y_i] + CE[\|Y_i\|^4|Z_i, Y_i] \leq C$ and $E[y_i^4|Z_i, Y_i] \leq CE[\|x_i\|^4\|\beta_0\|^4|Z_i, Y_i] + E[\varepsilon_i^4|Z_i, Y_i] \leq C$, giving the second conclusion. *Q.E.D.*

LEMMA A6: If Assumption 5 is satisfied, then there is a constant C such that for every $\beta \in B$ and m, $C^{-1}I_m \leq \Omega(\beta) \leq CI_m$.

PROOF: By Lemma A4, $C^{-1} \le E[(y_i - x_i'\beta)^2 | Z_i] \le C$, so that the conclusion follows by $I_m = E[Z_i Z_i']$ and $\Omega(\beta) = E[Z_i Z_i' E[(y_i - x_i'\beta)^2 | Z_i]]$. Q.E.D.

LEMMA A7: If Assumption 5 is satisfied, then Assumption 3(v) is satisfied, $\|n^{-1}\sum_i Z_i z_i' - E[Z_i z_i']\| \xrightarrow{p} 0$, and $\|n^{-1}\sum_i Z_i \eta_i'\| = O_p(\sqrt{m/n})$.

PROOF: For the last conclusion, by $E[\eta_i'\eta_i|Z_i] \leq C$ we have

$$E\bigg[\bigg\|n^{-1}\sum_{i}Z_{i}\eta_{i}'\bigg\|^{2}\bigg] = n^{-1}E[Z_{i}'Z_{i}\eta_{i}'\eta_{i}] \leq Cn^{-1}E[Z_{i}'Z_{i}] = Cm/n,$$

so the last conclusion follows by M. For the second to last conclusion, we have

$$E\left[\left\|n^{-1}\sum_{i}Z_{i}z'_{i} - E[Z_{i}z'_{i}]\right\|^{2}\right] \leq E[Z'_{i}Z_{i}z'_{i}z_{i}]/n$$

$$\leq \sqrt{E[\|Z_{i}\|^{4}]/n}\sqrt{E[\|z_{i}\|^{4}]/n} \longrightarrow 0,$$

so it also follows by M.

Next, by Assumption 5 and Lemma A6 we have

$$||E[Z_i z_i']||^2 = \operatorname{tr} \left\{ E[z_i Z_i'] (E[Z_i Z_i'])^{-1} E[Z_i z_i'] \right\} \le \operatorname{tr} (E[z_i z_i']) \le C.$$

Then we have by CS, $Y_i = S_n z_i / \sqrt{n}$, $G = -E[Z_i z_i'] S_n' / \sqrt{n}$, and

$$\begin{split} \mu_n^{-1} \sqrt{n} \| \bar{g}(\tilde{\beta}) - \bar{g}(\beta) \| &= \mu_n^{-1} \sqrt{n} \| G(\tilde{\beta} - \beta) \| = \| E[Z_i z_i'] (\tilde{\delta} - \delta) \| \\ &\leq \| E[Z_i z_i'] \| \| \tilde{\delta} - \delta \| \leq C \| \tilde{\delta} - \delta \|. \end{split}$$

Also, by $\hat{G} = \hat{G}(\beta)$ not depending on β , by $||S_n^{-1}|| \le C/\mu_n$, and by T,

$$\begin{split} \|\hat{G}\sqrt{n}S_{n}^{-1'}\| &\leq \left\|\frac{1}{\sqrt{n}}\sum_{i}Z_{i}\eta_{i}'S_{n}^{-1'}\right\| \\ &+ \left\|\frac{1}{n}\sum_{i}Z_{i}z_{i}' - E[Z_{i}z_{i}']\right\| + \|E[Z_{i}z_{i}']\| \\ &= O_{p}\left(\frac{\sqrt{n}}{\mu_{n}}\sqrt{\frac{m}{n}}\right) + o_{p}(1) + O(1) = O_{p}(1), \end{split}$$

so that for $\hat{M} = \|\hat{G}\sqrt{n}S_n^{-1}\| = O_p(1)$, by CS,

$$\begin{split} \mu_{n}^{-1} \sqrt{n} \| \hat{g}(\tilde{\beta}) - \hat{g}(\beta) \| &= \mu_{n}^{-1} \sqrt{n} \| \hat{G}(\tilde{\beta} - \beta) \| \\ &= \| \hat{G} \sqrt{n} S_{n}^{-1} (\tilde{\delta} - \delta) \| \le \hat{M} \| \tilde{\delta} - \delta \|. \end{split} \qquad Q.E.D.$$

LEMMA A8: If Assumption 5 is satisfied, then Assumption 3(iii) and Assumption 8(i) are satisfied.

PROOF: Let $X_i = (y_i, x_i')'$ and $\alpha = (1, -\beta')'$, so that $y_i - x_i'\beta = X_i'\alpha$. Note that

$$egin{aligned} \hat{\Omega}(eta) - \Omega(eta) &= \sum_{k,\ell=1}^{p+1} \hat{F}_{k\ell} lpha_k lpha_\ell, \hat{F}_{k\ell} \ &= \sum_{i=1}^n Z_i Z_i' X_{ik} X_{i\ell} / n - E[Z_i Z_i' X_{ik} X_{i\ell}]. \end{aligned}$$

Then $E[X_{ik}^2 X_{i\ell}^2 | Z_i] \leq C$ by Lemma A4 so that

$$E[\|\hat{F}_{k\ell}\|^2] \le CE[(Z_i'Z_i)^2 E[X_{ik}^2 X_{i\ell}^2 | Z_i]]/n \le CE[(Z_i'Z_i)^2]/n \longrightarrow 0.$$

Then $\sup_{\beta \in B} \|\hat{\Omega}(\beta) - \Omega(\beta)\| \stackrel{p}{\longrightarrow} 0$ follows by B bounded. The other parts of Assumption 8(i) follow similarly upon noting that

$$\hat{\Omega}^{k}(oldsymbol{eta}) - \Omega^{k}(oldsymbol{eta}) = \sum_{\ell=1}^{p+1} \hat{F}_{k\ell} lpha_{\ell}, \hat{\Omega}^{k,\ell}(oldsymbol{eta}) - \Omega^{k,\ell}(oldsymbol{eta}) = \hat{F}_{k\ell}, \hat{\Omega}^{k\ell}(oldsymbol{eta}) = \Omega^{k\ell}(oldsymbol{eta}) = 0.$$
 Q.E.D.

LEMMA A9: If Assumption 5 is satisfied, then Assumption 3(iv) and Assumption 8(ii) are satisfied.

PROOF: Let $\tilde{\Sigma}_i = E[X_i X_i' | Z_i]$, which is bounded by Lemma A5. Then by $\alpha = (1, -\beta)$ bounded on B we have $|\tilde{\alpha}'\tilde{\Sigma}_i\tilde{\alpha} - \alpha'\tilde{\Sigma}_i\alpha| \le C \|\tilde{\beta} - \beta\|$. Also, $E[(a'Z_i)^2] = a'E[Z_iZ_i']a = \|a\|^2$. Therefore,

$$\begin{split} |a'\Omega(\tilde{\beta})b - a'\Omega(\beta)b| &= \left| E \left[(a'Z_i)(b'Z_i)E[(X_i'\tilde{\alpha})^2 - (X_i'\alpha)^2 | Z_i] \right] \right| \\ &\leq E[|a'Z_i||b'Z_i||\tilde{\alpha}'\tilde{\Sigma}_i\tilde{\alpha} - \alpha'\tilde{\Sigma}_i\alpha|] \\ &\leq CE[(a'Z_i)^2]^{1/2}E[(b'Z_i)^2]^{1/2} \|\tilde{\beta} - \beta\| \\ &< C\|a\|\|b\|\|\tilde{\beta} - \beta\|. \end{split}$$

We also have

$$|a'\Omega^{k}(\tilde{\beta})b - a'\Omega^{k}(\beta)b| = |2E[(a'Z_{i})(b'Z_{i})E[x_{ik}X'_{i}(\tilde{\alpha} - \alpha)|Z_{i}]]|$$

$$\leq CE[|a'Z_{i}||b'Z_{i}|E[|x_{ij}|||X_{i}|||Z_{i}]]|\tilde{\beta} - \beta||$$

$$\leq C||a|||b|||\tilde{\beta} - \beta||.$$

The other parts of Assumption 8(ii) follow by $\Omega^{k,\ell}(\beta)$ and $\Omega^{k\ell}(\beta)$ not depending on β . Q.E.D.

PROOF OF THEOREM 2: The result will follow by Theorem 1 upon showing that Assumptions 2 and 3 are true. We now verify Assumption 2. Assumption 2(i) holds by hypothesis. For Assumption 2(ii), note that by $G = -E[Z_i z_i'] S_n' / \sqrt{n}$,

$$\mu_n^{-1} \sqrt{n} \bar{g}(\beta) = \sqrt{n} G(\beta - \beta_0) / \mu_n = -\sqrt{n} G S_n^{-1} \delta.$$

Then by $nS_n^{-1}G'GS_n^{-1} \ge CnS_n^{-1}G'\Omega^{-1}GS_n^{-1}$ and Assumption 1 we have

$$\mu_n^{-1} \sqrt{n} \|\bar{g}(\beta)\| = (\delta' [nS_n^{-1} G' G S_n^{-1}] \delta)^{1/2} \ge C \|\delta\|.$$

Next, let $\hat{R} = \sum_{i} (Z_i z'_i - E[Z_i z'_i])/n$ and note that

$$\begin{split} \hat{g}(\beta) &= \hat{g}(\beta_0) - \frac{1}{n} \sum_{i} Z_i x_i' (\beta - \beta_0) \\ &= \hat{g}(\beta_0) - \frac{1}{n} \sum_{i} Z_i \eta_i' (\beta - \beta_0) + \mu_n n^{-1/2} (-\hat{R} + E[Z_i z_i']) \delta. \end{split}$$

By Lemma A7, $\|\hat{R}\| \stackrel{p}{\longrightarrow} 0$, so that by T and CS, w.p.a.1,

$$\|(-\hat{R} + E[Z_i z_i'])\delta\| \ge \|E[Z_i z_i']\delta\| - \|\hat{R}\delta\| \ge (C - \|\hat{R}\|)\|\delta\| \ge C\|\delta\|.$$

Also, as previously discussed, $\mu_n^{-1}\sqrt{n}\|\hat{g}(\beta_0)\|=O_p(1)$ and by Lemma A7, $\mu_n^{-1}\sqrt{n}\|\sum_i Z_i\eta_i'/n\|=O_p(1)$, so that by B compact,

$$\hat{M} = \mu_n^{-1} \sqrt{n} \sup_{\beta \in B} \left\| \hat{g}(\beta_0) - \frac{1}{n} \sum_i Z_i \eta_i'(\beta - \beta_0) \right\| = O_p(1).$$

Then by T it follows that w.p.a.1 for all $\beta \in B$,

$$\|\delta\| \le C \|(-\hat{R} + E[Z_i z_i'])\delta\| \le \mu_n^{-1} \sqrt{n} \|\hat{g}(\beta)\| + \hat{M},$$

giving Assumption 2(iii).

Next, Assumption 3(i) holds by Lemma A5 and $E[(Z_i'Z_i)^2]/n \rightarrow 0$, (ii) holds by Lemma A6, (iii) holds by Lemma A9, (iv) holds by Lemma A8, and (v) holds by Lemma A7. *Q.E.D.*

A.3. Asymptotic Normality

The next result is a general result on asymptotic normality of the sum of a linear and a quadratic form. Let X_i denote a scalar random variable where we

also suppress dependence on n, let Z_i and Y_i be $m \times 1$ random vectors as in Lemma A1, and let $\Psi = \Sigma_{ZZ}\Sigma_{YY} + \Sigma_{ZY}^2$, $\bar{\xi}_Z = \xi_{\max}(\Sigma_{ZZ})$, and $\bar{\xi}_Y = \xi_{\max}(\Sigma_{YY})$.

