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APPENDIX: PROOFS

THROUGHOUT THE APPENDICES, let C denote a generic positive constant that
may be different in different uses. Let CS, M, and T denote the Cauchy-
Schwarz, Markov, and triangle inequalities, respectively. Let S denote the
Slutzky lemma and CMT denote the continuous mapping theorem. Also, let
CM denote the conditional Markov inequality that if E[|A,||B,] = O,(&,),
then 4, = O,(&,), and let w.p.a.1 stand for “with probability approaching 1.”
The following standard matrix result is used repeatedly.

LEMMA AO: If A and B are symmetric, positive semidefinite matrices, then
|§min(A) - gmin(B)l = ”A _B”: |§max(A) - gmax(B)l = ”A - B“
Also, if |A — Al 25 0, Emn(A) > 1/C, and Eng(A) < C, then wp.a.l
gmin(A) = 1/2C and Emax(A) = 2C.

A.1. Consistency Proofs for General CUE

For Lemmas Al and A10, let Y;, Z; (i=1,...,n) be ii.d. m x 1 random
vectors that depend on n and have fourth moments but where we suppress an
n subscript for notational convenience. Also, let

Y=>"Yi/n, wpy=ElY], Syw=EYY], Zy;=E[Y,Z]
i=1

and let objects with Z in place of Y be defined in the corresponding way.

LEMMA AL: If (Y, Z) (i=1,...,n)areiid., Enu(AA) < C, Enux(A'A) <
Ca gmax(EYY) S Ca gmax(zzz) 5 C; m/ai — 05 an/n 5 Ca E[(YI’Y,)Z]/nai —
0, E[(Z/Z))*1/na> — 0, nuypy /a> —> 0, and nu',juz/a> —> 0, then

nY'AZ/a,=tr(AS,,)/a, +nuy Apz/a, + o,(1).

PROOF: Let W;= AZ;. Then AY,, =23, Auz = pw,
gmax(E[VVtVV,/]) = gmax(AZZZA/) =< Cgmax(AA/) =< Ca
E[(W/W;)*1/na’ = E((Z,A' AZ;)*)/na’ < CE[(Z,Z))*]/na; — 0.
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2 W.K. NEWEY AND FE WINDMEIJER

Thus the hypotheses and conclusion are satisfied with W in place of Z and
A = I. Therefore, it suffices to show the result with 4 = 1.
Note that

E(Y/Z) <E[(Y)Y) 1+ E(Z,Z)*],
E[Y/Z,Z)Y]= E[Y/3;;Y;] < CE[Y]Y;]= Ctr(Zyy) < Cm,
\ELY;Z;Y|Z]| < C(ELY|Z,Z\Y] + E[Y| Z:Z}Y;]) < Cm.

For the moment suppose py = puz =0. Let W, = nY/Z/an. Then E[W,] =
ElY;Z]/a,=tr(3yz)/a, and

E[W,)*/n < E[(Y!Z)*]/na;,
<{EWY)Y)*| + E[(Z,Z)*]}/na> —> 0.
We also have

EW}1=E [Z K’ZjY,;Z[/nzag}

i,j,k,t
= E[(Y,Z))*]/na;,
+(1=1/m{EW, )+ E[K-/Zij/Zi]/ai + E[Y,-/ZjZ}Yi]/aﬂ
= E[W,I’ + o(1),
so that by M,
W, =tr(3},)/a, + o0,(1).

In general, when wy or u; is nonzero, note that E[{(Y; — wy) (Y: — uy)}?] <
CE[(Y]Y})?] and &pna(Var(Y))) < &max(Syy), so the hypotheses are satisfied
with Y; — uy replacing Y; and Z; — u; replacing Y; and Z;, respectively. Also,

(A1) W,=nY'Z/a,=n(Y — uy) (Z — uz)/an+nwy(Z — uz)/a,
+n(Y — py) mz/ay + iy iz a,.
Note that
E[{n,u'Y(Z - ,U«Z)/an}2] =nuy(3zz — leulz)l-LY/ai = nM,YEZZIJvY/ai
< Cnplyuy/a, — 0,

so by M, the second and third terms in eq. (A.1) (with Y and Z interchanged)
are 0,(1). Also, tr(puzuy)/a, = a,n " (nuypz/a2) — 0. Applying the result
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for the zero mean case then gives

W, =tr(3y, — uziy)/ay +npsypz/a, +o,(1)
=tr(3y,)/m+nuypz/m+o,(1). Q.E.D.

It is useful to work with a reparameterization

8=S5,(B—Bo)/tn-

For notational simplicity we simply change the argument to denote the repa-
rameterized functions, for example, Q(S) will denote Q(BO + w,SV8). Let
Q*((‘S) = g(é)’!}(a)*lg(s)/z be the objective function for quadratic p(v), let
0(8) = §(8)2(8)7'2(8)/2, and let Q(3) = §(8) 2(8)'g(8)/2+ m/2n.

LEMMA A2: If Assumption 3 is satisfied, then for any C > 0,SUpg g 5, M, X
n|Q*(8) — Q&) = 0.

PROOF: Note that by Assumption 3(ii), u,*nE[]|§(0)[I*] = w,* tr(2(By)) <
C, so by Assumption 3(v) and T,

sup 8(&)1 < 180)[I + sup 18(8) — &)l = O, (,/v/n).

Isl<c Isl<C
Let a(8) = p,'/n2(8)7'g(8). By Assumption 3(ii),
a(&)N1> = w,*ng(8) 2(8)202(8) 7 2(8)7§(8) < Cw,*nlIg(&)|%,

so that sup;,_¢ |a(8)|l = O,(1). Also, by Assumption 3(iii) we have

|Emin (2(8)) — Emin(£2(8))| < sup [£2(8) — 2(8) 2> 0,

lel=C

s0 that &,in(2(8)) > C, and hence &nu(2(8)~1) < C for all ||§] < C, w.p.a.l.
Therefore,

w,*n| 0 (8) — O(8)|
<|a(8)12(8) — Q(8)]a(d)|
+

a(8)12(8) — 2(8)1(8) ' 12(8) — A(8)1a(8))|
< 1a(8)I2(12(8) — ()|l + CIA(5) — 2(8)[1?) - 0.
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Next, let a(8, 8) = u,'v/n€2(8)"'g(8) and Q(5, 8) = g(5)2(8)"'3(8)/2 +
m/2n. By Assumption 3, sups._c s <clla(8,8)| < C. Then by Assump-
tion 3(iv), for ||| < C and |||| < C, it follows by .S, ! bounded that

1,°n1Q(8,8) — Q(8, 8) = |a(8, §)[Q(8) — 2(8)]a(3, &)
< CllpaS; " (8 =8| < C|I5 - §].

Also, by T and Assumption 3, for ||8]| < C and |5 < C,

w;2nlQ(8, 8) — Q(8, §)|
< C;’n(lIg(8) — g®I* + 1§ IIIZ(S) — g1
<C||5 - 8|l

Then by T it follows that w-2n|Q(8) — Q(8)| = w*n|Q(8,8) — Q(8,8)| <
C||6 — 8||. Therefore, w,2nQ(8) is equicontinuous on 18] < C and |8 < C.
An analogous argument with a(§,8) = M;k/ﬁ()(ﬁ)*lg(é) and Q(8,8) =
§(8)0(8)7'g(8) replacing a(8,8) and Q(8, §), respectively, implies that
w,’n|Q(8) — Qf5)| = u,*n|Q(8,8) — Q(8, 9)| < M||5 — || on ||5~|| <C and
18] < C, with M = O,(1), giving stochastic equicontinuity of u,2nQ(9).

