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PROOF OF LEMMA A.1: This lemma was presented by Bai and Perron (1998)
under a set of mixingale conditions. We show that Assumption A4 implies
them. By the mixingale inequality of Ibragimov (1962), we have

‖E(ξi+k|Fi)‖2 ≤ 2(
√

2 + 1)α1/2−1/s
k ‖ξi+k‖s

for any s ≥ 2� In particular, let s = r+δ, with r and δ defined in Assumption A4.
We then have

‖E(ξi+k|Fi)‖2 ≤ 6Mα1/2−1/s
k

and

α1/2−1/s
k = k−(4r/(r−2))(1/2−1/(r+δ)) = k−2−4δ/((r−2)(r+δ))�

which, combined with the fact that ξi is Fi measurable, imply that ξi is an L2

mixingale of size −2 − 4δ/((r − 2)(r + δ)). If we let ψj denote the mixing
coefficients and define κ= 2δ/((r − 2)(r + δ)), then

∑∞
j=0 j

1+κψj <∞. Hence
the mixingale conditions required in Bai and Perron (1998) are satisfied and
the lemma holds. Q.E.D.

PROOF OF LEMMA A.2: Given Assumption A4, parts (a) and (b) follow from
Theorem 2 in Eberlain (1986) once we show that ‖E(Sn(�)|F�)‖2 ≤ C for C
independent of � and that uniformly in �,∥∥E(Sk(�)Sk(�)′|Fm)−E(Sk(�)Sk(�)′)

∥∥
1
=O(k1−θ)�

The proof of the foregoing statements proceeds in the same way as in Corradi
(1999, pp. 651–652). Hence, details are omitted. Part (c) can be proved by ap-
plying Corollary 2 of Hansen (1991), using the fact that ξi is an L2 mixingale
with mixing size −2 and bounded fourth moment. For part (d),

1

k1/2 log1/2 k

∥∥∥∥∥Ω−1/2
k

k∑
i=1

ξi

∥∥∥∥∥
= 1

k1/2 log1/2 k

∥∥∥∥∥Ω−1/2
k

k∑
i=1

ξi −Ω−1/2W (k)+Ω−1/2W (k)

∥∥∥∥∥
1
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≤ 1

k1/2 log1/2 k

∥∥∥∥∥Ω−1/2
k

k∑
i=1

ξi −Ω−1/2W (k)

∥∥∥∥∥
+ 1

k1/2 log1/2 k
‖Ω−1/2W (k)‖�

Given that

1

k1/2 log1/2 k

∥∥∥∥∥Ω−1/2
k

k∑
i=1

ξi −Ω−1/2W (k)

∥∥∥∥∥ = oa�s�(1)

by part (a) and

lim sup
k→∞

1

k1/2 log1/2 k
‖Ω−1/2W (k)‖ =Op(1)

by the law of iterated logarithm (LIL) for vector-valued Brownian motion
processes, we have

lim sup
k→∞

1

k1/2 log1/2 k

∥∥∥∥∥Ω−1/2
k

k∑
i=1

ξi

∥∥∥∥∥ =Op(1)�

which completes the proof. Q.E.D.

PROOF OF LEMMA A.3: To prove this result, we show that under Assump-
tions A1–A9, slightly different versions of the 10 properties of the quasi-
likelihood ratio discussed in Bai, Lumsdaine, and Stock (1998), henceforth
BLS (1998), and Bai (2000) are satisfied under our set of assumptions. Once
these are established, the proof proceeds as in Bai (2000, pp. 324–329). Fol-
lowing BLS (1998), but using slightly different notation, the quasi-likelihood
ratio using the first k observations, evaluated at θ and Σ, can be written as

L(1�k;β�Σ)=
∏k

t=1 f (yt |xt� � � � �β�Σ)∏k

t=1 f (yt |xt� � � � �β0�Σ0)
�

Let β̂(k) and Σ̂(k) denote the values of β and Σ that correspond to the max-
imum of L(1�k;β�Σ). We have the following property about the magnitude
of the parameter estimates and the likelihood function in the absense of struc-
tural change. Q.E.D.

PROPERTY 1: For each δ ∈ (0�1]�
sup

Tδ≤k≤T
L(1�k; β̂(k)� Σ̂(k))=Op(1)�
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sup
Tδ≤k≤T

(‖β̂(k) −β0‖ + ‖Σ̂(k) −Σ0‖)=Op(T−1/2)�

This statement corresponds to Property 1 of BLS (1998, p. 420). It states that
the likelihood function and the maximum likelihood estimate are well behaved
in large samples. The uniformity of the bound is important because we need
to search over all admissible partitions to find the break points. Bai, Lums-
daine, and Stock (1998) provided a proof for the seemingly unrelated regres-
sion model with common regressors, in which case the covariance matrix plays
no role in estimating β� Here, our setup is more complicated because the in-
teraction between β and Σ makes the problem nonlinear. The solution is to
use an argument based on the minimization of the Kullback–Leibler distance,
which is from Domowitz and White (1982, Theorem 2.2).

PROOF OF PROPERTY 1: First, simple arguments lead to the result that
E0(logL(1�k;β�Σ)) achieves a maximum at β(k) = β0 and Σ(k) = Σ0 =
E0(k

−1
∑k

t=1 utu
′
t), where E0 denotes the expectation taken over the true den-

sity. Let Θ1 denote an open sphere that contains (β0�Σ0) and let Θ̄1 be its
closure constructed in such a way that it excludes values of Σ such that |Σ| = 0.
Then, applying a strong law of large numbers (SLLN) and a functional central
limit theorem, we have∣∣logL(1�k;β�Σ)−E0(logL(1�k;β�Σ))∣∣ a�s�→ 0

uniformly over Θ̄1� Using the continuous mapping theorem, we have

‖β̃(k) −β0‖ + ‖Σ̃(k) −Σ0‖ a�s�→ 0�

where

(β̃(k)� Σ̃(k))= arg max
(β�Σ)∈Θ̄1

logL(1�k;β�Σ)�

In the preceding equation, the maximization is taken over a compact set.
We now show that the strong consistency still holds when that restriction
is dropped. Notice that for large k, with probability arbitrarily close to 1,
logL(1�k;β�Σ) is continuous and strictly concave at (β̃(k)� Σ̃(k)), an inner
point of Θ̄1. Under the assumption that the likelihood function does not have
multiple maxima, we can conclude that for large k, (β̃(k)� Σ̃(k)) coincides with
(β̂(k)� Σ̂(k)), which is the unique solution obtained by solving the first-order con-
dition of the quasi-maximum likelihood without directly imposing (β�Σ) ∈ Θ̄1�

Hence the strong consistency of (β̂(k)� Σ̂(k)) is proved.
Now, using the fact that β̂(k) − β0 = (

∑k

t=1 xtΣ̂
−1
(k)x

′
t)

−1
∑k

t=1 xtΣ̂
−1
(k)ut and ap-

plying the generalized Hájek–Rényi inequality on
∑k

t=1 xt(Σ
0)−1ut , together
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with the strong consistency of Σ̂(k)� we have supTδ≤k≤T ‖β̂(k)−β0‖ =Op(T−1/2).
For Σ̂(k) −Σ0� we use the fact that

Σ̂(k) −Σ0 = 1
k

k∑
t=1

(ut − x′
t(β̂(k) −β0))(ut − x′

t(β̂(k) −β0))′ −Σ0

and again applying the generalized Hájek–Rényi inequality, we have
supTδ≤k≤T ‖Σ̃(k)−Σ0‖ =Op(T−1/2). Finally, supTδ≤k≤T L(1�k; β̂(k)� Σ̂(k))=Op(1)
is a direct implication of the foregoing results, which completes the proof. Q.E.D.