LEMMA A10: If (X_i, Y_i, Z_i) (i = 1, ..., n) are i.i.d., $E[X_i] = 0$, $E[Z_i] = E[Y_i] = 0$, Σ_{ZZ} and Σ_{YY} exist, $nE[X_i^2] \to A$, $n^2 \operatorname{tr}(\Psi) \to \Lambda$, $nE[X_i^4] \to 0$, $mn^4 \bar{\xi}_Z^2 \bar{\xi}_Y^2 \to 0$, $n^3 (\bar{\xi}_Z^2 E[\|Y_i\|^4] + \bar{\xi}_Y^2 E[\|Z_i\|^4]) \to 0$, and $n^2 E[\|Y_i\|^4] \times E[\|Z_i\|^4] \to 0$, then

$$\sum_{i=1}^{n} X_i + \sum_{i \neq j} Z_i' Y_j \stackrel{d}{\longrightarrow} N(0, A + \Lambda).$$

PROOF: Let $w_i = (X_i, Y_i, Z_i)$ and for any j < i, let $\psi_{ij} = Z'_i Y_j + Z'_j Y_i$. Note that

$$E[\psi_{ij}|w_{i-1},\ldots,w_1] = 0,$$

$$E[\psi_{ij}^2] = E[(Z_i'Y_j)^2 + (Z_j'Y_i)^2 + 2Z_i'Y_jZ_j'Y_i] = 2\operatorname{tr}(\Psi).$$

We have

$$\sum_{i=1}^{n} X_i + \sum_{i \neq j} Z_i' Y_j = \sum_{i=2}^{n} (X_i + B_{in}) + X_1,$$

$$B_{in} = \sum_{j < i} \psi_{ij} = \left(\sum_{j < i} Z_j\right)' Y_i + \left(\sum_{j < i} Y_j\right)' Z_i.$$

Note that $E[X_1^2] = (nE[X_i^2])/n \longrightarrow 0$, so $X_1 \stackrel{p}{\longrightarrow} 0$ by M. Also, $E[X_iB_{in}] = 0$ and

$$E[B_{in}^2] = E\left[\sum_{i,k < i} \psi_{ij} \psi_{ik}\right] = (i-1)E[\psi_{ij}^2] = 2(i-1)\operatorname{tr}(\Psi).$$

Therefore,

(A.4)
$$s_n = \sum_{i=2}^n E[(X_i + B_{in})^2] = (n-1)E[X_i^2] + 2\sum_{i=2}^n (i-1)\operatorname{tr}(\Psi)$$

$$= \frac{n-1}{n}nE[X_i^2] + \left(\frac{n^2 - n}{n^2}\right)n^2\operatorname{tr}(\Psi) \longrightarrow A + \Lambda.$$

Next, note that

$$E[B_{in}^2|w_{i-1},\ldots,w_1]=T_{1i}+T_{2i}+2T_{3i},$$

$$T_{1i} = \left(\sum_{j < i} Z_j'\right) \Sigma_{YY} \left(\sum_{j < i} Z_j\right),$$

$$T_{2i} = \left(\sum_{j < i} Y_j'\right) \Sigma_{ZZ} \left(\sum_{j < i} Y_j\right), \quad T_{3i} = \left(\sum_{j < i} Y_j'\right) \Sigma_{ZY} \left(\sum_{j < i} Z_j\right).$$

We also have

$$T_{3i} - E[T_{3i}] = T_{31i} + T_{32i} + T_{33i},$$

$$T_{31i} = \sum_{j < i} R_j, \quad R_j = [Y_j' \Sigma_{ZY} Z_j - \text{tr}(\Sigma_{ZY}^2)],$$

$$T_{32i} = \sum_{k < i} S_k, \quad S_k = \left(\sum_{j < k} Y_j\right)' \Sigma_{ZY} Z_k, \quad T_{33i} = \sum_{j < k < i} Y_k' \Sigma_{ZY} Z_j.$$

By $E[(Y_i', Z_i')'(Y_i', Z_i')']$ being positive semi-definite it follows that $|Y_j'\Sigma_{ZY}Z_j| \le (Y_j'\Sigma_{ZZ}Y_j + Z_j'\Sigma_{YY}Z_j)/2$. Note that

$$E[(Y_j' \Sigma_{ZY} Z_j)^2] \le CE[(Y_j' \Sigma_{ZZ} Y_j)^2] + CE[(Z_j' \Sigma_{YY} Z_j)^2]$$

$$\le C\bar{\xi}_Z^2 E[\|Y_j\|^4] + C\bar{\xi}_Y^2 E[\|Z_j\|^4].$$

Note that $\sum_{i=2}^{n} T_{31i} = \sum_{i=2}^{n} (n-i+1)R_i$ so that

$$E\left[\left(\sum_{i=2}^{n} T_{31i}\right)^{2}\right] \leq E\left[\left(Y_{j}' \Sigma_{ZY} Z_{j}\right)^{2}\right] \sum_{i=2}^{n} (n-i+1)^{2}$$

$$\leq Cn^{3} \left\{\bar{\xi}_{Z}^{2} E\left[\|Y_{j}\|^{4}\right] + \bar{\xi}_{Y}^{2} E\left[\|Z_{j}\|^{4}\right]\right\} \longrightarrow 0,$$

so that $\sum_{i=2}^{n} T_{31i} \stackrel{p}{\longrightarrow} 0$ by M. We also have

$$\begin{split} E[Y_i'\Sigma_{ZY}\Sigma_{ZZ}\Sigma_{YZ}Y_i] &\leq \bar{\xi}_Z E[Y_i'\Sigma_{ZY}\Sigma_{YZ}Y_i] = \bar{\xi}_Z \operatorname{tr}(\Sigma_{YZ}\Sigma_{YY}\Sigma_{ZY}) \\ &\leq \bar{\xi}_Z\bar{\xi}_Y \operatorname{tr}(\Sigma_{YZ}\Sigma_{ZY}) \leq \bar{\xi}_Z^2\bar{\xi}_Y \operatorname{tr}(\Sigma_{YZ}\Sigma_{ZZ}^{-1}\Sigma_{ZY}) \\ &\leq \bar{\xi}_Z^2\bar{\xi}_Y \operatorname{tr}(\Sigma_{YY}) \leq m\bar{\xi}_Z^2\bar{\xi}_Y^2, \end{split}$$

so that $E[S_i^2] \le (i-1)m\bar{\xi}_Z^2\bar{\xi}_Y^2$. In addition $E[S_i|w_{i-1},...,w_1] = 0$, so that

$$E\left[\left(\sum_{i=3}^{n} T_{32i}\right)^{2}\right] = E\left[\left\{\sum_{i=3}^{n} (n-i+1)S_{i}\right\}^{2}\right]$$
$$= \sum_{i=3}^{n} (n-i+1)^{2}E[S_{i}^{2}]$$

$$\leq \sum_{i=3}^{n} (n-i+1)^{2} (i-1) m \bar{\xi}_{Z}^{2} \bar{\xi}_{Y}^{2}$$

$$\leq m n^{4} \bar{\xi}_{Z}^{2} \bar{\xi}_{Y}^{2} \longrightarrow 0$$

and hence $\sum_{i=3}^{n} T_{32i} \stackrel{p}{\longrightarrow} 0$. It follows analogously that $\sum_{i=3}^{n} T_{33i} \stackrel{p}{\longrightarrow} 0$, so by T, $\sum_{i=3}^{n} \{T_{3i} - E[T_{3i}]\} \stackrel{p}{\longrightarrow} 0$. By similar arguments we have $\sum_{i=2}^{n} \{T_{ri} - E[T_{ri}]\} \stackrel{p}{\longrightarrow} 0$ (r = 1, 2), so by T,

$$\sum_{i=2}^n (E[B_{in}^2|w_{i-1},\ldots,w_1] - E[B_{in}^2]) \stackrel{p}{\longrightarrow} 0.$$

Note also that $E[X_i^2] = E[X_i^2 \mid w_{i-1}, \dots, w_1]$ and that

$$\sum_{i=2}^{n} E[X_{i}B_{in}|w_{i-1}, \dots, w_{1}]$$

$$= \sum_{i=2}^{n} \sum_{j

$$= \sum_{i=2}^{n} \left\{ E[X_{i}Z'_{i}] \left(\sum_{j

$$= E[X_{i}Z'_{i}] \sum_{i=1}^{n-1} (n-i)Y_{i} + E[X_{i}Y'_{i}] \sum_{i=1}^{n-1} (n-i)Z_{i}.$$$$$$

Therefore,

$$\begin{split} E & \left[\left(\sum_{i=2}^{n} E[X_{i}B_{in}|w_{i-1}, \dots, w_{1}] \right)^{2} \right] \\ & \leq C \left(E[X_{i}Y_{i}'] \Sigma_{ZZ} E[Y_{i}X_{i}] + E[X_{i}Z_{i}'] \Sigma_{YY} E[Z_{i}X_{i}] \right) \sum_{i=1}^{n-1} (n-i)^{2} \\ & \leq C n^{3} \bar{\xi}_{Y} \bar{\xi}_{Z} E[X_{i}^{2}] \leq C \bar{\xi}_{Y} \bar{\xi}_{Z} n^{2} = C (m n^{4} \bar{\xi}_{Y}^{2} \bar{\xi}_{Z}^{2})^{1/2} / m^{1/2} \longrightarrow 0. \end{split}$$

Then by M, we have

$$\sum_{i=2}^n E[X_i B_{in} \mid w_{i-1}, \dots, w_1] \stackrel{p}{\longrightarrow} 0.$$

By T it then follows that

(A.5)
$$\sum_{i=2}^{n} \left\{ E[(X_i + B_{in})^2 \mid w_{i-1}, \dots, w_1] - E[(X_i + B_{in})^2] \right\}$$
$$= \sum_{i=2}^{n} (E[B_{in}^2 \mid w_{i-1}, \dots, w_1] - E[B_{in}^2])$$
$$+ 2 \sum_{i=2}^{n} E[X_i B_{in} \mid w_{i-1}, \dots, w_1] \xrightarrow{p} 0.$$

Next, note that

$$\begin{split} &\sum_{i=2}^{n} E\bigg[\bigg(\sum_{j < i} Y_{j}' Z_{i}\bigg)^{4}\bigg] \\ &= \sum_{i=2}^{n} \sum_{j,k,\ell,m < i} E[Y_{j}' Z_{i} Y_{k}' Z_{i} Y_{\ell}' Z_{i} Y_{m}' Z_{i}] \\ &= \sum_{i=2}^{n} \bigg\{3 \sum_{j \neq k < i} E[Z_{i}' Y_{j} Y_{j}' Z_{i} Z_{i}' Y_{k} Y_{k}' Z_{i}] + \sum_{j < i} E[(Z_{i}' Y_{j})^{4}]\bigg\} \\ &= E[(Z_{1}' \Sigma_{YY} Z_{1})^{2}] \sum_{i=2}^{n} 3(i-1)(i-2) + E[(Z_{1}' Y_{2})^{4}] \sum_{i=2}^{n} (i-1) \\ &< n^{3} \bar{\mathcal{E}}_{Y}^{2} E[\|Z_{i}\|^{4}] + n^{2} E[\|Z_{i}\|^{4}] E[\|Y_{i}\|^{4}] \longrightarrow 0. \end{split}$$

It follows similarly that $\sum_{i=2}^n E[(\sum_{j< i} Z_j' Y_i)^4] \longrightarrow 0$. Then by T,

$$\sum_{i=2}^{n} E[B_{in}^{4}] \leq \sum_{i=2}^{n} \left\{ CE\left[\left(\sum_{j < i} Y_{j}^{\prime} Z_{i}\right)^{4}\right] + CE\left[\left(\sum_{j < i} Z_{j}^{\prime} Y_{i}\right)^{4}\right] \right\} \longrightarrow 0.$$

Therefore,

(A.6)
$$\sum_{i=2}^{n} E[(X_i + B_{in})^4] \le CnE[X_i^4] + C\sum_{i=1}^{n} E[B_{in}^4] \to 0.$$

The conclusion then follows from eqs. (A.4), (A.5), and (A.6) and the martingale central limit theorem applied to $\sum_{i=2}^{n} (X_i + B_{in})$. Q.E.D.

We again consider the parameterization where $\delta = S'_n(\beta - \beta_0)/\mu_n$ and $\beta = \beta_0 + \mu_n S_n^{-1} \delta$. We will let a δ subscript denote derivatives with respect to δ ,

for example, so that $g_{i\delta_k} = \partial g_i(0)/\partial \delta_k = G_i S_n^{-1} e_k \mu_n$, where e_k is the kth unit vector. Also let $\tilde{\Omega} = \hat{\Omega}(\beta_0)$, $\tilde{\Omega}^k = \sum_{i=1}^n g_i g'_{i\delta_k}/n$, $\Omega^k = E[\tilde{\Omega}^k]$, $\tilde{B}^k = \tilde{\Omega}^{-1} \tilde{\Omega}^k$, and $B^k = \Omega^{-1} \Omega^k$.