Since ,u;an(S) and . *nQ(8) are stochastically equicontinuous, it suf-
fices by Newey (1991, Theorem 2.1) to show that ,LL;ZnQ((S) = u,*nQ(8) +
0,(1) for each 8. Apply Lemma Al with Y; = Z; = g,(8), A = Q2(8)7',
and a, = u2. By Assumption 3, &na(A'A) = Enx(AA) = Enax(2(8)7?) < C,
Eman(Syy) = Enx(2(8)) < C, E[(Y]Y))*]/na; = E[{g:(8)'g:(8)}*1/nu,, —> 0,
and npypy /a2 < Cng(8) 2(8)7'§(8) /i = C(nQ(8) /sl — m/u2) Ju2 —> O,
where the last expression follows by equicontinuity of u;?nQ(8). Thus, the
hypotheses of Lemma Al are satisfied. Note that A3, = A3;; = A3yy =
ml,,/u?, so by the conclusion of Lemma Al,

1, °nQ(8) = tr(,) /iy, + 11,°ng(8) 2(8) ' 8(8) + 0,(1)
=, ’nQ(8) +0,(1). Q.E.D.

Let P(B,A) =31, p(Ngi(B))/n.

LEMMA A3: If Assumptions 3 and 4 are satisfied, then wp.al B =
argming.p Q(B), A= argmaxAEL”(é)ﬁ(ﬁ, A), and X = argmax)‘ei(mﬁ(ﬁo, A)
exist, [Al = O,(vm/n), Al = O,(vm/n), &R = O,(Jm/n), and
Q" (B) < Q"(By) + 0,(m/n).
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PROOF: Let b; = supgs 1&g (BN A standard result gives max,.,b; =
O,(n'/"(E[b]1)"/). Also, by Assumption 4 there exists 7, such that /m/n =
o(t,) and 7, = o(n~"7(E[b]])"/?). Let L, = {A:||A| < 7,,}. Note that

sup  |Ng(B)| < T,maxb; = O,(r,n""" (E[b]])") — 0.

AeLy,BeB,i<n
Then there is C such that w.p.a.1, forall B € B, A € L,, and i < n, we have
L,CL(B), -C=p(Ng(B)=-C", |p:s(Ngi(B))|=C.
By a Taylor expansion around A = 0 with Lagrange remainder, for all A € L,,,
P(B,\)=—Xg(B)+ X [Z pzd’gi(ﬁ))giw)gi(ﬂ)’/n}A,
i=1

where A lies on the line joining A and 0. Then by Lemma A0, w.p.a.1 for all
BeBand Ae L,

(A2)  —XN&PB)—CIAP = P(B,A) <—Ng(B)— C A
< IAIIEBI = CHIAI

Let g = g(Bo) and A= argmax, ; 13([30, A). By &nax(£2(Bo)) < C it follows
that E[[|g]|*] = tr(2)/n < Cm/n, so by M, |gll = O,(y/m/n). By the right-
hand side inequality in eq. (A.2),

0=P(Bs,0) < P(Bo, A) < IIAIlIIZI — C AL

Subtracting C~'||A||? from both sides and dividing through by C~!||A| gives
IAll < ClIgll = Op(/m/n).

Since /m/n = o(r,) it follows that, w.p.a.1, A € int(L,) and is therefore a local

maximum of P( Bo, A) in L( B). By concavity of P(B, A) in A, a local maximum
is a global maximum, that is,

P(By, A) = max P(By, A) = O(Bo).

AeL(Bo)

Summarizing, w.p.a.1 A = argmaxAEi(Bo)f’(,Bo, ) exists and || A = 0,(Vm/n).
Also, plugging A back into the previous inequality gives

O(Bo) =0, (m/n).



6 W.K. NEWEY AND FE WINDMEIJER

Next, let QT”(B) = maerLnIS(B, A). By continuity of g;(8) and p(v), and
by the theorem of the maximum, Q. (B8) is continuous on B, so BA,” =

argming.; Q,, (B) exists by compactness of B. Let g, = g(8,,). By the left-
hand side inequality in eq. (A.2), forall A e L,,

(A3) =N, —ClIAP < P(B.,,A) < 0., (B,) < 0-,(Bo) < O(Bo)
=0,(m/n).

Consider A = —(g&,, /&, ) 7,. Plugging this into eq. (A.3) gives

g | —cmi=0,(m/n).

Tl

Note that for n large enough, m/n < C72, so that dividing by 72 gives

g..| <0, (r.'m/n) + C1,=0,(7,).

Consider any «, —> 0 and let A= —a,8.,. Then Al = 0,(7,) so that AelL,
w.p.a.1. Substituting this A in the above inequality gives

“o(2)

Note that 1 — Ca, — 1, so that this inequality implies that «,|g,,
O,(m/n). Since a, goes to zero as slowly as desired, it follows that

=0,(vm/n).

Let A = argmax,cy, 13( ﬁw A). It follows exactly as for A, with ,éTn replacing 3,
that ||5\|| =0,(y/m/n) and, w.p.a.1, A= argmax,; g P(B,, A), so that

? = an(l - Can)

2 2
—Ca,

A A N
g n g n g Tn

a,|

I? =

A

|2(8-,)

N
ng

A A

an (Brn) = ﬁ(BTn7 ;\) = max P(BAT”: A) = Q(Brn)

reL(B)

Then w.p.a.1, by the definition of an(ﬁ) and ﬁw for all B € B,

O(B:,) = 0:,(B,) < 0-,(B) = maxP(B, 1) < O(B).

Thus, w.p.a.1 we can take 3 = ém.
Now expand around A = 0 to obtain, for g; = gi(B) and () = .Q(B), w.p.a.l,

A A Dra A\ Ay NTA L A A 1 NS Sra
OB)=P(B, ) =—gA= N0 +F, F=2) ps(NgN&)/m,
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where ||| < ||5\|| and 7 = 0 for the CUE (where p(v) is quadratic). When ,é is
not the CUE, w.p.a.1,

17l < 1Al maxb,CXQ(B)A < O, (v/m/nn'Y (E[6]1)"")CIA|1
=o0,(m/n).
Also, A satisfies the first-order conditions Y7, p;(X'g,)§;/n = 0. By an expan-
sion, pl(fug,-) =-1- X/g,- + p3(9;)(N'g,)?/2, where ¥; lies in between 0 and

N'g; and either p;(v;) = 0 for the CUE or max,, |9;| < max,<, |5\’§,«| <7, — 0.
Expanding around A = 0 gives

A AN 5 S 1 . — YrAN2A
0=-g-0A+R, R=7 ;pa(vi)m 8)’8i/n=0.
Then either R = 0 for the CUE or we have
IR|| < Cmaxbi|ps(5)|N QA = O, (n"(E[B])Y'm/n) = 0,(/m/n).
Solving for A = fz—l(—g +R) and plugging into the expansion for O( B) gives
R O T
OB)=—-80 ' (-g+R) - 5(—g+R) O (=g +R)+0,(m/n)
=0"(B)— RQ'R/2+ 0,(m/n) = 0"(B) + 0,(m/n).
An exactly analogous expansion, replacing 3 with By, gives
Q(B) = Q" (Bo) + 0,(m/n).
Then by the definition of 3,
Q" (B) = Q(B) + 0,(m/n) < Q(By) + 0,(m/n)
=0 (By) +0,(m/n). QE.D,
LEMMA A4: If Assumptions 2—4 are satisfied, then ||c§|| =0,(1).

PROOF: By Lemma A3, w.p.a.l, ||§(,[§)|| = 0,(y/m/n), so that Assump-
tion 2(iii) and m/u* < C give

181l < Cp; ' Vlg(B) + O, (1) = O, (Vm/ ) + 0,(1) = O, (1).
Q.E.D.
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PROOF OF THEOREM 1: By Lemma A3 and m/u2 < C it follows that, para-
meterizing in terms of 6 =S (8 — By)/m, (Where 8, =0),

w20 (8) < p;2n0*(0) + 0, (1).