The following property corresponds to Property 2 of BLS (1998), which pro-
vides a bound for the sequential quasi-likelihood function in small samples.
Two additional complications appear in our context. First, we allow a general
dependence structure for the errors and the regressors. Second, as before, the
interaction between β and Σ makes the problem nonlinear. The solution is to
apply the strong approximation theorem and the LIL.

PROPERTY 2: For each ε > 0� there exists a B > 0 such that for all large T,

Pr
(

sup
1≤k≤T

T−BL(1�k; β̂(k)� Σ̂(k)) > 1
)
< ε�

PROOF: The likelihood function evaluated at β̂(k) and Σ̂(k) can be written as

logL(1�k; β̂(k)� Σ̂(k))

= −k
2
(log |Σ̂(k)| − log |Σ0|)+ 1

2

(
k∑
t=1

u′
t(Σ

0)−1ut − kn
)
�

Denote Ak = β̂(k) −β0. Then

Ak =
(

k∑
t=1

xtΣ̂
−1
(k)x

′
t

)−1 k∑
t=1

xtΣ̂
−1
(k)ut

and

Σ̂(k) = 1
k

k∑
t=1

(ut − x′
tAk)(ut − x′

tAk)
′�

Note that Σ̂(k) →a�s� Σ0� β̂(k) →a�s� β0, and k−1
∑k

t=1 utu
′
t →a�s� Σ0 as k → ∞,

which can be shown by applying a SLLN. Hence, we have

sup
k≥k1

‖Σ̂−1
(k) − (Σ0)−1‖ =Op(1)�
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sup
k≥k1

∥∥∥∥∥
(

1
k

k∑
t=1

xt(Σ
0)−1x′

t

)−1∥∥∥∥∥ =Op(1)�

and

sup
k≥k1

∥∥∥∥∥
(

1
k

k∑
t=1

xtΣ̂
−1
(k)x

′
t

)−1

−
(

1
k

k∑
t=1

xt(Σ
0)−1x′

t

)−1∥∥∥∥∥ =Op(1)

for some fixed k1. Because supk≤k1
L(1�k; β̂(k)� Σ̂(k))= Op(1)� without loss of

generality, we may assume k≥ k1� Then

sup
k≥k1

‖Ak‖ ≤ sup
k≥k1

k−1/2

∥∥∥∥∥
(
k−1

k∑
t=1

xtΣ̂
−1
(k)x

′
t

)−1∥∥∥∥∥
× sup

k≥k1

∥∥∥∥∥k−1/2
k∑
t=1

xtΣ̂
−1
(k)ut

∥∥∥∥∥
= sup

k≥k1

∥∥∥∥∥k−1/2
k∑
t=1

xtΣ̂
−1
(k)ut

∥∥∥∥∥Op(1)�
Now, letting Ω0

k = var(
∑k

t=1 xt(Σ
0)−1ut), we have

1

k1/2 log1/2 T
sup
k≥k1

∥∥∥∥∥(Ω0
k)

−1/2
k∑
t=1

xt(Σ
0)−1ut

∥∥∥∥∥
≤ 1

k1/2 log1/2 T
sup
k≥k1

∥∥∥∥∥(Ω0
k)

−1/2
k∑
t=1

xt(Σ
0)−1ut −W (k)

∥∥∥∥∥
+ 1

k1/2 log1/2 T
sup
k≥k1

‖W (k)‖�

where W (k) is a vector-valued Wiener process. Hence,

1

k1/2 log1/2 T
sup
k≥k1

∥∥∥∥∥(Ω0
k)

−1/2
k∑
t=1

xt(Σ
0)−1ut −W (k)

∥∥∥∥∥ = oa�s�(1)

from Lemma A.2 and (k1/2 log1/2 T)−1 supk≥k1
‖W (k)‖ = oa�s�(1) using a LIL for

a vector-valued Wiener process. This shows that supk≥k1
‖Ak‖ = Op(log1/2 T).

Now we use this result to obtain a bound for the likelihood function. Applying
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a Taylor series expansion, we have

logL(1�k; β̂(k)� Σ̂(k))

= −k
2

tr(Σ̂(k)(Σ0)−1 − I)+ 1
2

(
k∑
t=1

u′
t(Σ

0)−1ut − kn
)

+ k

4
tr

{
(Σ̂(k)(Σ

0)−1 − I)2
} +Op(1)�

where the remainder term is Op(1) uniformly in k. We now show that

−k
2

tr(Σ̂(k)(Σ0)−1 − I)+ 1
2

(
k∑
t=1

u′
t(Σ

0)−1ut − kn
)

=Op(logT)(S.1)

and

k

4
tr

{
(Σ̂(k)(Σ

0)−1 − I)2
} =Op(logT)(S.2)

uniformly in k. First, for (S.1),

−k
2

tr(Σ̂(k)(Σ0)−1 − I)+ 1
2

(
k∑
t=1

u′
t(Σ

0)−1ut − kn
)

= −k
2

tr

(
1
k

k∑
t=1

((Σ0)−1ut − (Σ0)−1x′
tAk)

′(ut − x′
tAk)− I

)

+ 1
2

(
k∑
t=1

u′
t(Σ

0)−1ut − kn
)

= −1
2

tr

{
A′
k

(
k∑
t=1

xt(Σ
0)−1x′

t

)
Ak

}
+ 1

2
tr

{
A′
k

(
k∑
t=1

xt(Σ
0)−1ut

)}

+ 1
2

tr

{
k∑
t=1

(u′
t(Σ

0)−1xt)Ak

}

=Op(logT)�

where the last equality follows because

sup
k≥k1

∥∥∥∥∥A′
k

(
k∑
t=1

xt(Σ
0)−1ut

)∥∥∥∥∥
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≤ sup
k≥k1

∥∥∥∥∥k−1/2

(
k∑
t=1

xt(Σ
0)−1ut

)∥∥∥∥∥Op(log1/2 T)

=Op(logT)�

sup
k≥k1

∥∥∥∥∥A′
k

(
k∑
t=1

xt(Σ
0)−1x′

t

)
Ak

∥∥∥∥∥
≤ sup

k≥k1

‖A′
k‖ sup

k≥k1

∥∥∥∥∥
k∑
t=1

xt(Σ
0)−1x′

t

∥∥∥∥∥ sup
k≥k1

‖Ak‖

=Op(logT)�

REMARK S.1: If the process xt(Σ0)−1ut is assumed to be strictly stationary,
then Theorem 5.5 and Corollary 5.4 of Hall and Heyde (1980, p. 145) says that
a LIL holds for the process if it has uniformly bounded second moments and
satisfies

∞∑
�=1

∥∥E(xt(Σ0)−1ut |Ft−�)
∥∥

2
+

∞∑
�=1

∥∥xt(Σ0)−1ut −E(xt(Σ0)−1ut |Ft+�)
∥∥

2

<∞�

In this case, the LIL could be applied directly without first resorting to the
strong invariance principle.