LEMMA A11: If Assumptions 1-4 and 6-9 are satisfied, then

$$\sqrt{m} \|\tilde{\Omega} - \Omega\| \stackrel{p}{\longrightarrow} 0, \quad \mu_n \sqrt{m} \|\tilde{\Omega}^k - \Omega^k\| \stackrel{p}{\longrightarrow} 0,$$

$$\sqrt{m} \|\tilde{B}^k - B^k\| \stackrel{p}{\longrightarrow} 0.$$

PROOF: Note that $\mu_n S_n^{-1}$ is bounded, so that $\|g_{i\delta_k}\| \le C \|G_i\|$. Then by standard arguments and Assumption 6,

$$\begin{split} E[m\|\tilde{\Omega} - \Omega\|^2] &\leq CmE[\|g_i\|^4]/n \longrightarrow 0, \\ E[m\|\tilde{\Omega}^k - \Omega^k\|^2] &\leq CmE[\|g_{i\delta_k}\|^2\|g_i\|^2]/n \longrightarrow 0, \end{split}$$

so the first two conclusions hold by M. Also, note that $\Omega^{k'}\Omega^k \leq C\Omega^{k'}\Omega^{-1}\Omega^k \leq CE[g_{i\delta_k}g'_{i\delta_k}]$, so that by Assumption 6, $\xi_{\max}(\Omega^{k'}\Omega^k) \leq C$. Also, $B^{k'}B^k \leq C\Omega^{k'}\Omega^k \leq CE[g_{i\delta_k}g'_{i\delta_k}]$. Then w.p.a.1,

$$\begin{split} \sqrt{m} \|\tilde{B}^k - B^k\| &\leq \sqrt{m} \|(\tilde{\Omega}^{k'} - \Omega^{k'})\tilde{\Omega}^{-1}\| + \sqrt{m} \|B^{k'}(\Omega - \tilde{\Omega})\tilde{\Omega}^{-1}\| \\ &\leq C\sqrt{m} \|\tilde{\Omega}^k - \Omega^k\| + C\sqrt{m} \|\tilde{\Omega} - \Omega\| \stackrel{p}{\longrightarrow} 0. \quad \textit{Q.E.D.} \end{split}$$

LEMMA A12: If Assumptions 1-4 and 6-9 are satisfied, then

$$nS_n^{-1} \frac{\partial \hat{Q}(\beta_0)}{\partial \beta} = \mu_n^{-1} n \frac{\partial \hat{Q}(0)}{\partial \delta} \stackrel{d}{\longrightarrow} N(0, H + \Lambda) = N(0, HVH).$$

PROOF: Let $\tilde{g}=\hat{g}(\beta_0)$, $\tilde{g}_{\delta_k}=\partial\hat{g}(0)/\partial\delta_k=\sum_i G_i S_n^{-1\prime} e_k \mu_n/n$, $\bar{g}_{\delta_k}=E[\partial g_i(0)/\partial\delta_k]=GS_n^{-1\prime}e_k\mu_n$, $\hat{U}^k=\tilde{g}_{\delta_k}-\bar{g}_{\delta_k}-\tilde{B}^{k\prime}\tilde{g}$, and let $\tilde{\lambda}$ be as defined in Lemma A3. Consider an expansion $\rho_1(\tilde{\lambda}'g_i)=-1-\tilde{\lambda}'g_i+\rho_3(\bar{v}_i)(\tilde{\lambda}'g_i)^2/2$, where $|\bar{v}_i|\leq |\tilde{\lambda}'g_i|$. By the envelope theorem and by $\hat{Q}(\delta)=\hat{Q}(\beta_0+\mu_nS_n^{-1\prime}\delta)$,

$$\begin{split} ne_k'S_n^{-1}\,\partial\hat{Q}(\beta_0)/\partial\beta &= n[\partial\hat{Q}(\beta_0)/\partial\beta]'S_n^{-1\prime}e_k = \mu_n^{-1}n(\partial\hat{Q}/\partial\delta_k)(0)\\ &= \mu_n^{-1}\sum_i\tilde{\lambda}'g_{i\delta_k}\rho_1(\tilde{\lambda}'g_i)\\ &= -\mu_n^{-1}n\tilde{g}_{\delta_k}'\tilde{\lambda} - \mu_n^{-1}n\tilde{\lambda}'\tilde{\Omega}^k\tilde{\lambda} + \hat{r},\\ \hat{r} &= \mu_n^{-1}\sum_i\tilde{\lambda}'g_{i\delta_k}\rho_3(\bar{v}_i)(\tilde{\lambda}'g_i)^2/2. \end{split}$$

By Lemma A3, $\|\tilde{\lambda}\| = O_p(\sqrt{m/n})$. Note that either β is the CUE or $\max_{i \leq n} |\bar{v}_i| \leq \|\tilde{\lambda}\|\hat{b}$ for $\hat{b} = \max_{i \leq n} \|g_i\|$, and that $\hat{b} = O_p(n^{1/\gamma}(E[b_i^{\gamma}])^{1/\gamma})$ by a standard result. Therefore, by Assumption 9, either $\hat{\beta}$ is the CUE or $\max_{i \leq n} |\bar{v}_i| \leq O_p(\sqrt{m/n})\hat{b} = O_p(n^{1/\gamma}(E[b_i^{\gamma}])^{1/\gamma}\sqrt{m/n}) \stackrel{p}{\longrightarrow} 0$. It follows that $\max_{i \leq n} \rho_3(\bar{\xi}_i'g_i) \leq C$ w.p.a.1 and, by $\xi_{\max}(\tilde{\Omega}) = O_p(1)$, $\sqrt{m}/\mu_n \leq C$, and by Assumption 9 that either $\hat{r} = 0$ for the CUE or

$$\begin{split} |\hat{r}| &\leq \mu_n^{-1} C \|\tilde{\lambda}\| \hat{b} n \bar{\xi}' \tilde{\Omega} \bar{\xi} = O_p \left(\mu_n^{-1} m^{3/2} n^{1/\gamma} (E[b_i^{\gamma}])^{1/\gamma} / \sqrt{n} \right) \\ &= O_p \left(n^{1/\gamma} (E[b_i^{\gamma}])^{1/\gamma} m / \sqrt{n} \right) \stackrel{p}{\longrightarrow} 0. \end{split}$$

As in Lemma A3, w.p.a.1 $\tilde{\lambda}$ satisfies the first-order conditions

$$\sum_{i} \rho_1(\tilde{\lambda}' g_i) g_i / n = 0.$$

Plugging in the expansion for $\rho_1(\tilde{\lambda}'g_i)$ and solving gives

$$\tilde{\lambda} = -\tilde{\Omega}^{-1}\tilde{g} + \hat{R}, \quad \hat{R} = \tilde{\Omega}^{-1}\sum_i
ho_3(\bar{v}_i)g_i(\tilde{\lambda}'g_i)^2/n.$$

Either $\hat{R} = 0$ for the CUE or by $\xi_{\text{max}}(\tilde{\Omega}^{-1}) \leq C$ and $\xi_{\text{max}}(\tilde{\Omega}) \leq C$ w.p.a.1,

$$\|\hat{R}\| \leq C \max_{i \leq n} \|g_i\|\tilde{\lambda}'\tilde{\Omega}\tilde{\lambda} \leq C\hat{b}\|\tilde{\lambda}\|^2 = O_p(n^{1/\gamma}(E[b_i^{\gamma}])^{1/\gamma}m/n).$$

Now, plug $\hat{\lambda}$ back into the expression for $\partial \hat{Q}(0)/\partial \delta_k$ to obtain

$$\begin{split} \mu_n^{-1} n \frac{\partial \hat{Q}}{\partial \delta_k}(0) &= \mu_n^{-1} n \tilde{g}_{\delta_k}' \tilde{\Omega}^{-1} \tilde{g} - \mu_n^{-1} n \tilde{g}' \tilde{B}^k \tilde{\Omega}^{-1} \tilde{g} + \hat{r} \\ &+ \mu_n^{-1} n \tilde{g}_{\delta_k}' \hat{R} - \mu_n^{-1} n \hat{R}' \tilde{\Omega}^k \hat{R} + \mu_n^{-1} n \hat{R} (\tilde{\Omega}^k + \tilde{\Omega}^{k'}) \tilde{\Omega}^{-1} \tilde{g}. \end{split}$$

Note that by Assumption 6 and $\mu_n S_n^{-1}$ bounded, $E[\|g_{i\delta_k}\|^2] = \operatorname{tr}(E[g_{i\delta_k}g_{i\delta_k}']) \leq Cm \xi_{\max}(E[G_iG_i']) \leq Cm$. Therefore, $\|\tilde{g}_{\delta_k} - \bar{g}_{\delta_k}\| = O_p(\sqrt{m/n})$. We also have $\|\mu_n^{-1}\sqrt{n}\bar{g}_{\delta_k}\| \leq \|\sqrt{n}GS_n^{-1'}\| \leq C$, so that $\|\bar{g}_{\delta_k}\| = O(\mu_n/\sqrt{n})$. Therefore, by $\sqrt{m}/\mu_n \leq C$ and T, $\|\tilde{g}_{\delta_k}\| = O_p(\mu_n/\sqrt{n})$, so by CS,

$$|\mu_n^{-1} n \tilde{g}_{\delta_i}' \hat{R}| \le \mu_n^{-1} n \|\tilde{g}_{\delta_i}\| \|\hat{R}\| = O_p \left(\sqrt{n} n^{1/\gamma} (E[b_i^{\gamma}])^{1/\gamma} m/n \right) \stackrel{p}{\longrightarrow} 0.$$

Let $\tilde{\Omega}^{k,k} = \sum_i g_{i\delta_k} g'_{i\delta_k} / n$ and $\Omega^{k,k} = E[g_{i\delta_k} g'_{i\delta_k}]$. By Assumption 6 and M we have $\|\tilde{\Omega}^{k,k} - \Omega^{k,k}\| \stackrel{p}{\longrightarrow} 0$, so by Lemma A0, Assumption 6, and $\mu_n S_n^{-1}$ bounded, w.p.a.1

$$\xi_{\max}(\tilde{\Omega}^{k,k}) \leq \xi_{\max}(\Omega^{k,k}) + 1 \leq C\xi_{\max}(E[G_iG_i']) + 1.$$

Therefore, $\hat{M} = \sqrt{\xi_{\text{max}}(\tilde{\Omega})\xi_{\text{max}}(\tilde{\Omega}^{k,k})} = O_p(1)$, so that for any a, b, by CS,

$$|a'\tilde{\Omega}^k b| \le [a'\tilde{\Omega}ab'\tilde{\Omega}^{k,k}b]^{1/2} \le \hat{M}||a|||b||.$$

Then

$$\begin{split} |\mu_n^{-1} n \hat{R}' \tilde{\Omega}^k \hat{R}| &\leq \hat{M} \mu_n^{-1} n \|\hat{R}\|^2 \\ &= O_p \left(\mu_n^{-1} \left\{ n^{1/\gamma} (E[b_i^{\gamma}])^{1/\gamma} m / \sqrt{n} \right\}^2 \right) \stackrel{p}{\longrightarrow} 0. \end{split}$$

We also have $\|\tilde{\Omega}^{-1}\tilde{g}\| = O_p(\sqrt{m/n})$, so that by $\sqrt{m}/\mu_n \leq C$,

$$\begin{split} |\mu_n^{-1} n \hat{R} (\tilde{\Omega}^k + \tilde{\Omega}^{k'}) \tilde{\Omega}^{-1} \tilde{g}| &\leq C \hat{M} \mu_n^{-1} n \|\hat{R}\| \|\tilde{\Omega}^{-1} \tilde{g}\| \\ &= O_p \left(n^{1/\gamma} (E[b_i^{\gamma}])^{1/\gamma} m / \sqrt{n} \right) \stackrel{p}{\longrightarrow} 0. \end{split}$$

By T it now follows that

$$\begin{split} \mu_n^{-1} n \frac{\partial \hat{Q}}{\partial \delta_k}(0) &= \mu_n^{-1} n \tilde{g}'_{\delta_k} \tilde{\Omega}^{-1} \tilde{g} - \mu_n^{-1} n \tilde{g}' \tilde{B}^k \tilde{\Omega}^{-1} \tilde{g} + o_p(1) \\ &= \bar{g}'_{\delta_k} \tilde{\Omega}^{-1} \tilde{g} + \hat{U}^{k'} \tilde{\Omega}^{-1} \tilde{g} + o_p(1), \end{split}$$

where $\hat{U}^k = \tilde{g}_{\delta_k} - \bar{g}_{\delta_k} - \tilde{B}^{k'}\tilde{g}$. For B^k defined preceding Lemma A11, let $\tilde{U}^k = \tilde{g}_{\delta_k} - \bar{g}_{\delta_k} - B^{k'}\tilde{g}$. Note that $n\|\tilde{g}\|^2 = O_p(m)$. By Lemma A11 and $m/\mu_n^2 \leq C$ we have

$$\begin{split} n\mu_n^{-1}|(\hat{U}^{k\prime}\tilde{\Omega}^{-1}-\tilde{U}^{k\prime}\tilde{\Omega}^{-1})\tilde{g}| &\leq Cn\mu_n^{-1}|\tilde{g}'(\tilde{B}^k-B^k)\tilde{\Omega}^{-1}\tilde{g}| \\ &\leq Cn\mu_n^{-1}\|\tilde{g}\|^2\|\tilde{B}^k-B^k\| \stackrel{p}{\longrightarrow} 0. \end{split}$$

Note also that by the usual properties of projections and Assumption 6, $nE[\|\tilde{U}^k\|^2] \leq CE[\|g_{i\delta_k}\|^2] \leq Cm$, so that $n\mu_n^{-1}|\tilde{U}^{k\prime}(\Omega^{-1}-\tilde{\Omega}^{-1})\tilde{g}| \stackrel{p}{\longrightarrow} 0$. Similarly we have $\mu_n^{-1}\bar{g}'_{\delta_k}(\tilde{\Omega}^{-1}-\Omega^{-1})\tilde{g} \stackrel{p}{\longrightarrow} 0$, so that by T

$$n\mu_n^{-1}\frac{\partial\hat{Q}}{\partial\delta_k}(0) = n\mu_n^{-1}(\bar{g}_{\delta_k} + \tilde{U}^k)'\Omega^{-1}\tilde{g} + o_p(1).$$

It is straightforward to check that for U_i defined in Section 2 we have

$$ilde{U}^k = n^{-1} \sum_{i=1}^n U_i S_n^{-1} e_k \mu_n, \quad ilde{g}_{\delta_k} = G S_n^{-1} e_k \mu_n.$$