Consider any &, y > 0. By Lemma A4 there is C such that Pr(A4,) > 1—¢/3 for
A; ={l18]| < C}. In the notation of Lemma A2 let A, = {sup,;, _ u;,*n|Q*(8) —

Q(8)| < y/3} and A = {u;*n0*(8) < pu;*nQ*(0) + y/3}. By Lemma A2, for
all n large enough, Pr(A4,) > 1 — ¢/3 and by Lemma A3, Pr(A4;) > 1 — &/3.
Then Pr(A, N A,NA;) >1—candon A, NA,N A,
1,2 nQ(8) < p,’n 0" (8) + /3 < p,’nQ*(0) + 2v/3
< " nQ0) +y = m/u; + 7,
where the second inequality follows by 5 e A Subtracting m/u? from both
sides it follows that A implies M;an(é)/(l(é)*1g(3) < v. Since &, y can be any

positive constants, we have u,*n 2(8Y02(8)7'g(8) —%> 0. Then, by Assumptions
2(ii) and 3(ii),

1,2 ng(8) Q(6)'g(8) = C;*ng(BYg(B) = ClI51?,
so that [|§]] = 0. Q.E.D.

A.2. Conditions for the Linear Model
LEMMA AS5: If Assumption 5 is satisfied, then &min(E[(y; — xiB)*Z;, Yi1) > C.
AlSO,for Xi - (yia x;)/a E[”Xl||4|Zla Yl] S C-

PROOF: Let A = B, — B and let A be the elements of A corresponding to
the vector 7, of nonzero elements of n; from Assumption 5. Then y;, — x/8 =

&+ A + Y/A, so that
El(y; — X,8)*|Zi, Y] = El(&: + 7/A)?| Z;, Yi]
= (1,A)3:(1,A) > &mn(S)(1+AA) > C,

giving the first conclusion. Also, E[|x;|*IZ;, Y] < CE[|n:*|Z;, Yi] +
CE[|Y:II*|Z;, Y;] < C and E[y/|Z;,Y;] < CE[lx|I*IBoll*|1Z:, Yi] + El&}|Z;,
Y;] < C, giving the second conclusion. O.E.D.

LEMMA A6: If Assumption S is satisfied, then there is a constant C such that
forevery B € Band m, C~'I,, < Q(B) < CI,,.
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PROOF: By Lemma A4, C~' < E[(y; — x/8)*|Z;] < C, so that the conclusion
follows by I, = E[Z;Z]] and Q(B) = E[Z;ZE[(y; — x,8)*| Z]1]. O.E.D.

LEMMA A7: If Assumption 5 is satisfied, then Assumption 3(v) is satisfied,
'Y, Zizj = E[Ziz]ll = 0, and |In™' Y-, Zim}| = O, (V/m[n).

PROOF: For the last conclusion, by E[7nin;|Z;] < C we have

E[ n' Y Zm,

so the last conclusion follows by M. For the second to last conclusion, we have
£l

so it also follows by M.
Next, by Assumption 5 and Lemma A6 we have

2
] —n'E[Z,Zmm] < Cn'E[Z/Zi] = Cm/n,

2
] <E[ZZzz]/n

n! Z Z,z,— E|Z;zZ)]

< VEUZI*1/nVEllz]1/n — 0,

IE[Z:Z]|I° = tr{E[ZiZ,{](E[ZiZ;])ilE[ZiZ,/']} <tr(E[zz]) < C.
Then we have by CS, Y; = S,z;/v/n, G =—E[Z,;z]]S,//n, and

w ValgB) — gB) = u, ' VrlG(B — Bl = |E[Z:z](5 — §)|
< IELZ:Z]IIII6 — 8]l < C|16 — 8.

Also, by G = G(B) not depending on B, by ||S; V|| < C/u,, and by T,

A 1 el
||G\/ES;1,|| =< Hﬁ szisnl

_|_

1
= Ziz;— EIZz])| + | EIZ:Z]|

= op(ﬁ\/g) +0,(1)+0(1)=0,(1),

e

so that for M = |G/nS; || = 0,(1), by CS,

w Valg(B) — B = p, ' ValG(B - B
=1Gv/nS,"(5 - 8)| <M|5—8|.  QE.D.
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LEMMA AS8: If Assumption 5 is satisfied, then Assumption 3(iii) and Assump-
tion 8(i) are satisfied.

PROOF: Let X; = (y;, x})’ and a = (1, —B')’, so that y; — x;8 = X/a. Note
that

p+1
QB) —2(P) = Z Fraray, Fi,
k=1

=Y ZZXuXu/n— EIZ:.Z XuX].

i=1
Then E[X; X?2|Z;] < C by Lemma A4 so that
ElFe )’ < CE[(Z,Z’E[X; X;|Z]]/n < CE((Z.Z))*]/n — 0.

Then supg_, ||f2([3) — QB - 0 follows by B bounded. The other parts of
Assumption 8(i) follow similarly upon noting that

p+1
Q“B) = 0 (B) =) Frua,, 24 (B) — DX (B)
=1
= Fr, 0"(B) = 0*(B) = 0. Q.E.D.

LEMMA A9: If Assumption 5 is satisfied, then Assumption 3(iv) and Assump-
tion 8(ii) are satisfied.

PROOF: Let S,— = E[X;X][|Z;], which is bounded by Lemma AS. Then by a =

(1, —B) bounded on B we have |& 3;& — o' S| < C||B— BI|. Also, E[(a'Z:)*] =
d'E[Z;Z/]a = ||a|*. Therefore,

|a'Q(B)b — d'2B)b| = |E[(a'Z)) (V' Z)E[(X|&)* — (X[)*| Zi]]|
< E[|d Z|Ib'Z||& 3:d — o/ Siex]]
< CE[(d'Z:)'1EL(b' Z:)'11 B — BI
< Clallibllig — BII.
We also have
la' Q¥ (B)b — a' " (B)b| = [2E[(d'Z) (V' Z)E[xu X (& — )| Z]]]|
< CE[|a' Zi||b' Z;|El|x; 1 X1 Z]] 118 — B
< Clalliblli — BII.
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The other parts of Assumption 8(ii) follow by 2%(8) and 02*(8) not depend-
ing on B. Q.E.D.

PROOF OF THEOREM 2: The result will follow by Theorem 1 upon show-
ing that Assumptions 2 and 3 are true. We now verify Assumption 2. As-

sumption 2(i) holds by hypothesis. For Assumption 2(ii), note that by G =
—E[Z;2S,/ /7,

' Vng(B) = v/nG(B — Bo)/mn = —/nGS, 8.
Then by nS,'G'GS; " > CnS,;'G'Q27'GS;" and Assumption 1 we have

w, VARl = (8[nS,'G'GS,18)” = C|3].

Next, let R = > (Z:z, — E[Z;Z]])/n and note that
. . 1 ,
8(B)=&(Bo) =~ Zx(B — Po)
N 1 .
=8(B) =~ > Zmi(B — Bu) + man” *(=R+ E[Z:Z]))3.

By Lemma A7, ||I§|| SN 0, so that by T and CS, w.p.a.1,
| (=R + E[Z:z)8| = | E[Z:2)18]l — 1R8] = (C — |RIDIISI = C||3]|.

Also, as previously discussed, w,'v/nlg(Bo)ll = O,(1) and by Lemma A7,
w,'/nl >, Zim,/n||l = O,(1), so that by B compact,

M = ;' /nsup
BeB

1
8(Bo) = — > Zimi(B = Bo) | = O,(1).

Then by T it follows that w.p.a.1 for all 8 € B,

I8 < C| (=R + E[Z:z])8| < p; ' Vnlg(B)l + M,

giving Assumption 2(iii).

Next, Assumption 3(i) holds by Lemma A5 and E[(ZZ;)*]/n —> 0, (ii)
holds by Lemma A6, (iii) holds by Lemma A9, (iv) holds by Lemma AS, and
(v) holds by Lemma A7. Q.E.D.