What remains to be shown is that (S.2) is also Op(logT). To see this, note
that

k

4
tr

{
(Σ̂(k)(Σ

0)−1 − I)2
} ≡ k

4
tr{[Ψ1 +Ψ2 −Ψ3]2}

≤ 3k
4

tr{Ψ 2
1 +Ψ 2

2 +Ψ 2
3 }�

where

Ψ1 = 1
k

k∑
t=1

(ut(Σ
0)−1u′

t − I)� Ψ2 = 1
k

k∑
t=1

x′
tAkA

′
kxt(Σ

0)−1�

and

Ψ3 = 1
k

k∑
t=1

(utA
′
kxt(Σ

0)−1 + x′
tAku

′
t(Σ

0)−1)�
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For the first term, (3k/4) tr(Ψ 2
1 )= Op(logT) after applying the strong invari-

ance principle and the LIL on the Brownian motion process. For the second
term

3k
4

tr(Ψ 2
2 )≤ 3k

4
(tr(Ψ2))

2 = 3
4
(tr(k−1/2Φk)+ op(1))2 =Op(logT)�

where the inequality follows because Ψ2 is a symmetric positive definite matrix
and Φk is defined as

Φk =
(
k−1/2

k∑
t=1

xt(Σ
0)−1ut

)′[
k−1

k∑
t=1

xt(Σ
0)−1x′

t

]−1

×
(
k−1/2

k∑
t=1

xt(Σ
0)−1ut

)
�

For the third term, following the same arguments, we have (3k/4) tr(Ψ 2
3 ) =

Op(logT), which completes the proof. Q.E.D.

The following property states that the value of the likelihood ratio is arbi-
trarily small for large T when the parameters are evaluated away from zero,
assuming a positive fraction of the observations is used.

PROPERTY 3: Let ST = {(β�Σ); ‖β−β0‖ ≥ T−1/2 logT or ‖Σ−Σ0‖ ≥ T−1/2 ×
logT }. For any δ ∈ (0�1)�D > 0, and ε > 0� the following statement holds when
T is large:

Pr
(

sup
k≥Tδ

sup
(β�Σ)∈ST

TDL(1�k;β�Σ) > 1
)
< ε�

PROOF: We first consider the behavior of the likelihood function over the
compact set

Θ̄2 = {(β�Σ) :‖β‖ ≤ d1�λmin(Σ)≥ d2�λmax(Σ)≤ d3}�
where λmin and λmax denote the smallest and largest eigenvalues, and the finite
constants d1� d2, and d3 are chosen in such a way that (β0�Σ0) is an inner point
of Θ̄2. We first want to show that

Pr
(

sup
k≥Tδ

sup
(β�Σ)∈ST∩Θ̄2

TDL(1�k;β�Σ) > 1
)
< ε�

Following BLS (1998, pp. 422–424), we decompose the sequential log likeli-
hood as

logL(1�k;β�Σ)=L1�T +L2�T �
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where

L1�T = −k
2

log |I +ΨT | − k

2

[
1
k

k∑
t=1

η′
t(I +ΨT)

−1ηt − 1
k

k∑
t=1

η′
tηt

]

and

L2T = β∗′
k∑
t=1

xtΣ
−1ut − k

2
β∗′

(
1
k

k∑
t=1

xtΣ
−1x′

t

)
β∗

with β∗ = β − β0�Σ∗ = Σ − Σ0�ηt = (Σ0)−1ut , and ΨT = (Σ0)−1/2Σ∗(Σ0)−1/2.
Note that only L2T depends on β∗. Now, let ST = S1�T ∪ S2�T , with

S1�T = {(β�Σ); ‖Σ−Σ0‖ ≥ T−1/2 logT�β arbitrary}
and

S2�T = {
(β�Σ); ‖β−β0‖ ≥ T−1/2 logT and ‖Σ−Σ0‖ ≤ T−1/2 logT

}
�

We then need to show that

Pr
(

sup
k≥Tδ

sup
(β�Σ)∈S1�T∩Θ̄2

TDL(1�k;β�Σ) > 1
)
< ε(S.3)

and

Pr
(

sup
k≥Tδ

sup
(β�Σ)∈S2�T∩Θ̄2

TDL(1�k;β�Σ) > 1
)
< ε�(S.4)

The proof of (S.4) proceeds exactly as in BLS (1998) and, hence, is omitted. It
remains to show (S.3), or

Pr
(

sup
k≥Tδ

sup
(β�Σ)∈S1�T∩Θ̄2

L1�T +L2�T >−D logT
)
< ε�

First note that, on S1�T , L2T is a quadratic function of β∗ and has maximum
value

sup
S1�T

L2T = k

2

(
1
k

k∑
t=1

xtΣ
−1ut

)′(
1
k

k∑
t=1

xtΣ
−1x′

t

)−1(
1
k

k∑
t=1

xtΣ
−1ut

)
�

Applying a SLLN yields

sup
k≥Tδ

sup
Θ̄2

∥∥∥∥∥
(

1
k

k∑
t=1

xtΣ
−1x′

t

)−1∥∥∥∥∥ =Op(1)�
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Also,

sup
k≥Tδ

∥∥∥∥∥ 1
k

k∑
t=1

xtΣ
−1ut

∥∥∥∥∥ = sup
k≥Tδ

∥∥∥∥∥ 1
k

k∑
t=1

S′(In ⊗ zt)Σ−1ut

∥∥∥∥∥
= sup

k≥Tδ

∥∥∥∥∥S′(Σ−1 ⊗ In) 1
k

k∑
t=1

(In ⊗ zt)ut
∥∥∥∥∥

≤ sup
k≥Tδ

∥∥∥∥∥ 1
k

k∑
t=1

(In ⊗ zt)ut
∥∥∥∥∥‖S′(Σ−1 ⊗ In)‖�

Using Lemma A.2, we have, for any fixed r > 0�

lim
T→∞

Pr

(
sup
k≥Tδ

∥∥∥∥∥ 1
k

k∑
t=1

(In ⊗ zt)ut
∥∥∥∥∥> rT−1/2 log1/2 T

)
= 0�

while ‖S′(Σ−1 ⊗ In)‖ = ∑n

i=1(1 + λi)
−1Op(1), where λi (i = 1� � � � � n) are the

eigenvalues of (Σ0)−1/2Σ∗(Σ0)−1/2. Hence,

sup
k≥Tδ

sup
S1�T∩Θ̄2

L2T ≤ k

2

(
n∑
i=1

1
1 + λi

)2

(r2T−1 logT)�

which implies

sup
k≥Tδ

sup
S1�T∩Θ̄2

L2T ≤ k

2

n∑
i=1

1
1 + λi r

2b2
T �(S.5)

where bT = T−1/2 logT with the inequality holding with probability arbitrarily
close to 1 for large T . For L1T , BLS (1998) showed that

sup
k≥Tδ

sup
S1�T∩Θ̄2

L1T(S.6)

≤ −k
2

[
n∑
i=1

(
log(1 + λi)+

(
1

1 + λi − 1
)
(1 + sign(λi)abT )

)]

with probability arbitrarily close to 1 for large T , where a is a fixed positive
number which can be made arbitrarily small. Combining the preceding two
inequalities and using arguments as in BLS (1998), we can show that

Pr
(

sup
k≥Tδ

sup
(β�Σ)∈S1�T∩Θ̄2

L1�T +L2�T >−D logT
)
< ε�
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We still need to show that the preceding sup bound remains valid even if the
maximization problem is carried over an unrestricted parameter space. To this
end, it is sufficient to show that

lim
k→∞

Pr
(

arg max
(θ�Σ)∈ST

L(1�k;β�Σ) ∈ Θ̄2

)
= 1�

that is, the sequence of global maximizers of the quasi-likelihood function
(θ̂(k)� Σ̂(k)) eventually falls into the compact set Θ̄2 almost surely. Suppose this
is not so. Then there are three possibilities: (1) with positive probability, there
is a sequence (θ̂(k)� Σ̂(k)) that satisfies inf(λmin(Σ̂(k)))→ dl > 0 with dl < d2 or
sup(λmax(Σ̂(k)))→ du <∞ with du > d3; (2) with positive probability, there is a
sequence (θ̂(k)� Σ̂(k)) with inf(λmin(Σ̂(k)))→ 0 or sup(λmax(Σ̂(k)))→ ∞; (3) with
positive probability, there is a sequence (θ̂(k)� Σ̂(k)) with inf(λmin(Σ̂(k))) ≥ d2

and sup(λmax(Σ̂(k)))≤ d3 but lim sup(θ̂(k)) > d1�
The first case is ruled out by the asymptotic identifiability condition and the

uniform almost sure convergence of the likelihood function over a compact set.
Indeed, in this case, by definition, (θ̂(k)� Σ̂(k)) = arg max(θ�Σ)∈ST L(1�k;β�Σ)�
and if Σ̂ has bounded eigenvalues for large k, then Σ̂(k) must lie on the bound-
ary of ST , an inner point of Θ̄2. The second case is also impossible because the
log-likelihood function would then diverge to minus infinity. The third case
is ruled out again, because values of θ̂(k) that lie on the boundary of ST will
yield a larger value of the likelihood function almost surely. This completes
the proof. Q.E.D.