Then stacking over k gives

(A.7)
$$n\mu_n^{-1} \frac{\partial \hat{Q}}{\partial \delta}(0) = nS_n^{-1} \left[G'\Omega^{-1}\tilde{g} + n^{-1} \sum_{i=1}^n U_i'\Omega^{-1}\tilde{g} \right] + o_p(1).$$

For any vector λ with $\|\lambda\| = 1$, let $X_i = \lambda' S_n^{-1} G' \Omega^{-1} g_i$, $Y_i = \Omega^{-1} g_i$, $Z_i = U_i S_n^{-1} \lambda / n$, and $A = \lambda' H \lambda$. Then from the previous equation we have

$$n\mu_n^{-1}\lambda'\frac{\partial\hat{Q}}{\partial\delta}(0) = \sum_{i=1}^n X_i + \sum_{i,j=1}^n Y_i'Z_i + o_p(1).$$

Note that $E[Z_i'Y_i] = 0$ by each component of U_i being uncorrelated with every component of g_i . Also, by $||S_n^{-1}|| \le C/\mu_n$,

$$nE[|Y_i'Z_i|^2] \le CE[||g_i'\Omega^{-1}U_i||^2]/n\mu_n^2$$

\$\leq C(E[||g_i||^4] + E[||G_i||^4])/n\mu_n^2 \rightarrow 0.\$

Then $\sum_{i=1}^{n} Z_i' Y_i \stackrel{p}{\longrightarrow} 0$ by M. Then by eq. (A.7),

$$n\mu_n^{-1}\lambda'\frac{\partial\hat{Q}(0)}{\partial\delta} = \sum_{i=1}^n X_i + \sum_{i\neq j} Z_i'Y_j + o_p(1).$$

Now apply Lemma A10. Note that $\Sigma_{YY} = \Omega^{-1}$ and $\Sigma_{ZY} = 0$, so that $\Psi = \Sigma_{ZZ}\Sigma_{YY} = n^{-2}E[U_iS_n^{-1'}\lambda\lambda'S_n^{-1}U_i']\Omega^{-1}$. By Assumption 1 and the hypothesis of Theorem 3, we have

$$nE[X_i^2] = n\lambda' S_n^{-1} G' \Omega^{-1} G S_n^{-1'} \lambda \longrightarrow \lambda' H \lambda = A,$$

$$n^2 \operatorname{tr}(\Psi) = \lambda' S_n^{-1} E[U_i' \Omega^{-1} U_i] S_n^{-1'} \lambda \longrightarrow \lambda' \Lambda \lambda.$$

Also, note that $\xi_{\max}(S_n^{-1}\lambda\lambda'S_n^{-1}) \leq C/\mu_n^2$, so that $\bar{\xi}_Z \leq C/\mu_n^2n^2$. We also have $\|\sqrt{n}S_n^{-1}G'\Omega^{-1}\| \leq C$ by Assumption 1 and $\xi_{\max}(\Omega^{-1}) \leq C$. Then

$$\begin{split} nE[|X_{i}|^{4}] &\leq nE[\|\lambda'\sqrt{n}S_{n}^{-1}G'\Omega^{-1}g_{i}\|^{4}]/n^{2} \leq CE[\|g_{i}\|^{4}]/n \longrightarrow 0, \\ mn^{4}\bar{\xi}_{Y}^{2}\bar{\xi}_{Z}^{2} &\leq Cmn^{4}/(\mu_{n}^{2}n^{2})^{2} \leq Cm/\mu_{n}^{4} \longrightarrow 0, \\ n^{3}(\bar{\xi}_{Z}^{2}E[\|Y_{i}\|^{4}] + \bar{\xi}_{Y}^{2}E[\|Z_{i}\|^{4}]) \\ &\leq n^{3}C\big(E[\|g_{i}\|^{4}] + E[\|G_{i}\|^{4}]\big)/\mu_{n}^{4}n^{4} \longrightarrow 0, \\ n^{2}E[\|Y_{i}\|^{4}]E[\|Z_{i}\|^{4}] \\ &\leq n^{2}CE[\|g_{i}\|^{4}]\big(E[\|g_{i}\|^{4}] + E[\|G_{i}\|^{4}]\big)/\mu_{n}^{4}n^{4} \longrightarrow 0. \end{split}$$

The conclusion then follows by the conclusion of Lemma A10 and the Cramer–Wold device. *Q.E.D.*

LEMMA A13: If Assumptions 1–4 and 6–9 are satisfied, then there is an open convex set N_n such that $0 \in N_n$ and w.p.a.1 $\hat{\delta} \in N_n$, $\hat{Q}(\delta)$ is twice continuous differentiable on N_n , and for any $\bar{\delta}$ that is an element of N_n w.p.a.1,

$$nS_n^{-1}[\partial^2\hat{Q}(\bar{\delta})/\partial\beta\,\partial\beta']S_n^{-1\prime} = \mu_n^{-2}n\,\partial^2\hat{Q}(\bar{\delta})/\partial\delta\,\partial\delta' \stackrel{p}{\longrightarrow} H.$$

PROOF: By Theorem 1, $\hat{\delta} \stackrel{p}{\longrightarrow} 0$. Then there is $\zeta_n \longrightarrow 0$ such that w.p.a.1 $\bar{\delta} \in N_n = \{\delta : \|\delta\| < \zeta_n\}$. By Assumption 3, for all $\delta \in N_n$,

$$\mu_n^{-1}\sqrt{n}\|\hat{g}(\delta)-\hat{g}(0)\| \leq \hat{M}\|\delta\| \leq \hat{M}\zeta_n \stackrel{p}{\longrightarrow} 0.$$

As previously shown, $\mu_n^{-1}\sqrt{n}\|\hat{g}(0)\| = O_p(\mu_n^{-1}\sqrt{n}\sqrt{m/n}) = O_p(1)$, so $\sup_{\delta\in N_n}\mu_n^{-1}\sqrt{n}\|\hat{g}(\delta)\| = O_p(1)$ by T. Now let τ_n go to zero slower than μ_n/\sqrt{n} but faster than $n^{-1/\gamma}E[\sup_{\beta\in B}\|g_i(\beta)\|^\gamma]^{-1/\gamma}$, which is possible by Assumption 9, and let $L_n=\{\lambda:\|\lambda\|\leq \tau_n\}$. Then $\max_{i\leq n}\sup_{\beta\in B,\lambda\in L_n}|\lambda'g_i(\beta)|\stackrel{p}{\longrightarrow} 0$ similarly to the proof of Lemma A3. For all $\delta\in N_n$, let $\hat{\lambda}(\delta)=\arg\max_{\lambda\in L_n}\hat{P}(\delta,\lambda)$. By an argument similar to the proof of Lemma A3, an expansion of $S(\delta,\hat{\lambda}(\delta))$ around $\lambda=0$ gives

$$\begin{split} 0 &= \hat{P}(\delta, 0) \leq \hat{P}(\delta, \hat{\lambda}(\delta)) \\ &= \hat{g}(\delta)' \hat{\lambda}(\delta) + \frac{1}{2} \hat{\lambda}(\delta)' \Bigg[\sum_{i=1}^{n} \rho_{2}(\lambda' g_{i}(\delta)) g_{i}(\delta) g_{i}(\delta)' / n \Bigg] \hat{\lambda}(\delta) \\ &\leq \|\hat{g}(\delta)\| \|\hat{\lambda}(\delta)\| - C \|\hat{\lambda}(\delta)\|^{2}. \end{split}$$

Adding $C\|\hat{\lambda}(\delta)\|^2$ and dividing through by $C\|\hat{\lambda}(\delta)\|$ gives

(A.8)
$$\|\hat{\lambda}(\delta)\| \le C \|\hat{g}(\delta)\| \le C \sup_{\delta \in N_n} \|\hat{g}(\delta)\| = O_p(\mu_n/\sqrt{n}).$$

It follows that w.p.a.1 $\hat{\lambda}(\delta) \in \text{int } L_n$ for all $\delta \in N_n$. Since a local maximum of a concave function is a global maximum, w.p.a.1 for all $\delta \in N_n$,

$$\hat{Q}(\delta) = \hat{P}(\delta, \hat{\lambda}(\delta)).$$

Furthermore w.p.a.1 the first-order conditions

$$\sum_{i=1}^{n} \rho_1(\hat{\lambda}(\delta)'g_i(\delta))g_i(\delta)/n = 0$$

will be satisfied for all δ , so that by the implicit function theorem, $\hat{\lambda}(\delta)$ is twice continuously differentiable in $\delta \in N_n$ and hence so is $\hat{Q}(\delta)$.

Here let $\hat{g}_i = g_i(\bar{\delta})$, $\hat{g} = \hat{g}(\bar{\delta})$, $\hat{\lambda} = \hat{\lambda}(\bar{\delta})$, $\hat{\Omega} = -\sum_{i=1}^n \rho_2(\hat{\lambda}'\hat{g}_i)\hat{g}_i\hat{g}_i'/n$, $\hat{g}_{i\delta_k} = \partial g_i(\bar{\delta})/\partial \delta_k$, $\hat{g}_{\delta_k} = \partial \hat{g}(\bar{\delta})/\partial \delta_k$, and $\hat{\Omega}^k = -\sum_i \rho_2(\hat{\lambda}'\hat{g}_i)\hat{g}_i\hat{g}_{i\delta_k}'/n$. Then expanding $\rho_1(\hat{\lambda}'\hat{g}_i) = -1 + \rho_2(\bar{v}_i)\hat{\lambda}'\hat{g}_i$ for $|\bar{v}_i| \leq |\hat{\lambda}'\hat{g}_i|$ and letting $\bar{\Omega}^k = -\sum_i \rho_2(\bar{v}_i)\hat{g}_i \times \hat{g}_{i\delta_k}'/n$, the implicit function theorem gives

$$\begin{split} \hat{\lambda}_{\delta_k} &= \frac{\partial \hat{\lambda}}{\partial \delta_k} (\bar{\delta}) = \hat{\Omega}^{-1} \bigg[\sum_i \rho_1 (\hat{\lambda}' \hat{g}_i) \frac{\hat{g}_{i\delta_k}}{n} - \frac{\hat{\Omega}^k \hat{\lambda}}{n} \bigg] \\ &= -\hat{\Omega}^{-1} \big[\hat{g}_{\delta_k} + (\bar{\Omega}^{k'} + \hat{\Omega}^k) \hat{\lambda} \big]. \end{split}$$

Also, for $\bar{\Omega} = -\sum_i \rho_2(\bar{v}_i) \hat{g}_i \hat{g}_i'/n$, the first-order conditions $0 = \sum_i \rho_1(\hat{\lambda}'\hat{g}_i) \times \hat{g}_i/n = -\hat{g} - \bar{\Omega}\hat{\lambda}$ imply that

$$\hat{\lambda} = -\bar{\Omega}^{-1}\hat{g}.$$

Next, by the envelope theorem it follows that

$$\hat{Q}_{\delta_k}(\bar{\delta}) = \sum_i \rho_1(\hat{\lambda}'\hat{g}_i)\hat{\lambda}'\hat{g}_{i\delta_k}/n.$$

Let $\hat{g}_{i\delta_k\delta_\ell} = \partial^2 g_i(\hat{\delta})/\partial \delta_k \,\partial \delta_\ell$, $\hat{g}_{\delta_k\delta_\ell} = \partial^2 \hat{g}(\hat{\delta})/\partial \delta_k \,\partial \delta_\ell$, $\hat{\Omega}^{k,\ell} = -\sum_i \rho_2(\hat{\lambda}'\hat{g}_i)\hat{g}_{i\delta_k} \times \hat{g}'_{i\delta_\ell}/n$, and $\bar{\Omega}^{k\ell} = -\sum_i \rho_2(\bar{\nu}_i)\hat{g}_i\hat{g}'_{i\delta_k\delta_\ell}/n$. Differentiating again yields

$$\begin{split} \hat{Q}_{\delta_k\delta_\ell}(\bar{\delta}) &= \sum_i \bigl[\rho_1(\hat{\lambda}'g_i) \bigl(\hat{\lambda}'_{\delta_k} \hat{g}_{i\delta_\ell} + \hat{\lambda}' \hat{g}_{i\delta_k\delta_\ell} \bigr) \\ &+ \rho_2(\hat{\lambda}'\hat{g}_i) \bigl(\hat{\lambda}'_{\delta_k} \hat{g}_i + \hat{\lambda}' \hat{g}_{i\delta_k} \bigr) \hat{\lambda}' \hat{g}_{i\delta_\ell} \bigr] / n \\ &= n^{-1} \sum_i \bigl[(-1 + \rho_2(\bar{v}_i) \hat{\lambda}' \hat{g}_i) \bigl(\hat{\lambda}'_{\delta_k} \hat{g}_{i\delta_\ell} + \hat{\lambda}' \hat{g}_{i\delta_k\delta_\ell} \bigr) \bigr] \\ &- \hat{\lambda}'_{\delta_k} \hat{\Omega}^\ell \hat{\lambda} - \hat{\lambda}' \hat{\Omega}^{k,\ell} \hat{\lambda} \\ &= - \hat{\lambda}'_{\delta_k} \hat{g}_{\delta_\ell} - \hat{\lambda}' \hat{g}_{\delta_k\delta_\ell} - \hat{\lambda}' (\bar{\Omega}^\ell + \hat{\Omega}^{\ell'}) \hat{\lambda}_{\delta_k} - \hat{\lambda}' (\bar{\Omega}^{k\ell} + \hat{\Omega}^{k,\ell}) \hat{\lambda}. \end{split}$$