A.3. Asymptotic Normality

The next result is a general result on asymptotic normality of the sum of a
linear and a quadratic form. Let X; denote a scalar random variable where we
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also suppress dependence on n, let Z; and Y; be m x 1 random vectors as in
Lemma Al, and let ¥ = Zzzzyy +Ezzy, lfz = fmax(EZZ), and ‘fY = gmax(EYY)-

LEMMA A10: If (X, Y., Z) (i=1,...,n) are iid., E[X]] =0, E[Z] =
E[Y:]1=0, 3;; and 3yy exist, nE[X?] — A, n’tr(¥) —> A, nE[X}] — 0,
mn*ééE, — 0, W (EE[YilY] + &ENZI) — 0, and n*E[||Yi|*] x
E[||Zi||4] — 0, then

Xn:Xi +3°Z)Y; -5 N0, A+ A).
i=1 i#]

PROOF: Let w; = (X;, Y, Z;) and for any j < i, let ¢y; = Z]Y; + Z}Y;. Note
that

Eljlwiy, ..., w]=0,
E['#%j] =E[(Z)Y))’+ (Z;‘Yi)z +2ZY,Z;Y;] =2t (V).

We have
YXi+) Z)Y, =) (Xi+Bu)+ X,
i=1 i#j i=2
Bu=Y ;= (Z Z,) Yi+ (Z Y,) Z,.
j<i j<i Jj<i

Note that E[X?] = (nE[X2])/n —> 0, so X; = 0 by M. Also, E[X;B;,] =0
and

E[B}]= E[Z w,-jsuik] = (i~ DE[Y2] =23 — D tr(¥).

Jok<i

Therefore,

(A4)  s,=) ElX;+B;,)’1=(n—DE[X]]+2) (i—Dtr(¥)
i=2 =2
n*—n
n2

n—1

= nE[Xf]+( >n2tr(11f)—>A+A.

Next, note that

E[B,'znlwi—la ey 'LU1] = T]i + T2i + 2T3i5
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Tyi= (Z z;) Svy (Z z,),

j<i Jj<i
Ty = (Z Y/{) S, (Z Y,) , Tyi= <Z Y;) 3oy (Z Z,).
j<i j<i J<i J=<t

‘We also have
Tsi — E[T5] = Tayi + T + T4,
T31i:ZRj7 Rj:[Yj,EZYZj_tr(zzzy)]a

Jj<i
Toi=Y S, Si= (Z Y,~) SivZis Toi= Y Y37,
k<i j<k Jj<k<i

13

By E[(Y{, Z})'(Y{, Z})'] being positive semi-definite it follows that | Y] SiwZj| <

(Y322Y;+ Z2yy Z;)/2. Note that
E[(Y,-/ZZYZJ‘)Q] < CE[(YJ-/Ezzyj)z] + CE[(Z;'ZYYZj)z]
< CEENY; I+ CEENZY.
Note that Y 7, T5;; = > . ,(n — i+ 1)R; so that

n 2 n
E[(Z Tsl,-) } <E[(Y/3zvZ)’1) (n—i+1)
i=2

>
< Cr{EELYiI1+ & ELIZ;11*1} — 0,
so that Y7, Ty, — 0 by M. We also have
ELY/37v37,3v2Yil < E2ELY/ 32y Sy Y = &2 t1(Sy23yy3zy)
< EEvt1(Syz3zy) < E & tr(Sy237532y)
< E & tr(Syy) < méyéy,

so that E[S?] < (i — 1)m¢&% €. In addition E[S;|w;_, ..., w;] =0, so that

Ao

=Y (n—i+1)’E[S]]

i=3



14 W. K. NEWEY AND E WINDMEIJER
< Xn:(n — i+ 1) 1)méLE,
i=3
<mn*&&, — 0
and hence ) ; Ty 5 0. It follows analogously that Yoo T 250, so

by T Y.\ {Ty — E[Ty]} - 0. By similar arguments we have Y7 (T} —
E[T:l} 25 0(r=1,2),s0by T,

Y (EIB}|wi_y,..., w] — E[B],]) = 0.
i=2
Note also that E[X?] = E[X? | w;_1, ..., w;] and that

ZE[XiBin|wi—l; e wy]

i=2

=D D EXAZY+ Z}Y) | wi, ..., wi]

=2 j<i
= Z{E[X,-Z;] (Z Y,-) + E[X;Y]] (Z Zj> }
i=2 j<i i<
n—1 n—1

=E[X.Z]]) (n— DY+ E[X,Y]]) (n—DZ.

i=1 i=1

Therefore,

. 2
E|:<ZE[XiBin|wila cees wl]) j|

i=2
n—1

< C(EIX;Y137zEY, X)) + EIX.Z])SyvE[Z: X)) ) (n— i)’

i=1

< CREvE,EIXY] < CEvEon® = Cmn* . 8)" /m!> — 0.

Then by M, we have

ZE[X,'Bm | Wi_1yeeey wl] _p) 0.

i=2
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By T it then follows that

n

(AS) Y {ENXi+Bi)* | wii, ..., w] — E[(X; + By)’1}

i=2

= Z(E[Blzn | Wi—1yeeey wl] - E[Bzzn])

i=2

+2ZE[X,B,-,, w1, ..., w] —> 0.

=2
Next, note that
n 4
()
i=2 j<i
_S Y EYZY.ZYZY,Z)

i=2 jk,,m<i

= 2{3 > EIZY)Y|Z.Z)Y, Y, Z] + ZE[(Z,TYJ-Y‘]}

i=2 j#k<i j<i
=EWZ SyyZ)"1)_3(i—1)(i—2)+ EW(Z Y)Y (i —1)
i=2 =2

< EENZI+ wELNZIMEN YT — .

It follows similarly that 3 ") E[(}",_; Z;Y:)*] —> 0. Then by T,

Jj<i
n n 4 4
> EIB,]< Z{CE[(Z Yj’Z,-) } + CE[(Z Z;Y,-) “ — 0.
i=2 i=2 j<i j<i
Therefore,

(A6) D ELX;+B.)'1<CnE[X{1+C > E[B.]— 0.

n
=2 i=1

The conclusion then follows from egs. (A.4), (A.5), and (A.6) and the martin-
gale central limit theorem applied to Y, (X; + Bi,). Q.E.D.

We again consider the parameterization where 6 = S,(8 — By)/u, and B =
Bo + .S, 8. We will let a & subscript denote derivatives with respect to 8,
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for example, so that g;5, = dg;(0)/98; = G;S, " exp,, Where ey is the kth unit
vector. Also let 2 = Q(B,), 2 = D1 8i8is /s 0k = E[OF], B* = 0~ 0F,
and B* = Q710F,

LEMMA A11: If Assumptions 1-4 and 6-9 are satisfied, then
Vm| Q-0 =50, p,/m|QF - 0| 50,
vm|B* — B¥| % 0.

PROOF: Note that u,S," is bounded, so that ||g;s, || < C||G;||. Then by stan-
dard arguments and Assumption 6,

E[m| 2 — Q| < CmE[| gi|I*l/n —> 0,
E[m|Q* — 041 < CmE[ || gis, | 1g:17]/n —> 0,

so the first two conclusions hold by M. Also, note that 2¥0Q* < CQV0Q~10F <
CElgis, 8}5,1» so that by Assumption 6, Ema(QVOF) < C. Also, B¥B* <

CO¥k < CE[gis.8is,]- Then w.p.a.1,

Vm||BF — B¥|| < Vm|(QF — Q") Q7| + Vm||B¥(Q - 2) Q7|
< CJym| 2 — |+ Cym|2 -0 L0. QE.D.

LEMMA A12: If Assumptions 1-4 and 6-9 are satisfied, then

ns;laQ;pf 2= Mf”—&%?)‘ —5 N(0, H+A)=N(0, HVH).