PROPERTY 4: A property that corresponds to Property 4 of BLS (1998) is not
needed.

The next property concerns the value of the likelihood ratio when no posi-
tive fraction of the observations is involved. It is slightly different from that of
BLS (1998) in the sense that the maximum is taken over a restricted set. The
restriction simplifies the proof and is also what is needed for the intended ap-
plication. Also, as pointed by Bai (2000), the existence of a limit for (hTd2

T )/T
is not necessary. It is sufficient to have lim infT→∞(hTd2

T )/T ≥ h> 0.

PROPERTY 5: Let hT and dT be positive sequences such that hT is nonde-
creasing, dT → +∞� and (hTd2

T )/T → h < ∞. Define Θ̄3 = {(β�Σ) :‖β‖ ≤
p1�λmin(Σ) ≥ p2�λmax(Σ) ≤ p3}� where p1�p2, and p3 are arbitrary constants
that satisfy p1 < ∞�0 < p2 ≤ p3 < ∞. Define ST = {(β�Σ); ‖β − β0‖ ≥
T−1/2 logT or ‖Σ−Σ0‖ ≥ T−1/2 logT }. Then, for any ε > 0� there exists anA> 0,
such that when T is large,

Pr
(

sup
k≥AhT

sup
(β�Σ)∈ST∩Θ̄3

L(1�k;β�Σ) > ε
)
< ε�
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PROOF: As in the proof of Property 3, we only need to look at the behavior
of L2T over S1�T ∩ Θ̄3; the rest of the proof is the same as BLS (1998). In other
words, we need to show

Pr
(

sup
k≥AhT

sup
(β�Σ)∈S1�T∩Θ̄3

L(1�k;β�Σ) > ε
)
< ε

or

Pr
(

sup
k≥AhT

sup
(β�Σ)∈S1�T∩Θ̄3

L1T +L2T > ε
)
< ε�

Define bT = T−1/2dT . On showing that (S.5) and (S.6) hold, all the arguments in
the previous proof go through. The proof of (S.6) is the same as in BLS (1998)
with only minor modifications and, hence, is omitted. For (S.5), we have

sup
S1�T

L2T = k

2

(
1
k

k∑
t=1

xtΣ
−1ut

)′(
1
k

k∑
t=1

xtΣ
−1x′

t

)−1(
1
k

k∑
t=1

xtΣ
−1ut

)
�(S.7)

where (
k∑
t=1

xtΣ
−1x′

t

)−1

=
(

k∑
t=1

S′(I ⊗ zt)Σ−1(I ⊗ z′
t)S

)−1

=
[
S′

(
Σ−1 ⊗

k∑
t=1

ztz
′
t

)
S

]−1

�

Because l−1
∑l

t=1 ztz
′
t →a�s� Qz , for a given ε > 0 we can always find a k1 > 0

such that

Pr

(
sup
k≥k1

∥∥∥∥∥ 1
k

k∑
t=1

ztz
′
t −Qz

∥∥∥∥∥> ε
)
< ε�

Define Q� = k−1
∑k

t=1 ztz
′
t −Qz . Then[

S′
(
Σ−1 ⊗ 1

k

k∑
t=1

ztz
′
t

)
S

]−1

− [S′(Σ−1 ⊗Qz)S]−1

= [S′(Σ−1 ⊗Qz)S + S′(Σ−1 ⊗Q�)S]−1 − [S′(Σ−1 ⊗Qz)S]−1

= −A−1B(A+B)−1�

where A= S′(Σ−1 ⊗Qz)S and B= S′(Σ−1 ⊗Q�)S. Because Σ−1 has uniformly
bounded eigenvalues and k−1

∑k

t=1 ztz
′
t is positive definite for large k, A−1 and
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B−1 have bounded eigenvalues. Because B is uniformly small, −A−1B(A+B)−1

is uniformly small for large k. More precisely, [S′(Σ−1 ⊗ k−1
∑k

t=1 ztz
′
t)S]−1 −

[S′(Σ−1 ⊗ Qz)S]−1 = oa�s�(1) as k → ∞. Given the fact that there exists an
M > 0 such that

sup
(β�Σ)∈S1�T∩Θ̄3

∥∥[S′(Σ−1 ⊗Qz)S]−1
∥∥<M�

we have, for any ε > 0, that there exists an A> 0 such that

Pr

(
sup
k≥AhT

sup
(β�Σ)∈S1�T∩Θ̄3

∥∥∥∥∥
(

1
k

k∑
t=1

xtΣ
−1x′

t

)−1∥∥∥∥∥> 2M

)
< ε�(S.8)

Now

sup
k≥AhT

∥∥∥∥∥ 1
k

k∑
t=1

xtΣ
−1ut

∥∥∥∥∥ = sup
k≥AhT

∥∥∥∥∥ 1
k

k∑
t=1

S′(In ⊗ zt)Σ−1ut

∥∥∥∥∥
≤ sup

k≥AhT

∥∥∥∥∥ 1
k

k∑
t=1

(In ⊗ zt)ut
∥∥∥∥∥‖S′(Σ−1 ⊗ In)‖�

Using Lemma A.1, we have

Pr

(
sup
k≥AhT

∥∥∥∥∥ 1
k

k∑
t=1

(In ⊗ zt)ut
∥∥∥∥∥> abT

)
≤ C1

AhTa2bT
<

2C1

Aa2h
(S.9)

for some C1 > 0� where the bound can be made arbitrarily small by choosing a
large A. For the second component,

‖S′(Σ−1 ⊗ In)‖ ≤ nC2

n∑
i=1

1
1 + λi(S.10)

for some 0< C2 <∞, which depends on the matrix S. Now, combining (S.8)–
(S.10), we have, for any ε > 0 that there exists an Ā > 0, such that with proba-
bility no less than 1 − ε,

sup
k≥ĀhT

sup
(β�Σ)∈S1�T∩Θ̄3

‖L2T‖< ka2b2
Tn

2C2
2M

(
n∑
i=1

1
1 + λi

)2

≤ k

2

n∑
i=1

Ga2b2
T

1 + λi ≡ k

2

n∑
i=1

γ2b2
T

1 + λi
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with G = 2n3C2
2M/p2� a finite constant depending on the dimension of the

system, the limit moment matrix of the regressors, and the property of the
compact space Θ̄3. Because a2 can be made arbitrarily small by choosing a
large A, so can γ2. This establishes (S.5). The rest of the proof is essentially
the same as that of Property 3 and, hence, is omitted. Q.E.D.

The next properties are the same as Lemmas 6–10 of Bai (2000). Because
the proofs are similar, they are omitted.