Substituting in the formula for $\hat{\lambda}_{\delta_k}$ and then $\hat{\lambda}$ we obtain

$$\begin{aligned} (\mathrm{A}.9) \qquad \hat{Q}_{\delta_{k}\delta_{\ell}}(\bar{\delta}) &= \hat{g}_{\delta_{k}}' \hat{\Omega}^{-1} \hat{g}_{\delta_{\ell}} + \hat{\lambda}' (\bar{\Omega}^{k} + \hat{\Omega}^{k\prime}) \hat{\Omega}^{-1} \hat{g}_{\delta_{\ell}} - \hat{\lambda}' \hat{g}_{\delta_{k}\delta_{\ell}} \\ &+ \hat{\lambda}' (\bar{\Omega}^{\ell} + \hat{\Omega}^{\ell\prime}) \hat{\Omega}^{-1} \hat{g}_{\delta_{k}} \\ &+ \hat{\lambda}' (\bar{\Omega}^{\ell} + \hat{\Omega}^{\ell\prime}) \hat{\Omega}^{-1} (\bar{\Omega}^{k\prime} + \hat{\Omega}^{k}) \hat{\lambda} - \hat{\lambda}' (\bar{\Omega}^{k\ell} + \hat{\Omega}^{k,\ell}) \hat{\lambda} \end{aligned}$$

$$\begin{split} &= \hat{g}_{\delta_{k}}^{'} \hat{\Omega}^{-1} \hat{g}_{\delta_{\ell}} + \hat{g}^{'} \bar{\Omega}^{-1} \hat{g}_{\delta_{k} \delta_{\ell}} - \hat{g}^{'} \bar{\Omega}^{-1} (\bar{\Omega}^{k} + \hat{\Omega}^{k\prime}) \hat{\Omega}^{-1} \hat{g}_{\delta_{\ell}} \\ &- \hat{g}^{'} \bar{\Omega}^{-1} (\bar{\Omega}^{\ell} + \hat{\Omega}^{\ell\prime}) \hat{\Omega}^{-1} \hat{g}_{\delta_{k}} \\ &+ \hat{g}^{'} \bar{\Omega}^{-1} (\bar{\Omega}^{\ell} + \hat{\Omega}^{\ell\prime}) \hat{\Omega}^{-1} (\bar{\Omega}^{k\prime} + \hat{\Omega}^{k}) \bar{\Omega}^{-1} \hat{g} \\ &- \hat{g}^{'} \bar{\Omega}^{-1} (\bar{\Omega}^{k\ell} + \hat{\Omega}^{k,\ell}) \bar{\Omega}^{-1} \hat{g}. \end{split}$$

Next, let $\check{\Omega}^k = \sum_i \hat{g}_i \hat{g}'_{i\delta_k} / n$. Note that $|1 + \rho_2(\bar{v}_i)| \leq C|\bar{v}_i| \leq C|\hat{\lambda}'\hat{g}_i|$, so that by CS and M,

$$\begin{split} \|\bar{\Omega}^{k} - \check{\Omega}^{k}\| &\leq C \sum_{i} |\bar{v}_{i}| \|\hat{g}_{i}\| \|\hat{g}_{i\delta_{k}}\| / n \\ &\leq \left(C \sum_{i} \bar{v}_{i}^{2} / n \right)^{1/2} \left(\sum_{i} \|\hat{g}_{i}\|^{2} \|\hat{g}_{i\delta_{k}}\|^{2} / n \right)^{1/2} \\ &\leq C (\hat{\lambda}' \hat{\Omega} \hat{\lambda})^{1/2} \left[\sum_{i} (\|\hat{g}_{i}\|^{4} + \|\hat{g}_{i\delta_{k}}\|^{4}) / n \right]^{1/2} \\ &= O_{n} (\{\mu_{n}^{2} E[d_{i}^{4}] / n\}^{1/2}) \stackrel{p}{\longrightarrow} 0. \end{split}$$

Also, for $\Omega^k(\delta) = E[g_i(\delta)g_{i\delta_k}(\delta)']$, by Assumption 8(i) and $S_n^{-1}\mu_n$ bounded we have $\|\check{\Omega}^k - \Omega^k(\bar{\delta})\| \stackrel{p}{\longrightarrow} 0$. Then by T,

$$\|\bar{\Omega}^k - \Omega^k(\bar{\delta})\| \stackrel{p}{\longrightarrow} 0.$$

Let $\Omega^{k,\ell}(\delta) = E[g_{i\delta_k}(\delta)g_{i\delta_\ell}(\delta)']$ and $\Omega^{k\ell}(\delta) = E[g_i(\delta)g_{i\delta_k\delta_\ell}(\delta)']$. Then it follows by arguments exactly analogous to those just given that

$$\begin{split} &\|\hat{\Omega} - \Omega(\bar{\delta})\| \stackrel{p}{\longrightarrow} 0, \quad \|\bar{\Omega} - \Omega(\bar{\delta})\| \stackrel{p}{\longrightarrow} 0, \quad \|\hat{\Omega}^k - \Omega^k(\bar{\delta})\| \stackrel{p}{\longrightarrow} 0, \\ &\|\hat{\Omega}^{k,\ell} - \Omega^{k,\ell}(\bar{\delta})\| \stackrel{p}{\longrightarrow} 0, \quad \|\bar{\Omega}^{k\ell} - \Omega^{k\ell}(\bar{\delta})\| \stackrel{p}{\longrightarrow} 0. \end{split}$$

Next, as previously shown, $\mu_n^{-1}\sqrt{n}\|\hat{g}(\bar{\delta})\| = O_p(1)$. It follows similarly from Assumption 7 that

$$\mu_n^{-1} \sqrt{n} \|\partial \hat{g}(\bar{\delta})/\partial \delta\| = \sqrt{n} \|\hat{G}(\bar{\beta}) S_n^{-1}\| = \sqrt{n} \|\hat{G}(\beta_0) S_n^{-1}\| + o_p(1).$$

Then by Assumption 6, $E[\|G_i\|^2] \le Cm$, so by M,

$$\left(\sqrt{n}\|[\hat{G}(\beta_0) - G]S_n^{-1}\|\right)^2 = O_p(E[\|G_i\|^2])/\mu_n^2 = O_p(1).$$

Also by Assumptions 1 and 3 we have $\sqrt{n} \|GS_n^{-1}\| \le C$. Then by T and Assumption 1,

$$\sqrt{n} \|\hat{G}(\beta_0) S_n^{-1}\| \le \sqrt{n} \|[\hat{G}(\beta_0) - G] S_n^{-1}\| + \sqrt{n} \|G S_n^{-1}\| = O_p(1).$$

Then by T it follows that

$$\mu_n^{-1} \sqrt{n} \|\partial \hat{g}(\bar{\delta})/\partial \delta\| = O_p(1).$$

By similar arguments it follows by Assumption 6 that

$$\mu_n^{-1} \sqrt{n} \|\partial^2 \hat{g}(\bar{\delta}) / \partial \delta \partial \delta_k \| = O_p(1).$$

Next, for notational convenience let $\tilde{\Omega} = \Omega(\bar{\delta})$ and $\tilde{\Omega}^k = \Omega^k(\bar{\delta})$. By Assumption 2, $\xi_{\max}(\tilde{\Omega}^{-1}) \leq C$, so that $\xi_{\max}(\tilde{\Omega}^{-2}) \leq C$. It follows as previously that $\xi_{\max}(\bar{\Omega}^{-2}) \leq C$ and $\xi_{\max}(\hat{\Omega}^{k'}\bar{\Omega}^{-2}\hat{\Omega}^k) \leq C$ w.p.a.1, so that

$$\begin{split} \|\bar{\Omega}^{-1}\hat{\Omega}^{k}\bar{\Omega}^{-1} - \tilde{\Omega}^{-1}\tilde{\Omega}^{k}\tilde{\Omega}^{-1}\| \\ &\leq \|\bar{\Omega}^{-1}\hat{\Omega}^{k}(\bar{\Omega}^{-1} - \tilde{\Omega}^{-1})\| + \|\hat{\Omega}^{-1}(\hat{\Omega}^{k} - \tilde{\Omega}^{k})\tilde{\Omega}^{-1}\| \\ &+ \|(\hat{\Omega}^{-1} - \tilde{\Omega}^{-1})\tilde{\Omega}^{k}\tilde{\Omega}^{-1}\| \stackrel{p}{\longrightarrow} 0. \end{split}$$

Then by Assumption 8 it follows that

$$\begin{split} & \mu_n^{-2} n \big| \hat{g}' \bar{\Omega}^{-1} \bar{\Omega}^k \hat{\Omega}^{-1} \hat{g}_{\delta_{\ell}} - \hat{g}' \tilde{\Omega}^{-1} \tilde{\Omega}^k \tilde{\Omega}^{-1} \hat{g}_{\delta_{\ell}} \big| \\ & \leq O_p(1) \| \bar{\Omega}^{-1} \bar{\Omega}^k \hat{\Omega}^{-1} - \tilde{\Omega}^{-1} \tilde{\Omega}^k \tilde{\Omega}^{-1} \| \stackrel{p}{\longrightarrow} 0. \end{split}$$

Therefore, we can replace $\bar{\Omega}$ and $\hat{\Omega}$ by $\tilde{\Omega}$ in the third term in eq. (A.9) without affecting its probability limit. Let $\tilde{Q}_{k,\ell}(\delta)$ denote the expression following the second equality in eq. (A.9), with $\tilde{\Omega}$ replacing $\bar{\Omega}$ and $\hat{\Omega}$ throughout. Then applying an argument similar to the one just given to each of the six terms following the second equality in eq. (A.9), it follows by T that

$$\mu_n^{-2} n |\hat{Q}_{\delta_k \delta_\ell}(\bar{\delta}) - \tilde{Q}_{k,\ell}(\bar{\delta})| \stackrel{p}{\longrightarrow} 0.$$

Next, we will show that

$$\mu_n^{-2}n|\tilde{Q}_{k,\ell}(\bar{\delta})-\tilde{Q}_{k,\ell}(0)|\stackrel{p}{\longrightarrow}0.$$

Working again with the third term, let $F(\delta) = \Omega(\delta)^{-1}\Omega^k(\delta)\Omega(\delta)^{-1}$. It follows from Assumptions 3 and 8 similarly to the previous argument that for any a and b, $|a'[F(\bar{\delta}) - F(0)]b| \le C\|a\|\|b\|\|\bar{\delta}\|$. Also, by Assumptions 3 and 7 we have $\mu_n^{-1}\sqrt{n}\|\hat{g}(\bar{\delta}) - \hat{g}(0)\| \stackrel{p}{\longrightarrow} 0$ and $\mu_n^{-1}\sqrt{n}\|\hat{g}_{\delta_k}(\bar{\delta}) - \hat{g}_{\delta_k}(0)\| \stackrel{p}{\longrightarrow} 0$. It then follows by CS and T that

$$\begin{split} \mu_{n}^{-2} n & |\hat{g}(\bar{\delta})' F(\bar{\delta}) \hat{g}_{\delta_{k}}(\bar{\delta}) - \hat{g}(0)' F(0) \hat{g}_{\delta_{k}}(0) | \\ & \leq \mu_{n}^{-2} n C (\|\hat{g}(\bar{\delta})\| \|\hat{g}_{\delta_{k}}(\bar{\delta})\| \|\bar{\delta}\| + \|\hat{g}(\bar{\delta}) - \hat{g}(0)\| \|\hat{g}_{\delta_{k}}(\bar{\delta})\| \\ & + \|\hat{g}(0)\| \|\hat{g}_{\delta_{k}}(\bar{\delta}) - \hat{g}_{\delta_{k}}(0)\|) \xrightarrow{p} 0. \end{split}$$

Applying a similar argument for each of the other six terms and using T gives $\mu_n^{-2}n|\tilde{Q}_{k,\ell}(\bar{\delta})-\tilde{Q}_{k,\ell}(0)|\stackrel{p}{\longrightarrow} 0$. It therefore suffices to show that $\mu_n^{-2}n\times \tilde{Q}_{k,\ell}(0)\stackrel{p}{\longrightarrow} H_{k\ell}$.