PROOF: Let § = &(Bo), &5, = 98(0)/38;x = 3, GiS, erpn/n, &5, =
E[3g:(0)/98,]1 = GS, " ey pn, Uk = 85, — 8, — B¥g, and let A be as defined
in Lemma A3. Consider an expansion pl(;\/g,-) =—-1-— X/gi + p3(17,~)(5\’g,-)2/2,
where |v;] < |5\/g,»|. By the envelope theorem and by Q(S) = Q(BO + 1S, Vo),

ne,. ;' 9Q(Bo) /9B = nldQ(Bo)/IBYS; " ex = w; ' n(9Q/38:)(0)
= M,;l legiskpl(;\,gi)
=—p,'ngy A — w N QX+ 7

P=p' D Negis,pa(0)(Vgi)*/2,

1
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By Lemma A3, [[A| = O,(v/m/n). Note that either B is the CUE or
max,, |0;| < IAlb for b = max;-, [|g, and that b= 0, (nl/V(E[by])l/V) by
a standard result. Therefore, by Assumption 9, either B is the CUE or
max;., |U;| < OP(W)B = 0,(n'(E[b])"/m[n) 25 0. Tt follows that

max,-, p3(€,g;) < C w.p.a.l and, by Enan(Q) = 0,(1), y/m/u, < C, and by As-
sumption 9 that either 7 = 0 for the CUE or

17 < ' CIANDRE D& = O, ('m0 (EID]1) //n)
=0, (n""(E[bI1)/"m//n) = 0.
As in Lemma A3, w.p.a.1 X satisfies the first-order conditions

Z pl(}\/gi)gi/n =0.

Plugging in the expansion for p,(X’g;) and solving gives

A=—07"3+R, R=07"Y ps(v)gi(Xg)*/n.

Either R = 0 for the CUE or by &nu(271) < C and &,,(2) < C w.p.a.l,

IR| < Cmax ||g;|N' QX < ChIA|?> = O, (n" (E[b]])""m/n).

Now, plug A back into the expression for &Q(O) /d6; to obtain

~

-1~

0 -
' n 22 (0) = gy G — g B g4
n ﬁ6k n 8y n
+ u;lnggkﬁ — 1w 'nROFR + w,'nR(QF + 00 'z

Note that by Assumption 6 and w,S;' bounded, E|| 8is, 1’1 =tr(E [gis, ggak]) <
Cmén(E[G;G)]) < Cm. Therefore, |85, — &5, | = O,(v/m/n). We also have
iy /ngs, |l < IVnGS;V| < C, so that ||2s, [l = O(./+/n). Therefore, by
\/%/Mn <Cand T ”g5k = Op(/l‘n/\/ﬁ)7 SO by CS,

|, 'ngs R| < py'nllgs, IR = O, (v/nn'(E[b]1)"Ym/n) > 0.

Let OkF = > 8o 8is, /1 and % = E[g;s g5 1. By Assumption 6 and M

we have |25k — kK| 25 0, so by Lemma A0, Assumption 6, and w,S,'
bounded, w.p.a.1

Emax () < £ (QFF) +1 < Cépn(E[G:GI]) + 1.
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Therefore, M= \/fmax(!))fmax(f)k’k) = 0,(1), so that for any a, b, by CS,

@' Q*b| < [a'Qab' D b]'? < M|a|||b].
Then
|, 'nRQ*R| < My, 'n|R?
= 0, (w; (W7 (E[6)"Ym//n)’) > 0.
We also have |23 = 0,(y/m/n), so that by /m/u, < C,
|y 'mR(Q* + Q)07 < CMw,'n||R| Q78|
= 0,(n""(E[b)1)"m/v/n) = 0.

By T it now follows that

- (9@ -1~ O-1x -1~ pkH-1x
Mnlnrm(o):unlnggkﬂ '§ -, 'ngB" g +o0,(1)

=8, 078+ 02"+ 0, (1),
where U* = g5, — gs, — B"'g. For B* defined preceding Lemma Al1, let U* =

8s, — &, — B¥g. Note that n||g||> = O,(m). By Lemma All and m/u2 < C we
have

I”L,LL;IKOMQ_I _ Uk/é—l)g| < CnM—l|g/(Bk _Bk)é—lg|

n

< Cnu;'IgI1*1B* — B*| 5> 0.

Note also that by the usual properties of projections and Assumption 6,
nE[|U¥|?] < CEIligis, I"] < Cm, so that nu;'|U*(Q~" — 07")g| = 0. Sim-
ilarly we have u,'g; Q' =05 250,50 thatby T

A

J ) o
nM;Ia?Q(O) =nw," (8, +U) 027'g+0,(1).
k

It is straightforward to check that for U; defined in Section 2 we have

Uk=n"' > US, "expn, 85, =GS, " exphn-

i=1
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Then stacking over k gives

9 A n
(A7) nw,' &—g(O) =nsS,’ [G/Q’ g+n' > U g} +0,(1).

i=1

For any vector A with |[A| =1, let X; = X'S,;'G'Q7'g, Y, =0Q7'g, Z; =
U:;S;"A/n,and A= NH\. Then from the previous equation we have

*1/\/—(0) ZX +ZY/Z +0,(1).

i,j=1

Note that E[Z]Y;] = 0 by each component of U; being uncorrelated with every
component of g;. Also, by [|S;!]| < C/u,,

nE[|Y|Z|*1 < CE[||g.Q7 U |*1/nu?
< C(Ellgl1+ ELIG:I*)/nu’ — 0.

Then Y, Z/Y; -2 0 by M. Then by eq. (A.7),

W&Q(O) = ZX +Y Z)Y+0,(1).

i]

Now apply Lemma A10. Note that 3yy = Q7' and 3,y =0, so that ¥ =
3,73yy = n2E[U;S,; VAN S U102, By Assumption 1 and the hypothesis of
Theorem 3, we have

nE[X/1=n\S;'GQ'GS;"\ — NHA= A,
P tr(¥Y) = NS, 'E[UQ'US, "X — NAA.

Also, note that &,,(S;"ANS; ") < C/u2, so that ¢, < C/u’n*. We also have
v/nS;'G' Q7| < C by Assumption 1 and &,,.x(27") < C. Then

nE[|X,|'l < nE[|N'VnS,'G'Q " g|')/n* < CEll|g:I*]/n — 0,
mn*€L € < Cmn*/(u2n*)? < Cm/ut — 0,
n(EENYi1+ &ENIZiI')

<’ C(Ellgil1+ ENIGA1) /mpn* — 0,
nE(|| Y| 1EL| Zi|I*]

< n*CE[lgI1(Ellg N1+ ENGII*) /uin* — 0.
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The conclusion then follows by the conclusion of Lemma A10 and the Cramer—
Wold device. O.E.D.

LEMMA A13: If Assumptions 1-4 and 6-9 are satisfied, then there is an open

convex set N, such that 0 € N, and w.p.a.l Se N, Q(S) Is twice continuous
differentiable on N, and for any & that is an element of N, wp.a.l,

nS ' 0(8)/9B RS " = u*nQ(8)/38 38 —2> H.

_ PROOF: By Theorem 1, & -2 0. Then there is {, — 0 such that w.p.a.1
6N, ={6:8] < .}. By Assumption 3, for all 6 € N,,,

1y, V/llg(8) — §(0)|| < M|8|| < M, - 0.

As previously shown, wp 'V/nllg0)|| = O,(u;'v/ny/m/n) = 0,(1), so
SUps.y, My, /111(8) |l = O,(1) by T. Now let 7, go to zero slower than w,//n
but faster than n=/"E [supsez 18 (B) 171-/7, which is possible by Assumption 9,

and let L, = {A:[|A| < 7,}. Then max;.,supg.z .., 1N (B)I 250 similarly
to the proof of Lemma A3. For all 6 € N,,, let ;\(8) =argmax,. ﬁ(é, A). By

an argument similar to the proof of Lemma A3, an expansion of S(8, ;\(6))
around A =0 gives

0=P(5,0) < P(8,A(5))

. 1. ! .
= 8(8)'A(d) + 5)\(5)/ [Z pz(/\’gi(ﬁ))gi@)gi(5)'/71} A(8)

i=1

< 18IS — CIAS) .
Adding C|IA(8)|*> and dividing through by CIA)| gives

(A8)  AB®)II < CIEB)I < Csup 3(8)] = O, (pa/v/1).