PROPERTY 6: With vT satisfying Assumption A6, for each β and Σ such that
‖β−β0‖ ≤MvT and ‖Σ−Σ0‖ ≤MvT� with M <∞� we have

sup
1≤k≤√

Tv−1
T

sup
λ�Ξ

L(1�k;β+ T−1/2λ�Σ+ T−1/2Ξ)

L(1�k;β�Σ) =Op(1)�

where the supremum with respect to λ andΞ is taken over a compact set such that
‖λ‖ ≤M and ‖Ξ‖ ≤M .

PROPERTY 7: Under the conditions of the Property 6, we have

sup
1≤k≤Mv−2

T

sup
λ�Ξ

log
L(1�k;β+ T−1/2λ�Σ+ T−1/2Ξ)

L(1�k;β�Σ) = op(1)�

PROPERTY 8: We have

sup
Tδ≤k≤T

sup
β∗�Σ∗�λ�Ξ

log
(
L(1�k;β0 + T−1/2β∗ + T−1λ�

Σ0 + T−1/2Σ∗ + T−1Ξ)/

L(1�k;β0 + T−1/2β∗�Σ0 + T−1/2Σ∗)
) = op(1)�

where the supremum with respect to β∗�Σ∗�λ, and Ξ is taken over an arbitrary
compact set.

PROPERTY 9: Let T1 = [Tα] for some α ∈ (0�1] and let T2 = [√Tv−1
T ]� where

vT satisfies Assumption A6. Consider

yt = x′
tβ

0
1 +Σ0

1ηt (t = 1� � � � � T1),

= x′
tβ

0
2 +Σ0

2ηt (t = T1 + 1� � � � � T1 + T2),

where ‖β0
1 −β0

2‖ ≤MvT and ‖Σ0
1 −Σ0

2‖ ≤MvT for someM <∞. Let n= T1 +T2

be the size of the pooled sample and let (β̂n� Σ̂n) be the associated estimates. Then
β̂n −β0

1 =Op(T−1/2) and Σ̂n −Σ0
1 =Op(T−1/2).
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PROPERTY 10: Assume the same setup as in Property 9 but with T2 = [Mv−2
T ].

Then β̂n −β0
1 =Op(T−1/2), Σ̂n −Σ0

1 =Op(T−1/2), β̂n − β̂1 =Op(T−1), and Σ̂n −
Σ̂1 =Op(T−1).

PROOF OF THEOREM 1: Given the result of Lemma 1, we can confine
the maximization problem to the compact set CM , defined by (9), for M
large enough. Also, without loss of generality, we assume that the candi-
date estimates of the break dates occur before the true break dates, that is,
v2
T (Tj − T 0

j )≤M . The log-likelihood ratio is defined by

lrT = −1
2

m+1∑
j=1

Tj∑
t=Tj−1+1

(yt − x′
tβj)

′Σ−1
j (yt − x′

tβj)−
m+1∑
j=1

Tj − Tj−1

2
log |Σj|

+ 1
2

m+1∑
j=1

T 0
j∑

t=T 0
j−1+1

(yt − x′
tβ

0
j )

′(Σ0
j )

−1(yt − x′
tβ

0
j )

+
m+1∑
j=1

T 0
j − T 0

j−1

2
log |Σ0

j |�

Simple algebra applied to the first two terms reveals that

lrT = 1
2

m∑
j=1

T 0
j∑

t=Tj
(yt − x′

tβj)
′Σ−1
j (yt − x′

tβj)

︸ ︷︷ ︸
(I)

− 1
2

m∑
j=1

T 0
j∑

t=Tj
(yt − x′

tβj+1)
′Σ−1
j+1(yt − x′

tβj+1)

︸ ︷︷ ︸
(II)

+
m∑
j=1

T 0
j − Tj

2
(log |Σj| − log |Σj+1|)

︸ ︷︷ ︸
(III)

+
m+1∑
j=1

lr2
j

with lr2
j as defined in Theorem 1. Hence, we need to show that the sum of the

terms (I)–(III) is asymptotically equivalent to
∑m

j=1 lr1
j (Tj − T 0

j ) on the set CM .
Define the following variables β∗

j = √
T(βj − β0

j ) and Σ∗
j = √

T(Σj − Σ0
j ) (for
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j = 1� � � � �m+ 1), and note that both are Op(1). Term (I) is then equivalent to

1
2

m∑
j=1

T 0
j∑

t=Tj
(yt − x′

tβ
0
j − T−1/2x′

tβ
∗
j )

′(Σ0
j + T−1/2Σ∗

j )
−1

× (yt − x′
tβ

0
j − T−1/2x′

tβ
∗
j )

= 1
2

m∑
j=1

T 0
j∑

t=Tj
(ut − T−1/2x′

tβ
∗
j )

′(Σ0
j + T−1/2Σ∗

j )
−1(ut − T−1/2x′

tβ
∗
j )

= 1
2

m∑
j=1

T 0
j∑

t=Tj
u′
t(Σ

0
j + T−1/2Σ∗

j )
−1ut + op(1)�

The last equality follows because

T−1/2

T 0
j∑

t=Tj
(x′

tβ
∗
j )

′(Σ0
j + T−1/2Σ∗

j )
−1ut

= T−1/2v−1
T

(
vT

T 0
j∑

t=Tj
(x′

tβ
∗
j )

′(Σ0
j + T−1/2Σ∗

j )
−1ut

)

= T−1/2v−1
T Op(1)= op(1)

and

T 0
j∑

t=Tj
T−1/2(x′

tβ
∗
j )

′(Σ0
j + T−1/2Σ∗

j )
−1T−1/2(x′

tβ
∗
j )

= T−1v−2
T

(
v2
T

T 0
j∑

t=Tj
(x′

tβ
∗
j )

′(Σ0
j + T−1/2Σ∗

j )
−1(x′

tβ
∗
j )

)

= T−1v−2
T Op(1)= op(1)�

Furthermore, using the fact that

u′
t(Σ

0
j + T−1/2Σ∗

j )
−1ut

= tr
(
(I + T−1/2(Σ0

j )
−1Σ∗

j )
−1(Σ0

j )
−1utu

′
t

)
= tr

(
(I − T−1/2(Σ0

j )
−1Σ∗

j +Op(T−1))(Σ0
j )

−1utu
′
t

)
�
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we deduce that

(I)= 1
2

m∑
j=1

T 0
j∑

t=Tj
tr

(
((Σ0

j )
−1 − T−1/2(Σ0

j )
−1Σ∗

j (Σ
0
j )

−1)utut
′) + op(1)�(S.11)

For term (II), note that, with �β0
j ≡ β0

j+1 −β0
j ,

−1
2

m∑
j=1

T 0
j∑

t=Tj

(
ut − x′

t�β
0
j − x′

tβ
∗
j+1√
T

)′(
Σ0
j+1 + Σ∗

j+1√
T

)−1

(S.12)

×
(
ut − x′

t�β
0
j − x′

tβ
∗
j+1√
T

)

= −1
2

m∑
j=1

T 0
j∑

t=Tj
(ut − x′

t�β
0
j )

′
(
Σ0
j+1 + Σ∗

j+1√
T

)−1

(ut − x′
t�β

0
j )+ op(1)

= −1
2

m∑
j=1

T 0
j∑

t=Tj
(ut − x′

t�β
0
j )

′
[
(Σ0

j+1)
−1 − (Σ0

j+1)
−1
Σ∗
j+1√
T
(Σ0

j+1)
−1

]

× (ut − x′
t�β

0
j )+ op(1)