Next, let $\Omega^k = \Omega^k(\beta_0)$, $\Omega^{k\ell} = \Omega^{k\ell}(\beta_0)$, $\Omega^{k,\ell} = \Omega^{k,\ell}(\beta_0)$, $\tilde{g} = \hat{g}(\beta_0)$, $\tilde{g}_{\delta_k} = \partial \hat{g}(0)/\partial \delta_k$, and $\tilde{g}_{\delta_k \delta_\ell} = \partial^2 \hat{g}(0)/\partial \delta_\ell \partial \delta_k$. Note that

$$\begin{split} \tilde{Q}_{k,\ell}(0) &= \tilde{g}_{\delta_k}' \Omega^{-1} \tilde{g}_{\delta_\ell} + \tilde{g}' \Omega^{-1} \tilde{g}_{\delta_k \delta_\ell} - \tilde{g}' \Omega^{-1} (\Omega^k + \Omega^{k'}) \Omega^{-1} \tilde{g}_{\delta_\ell} \\ &- \tilde{g}' \Omega^{-1} (\Omega^\ell + \Omega^{\ell'}) \Omega^{-1} \tilde{g}_{\delta_k} \\ &+ \tilde{g}' \Omega^{-1} (\Omega^\ell + \Omega^{\ell'}) \Omega^{-1} (\Omega^{k'} + \Omega^k) \Omega^{-1} \tilde{g} \\ &- \tilde{g}' \Omega^{-1} (\Omega^{k\ell} + \Omega^{k,\ell}) \Omega^{-1} \tilde{g}. \end{split}$$

Consider once again the third term in $\tilde{Q}_{k,\ell}(0)$, that is, $\tilde{g}'A\tilde{g}_{\delta_{\ell}}$, where $A = -\Omega^{-1}(\Omega^k + \Omega^{k'})\Omega^{-1}$. Now apply Lemma A1 with $Y_i = g_i$, $Z_i = G_iS_n^{-1'}\mu_n e_k$, and $a_n = \mu_n^2$ to obtain

$$\mu_n^{-2} n \tilde{g}' A \tilde{g}_{\delta_\ell} = -\operatorname{tr}(\Omega^{-1}(\Omega^k + \Omega^{k\prime})\Omega^{-1}\Omega^{\ell\prime})/\mu_n^2 + o_p(1).$$

Let $H_n = nS_n^{-1}G'\Omega^{-1}GS_n^{-1}$. Then applying a similar argument to each term in $\tilde{Q}_{k,\ell}(0)$ gives

$$\begin{split} \mu_n^{-2} n \tilde{Q}_{k,\ell}(0) &= H_{nk,\ell} + \mu_n^{-2} \operatorname{tr} \big[\Omega^{-1} \Omega^{k,\ell\prime} + \Omega^{-1} \Omega^{k\ell\prime} \\ &\quad - \Omega^{-1} (\Omega^k + \Omega^{k\prime}) \Omega^{-1} \Omega^{\ell\prime} - \Omega^{-1} (\Omega^\ell + \Omega^{\ell\prime}) \Omega^{-1} \Omega^{k\prime} \\ &\quad + \Omega^{-1} (\Omega^\ell + \Omega^{\ell\prime}) \Omega^{-1} (\Omega^{k\prime} + \Omega^k) - \Omega^{-1} (\Omega^{k\ell} + \Omega^{k,\ell}) \big] \\ &\quad + o_p(1) \\ &= H_{nk,\ell} + \mu_n^{-2} \operatorname{tr} \big[\Omega^{-1} (\Omega^{k,\ell\prime} - \Omega^{k,\ell}) + \Omega^{-1} (\Omega^{k\ell\prime} - \Omega^{k\ell}) \\ &\quad - \Omega^{-1} (\Omega^k + \Omega^{k\prime}) \Omega^{-1} \Omega^{\ell\prime} + \Omega^{-1} (\Omega^\ell + \Omega^{\ell\prime}) \Omega^{-1} \Omega^k \big] \\ &\quad + o_p(1). \end{split}$$

By tr(AB) = tr(BA) for any conformable matrices A and B, we have

$$\operatorname{tr}[(\Omega^{-1}\Omega^{\ell})(\Omega^{-1}\Omega^{k})] = \operatorname{tr}(\Omega^{-1}\Omega^{k}\Omega^{-1}\Omega^{\ell}).$$

Also, for a symmetric matrix A, tr(AB) = tr(B'A) = tr(AB'), so that

$$\begin{split} \operatorname{tr}(\varOmega^{-1}\varOmega^{k,\ell\prime}) &= \operatorname{tr}(\varOmega^{-1}\varOmega^{k,\ell}), \quad \operatorname{tr}(\varOmega^{-1}\varOmega^{k\ell\prime}) = \operatorname{tr}(\varOmega^{-1}\varOmega^{k\ell}), \\ \operatorname{tr}[\varOmega^{-1}(\varOmega^{\ell}\varOmega^{-1}\varOmega^{k})] &= \operatorname{tr}[\varOmega^{-1}(\varOmega^{k\prime}\varOmega^{-1}\varOmega^{\ell\prime})]. \end{split}$$

Then we have $\mu_n^{-2}n\tilde{Q}_{k,\ell}(0)=H_{nk,\ell}+o_p(1)$, so that the conclusion follows by T. Q.E.D.

LEMMA A14: If Assumptions 1–4 and 6–9 are satisfied, then $nS_n^{-1}\hat{D}(\hat{\beta})'\hat{\Omega}^{-1} \times \hat{D}(\hat{\beta})S_n^{-1} \xrightarrow{p} H + \Lambda = HVH$.

PROOF: For $\hat{g}_i = g_i(\hat{\beta})$, an expansion like those above gives $\rho_1(\hat{\lambda}'\hat{g}_i) = -1 - \hat{\lambda}'\hat{g}_i + \rho_3(\bar{v}_i)(\hat{\lambda}'\hat{g}_i)^2$, so that w.p.a.1,

$$\begin{split} &\frac{1}{n}\sum_{i}\rho_{1}(\hat{\lambda}'\hat{g}_{i}) = -1 - \hat{\lambda}'\hat{g} + r, \\ &|r| \leq C\max_{i}|\rho_{3}(\bar{v}_{i})|\hat{\lambda}'\hat{\Omega}(\hat{\beta})\hat{\lambda} \leq C\|\hat{\lambda}\|^{2}. \end{split}$$

By $\|\hat{\lambda}\| = O_p(\sqrt{m/n})$ and $\|\hat{g}\| = O_p(\sqrt{m/n})$ we have $|\hat{\lambda}'\hat{g}| = O_p(m/n) \xrightarrow{p} 0$. Also, $|r| = O_p(m/n) \xrightarrow{p} 0$, so that by T,

(A.10)
$$\frac{1}{n} \sum_{i} \rho_1(\hat{\lambda}' \hat{g}_i) \stackrel{p}{\longrightarrow} -1.$$

Next, consider the expansion $\rho_1(\hat{\lambda}'\hat{g}_i) = -1 + \rho_2(\bar{v}_i)\hat{\lambda}'\hat{g}_i$ as in the proof of Lemma A13. As discussed there, $\hat{\lambda}$ satisfies the first-order condition $0 = \sum_i \rho_1(\hat{\lambda}'\hat{g}_i)\hat{g}_i/n = -\hat{g} - \bar{\Omega}\hat{\lambda}$ for $\bar{\Omega} = -\sum_i \rho_2(\bar{v}_i)\hat{g}_i\hat{g}_i'/n$, so that for $\hat{g}_{i\delta_k} = \partial \hat{g}_i(\hat{\delta})/\partial \delta_k$, $\hat{g}_{\delta_k} = \partial \hat{g}(\hat{\delta})/\partial \delta_k$, and $\bar{\Omega}^k = -\sum_i \rho_2(\bar{v}_i)\hat{g}_i'\hat{g}_{i\delta_k}/n$ we have

$$\hat{\lambda} = -\bar{\Omega}^{-1}\hat{g}, \quad \sum_{i} \rho_{1}(\hat{\lambda}'\hat{g}_{i})\hat{g}_{i\delta_{k}}/n = -\hat{g}_{\delta_{k}} - \bar{\Omega}^{k'}\hat{\lambda} = -\hat{g}_{\delta_{k}} + \bar{\Omega}^{k'}\bar{\Omega}^{-1}\hat{g}.$$

Also, note that for $\bar{U} = \sum_{i=1}^{n} U_i/n$, we have $\bar{U}S_n^{-1'}e_k\mu_n = \tilde{g}_{\delta_k} - \bar{g}_{\delta_k} - \Omega^{k'}\Omega^{-1}\tilde{g}$. Then, in terms of the notation of Lemma A13, it follows similarly to the arguments given there that

$$\begin{split} & \left[\frac{1}{n} \sum_{i} \rho_{1} (\hat{\lambda}' \hat{g}_{i}) \right]^{2} e_{k}' n S_{n}^{-1} \hat{D}(\hat{\beta})' \hat{\Omega}^{-1} \hat{D}(\hat{\beta}) S_{n}^{-1\prime} e_{\ell} \\ &= \mu_{n}^{-2} n \left(\hat{g}_{\delta_{k}}' \hat{\Omega}^{-1} \hat{g}_{\delta_{\ell}} - \hat{g}_{\delta_{k}} \hat{\Omega}^{-1} \bar{\Omega}^{\ell\prime} \bar{\Omega}^{-1} \hat{g} - \hat{g}' \bar{\Omega}^{-1} \bar{\Omega}^{k} \hat{\Omega}^{-1} \hat{g}_{\delta_{\ell}} \\ &+ \hat{g}' \bar{\Omega}^{-1} \bar{\Omega}^{k} \hat{\Omega}^{-1} \bar{\Omega}^{\ell\prime} \bar{\Omega}^{-1} \hat{g} \right) \\ &= \mu_{n}^{-2} n \left(\tilde{g}_{\delta_{k}}' \Omega^{-1} \tilde{g}_{\delta_{\ell}} - \tilde{g}_{\delta_{k}} \Omega^{-1} \Omega^{\ell\prime} \Omega^{-1} \tilde{g} - \tilde{g}' \Omega^{-1} \Omega^{k} \Omega^{-1} \tilde{g}_{\delta_{\ell}} \right. \\ &+ \tilde{g}' \Omega^{-1} \Omega^{k} \Omega^{-1} \Omega^{\ell\prime} \Omega^{-1} \tilde{g} \right) + o_{p}(1) \\ &= \mu_{n}^{-2} n \left(\tilde{g}_{\delta_{k}} - \Omega^{k\prime} \Omega^{-1} \tilde{g} \right)' \Omega^{-1} \left(\tilde{g}_{\delta_{\ell}} - \Omega^{\ell\prime} \Omega^{-1} \tilde{g} \right) + o_{p}(1) \\ &= n e_{k}' S_{n}^{-1} (G + \bar{U})' \Omega^{-1} (G + \bar{U}) S_{n}^{-1\prime} e_{\ell} + o_{p}(1). \end{split}$$

Note that by Assumption 1, $nS_n^{-1}G'\Omega^{-1}GS_n^{-1} \longrightarrow H$. Also, $\xi_{\max}(E[U_iS_n^{-1}e_\ell e_\ell' \times S_n^{-1}U_i']) \le C/\mu_n^2$, so that

$$\begin{split} E[(ne'_kS_n^{-1}G'\Omega^{-1}\bar{U}S_n^{-1'}e_\ell)^2] \\ &= ne'_kS_n^{-1}G'\Omega^{-1}E[U_iS_n^{-1'}e_\ell e'_\ell S_n^{-1}U'_i]\Omega^{-1}GS_n^{-1'}e_k \\ &\leq Cne'_kS_n^{-1}G'\Omega^{-2}GS_n^{-1'}e_k/\mu_n^2 \leq CH_{nkk}/\mu_n^2 \longrightarrow 0. \end{split}$$

Now apply Lemma A1 to $ne_k' S_n^{-1} \bar{U}' \Omega^{-1} \bar{U} S_n^{-1'} e_\ell$ for $A = \Omega^{-1}$, $Y_i = U_i S_n^{-1'} e_k \mu_n$, $Z_i = U_i S_n^{-1'} e_\ell \mu_n$, and $\mu_n^2 = a_n$. Note that $\xi_{\max}(A'A) = \xi_{\max}(AA') = \xi_{\max}(\Omega^{-2}) \le C$. Also, by $S_n^{-1} \mu_n$ bounded, $\xi_{\max}(\Sigma_{YY}) \le \xi_{\max}(E[U_i U_i']) \le C$ and $\xi_{\max}(\Sigma_{ZZ}) \le C$. Furthermore, $m/a_n^2 = m/\mu_n^4 \longrightarrow 0$, $a_n/n = \mu_n^2/n \le C$, $\mu_Y = \mu_Z = 0$, and

$$E[(Y_i'Y_i)^2]/na_n^2 \le CE[\|U_i\|^4]/na_n^2 \le CE[\|g_i\|^4 + \|G_i\|^4]/na_n^2 \longrightarrow 0.$$

Then by the conclusion of Lemma A1,

$$\begin{split} ne'_k S_n^{-1} \bar{U}' \Omega^{-1} \bar{U} S_n^{-1'} e_\ell &= n \bar{Y}' A \bar{Z} / a_n = \operatorname{tr}(A \Sigma'_{YZ}) / a_n + o_p(1) \\ &= \operatorname{tr}(\Omega^{-1} E[U_i S_n^{-1'} e_\ell e'_k S_n^{-1} U'_i]) + o_p(1) \\ &= e'_k S_n^{-1} E[U'_i \Omega^{-1} U_i] S_n^{-1'} e_\ell + o_p(1) \stackrel{p}{\longrightarrow} \Lambda_{k\ell}. \end{split}$$

Then by T,

$$e'_k n S_n^{-1} \hat{D}(\hat{\beta})' \hat{\Omega}^{-1} \hat{D}(\hat{\beta}) S_n^{-1'} e_\ell \stackrel{p}{\longrightarrow} H_{k\ell} + \Lambda_{k\ell}.$$

The conclusion then follows by applying this result for each k and ℓ . Q.E.D.