SeNy,

It follows that w.p.a.1 5\(8) eint L, for all 6 € N,. Since a local maximum of a
concave function is a global maximum, w.p.a.1 for all 6 € N,,,

Q(8) = P(8, A(8)).

Furthermore w.p.a.1 the first-order conditions

Y pi(A(8)8i(8))8i(8)/n =0

i=1
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will be satisfied for all 8, so that by the implicit function theorem, ;\(8) is twice
continuously differentiable in 6 € N, and hence so is Q(8)

Here let g; = g,(5), g= g(8), A= )\(8) 0= —Z, 1pz()\ 8)8:8/n, 8is, =
&gi(é)/ﬁSk, 85, = ﬁg(S)/&Sk, and 0OF = —Zipz()t g,)g,gisk/n. Then expand-
ing py(N'&) = —14 pa(D)N'g, for |v;] < |X'g;| and letting QF = — > i p2(0)8i
8is,/ 1, the implicit function theorem gives

A A

A ; OFA
Ry = o (6)- [Zplw,)g‘”‘——}

n

= 085, + (Y + OHR].

Also, for 2 = — > p2(0:)8:8;/n, the first-order conditions 0 =), pl(?\/g,-) X
g:i/n=—g — QX imply that

Ae—01g.
Next, by the envelope theorem it follows that

05.(8) =Y pi(Ng)X gia, /1.

i

Let gis,5, = cfzgi(é)/%k 98¢, 85,0, = 32§((§)/¢95k a8y, Okt = — Y Pz(}\/gi)g’iak X
&is,/n, and O = =3 p2(V;) g,-ggﬁk 5,/ 1 Differentiating again yields

Os,5.(8) = [ (Ngn (A5, &5, + X &)

+ pz(;\’éi)(%ké’i + /A\,giﬁk);\/g’iﬁz]/n

=n" Z( 1+p2(v))\gz)( gusg+/\g15k51)]

==X, 85, — N5 — V(' + QA5 — N (2 + QA
Substituting in the formula for 5\5,( and then A we obtain
(A.9) Qﬁkﬁz(s) = g:sk(}_lgrsz + X,(‘Qk + ‘Qk,)!}_lgﬁz - ;\/gﬁkﬁz
+ ;\/(‘!—2[ + Q[/)(}—l 5
+ N (@D 4+ 00O + DHR — N (D + OFHA
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=8, 0785, + 80 85,5, — §O7 O + OO,
_ g/‘-(_z—l(!_zl + !}l/)()—lgak
+g/!‘2—1(!‘21 +!}l/)()—l(()k1 +Qk)()—1g
_ g’{z—l(!—)kl + (}k,l)!_z—lg.

Next, let 0k = > g,-gg.ﬁk/n. Note that |1 + p,(v;)| < C|v;| < C|5\’§,—|, so that
by CS and M,

12F — 08 < € 15ill1gil | 8is, | /7
1/2 5
< (CZﬁf/n) (Z 18117 &z, | /n)

A 12
g /1]

172

< C(X'mf”[Z(ngiw +|

=0,({x2Eld/n)'?) 5 0.
Also, for 2%(8) = E[gi(8)gis,(5)'], by Assumption 8(i) and S, ' u, bounded we
have || — Q(§)|| -2 0. Then by T,
12F — Q%(5)| > 0.

Let 0%(8) = El[gi5,(8)8i5,(8)'] and 2 (8) = E[gi(8)8is,5,(8)']. Then it fol-
lows by arguments exactly analogous to those just given that

12-026)1 0, [2-2@)]| -0, 20230,
125 — 05 @)) >0, 125 - 0(@E)] 0.

Next, as previously shown, u, '/n|| HOIE 0,(1). It follows similarly from
Assumption 7 that

V6§ (8)/a81 =Vl G(B)S; I = VrllG(Bo)S; VIl + 0,(1).
Then by Assumption 6, E[||G;[*] < Cm, so by M,
(Va|IG(By) — G18;"|))* = O, (ELIG:IA) /2 = O, (1).

Also by Assumptions 1 and 3 we have /n||GS,"|| < C. Then by T and Assump-
tion 1,

VGBS < V| IG(By) — GIS; "

| +V/nlGS, " =0,(1).
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Then by T it follows that
w, ' V/nlldg(8) /98] = 0,(1).

By similar arguments it follows by Assumption 6 that
w, ' Vnl|8(8)/98 98| = O,(1).

Next, for notational convenience let _~(~2 = 0(5) and Q% = Q(5). By As-
sumption 2, £, (271) < C, so that &,,,(27?) < C. It follows as previously that
Enax(27%) < C and &, (QYN720F) < Cw.p.a.l, so that

127105 — 0 0RO
< Q70N - Y+ 1272 - 0907
F 1@ = Ha 0 L 0.
Then by Assumption 8 it follows that
M;2n|§,{2_lﬂké—1£’5@ _ A/Q—l{)k{)—léal |
<0, Q - Q0 S o0.
Therefore, we can replace (2 and 0 by () in the third term in eq. (A.9) with-

out affecting its probability limit. Let Qk «(8) denote the expressmn following

the second equality in eq. (A.9), with 0 replacmg Q2 and 0 throughout Then
applying an argument similar to the one just given to each of the six terms
following the second equality in eq. (A.9), it follows by T that

1,211 Q5,5,(8) — Qi (8)] = 0.
Next, we will show that
1,71 O o (8) — Q1. (0)] = 0.

Working again with the third term, let F(5) = 2(8)"102%(5)02(8)". It follows
from Assumptions 3 and 8 similarly to the previous argument that for any a
and b, |a'[F(8) — F(0)1b| < C|la||||b]lI6]]. Also, by Assumptions 3 and 7 we

have p;'/n[g(8) — §(0)|| — 0 and ;' v/nl|gs,(8) — 5, (0)| — 0. It then
follows by CS and T that

w,2n|g(8) F(8)85,(8) — g(0YF(0)g5,(0)]
O [ 181+ 18(8) — &)l &5, (D)
+18O0)11]| 85, (8) — £5,(0)]|) == 0.

<, nC(1Ig
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Applying a similar argument for each of the other six terms and using T
gives ,u;zn|Qk,g((§) — Qk’g(0)| 25 0. It therefore suffices to show that w,’n x
Os.(0) —> Hy.
NeXt, let 'Qk = Qk(BO)7 'Qk[ = Qk((ﬁ(})’ 'Qk’Z = Qk,e(ﬁ@)’ g = g(BU)’ gﬁk =
&g(O)/&Sk, and gakal = é)zg(O)/(?Sg (98]( Note that
Ore(0) =, 2785, + §0 ' 8s0, — § Q7 (O + 2NN,
— g/n—l(nl +Ql/)g—1g8k
+g/Q—1(Q£ +Q£/)‘Q—1(‘Qk/ +_()k)_(2"g
_ g/ﬂ—l(ﬂki +le)(2—lg.
Consider once again the third term in Qk,[(O), that is, g'Ag;,, where A =

—07 10+ 0)0Q7' . Now apply Lemma Al with Y; = g;, Z; = G;S,, " w,ex, and
a, = p? to obtain

w,’ng Ags, = —tr(Q7 ' (QF + 007 Q) k4 0,(1).
Let H, =nS, 'G'Q7'GS, V. Then applying a similar argument to each term in
QOy.¢(0) gives
1,105 (0) = Hopop + py 2 tr[ Q7105 + 071 0M
-0+ 000 - 07N Q'+ 0H0T 0N
+ 071 Q2+ 0T+ 05 - QM + 08Y]
+0,(1)
= Hyio + w2 tr[ Q71 (0257 — Q5 + 071 — Q)
— 07N+ 000"+ 07N + 000
+o0,(1).
By tr(AB) = tr(BA) for any conformable matrices 4 and B, we have
tr[(2710)Y (210 = (27 F0710Y).
Also, for a symmetric matrix 4, tr(AB) =tr(B’A) =tr(AB’), so that
tr(27' 05 =tr(Q7'0), (27N =tr (7101,
tr[27 (010N = tr[ Q71 QM Q710N)].