= −1
2

m∑
j=1

T 0
j∑

t=Tj
tr

(
((Σ0

j+1)
−1 − T−1/2(Σ0

j+1)
−1Σ∗

j+1(Σ
0
j+1)

−1)utu
′
t

)

− 1
2

m∑
j=1

T 0
j∑

t=Tj
�β0′

j xt(Σ
0
j+1)

−1x′
t�β

0
j +

m∑
j=1

T 0
j∑
Tj

�β0′
j xt(Σ

0
j+1)

−1ut

+ op(1)�
For term (III),

1
2

m∑
j=1

(T 0
j − Tj)(log |Σj| − log |Σj+1|)(S.13)

= 1
2

m∑
j=1

(T 0
j − Tj)

(
log |Σ0

j | + T−1/2(Σ0
j )

−1Σ∗
j − log |Σ0

j+1|

− T−1/2(Σ0
j+1)

−1Σ∗
j+1 +Op(T−1)

)
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= 1
2

m∑
j=1

(T 0
j − Tj)(log |Σ0

j | − log |Σ0
j+1|)

+ 1
2
T−1/2

m∑
j=1

(T 0
j − Tj)(Σ0

j )
−1Σ∗

j

− 1
2
T−1/2

m∑
j=1

(T 0
j − Tj)(Σ0

j+1)
−1Σ∗

j+1 + op(1)�

Collecting the results in (S.11), (S.12), and (S.13), the sum of terms (I)–(III) is

1
2

m∑
j=1

T 0
j∑

t=Tj
u′
t((Σ

0
j )

−1 − (Σ0
j+1)

−1)ut − 1
2

m∑
j=1

T 0
j∑

t=Tj
�β0′

j xt(Σ
0
j+1)

−1x′
t�β

0
j

+ 1
2

m∑
j=1

(T 0
j − Tj)(log |Σ0

j | − log |Σ0
j+1|)+

m∑
j=1

T 0
j∑

t=Tj
�β0′

j xt(Σ
0
j+1)

−1ut

− 1
2
T−1/2 tr

(
((Σ0

j )
−1Σ∗

j (Σ
0
j )

−1)

m∑
j=1

T 0
j∑

t=Tj
(utu

′
t −Σ0

j )

)

+ 1
2
T−1/2 tr

(
((Σ0

j+1)
−1Σ∗

j+1(Σ
0
j+1)

−1)

m∑
j=1

T 0
j∑

t=Tj
(utu

′
t −Σ0

j+1)

)

+ op(1)�

The result follows using the fact that the last two terms are op(1), because

T−1/2 tr

(
((Σ0

j )
−1Σ∗

j (Σ
0
j )

−1)

m∑
j=1

T 0
j∑

t=Tj
(utu

′
t −Σ0

j )

)

= T−1/2v−1
T tr

(
((Σ0

j )
−1Σ∗

j (Σ
0
j )

−1)vT

m∑
j=1

T 0
j∑

t=Tj
(utu

′
t −Σ0

j )

)

= T−1/2v−1
T Op(1)

= op(1)
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and

T−1/2 tr

(
((Σ0

j+1)
−1Σ∗

j+1(Σ
0
j+1)

−1)

m∑
j=1

T 0
j∑

t=Tj
(utu

′
t −Σ0

j+1)

)

= T−1/2 tr

(
((Σ0

j+1)
−1Σ∗

j+1(Σ
0
j+1)

−1)

×
{

m∑
j=1

T 0
j∑

t=Tj
(utu

′
t −Σ0

j )+
m∑
j=1

T 0
j∑

t=Tj
(Σ0

j −Σ0
j+1)

})

= op(1)� Q.E.D.

The proof of Theorem 3 requires the following lemma whose proof is direct
and, hence, is omitted.

LEMMA S.1: Let ηt = (Σ0
j )

−1/2ut . Under Assumptions A4 and A5, with vT a
sequence of positive numbers that satisfy vT → 0 and T 1/2vT/(logT)2 → ∞� we
have

for s < 0� vT

T 0
j∑

t=T 0
j +[s/v2

T ]
(ηtη

′
t − I)⇒ ξ1�j(s)�

for s > 0� vT

T 0
j +[s/v2

T ]∑
t=T 0

j

(ηtη
′
t − I)⇒ ξ2�j(s)�

where the weak convergence is in the space D[0�∞)n
2 , and where the entries of

the n× n matrices ξ1�j(s) and ξ2�j(s) are Brownian motion processes defined on
the real line. Also

for s < 0� vT

T 0
j∑

t=T 0
j +[s/v2

T ]
xt(Σ

0
j+1)

−1ut ⇒ (Π1�j)
1/2ζ1�j(s)�

for s > 0� vT

T 0
j +[s/v2

T ]∑
t=T 0

j

xt(Σ
0
j )

−1ut ⇒ (Π2�j)
1/2ζ2�j(s)�

where the weak convergence is in the space D[0�∞)p, and where the entries of
the p vectors ζ1�j(s) and ζ2�j(s) are independent Wiener processes defined on the
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real line. Also, ζ1�j(s) and ζ2�j(s) (resp., ξ1�j(s) and ξ2�j(s)) are different indepen-
dent copies for j = 1� � � � �m. Note that ζ1�j(s) (resp., ζ2�j(s)) and ξ1�j(s) (resp.,
ξ2�j(s)) are not necessarily independent unless E[ηtkηtlηth] = 0 for all k� l�h and
for every t.

PROOF OF THEOREM 3: Without loss of generality, consider the jth break
date and start with the case where the candidate estimate is before the true
break date. We obtain an expansion for lr1

j ([s/v2
T ]) as defined in Theorem 1.

Note that s is implicitly defined by s = v2
T (Ti − T 0

i ) = rv2
T . We deal with each

term separately. For the first term, we have

1
2

T 0
j∑

t=T 0
j +[s/v2

T ]
u′
t((Σ

0
j )

−1 − (Σ0
j+1)

−1)ut

= 1
2

T 0
i∑

t=T 0
j +[s/v2

T ]
tr

(
((Σ0

j )
−1 − (Σ0

j+1)
−1)(utu

′
t −Σ0

j +Σ0
j )

)

= 1
2

T 0
j∑

t=T 0
j +[s/v2

T ]
tr

(
((Σ0

j )
−1 − (Σ0

j+1)
−1)(utu

′
t −Σ0

j )
)

− r

2
tr

(
((Σ0

j )
−1 − (Σ0

j+1)
−1)Σ0

j

)

= 1
2

tr

(
(Σ0

j )
1/2(Σ0

j+1)
−1(Σ0

j+1 −Σ0
j )(Σ

0
j )

−1/2

T 0
j∑

t=T 0
j +[s/v2

T ]
(ηtη

′
t − I)

)

− r

2
tr

(
(Σ0

j+1)
−1(Σ0

j+1 −Σ0
j )

)

= 1
2

tr

(
(Σ0

j )
1/2(Σ0

j+1)
−1Φj(Σ

0
j )

−1/2vT

T 0
j∑

t=T 0
j +[s/v2

T ]
(ηtη

′
t − I)

)

− r

2
vT tr((Σ0

j+1)
−1Φj)�

For the second term, we have

− r
2
(log |Σ0

j | − log |Σ0
j+1|)

= − r
2

log |(Σ0
j −Σ0

j+1 +Σ0
j+1)(Σ

0
j+1)

−1|
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= − r
2

log |I + (Σ0
j −Σ0

j+1)(Σ
0
j+1)

−1|

= r

2
tr((Σ0

j+1 −Σ0
j )(Σ

0
j+1)

−1)+ r

4
tr

([(Σ0
j+1 −Σ0

j )(Σ
0
j+1)