PROOF OF THEOREM 3: Let $Y_n = n\mu_n^{-1} \partial \hat{Q}(0)/\partial \delta$. Then expanding the first-order conditions as outlined in Section 5 gives

$$0 = n\mu_n^{-1} \frac{\partial \hat{Q}(\hat{\delta})}{\partial \delta} = n\mu_n^{-1} \frac{\partial \hat{Q}(0)}{\partial \delta} + n\mu_n^{-2} \frac{\partial^2 \hat{Q}(\bar{\delta})}{\partial \delta \partial \delta'} \mu_n \hat{\delta}.$$

By Lemma 13, $n\mu_n^{-2}\partial^2\hat{Q}(\bar{\delta})/\partial\delta\partial\delta'$ is nonsingular w.p.a.1. Then by CMT, Lemmas A12 and A13, and S,

$$\mu_n \hat{\delta} = S'_n(\hat{\beta} - \beta_0) = \left[n \mu_n^{-2} \frac{\partial^2 \hat{Q}(\bar{\delta})}{\partial \delta \partial \delta'} \right]^{-1} n \mu_n^{-1} \frac{\partial \hat{Q}(0)}{\partial \delta} = H^{-1} Y_n + o_p(1).$$

Then by Lemma A12 and S,

$$S'_n(\hat{\beta} - \beta_0) \stackrel{d}{\longrightarrow} H^{-1}N(0, H + \Lambda) = N(0, V).$$

Also, by Lemmas A13 and A14,

$$nS_n^{-1}\hat{H}S_n^{-1\prime} = \mu_n^{-2}n\frac{\partial^2 \hat{Q}(\hat{\delta})}{\partial \delta \partial \delta'} \xrightarrow{p} H, \quad nS_n^{-1}\hat{D}'\hat{\Omega}^{-1}\hat{D}S_n^{-1\prime} \xrightarrow{p} HVH.$$

Also, \hat{H} is nonsingular w.p.a.1, so that

$$S'_{n}VS_{n}/n = (nS_{n}^{-1}\hat{H}S_{n}^{-1})^{-1}nS_{n}^{-1}\hat{D}'\hat{\Omega}^{-1}\hat{D}S_{n}^{-1}'(nS_{n}^{-1}\hat{H}S_{n}^{-1}')^{-1}$$

$$\stackrel{p}{\longrightarrow} H^{-1}HVHH^{-1} = V.$$

To prove the last conclusion, note that $r_n S_n^{-1} c \longrightarrow c^*$ and S imply that

$$r_n c'(\hat{\beta} - \beta_0) = r_n c' S_n^{-1} S_n'(\hat{\beta} - \beta_0) \xrightarrow{d} N(0, c^{*'} V c^*),$$

$$r_n^2 c' \hat{V} c/n = r_n c' S_n^{-1} (S_n' \hat{V} S_n/n) S_n^{-1} c r_n \xrightarrow{p} c^{*'} V c^*.$$

Therefore, by CMT and S,

$$\frac{c'(\hat{\beta} - \beta_0)}{\sqrt{c'\hat{V}c/n}} = \frac{r_n c' S_n^{-1'} S_n'(\hat{\beta} - \beta_0)}{\sqrt{r_n^2 c' S_n^{-1'} (S_n' \hat{V} S_n/n) S_n^{-1} c}} \xrightarrow{d} \frac{N(0, c^{*'} V c^*)}{\sqrt{c^{*'} V c^*}} = N(0, 1).$$

For the linear model we proceed by verifying all of the hypotheses of the general case. Note that $g_i(\beta) = Z_i(y_i - x_i'\beta)$ is twice continuously differentiable and that its first derivative does not depend on β , so Assumption 7 is satisfied. Also, by Lemma A5,

$$\begin{split} & \big(E[\|g_i\|^4] + E[\|G_i\|^4] \big) m/n \le C E[\|Z_i\|^4] m/n \longrightarrow 0, \\ & \xi_{\max}(E[G_iG_i']) \le \sum_{i=1}^p \xi_{\max}(E[Z_iZ_i'x_{ij}^2]) \le C \xi_{\max}(CI_m) \le C, \end{split}$$

so that Assumption 6 is satisfied. Assumption 8 is satisfied by Lemmas A8 and A9. Assumptions 2–4 were shown to hold in the proof of Theorem 2. Assumption 9 can be shown to be satisfied similarly to the proof of Theorem 2.

Q.E.D.

A.4. Large Sample Inference Proofs

The following result improves upon Theorem 6.2 of Donald, Imbens, and Newey (2003). Let $\tilde{g} = \hat{g}(\beta_0)$ by only requiring that $m/n \longrightarrow 0$ in the case where the elements of g_i are uniformly bounded.

LEMMA A15: If $E[(g_i'\Omega^{-1}g_i)^2]/mn \longrightarrow 0$, then

$$\frac{n\tilde{g}'\Omega^{-1}\tilde{g}-m}{\sqrt{2m}} \stackrel{d}{\longrightarrow} N(0,1).$$

PROOF: Note that $E[g_i'\Omega^{-1}g_i] = m$ so that by M,

$$\frac{\sum_{i=1}^{n} g_{i}' \Omega^{-1} g_{i} / n - m}{\sqrt{2m}} = O_{p} \left(\left\{ E[\{g_{i}' \Omega^{-1} g_{i}\}^{2}] / n m \right\}^{1/2} \right) \stackrel{p}{\longrightarrow} 0.$$

Now apply Lemma A9 with $Y_i = Z_i = \Omega^{-1/2} g_i / \sqrt{n} (2m)^{1/4}$, so that $\bar{\xi}_Z = \bar{\xi}_Y = n^{-1} (2m)^{-1/2}$. Note that $\Psi = \Sigma_{YY} \Sigma_{ZZ} + \Sigma_{YZ}^2 = 2I_m / n^2 2m = I_m / n^2 m$, so that $n^2 \operatorname{tr}(\Psi) = n^2 \operatorname{tr}(I_m / n^2 m) = 1$. Also note that

$$\begin{split} &mn^4\bar{\xi}_Z^2\bar{\xi}_Y^2 = m/4m^2 \longrightarrow 0, \\ &n^3\big(\bar{\xi}_Z^2E[\|Y_i\|^4] + \bar{\xi}_Y^2E[\|Z_i\|^4]\big) \\ &\leq n^32\big\{n^{-2}(2m)^{-1}E[\{g_i'\Omega^{-1}g_i\}^2/n^22m]\big\} \longrightarrow 0, \\ &n^2E[\|Y_i\|^4]E[\|Z_i\|^4] = n^2\big\{E[\{g_i'\Omega^{-1}g_i\}^2]n^{-2}(2m)^{-1}\big\}^2 \longrightarrow 0. \end{split}$$

It then follows by Lemma A10 that $\sum_{i\neq j} g_i' \Omega^{-1} g_j / \sqrt{2m} \stackrel{d}{\longrightarrow} N(0,1)$, so the conclusion follows by T. Q.E.D.

PROOF OF THEOREM 4: By an expansion in λ around $\lambda = 0$ we have

$$\hat{Q}(\beta_0) = -\tilde{\lambda}'\tilde{g} - \tilde{\lambda}'\bar{\Omega}\tilde{\lambda}/2,$$

where $\bar{\Omega} = -\sum_i \rho_2(\bar{v}_i) g_i g_i'/n$, $\bar{v}_i = \bar{\xi}' g_i$, and $\|\bar{\xi}\| \leq \|\tilde{\lambda}\|$. Also, by an expansion around 0 we have $\rho_1(\tilde{\lambda}'g_i) = -1 + \rho_2(\check{v}_i)\tilde{\lambda}'g_i$ with $|\check{v}_i| \leq |\tilde{\lambda}'g_i|$, so that for $\check{\Omega} = -\sum_i \rho_2(\check{v}_i) g_i g_i'/n$ the first-order conditions for $\tilde{\lambda}$ give $0 = -\tilde{g} - \check{\Omega}\tilde{\lambda}$. Note that for $\Delta_n = n^{1/\gamma} (E[b_i^{\gamma}])^{1/\gamma} \sqrt{m/n}$ we have

$$\max_{i\leq n}|1+\rho_2(\check{v}_i)|\leq C\|\tilde{\lambda}\|\max_{i\leq n}g_i=O_p(\Delta_n).$$

Let $\tilde{\Omega} = \sum_{i} g_i g_i' / n$. By Lemma A0, $\xi_{\text{max}}(\tilde{\Omega}) \leq C$ w.p.a.1, so that for any a, b,

$$|a'(\tilde{\Omega} - \tilde{\Omega})b| \leq \sum_{i} |1 + \rho(\tilde{v}_{i})||a'g_{i}||b'g_{i}|/n$$

$$\leq O_{p}(\Delta_{n})\sqrt{a'\tilde{\Omega}ab'\tilde{\Omega}b} = O_{p}(\Delta_{n})||a|||b||.$$

It follows similarly that

$$|a'(\tilde{\Omega}-\tilde{\Omega})b| \leq O_p(\Delta_n)||a|||b||.$$

It then follows from $\Delta_n \longrightarrow 0$, similarly to Lemma A0, that $\xi_{\min}(\tilde{\Omega}) \geq C$ w.p.a.1, so $\tilde{\lambda} = -\tilde{\Omega}^{-1}\tilde{g}$. Plugging into the above expansion gives

$$\hat{Q}(\beta_0) = \tilde{g}' \check{\Omega}^{-1} \tilde{g} - \tilde{g}' \check{\Omega}^{-1} \bar{\Omega} \check{\Omega}^{-1} \tilde{g}/2.$$

As above $\xi_{\min}(\tilde{\Omega}) \geq C$ w.p.a.1, so that $\|\tilde{\Omega}^{-1}\tilde{g}\| \leq C\|\tilde{g}\| = O_p(\sqrt{m/n})$ and $\|\tilde{\Omega}^{-1}\tilde{g}\| = O_p(\sqrt{m/n})$. Therefore, by $\Delta_n\sqrt{m} \longrightarrow 0$,

$$\begin{split} |\tilde{g}'(\check{\Omega}^{-1} - \tilde{\Omega}^{-1})\tilde{g}| &= \left|\tilde{g}'\check{\Omega}^{-1}(\tilde{\Omega} - \check{\Omega})\tilde{\Omega}^{-1}\tilde{g}\right| \leq O_p(\Delta_n)O_p(m/n) \\ &= o_p(\sqrt{m}/n). \end{split}$$

It follows similarly that $|\tilde{g}'(\tilde{\Omega}^{-1}\bar{\Omega}\tilde{\Omega}^{-1}-\tilde{\Omega}^{-1})\tilde{g}|=o_p(\sqrt{m}/n)$, so that by T,

$$\hat{Q}(\beta_0) = \tilde{g}'\tilde{\Omega}^{-1}\tilde{g}/2 + o_p(\sqrt{m}/n).$$

It follows by $mE[\|g_i\|^4]/n \longrightarrow 0$ that $\|\tilde{\Omega} - \Omega\| = o_p(1/\sqrt{m})$, so that $\tilde{g}'\tilde{\Omega}^{-1}\tilde{g} = \tilde{g}'\Omega^{-1}\tilde{g} + o_p(\sqrt{m}/n)$ and, by T,

$$\hat{Q}(\beta_0) = \tilde{g}' \Omega^{-1} \tilde{g}/2 + o_p(\sqrt{m}/n).$$

It then follows that

$$\frac{2n\hat{Q}(\beta_0)-m}{\sqrt{m}}-\frac{n\tilde{g}'\Omega^{-1}\tilde{g}-m}{\sqrt{m}}=\frac{2n}{\sqrt{m}}\left[\hat{Q}(\beta_0)-\frac{\tilde{g}'\Omega^{-1}\tilde{g}}{2}\right]=o_p(1).$$

Then by Lemma A15 and S we have

$$\frac{2n\hat{Q}(\beta_0)-m}{\sqrt{m}} \stackrel{d}{\longrightarrow} N(0,1).$$

Also, by standard results for the chi-squared distribution, as $m \to \infty$ the $(1-\alpha)$ th quantile q_{α}^m of a $\chi^2(m)$ distribution has the property that $[q_{\alpha}^m - m]/\sqrt{2m}$ converges to the $(1-\alpha)$ th quantile q_{α} of N(0,1). Hence we have

$$\Pr(2n\hat{Q}(\beta_0) \ge q_\alpha^m) = \Pr\left(\frac{2n\hat{Q}(\beta_0) - m}{\sqrt{2m}} \ge \frac{q_\alpha^m - m}{\sqrt{2m}}\right) \longrightarrow \alpha. \quad Q.E.D.$$

PROOF OF THEOREM 5: Let $\hat{B} = nS_n^{-1}\hat{D}(\beta_0)'\hat{\Omega}(\beta_0)^{-1}\hat{D}(\beta_0)S_n^{-1}$ and B = HVH. It follows from Lemma A14, replacing $\hat{\beta}$ with β_0 , that $\hat{B} \stackrel{p}{\longrightarrow} B$. By

the proof of Theorem 3, S, and CM we have

$$\hat{T} = (\hat{\beta} - \beta_0)' S_n (S_n' \hat{V} S_n / n)^{-1} S_n' (\hat{\beta} - \beta_0)$$
$$= Y_n' B^{-1} Y_n + o_p(1) \xrightarrow{d} \chi^2(p).$$

Then by Lemma A12,

$$LM(\beta_0) = n \frac{\partial \hat{Q}(\beta_0)'}{\partial \beta} S_n^{-1} \hat{B}^{-1} n S_n^{-1} \frac{\partial \hat{Q}(\beta_0)}{\partial \beta} = Y_n' (B + o_p(1))^{-1} Y_n$$

= $Y_n' B^{-1} Y_n + o_p(1)$.