Then we have ,u,;ank,[(O) = H,., + 0,(1), so that the conclusion follows
by T. Q.E.D.
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LEMMA Al4: If Assumptions 1-4 and 6-9 are satisfied, then nS; D( B0 x
DBS L H+ A=HVH.

PROOF: For §; = g:(B), an expansion like those above gives p; (A'g;) = —1 —
NG+ pa(T;) (N §:)2, so that w.p.a.1,

1 A ra
~D (N =—1-Xg+r,
Irl < Cmax |py(3) N 2(B)A < CIIAIP.

By ||A| = O,(v/m/n) and ||g|| = O,(v/m/n) we have |\'g| = O,(m/n) - 0.
Also, [r] =0,(m/n) SN 0, so that by T,

1 .
(A10) 3 pi(Ng) = 1.

Next, consider the expansion pl(fvgl) = -1+ p(¥; )X/g, as in the proof
of Lemma Al3. As dlscussed there, A satisfies the first-order condition 0 =
Z pl()\ gt)gz/n - _g Q)‘ for Q - _Z Pz(Ul)gz /l’l so that for gzsz =
08:(8)/38x, &5, = 38(8)/38x, and OF = — 3", p2(9:)&,8:5, /1 We have

A=-07g, Z (N8 8is, /1= —85, — QA =—g,5 +0"07'3.

Also, note that for U = Y"1, U,/n, we have US; Ve, p, = g5, — &5, — 2V 07'g.
Then, in terms of the notation of Lemma A13, it follows similarly to the argu-
ments given there that

1 R N ~
[Z Zm()vg,-)} einS,' DB D(B)S; e,

=, 2n(85, 078, — 8, 270"Q7'2 - F 070,
+807'0°07'0"08)

=, n(g, Q7'8, — 8, 27007 - g 000,
+g070F 070" 07'g) 4+ 0,(1)

= w,’n(gs, — 2°07'8) 07" (g5, — 2"027'8) +0,(1)

=ne,S;(G+U)YQ N (G+U)S Ve, +0,(1).
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Note that by Assumption 1, nS,'G'Q7'GS, " — H. Also, &nu(E[U;S, Vese), x
S-1UN) < C/u2, so that

E[(ne,S;'G'Q7'US; " e,)?]
=ne, S 'G'Q'E[US, Ve, e,S, ' U 'GS Ve,
<CneS,'G' QOGS ey /u2 < CHpyi /1> —> 0.

Now apply Lemma Al to ne,S, S1UQ- 1US Ve, for A=07", Y, =U.S, " expin,
Z;=US," e;pun,and u, = a, - Note that fmax(A A)= fmdx(AA )= §mdx(9 ) <
C. Also, by S w, bounded, &nu(Syy) < Emnx(ELU U] < C and € (322) <
C. Furthermore, m/a? =m/u} — 0, a,/n=p2/n < C, puy = nz =0, and

E[(Y]Y)’)/na; < CE[||U;|I*l/na;, < CEllg|* + 1G:lI*l/ na; —> 0.
Then by the conclusion of Lemma Al,
ne, S, 'U'N'US, e, =nY' AZ/a,=tr(A3,,)/a, +0,(1)
=tr(Q'E[U;S, " e,e, S, U/l + 0,(1)
=e.S; 1E[Uﬁ() 1U]S Ve, + 0,(1) 25 A
Then by T,
e,nS;'D(BY Q' D(B)S; Ve, <> Hyy + Asy.

The conclusion then follows by applying this result for each k and £. Q.E.D.

PROOF OF THEOREM 3: Let Y, = nu;’ &Q(O) /d6. Then expanding the first-
order conditions as outlined in Section 5 gives

A 2
,00(8) ,107Q(0)+n ,Q(8) b

0= JT
M =25 = s RTTS

By Lemma 13, nu;2 3*Q(8)/36 98’ is nonsingular w.p.a.1. Then by CMT, Lem-
mas Al2 and A13, and S,

20(5)7! )
9 Q(5)} 229 _ ey o).

/“"n6 = Sn(B - BO) = |:n/"’n 38 98 My, EF)
Then by Lemma A12 and S,

S/ (B—Bo) > H'N(O, H+ A) =N, V).
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Also, by Lemmas A13 and Al14,

177 ¢-1 -2 ‘JZQ(S) r -1AAH-1Ac-1 P
nS,'HS, " = pin—= =5 H, o nS'DO'DSY 5 HVH.

Also, H is nonsingular w.p.a.1, so that
SVS,/n = (nS;"HS; ") 'nS;'D'Q'DS; " (nS;'HS;")™"
> H'HVHH ' =V.

To prove the last conclusion, note that r,S,'c —> ¢* and S imply that
rac (B — Bo) = 1,¢'S;"S,(B = Bo) = N(0, ¢V "),
r2cVe/n=r,cS; " (S.VS,/n)S; cr, > V.

Therefore, by CMT and S,

c’(é . Bo) _ rnC,Sn_I,S;,(BA — BO) _d) N(O, C*’VC*) :N(O 1)

\/C/I}c/n \/rgc/S;I’(S,;I}S,,/n)S;IC verver

For the linear model we proceed by verifying all of the hypotheses of the
general case. Note that g;(8) = Z;(y; — x;B) is twice continuously differen-
tiable and that its first derivative does not depend on B, so Assumption 7 is
satisfied. Also, by Lemma A5,

(ETIg "1+ EUNGilI*))m/n < CET Z;|*Im/n — 0,

P
€m(E[GiG)) £ émn(EZ:Zix}]) < Cémn(Cl,) < C,

j=1

so that Assumption 6 is satisfied. Assumption 8 is satisfied by Lemmas A8
and A9. Assumptions 2-4 were shown to hold in the proof of Theorem 2.
Assumption 9 can be shown to be satisfied similarly to the proof of Theo-
rem 2. O.E.D.

A.4. Large Sample Inference Proofs

The following result improves upon Theorem 6.2 of Donald, Imbens, and
Newey (2003). Let g = g(B,) by only requiring that m/n — 0 in the case
where the elements of g; are uniformly bounded.
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LEMMA Al5: If E[(g.027'g:)*]/mn —> 0, then

ngQ'g—m 4
- > N(0,1).
P 0, 1)

PROOF: Note that E[g/{2'g;] = m so that by M,

Z?:l gjﬂ’lgi/n —m
V2m
Now apply Lemma A9 with Y; = Z;, = 2-'2g,//n(2m)"/*, so that &, = &y =

n~'(2m)~"2. Note that ¥ = 3yy3,, + 3%, = 21,,/n*2m = I,,/n*m, so that
n’tr(¥) = n’tr(1,,/n*m) = 1. Also note that

= Op({E[{g}!)‘lgi}z]/nm}l/z) 0.

mn*&&; = m/4m’* — 0,

m(EENYIM + & ENZIY)
<n’2{n72m) " El{gi2" g}/ n’2m]} — O,

RENYIIENZ N = *{Elg 2 g I 2m) '} — 0,

It then follows by Lemma A10 that Zi# g2 g/ 2m 4 N(0,1), so the
conclusion follows by T. Q.E.D.

PROOF OF THEOREM 4: By an expansion in A around A = 0 we have
O(By) = —Ng - N0A/2,
where 2 = — > i p2(0)gigi/n, v = &g, and | €|| < ||Al|. Also, by an expansion
around 0 we have p;(X'g;) = —1+ p2(¥,)X'g; with ;] < [X'gil, so that for 2 =
— ", p2(9)g:g,/ n the first-order conditions for A give 0 = —g — QA. Note that
for A, = n'Y(E[b]])!/?/m/n we have

max|1 + py(3)] < ClIAl maxg; = 0,(A,).