−1]2
)

= r

2
vT tr(Φj(Σ

0
j+1)

−1)+ r

4
v2
T tr

([Φj(Σ
0
j+1)

−1]2
)
�

Then the sum of the first two terms is

1
2

T 0
j∑

T 0
j +[s/v2

T ]
u′
t((Σ

0
j )

−1 − (Σ0
j+1)

−1)ut − r

2
(log |Σ0

j | − log |Σ0
j+1|)

= 1
2

tr

(
(Σ0

j )
1/2(Σ0

j+1)
−1Φj(Σ

0
j )

−1/2vT

T 0
j∑

T 0
j +[s/v2

T ]
(ηtη

′
t − I)

)

+ r

4
v2
T tr

([Φj(Σ
0
j+1)

−1]2
)

⇒ 1
2

tr((Σ0
j )

1/2(Σ0
j+1)

−1Φj(Σ
0
j )

−1/2ξ1�j(s))+ s

4
tr

([(Σ0
j+1)

−1Φj]2
)

= 1
2

tr(A1�jξ1�j(s))+ s

4
tr(A2

1�j)�

where ξ1�j(s) is a nonstandard Brownian motion process with
var[vec(ξ1�j(s))] =Ω0

1�j . Then, for the third term,

−1
2

T 0
j∑

t=T 0
j +[s/v2

T ]
(β0

j −β0
j+1)

′xt(Σ0
j+1)

−1x′
t(β

0
j −β0

j+1)→p

1
2
sδ′

jQ1�jδj�

Note that xt belongs to regime j, but it is scaled by the covariance matrix of
regime j + 1 because the estimate of the break occurs before the true break
date. For the fourth term,

−
T 0
j∑

T 0
j +[s/v2

T ]
(β0

j −β0
j+1)

′xt(Σ0
j+1)

−1ut ⇒ δ′
j(Π1�j)

1/2ζ1�j(s)

with

Π1�j = lim
T→∞

var

{
(T 0

j − T 0
j−1)

−1/2

[ T 0
j∑

t=T 0
j−1+1

xt(Σ
0
j+1)

−1(Σ0
j )

1/2ηt

]}
�
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Combining the foregoing results, we have, for s < 0,

lr1
j

([
s

v2
T

])
⇒ −|s|

2

[
1
2

tr(A2
1�j)+ δ′

jQ1�jδj

]
+ 1

2
vec(A1�j)

′ vec(ξ1�j(s))

+ δ′
j(Π1�j)

1/2ζ1�j(s)�

Now, vec(A1�j)
′ vec(ξ1�j(s))

d= (vec(A1�j)
′Ω0

1�j vec(A1�j))
1/2V1�j(s), where V1�j(s)

is a standard Wiener process. Similarly, δ′
j(Π1�j)

1/2ζ1�j(s)
d= (δ′

j(Π1�j)δj)
1/2 ×

U1�j(s), where U1�j(s) is a standard Wiener process. With the stated conditions,
V1�j(s) and U1�j(s) are independent. Then

(vec(A1�j)
′Ω0

1�j vec(A1�j)/4)1/2V1�j(s)+ (δ′
j(Π1�j)δj)

1/2U1�j(s)

d= (vec(A1�j)
′Ω0

1�j vec(A1�j)/4 + δ′
j(Π1�j)δj)

1/2B1�j(s)≡ Γ1�jB1�j(s)�

where B(s) is a unit Wiener process. Hence, with ∆1�j = tr(A2
1�j)/2 + δ′

jQ1�jδj ,
we have

lr1
j

([
s

v2
T

])
⇒ −|s|

2
∆1�j + Γ1�jB1�j(s)�

The proof for the case s > 0 is similar:

lr1
j

([
s

v2
T

])
⇒ −|s|

2
∆2�j + Γ2�jB1�j(s)

with ∆2�j = tr(A2
2�j)/2 + δ′

jQ2�jδj and

Γ2�j = [vec(A2�j)
′Ω0

2�j vec(A2�j)/4 + δ′
j(Π2�j)δj]1/2�

We also have by definition lr1
j (0) = 0. Now given that s = v2

T (Tj − T 0
j ), the

arg max yields the scaled estimate v2
T (T̂j − T 0

j ). The result follows because we
can take the arg max over the compact set CM and with the use of Lemma 1,
this is equivalent to taking the arg max in an unrestricted set because with prob-
ability arbitrarily close to 1, the estimates will be contained in CM . Hence,

v2
T (T̂j − T 0

j )⇒ arg max
s




−|s|
2
∆1�j + Γ1�jBj(s)� for s ≤ 0,

−|s|
2
∆2�j + Γ2�jBj(s)� for s > 0,

where Bj(s) = B1�j(s) for s ≤ 0 and Bj(s) = B2�j(s) for s > 0. Multiplying by
∆1�j/Γ

2
1�j and applying a change of variable with u= (∆2

1�j/Γ
2

1�j)s, we obtain The-
orem 3. Q.E.D.
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PROOF OF THEOREM 5: As a matter of notation, let

Σ̃1�j = 1
Tj

Tj∑
t=1

(yt − x′
atβ̃a − x′

btβ̃b1�j)(yt − x′
atβ̃a − x′

btβ̃b1�j)
′(S.14)

be the estimated covariance matrix using the full sample estimate of βa ob-
tained under the null hypothesis of no change and using the estimate of βb
based on data up to the last date of regime j� defined as

β̃b1�j =
( Tj∑
t=1

xbtΣ̃
−1
1�jx

′
bt

)−1 Tj∑
t=1

xtΣ̃
−1
1�j(yt − x′

atβ̃a)�

Also,

Σ̂j = 1
Tj − Tj−1

Tj∑
t=Tj−1+1

(yt − x′
atβ̂a − x′

btβ̂bj)(yt − x′
atβ̂a − x′

btβ̂bj)
′(S.15)

is the estimate of the covariance matrix of the errors under the alternative
hypothesis using the full sample estimate of βa and using the estimate of βb
based on data from regime j only, that is,

β̂b�j =
( Tj∑
t=Tj−1+1

xbtΣ̂
−1
j x

′
bt

)−1 Tj∑
t=Tj−1+1

xtΣ̂
−1
j (yt − x′

atβ̂a)�

For a given partition of the sample, we have

LRT (T1� � � � � Tm)

= 2 log L̂T (T1� � � � �Tm)− 2 log L̃T = T log |Σ̃| − T log |Σ̂|

=
m∑
j=1

(Tj+1 log |Σ̃1�j+1| − Tj log |Σ̃1�j| − (Tj+1 − Tj) log |Σ̂j+1|)

≡
m∑
j=1

F
j
T �

Consider a second-order Taylor series expansion of each term:

log |Σ̃1�j+1| = log |Σ0| + tr((Σ0)−1(Σ̃1�j+1 −Σ0))

− 1
2

tr((Σ0)−1(Σ̃1�j+1 −Σ0)(Σ0)−1(Σ̃1�j+1 −Σ0))

+ op(T−1)�
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log |Σ̃1�j| = log |Σ0| + tr((Σ0)−1(Σ̃1�j −Σ0))

− 1
2

tr((Σ0)−1(Σ̃1�j −Σ0)(Σ0)−1(Σ̃1�j −Σ0))+ op(T−1)�

log |Σ̂j+1| = log |Σ0| + tr((Σ0)−1(Σ̂j+1 −Σ0))

− 1
2

tr((Σ0)−1(Σ̂j+1 −Σ0)(Σ0)−1(Σ̂j+1 −Σ0))+ op(T−1)�

Hence,

F
j
T ≡ F

j
1�T + Fj2�T

= tr
(
Tj+1(Σ

0)−1(Σ̃1�j+1 −Σ0)− Tj(Σ0)−1(Σ̃1�j −Σ0)(S.16)

− (Tj+1 − Tj)(Σ0)−1(Σ̂j+1 −Σ0)
)

− 1
2

tr
(
Tj+1[(Σ0)−1(Σ̃1�j+1 −Σ0)]2(S.17)

− Tj[(Σ0)−1(Σ̃1�j −Σ0)]2 − (Tj+1 − Tj)[(Σ0)−1(Σ̂j+1 −Σ0)]2
)
�

Note that the first term in (S.16), denoted Fj1�T , will be nonvanishing when
allowance is made for changes in β0, while the second term, denoted Fj2�T , will
be nonvanishing when allowance is made for changes in Σ0.