Therefore, we have $LM(\beta_0) = \hat{T} + o_p(1)$.

Next, by an expansion, for $\bar{H} = nS_n^{-1} \partial^2 \hat{Q}(\bar{\beta})/\partial \beta \partial \beta' S_n^{-1}$,

$$2n[\hat{Q}(\beta_0) - \hat{Q}(\hat{\beta})] = n(\hat{\beta} - \beta_0)'[\partial^2 \hat{Q}(\bar{\beta})/\partial \beta \, \partial \beta'](\hat{\beta} - \beta_0)$$
$$= (\hat{\beta} - \beta_0)'S_n \bar{H}S'_n(\hat{\beta} - \beta_0),$$

where $\bar{\beta}$ lies on the line joining $\hat{\beta}$ and β_0 and $\bar{H} \stackrel{p}{\longrightarrow} H$ by Lemma A13. Then by the proof of Theorem 3 and the CMT,

$$2n[\hat{Q}(\beta_0) - \hat{Q}(\hat{\beta})] = \{Y'_n H^{-1} + o_p(1)\}\{H + o_p(1)\}\{H^{-1}Y_n + o_p(1)\}$$
$$= Y'_n H^{-1}Y_n + o_p(1).$$

It follows that $2n[\hat{Q}(\beta_0) - \hat{Q}(\hat{\beta})] = O_p(1)$, so that

$$2n[\hat{Q}(\beta_0) - \hat{Q}(\hat{\beta})]/\sqrt{m-p} \stackrel{p}{\longrightarrow} 0.$$

Therefore, it follows as in the proof of Theorem 4 that

$$\frac{2n\hat{Q}(\hat{\beta}) - (m-p)}{\sqrt{m-p}} = \frac{2n\hat{Q}(\beta_0) - (m-p)}{\sqrt{m-p}} + o_p(1)
= \sqrt{\frac{m}{m-p}} \frac{2n\hat{Q}(\beta_0) - m}{\sqrt{m}} + \frac{p}{\sqrt{m-p}} + o_p(1)
\xrightarrow{d} N(0,1).$$

Next, note that $H^{-1} \leq V$ in the p.s.d. sense so that $V^{-1} \leq H$. It follows that

$$Y'_nH^{-1}Y_n \ge Y'_nB^{-1}Y_n \xrightarrow{d} \chi^2(p).$$

Then
$$\Pr(2n[\hat{Q}(\beta_0) - \hat{Q}(\hat{\beta})] > q_{\alpha}^p) = \Pr(Y_n'H^{-1}Y_n > q_{\alpha}^p) + o(1) \ge \alpha.$$

Next, in considering the CLR test, for notational convenience evaluate at β_0 and drop the β argument, for example, so that $\hat{R} = \hat{R}(\beta_0)$. By have $\hat{B} \stackrel{p}{\longrightarrow} B$, it follows that $\hat{B} \geq (1 - \varepsilon)B$ w.p.a.1 for all for $\varepsilon > 0$. Also by m/μ_n^2 bounded, for any C there is ε small enough so that $(1 - \varepsilon)C - \varepsilon m/\mu_n^2$ is positive and bounded away from zero, that is, so that $(1 - \varepsilon)C - \varepsilon m/\mu_n^2 \geq C$ (the Cs are different). Then by hypothesis, multiplying through by $1 - \varepsilon$, and subtracting $\varepsilon m/\mu_n^2$ from both sides it will be the case that

$$\xi_{\min}(\mu_n^{-2}S_n(1-\varepsilon)BS'_n) - (m/\mu_n^2) \ge (1-\varepsilon)C - \varepsilon m/\mu_n^2 \ge C.$$

Then w.p.a.1,

$$\hat{F} = \frac{\hat{R} - m}{\mu_n^2} = \xi_{\min}(\mu_n^{-2} S_n \hat{B} S_n') - \frac{m}{\mu_n^2}$$

$$\geq \xi_{\min}(\mu_n^{-2} S_n (1 - \varepsilon) B S_n') - (m/\mu_n^2) \geq C.$$

Also, by the proof of Theorem 4,

$$\frac{AR - m}{\mu_n^2} = \frac{\sqrt{m}}{\mu_n^2} \frac{AR - m}{\sqrt{m}} \xrightarrow{p} 0.$$

Therefore, we have w.p.a.1,

$$\frac{AR - \hat{R}}{\mu_n^2} = \frac{AR - m}{\mu_n^2} - \hat{F} \le -C.$$

It follows that w.p.a.1,

$$\frac{AR}{\hat{R}} = \frac{(AR - m)/\mu_n^2 + m/\mu_n^2}{\hat{F} + m/\mu_n^2} \le \frac{C/2 + m/\mu_n^2}{C + m/\mu_n^2} \le 1 - C.$$

Therefore, by $\hat{R} \ge C\mu_n^2 + m \longrightarrow \infty$, w.p.a.1,

$$\frac{\hat{R}}{(AR - \hat{R})^2} = \frac{1}{\hat{R}} \frac{1}{(1 - AR/\hat{R})^2} \xrightarrow{p} 0.$$

Note that AR $-\hat{R} < 0$ w.p.a.1, so that $|AR - \hat{R}| = \hat{R} - AR$. Also, similarly to Andrews and Stock (2006), by a mean value expansion $\sqrt{1+x} = 1 + (1/2)(x+o(1))$, so that

$$\widehat{\text{CLR}} = \frac{1}{2} \{ AR - \hat{R} + [(AR - \hat{R})^2 + 4LM \cdot \hat{R}]^{1/2} \}$$

$$\begin{split} &=\frac{1}{2}\bigg\{\mathrm{AR}-\hat{R}+|\mathrm{AR}-\hat{R}|\bigg[1+\frac{4\,\mathrm{LM}\cdot\hat{R}}{(\mathrm{AR}-\hat{R})^2}\bigg]^{1/2}\bigg\}\\ &=\frac{1}{2}\bigg\{\mathrm{AR}-\hat{R}+|\mathrm{AR}-\hat{R}|\bigg[1+2\,\mathrm{LM}\frac{\hat{R}}{(\mathrm{AR}-\hat{R})^2}(1+o_p(1))\bigg]\bigg\}\\ &=\widehat{\mathrm{LM}}\frac{\hat{R}}{\hat{R}-\mathrm{AR}}(1+o_p(1)). \end{split}$$

Let $r_n = \xi_{\min}(S_n B S_n'/\mu_n^2)$. Then $r_n - m/\mu_n^2 \ge C$ by hypothesis. Then $\hat{R}/\mu_n^2 = r_n + o_p(1)$ as shown below. It then follows that

$$\frac{\hat{R}}{\hat{R} - AR} = \frac{\hat{R}/\mu_n^2}{(\hat{R} - m)/\mu_n^2 - (AR - m)/\mu_n^2}
= \frac{r_n + o_p(1)}{r_n - m/\mu_n^2 + o_p(1)} = \frac{r_n}{r_n - m/\mu_n^2} + o_p(1).$$

It then follows that

$$CLR = \left(\frac{r_n}{r_n - m/\mu_n^2}\right) LM + o_p(1).$$

Carrying out these same arguments with $q_s^{m-p} + q_s^p$ replacing AR it follows that

$$\hat{q}_s = \frac{1}{2} \left\{ q_s^{m-p} + q_s^p - \hat{R} + [(q_s^{m-p} + q_s^p - \hat{R})^2 + 4q_s^p \cdot \hat{R}]^{1/2} \right\}$$

$$= \left(\frac{r_n}{r_n - m/\mu_n^2} \right) q_s^p + o_p(1),$$

giving the conclusion with $c_n = r_n/(r_n - m/\mu_n^2)$.

It now remains to show that $\hat{R}/\mu_n^2 = r_n + o_p(1)$. Note that for $\bar{S}_n = S_n/\mu_n$,

$$\hat{R}/\mu_n^2 = \min_{\|x\|=1} x' \bar{S}_n \hat{B} \bar{S}'_n x, \quad r_n = \min_{\|x\|=1} x' \bar{S}_n B \bar{S}'_n x.$$

By Assumption 1 we can assume without loss of generality that $\mu_n = \mu_{1n}$ and

$$\bar{S}_n = \tilde{S}_n \operatorname{diag}(1, \mu_{2n}/\mu_n, \dots, \mu_{nn}/\mu_n).$$

Let e_j denote the jth unit vector and consider x_n such that $x'_n S_n e_j = 0$ (j = 2, ..., p) and $||x_n|| = 1$. Then by \tilde{S}_n bounded and CS,

$$\|x'_n \bar{S}_n\| = \|x'_n \tilde{S}_n \left[e_1 + \sum_{j=2}^p (\mu_{jn}/\mu_n) e_j \right] \| = \|x'_n \tilde{S}_n e_1\| \le \|\tilde{S}_n\| \le C.$$

Also, by $\hat{B} \xrightarrow{p} B$ there is C such $\|\hat{B}\| \le C$ and $\xi_{\min}(\hat{B}) \ge 1/C$. w.p.a.1. Let $\hat{x} = \arg\min_{\|x\|=1} x' \bar{S}_n \hat{B} \bar{S}'_n x$ and $x_n^* = \arg\min_{\|x\|=1} x' \bar{S}_n B \bar{S}'_n x$. Then w.p.a.1,

$$C^{-1} \|\hat{x}'\bar{S}_n\|^2 \le \hat{R}/\mu_n^2 \le x'_n \bar{S}_n \hat{B} \bar{S}'_n x_n \le C,$$

$$C^{-1} \|x_n^{*'} \bar{S}_n\|^2 \le r_n \le x'_n \bar{S}_n B \bar{S}'_n x_n \le C,$$

so that there is \bar{C} such that w.p.a.1,

$$\|\hat{x}'\bar{S}_n\| \leq \bar{C}, \quad \|x_n^{*'}\bar{S}_n\| \leq \bar{C}.$$

Consider any $\varepsilon > 0$. By $\hat{B} \xrightarrow{p} B$, w.p.a.1 $\|\hat{B} - B\| \le \varepsilon/\bar{C}^2$. Then, w.p.a.1,

$$\hat{R}/\mu_{n}^{2} \leq x_{n}^{*'}\bar{S}_{n}\hat{B}\bar{S}_{n}x_{n}^{*}$$

$$= r_{n} + x_{n}^{*'}\bar{S}_{n}(\hat{B} - B)\bar{S}_{n}x_{n}^{*} \leq r_{n} + |x_{n}^{*'}\bar{S}_{n}(\hat{B} - B)\bar{S}_{n}x_{n}^{*}|$$

$$\leq r_{n} + ||x_{n}^{*'}\bar{S}_{n}||^{2}||\hat{B} - B|| \leq r_{n} + \bar{C}^{2}(\varepsilon/\bar{C}^{2}) = r_{n} + \varepsilon,$$

$$r_{n} \leq \hat{x}'\bar{S}_{n}B\bar{S}_{n}\hat{x} = \hat{R}/\mu_{n}^{2} + \hat{x}'\bar{S}_{n}(B - \hat{B})\bar{S}_{n}\hat{x} \leq \hat{R}/\mu_{n}^{2} + \varepsilon.$$

Thus, w.p.a.1, $r_n - \hat{R}/\mu_n^2 \le \varepsilon$ and $\hat{R}/\mu_n^2 - r_n \le \varepsilon$, implying $|\hat{R}/\mu_n^2 - r_n| \le \varepsilon$, showing $|\hat{R}/\mu_n^2 - r_n| \stackrel{p}{\longrightarrow} 0$. Q.E.D.

REFERENCES

ANDREWS, D. W. K., AND J. H. STOCK (2006): "Inference With Weak Instruments," in *Advances in Economics and Econometrics*, Vol. 3, ed. by R. Blundell, W. Newey, and T. Persson. Cambridge, U.K.: Cambridge University Press.

DONALD, S. G., G. W. IMBENS, AND W. K. NEWEY (2003): "Empirical Likelihood Estimation and Consistent Tests With Conditional Moment Restrictions," *Journal of Econometrics*, 117, 55–93.
NEWEY, W. K. (1991): "Uniform Convergence in Probability and Stochastic Equicontinuity," *Econometrica*, 59, 1161–1167.

Dept. of Economics, Massachusetts Institute of Technology, Cambridge, MA 02142-1347, U.S.A.; wnewey@mit.edu

and

Dept. of Economics, University of Bristol, 2 Prior Road, Bristol BS8 1TN, U.K.; F.Windmeijer@bristol.ac.uk.

Manuscript received August, 2006; final revision received January, 2008.