Let Q= > :8:&;/n. By Lemma A0, §max(f)) < Cw.p.a.l, so that for any a, b,

|a'(Q = Dbl <Y 11+ p)lla'glIbgil/n

< 0,(A) aQab' Qb =0,(A,)|all|b].
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It follows similarly that
|a'(2— D)b| = 0,A) a1l

It then follows from A, — 0, similarly to Lemma A0, that fmin(fl) >C
w.p.a.1,s0 A = —(2'g. Plugging into the above expansion gives

A

OBy =g 'g—g0"'00"g/2.

As above £min(2) > C w.p.a.1, so that ||f2-1g|| < Clgll = O0,(/m/n) and
127'g|| = O,(/m/n). Therefore, by A,/m — 0,

172 -0 = g0 Q- D)0 G| < 0,(4,)0,(m/n)
=0,(v/m/n).
It follows similarly that |g'(!“2—1(2fz—1 —0Hg| = 0,(¥/m/n), so that by T,
Q(By) = 07'g/2+ 0,(Vm/n).
It follows by mE[||g|*]/n —> 0 that |2 — Q| = 0,(1//m), so that §Q'g =
§07'g +o0,(/m/n)and, by T,
Q(By) =Z07'g/2+ 0,(Vm/n).
It then follows that

~ -1

ga'g
2

2nQ(By) —m _ng0'g—m _ 2n [Q( -
Jm gy P

Then by Lemma A15 and S we have

:| =o0,(1).

2nQ(Bo) —m
Jm
Also, by standard results for the chi-squared distribution, as m — oo the (1 —

a)th quantile ¢” of a y*(m) distribution has the property that [¢” — m]/~/2m
converges to the (1 — «)th quantile g, of N(0, 1). Hence we have

4L N0, 1).

2nQ(Bo) —m _ q;”—m) o
Sm - om " QE.D.

PROOF OF THEOREM 5: Let B = nS;'D(B)'2(Bo)"'D(By)S;" and B =
HV H. Tt follows from Lemma A14, replacing 8 with B, that B - B. By

Pr(2nQ(Bo) = q") = Pr(
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the proof of Theorem 3, S, and CM we have
T'= (B~ Bo)S.(S,VS,/n)7'S, (B~ Bo)
= Y,B™Y, +0,(1) <> X(p).
Then by Lemma A12,

LM(By) = niﬂQ;'BO),S*“

B n
=Y.B'Y,+0,(1).

Blnsn'iaQ;[f‘)) =Y,(B+0,(1)"'Y,

Therefore, we have LM(B,) = T+ 0,(1).
Next, by an expansion, for H = nS;' *Q(B)/IB B’ S;",

2n[Q(By) — Q(B)1 = n(B — Bo)' [8*Q(B) /9B IB1(B — Bo)
= (B —Bo)'S.HS.(B—Bo),

where f lies on the line joining 8 and 8, and H —2> H by Lemma A13. Then
by the proof of Theorem 3 and the CMT,

2n[Q(By) — Q(B)] = {Y,H' 4+ 0,(DHH + 0,(DHH 'Y, + 0,(1)}
=Y H'Y, +0,(1).

It follows that 21[Q(B) — Q(B)] = O,(1), so that

2n[Q(By) — Q(B)1//m — p > 0.

Therefore, it follows as in the proof of Theorem 4 that

2nQ(B) —(m—p)  2nQ(By) — (m— p)

= +o0,(1)
m-—p m-—p
[ m 2nQ(By) —m p
= V= NG + m-l—o,,(l)
4 N, 1).

Next, note that H~! <1/ in the p.s.d. sense so that I'~! < H. It follows that
Y'H'Y,>Y'B"Y, -5 ¥ (p).

Then Pr(2a[Q(B0) — Q(B)] > ¢2) =Pr(Y,H 'Y, > g2) + o(1) > a.
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Next, in considering the CLR test, for notational convenience evaluate at 8,
and drop the B argument, for example, so that R = R( Bo). By have B-% B,
it follows that B > (1 — &)B w.p.a.1 for all for & > 0. Also by m/u? bounded,
for any C there is & small enough so that (1 — &)C — em/u? is positive and
bounded away from zero, that is, so that (1 — &)C — em/u2 > C (the Cs are
different). Then by hypothesis, multiplying through by 1 — &, and subtracting
em/u? from both sides it will be the case that

Emin(1,2S,(1 — €)BS,) — (m/pus) = (1 = £)C — em/p;, > C.

Then w.p.a.1,

R- R
2m = gmin(:u;zSnBS;,) - ﬂz
I M

> Emin(p,2S,(1 — €)BS,) — (m/p;) = C.

Also, by the proof of Theorem 4,

AR-m J/mAR-m ,

0.
W w Jm
Therefore, we have w.p.a.1,
AR—R AR- .
— M _fF<-C

It follows that w.p.a.1,

AR _ (AR-—m)/pa+m/py _ C2+m/py
R F+m/u? - C+m/u; T '

Therefore, by R > Cu2 +m —> oo, w.p.a.l,

R 1 1 »
- = — — —)0.
(AR—R)2 R (1-AR/R)?

Note that AR — R < 0 w.p.a.1, so that |AR — R| = R — AR. Also, similarly to
Andrews and Stock (2006), by a mean value expansion +/1 + x =14 (1/2)(x +
o(1)), so that

—

CLR = - {AR — R+[(AR — R)* + 4LM -R]'"?}

1
2
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1

. . 4LM.R 7"?
{AR—R+|AR—R|[1+ } }

(AR — R)?

_ N

= _{AR—Ié+ |AR—1§|[1 +2LM L(l +op(1>>]}
(AR — R)?

[\

A

R
=LM- (1+0,(1)).
R—AR

Let r, = &nin(S,BS,/n2). Then r, — m/u2 > C by hypothesis. Then Ié/,ufl =
1, + 0,(1) as shown below. It then follows that

R R/
R-AR (R—m)/u2— (AR —m)/u
ra+0,(1) Ty

= = 1).
rn—m/pi+o0,(1) 1, —m/p? o)

It then follows that

CLR = (r—> LM +0,(1).

rn_m/l'l'}z’l

Carrying out these same arguments with g7~ 4 g? replacing AR it follows that

1 . ; X
G=51a"" +4! R+ 1(q"" +47 — R +4q - R}

Y LR P 1
(rn_m/M,zl)qx +0P( )9

giving the conclusion with ¢, =r,/(r, — m/ ,ui).
It now remains to show that R/u? =r, + 0,(1). Note that for S, =S,/ .,

R/l = ﬁlnl_nl x'S,BS x, r,= ﬁlul_nl x'S,BS x.

By Assumption 1 we can assume without loss of generality that u,, = u,, and

Sn = Sn dlag(l; MZn/,Ufn, cees Mpn/Mn)‘

Let e; denote the jth unit vector and consider x, such that x/S,e; =0 (j =
2,..., p)and ||x,|| = 1. Then by S, bounded and CS,

p
x/nSn |:el + Z(I-Ljn//-bn)ej:|

j=2

127,81l =

‘ =[x, Speill < 11Sall < C.
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Also, by B2 B_thAe{e is C such ||f3|| < C and _§min_(1§) >1/C. w.p.a.l. Let
X = argmin,—; x'S,BS,x and x* = argmin—; x'S,BS/ x. Then w.p.a.1,
CESIP < R/p;, < x,S5,B8,x, < C,
CIxSl? <10 < x,8,BS,x, < C,
so that there is C such that w.p.a.1,
1#5.1 <C, xSl < C.
Consider any ¢ > 0. By B—> B, w.p.a.l |[B— B| < £/C* Then, w.p.a.1,
Ié/,ufl < x,’;/S’nBS’nx:
=1, 4 X78,(B— B)S,x" <r, + |x"S,(B— B)S,x’|
<r+ ISP 1B = Bl < 1+ C(2/CY) =1, + &,
1y <X'S,BS,% =R/ul+%'S,(B—B)S,x <R/u’ +«.

Thus, w.p.a.l, r, — R/u? < & and R/u2 — r, < &, implying |R/u2 — r,| < &,
showing |R/u? — r,| -2 0. Q.E.D.
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