We first consider Fj1�T and write the regression in matrix form to simplify the
derivation. Under the null hypothesis, we have

Y =Xaβa +Xbβb +U
with E(UU ′)= IT ⊗Σ0. If only data up to the last date of regime j are included,
we have

Y1�j =Xa1�jβa +Xb1�jβb1�j +U1�j�

Define Yd
1�j = (IT ⊗ Σ̃−1/2

1�j )Y1�j ,W1�j = (IT ⊗ Σ̃−1/2
1�j )Xa1�j , Z1�j = (IT ⊗ Σ̃−1/2

1�j )Xb1�j ,

and Ud
1�j = (IT ⊗ Σ̃−1/2

1�j )U1�j . Then, omitting the subscript when the full sample
is used, we have

β̃a = [W ′MZW ]−1W ′MZY
d�(S.18)

β̃b1�j = (Z′
1�jZ1�j)

−1Z′
1�j(Y

d
1�j −W1�jβ̃a)�(S.19)

where MZ = I − Z(Z′Z)−1Z′. The regression equation using only regime
(j + 1) is

Yj+1 =Xa�j+1βa +Xb�j+1βb�j+1 +Uj+1�
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Define Ȳ d
j+1 = (IT ⊗ Σ̂−1/2

j+1 )Yj+1, W̄j+1 = (IT ⊗ Σ̂−1/2
j+1 )Xa�j+1, Z̄j+1 = (IT ⊗

Σ̂−1/2
j+1 )Xb�j+1, Ūd

j+1 = (IT ⊗ Σ̂−1/2
j+1 )Uj+1, and Z̄ = diag(Z̄1� � � � � Z̄m+1). Then, omit-

ting the subscript when the full sample is used, we have

β̂a = [W̄ ′MZ̄W̄ ]−1W̄ ′MZ̄Ȳ
d�(S.20)

β̂b�j+1 = (Z̄′
j+1Z̄j+1)

−1Z̄′
j+1(Ȳ

d
j+1 − W̄j+1β̂a)�(S.21)

In (S.18)–(S.21), the choice of the estimate of the covariance matrix will have
no effect provided a consistent one is used. We now analyze the first compo-
nent of Fj1�T (the analysis for the second is identical):

Tj+1 tr((Σ0)−1Σ̃j+1)

= tr

(
(Σ0)−1

Tj+1∑
t=1

(yt − x′
atβ̃a + x′

btβ̃b1�j+1)(yt − x′
atβ̃a + x′

btβ̃b1�j+1)
′
)

= tr

(Tj+1∑
t=1

(yt − x′
atβ̃a + x′

btβ̃b1�j+1)
′(Σ0)−1(yt − x′

atβ̃a + x′
btβ̃b1�j+1)

)

= (Y1�j+1 −Xa1�j+1β̃a −Xb1�j+1β̃b1�j+1)
′(IT ⊗ (Σ0)−1)

× (Y1�j+1 −Xa1�j+1β̃a −Xb1�j+1β̃b1�j+1)

= (U1�j+1 +Xa1�j+1(βa − β̃a)+Xb1�j+1(βb − β̃b1�j+1))
′(IT ⊗ (Σ0)−1)

× (U1�j+1 +Xa1�j+1(βa − β̃a)+Xb1�j+1(βb − β̃b1�j+1))

= (Xa1�j+1(βa − β̃a)+Xb1�j+1(βb − β̃b1�j+1))
′(IT ⊗ (Σ0)−1)

× (Xa1�j+1(βa − β̃a)+Xb1�j+1(βb − β̃b1�j+1))

+ 2(Xa1�j+1(βa − β̃a)+Xb1�j+1(βb − β̃b1�j+1))
′(IT ⊗ (Σ0)−1)U1�j+1

+U ′
1�j+1(IT ⊗ (Σ0)−1)U1�j+1

= (W1�j+1(βa − β̃a)+Z1�j+1(βb − β̃b1�j+1))
′

× (W1�j+1(βa − β̃a)+Z1�j+1(βb − β̃b1�j+1))

+ 2(W1�j+1(βa − β̃a)+Z1�j+1(βb − β̃b1�j+1))
′Ud

1�j+1

+U ′
1�j+1(IT ⊗ (Σ0)−1)U1�j+1 + op(1)

= (MZ1�j+1W1�j+1(βa − β̃a)− PZ1�j+1U
d
1�j+1)

′

× (MZ1�j+1W1�j+1(βa − β̃a)− PZ1�j+1U
d
1�j+1)
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+ 2(MZ1�j+1W1�j+1(βa − β̃a)− PZ1�j+1U
d
1�j+1)

′Ud
j+1

+U ′
1�j+1(IT ⊗ (Σ0)−1)U1�j+1 + op(1)

= (MZ1�j+1W1�j+1AT + PZ1�j+1U
d
1�j+1)

′(MZ1�j+1W1�j+1AT + PZ1�j+1U
d
1�j+1)

− 2(MZ1�j+1W1�j+1AT + PZ1�j+1U
d
1�j+1)

′Ud
1�j+1

+U ′
1�j+1(IT ⊗ (Σ0)−1)U1�j+1 + op(1)

=A′
TW

′
1�j+1MZ1�j+1W1�j+1AT −Ud′

1�j+1PZ1�j+1U
d
1�j+1

− 2(MZ1�j+1W1�j+1AT)
′Ud

1�j+1 +U ′
1�j+1(IT ⊗ (Σ0)−1)U1�j+1 + op(1)�

where AT = [W ′MZW ]−1W ′MZU
d . For the third component of Fj1�T , we have,

using similar arguments,

(Tj+1 − Tj) tr((Σ0)−1Σ̂j+1)

= Ā′
T W̄

′
j+1MZ̄j+1

W̄j+1ĀT − Ūd′
j+1PZ̄j+1

Ūd
j+1

− 2(MZ̄j+1
W̄j+1ĀT )

′Ūd
j+1 +U ′

j+1(IT ⊗ (Σ0)−1)Uj+1 + op(1)�

where ĀT = [W̄ ′MZ̄W̄ ]−1W̄ ′MZ̄Ū
d . Following the same arguments as in Bai

and Perron (1998, p. 75), we have plimT→∞ T
1/2ĀT = plimT→∞ T

1/2AT . Hence,
all terms that involve ĀT and AT eventually cancel and

F
j
1�T =Ud′

1�jPZ1�jU
d
1�j +Ud′

j+1PZ̄j+1
Ud
j+1 −Ud′

1�j+1PZ1�j+1U
d
1�j+1 + op(1)�

Now, T−1/2Z′
1�jU

d
1�j ⇒ Q1/2

b Wpb(λi) and T−1
∑Tj

t=1 xbt(Σ
0)−1x′

bt →p λiQb with
Wpb(λi) a pb vector of independent Wiener processes defined on [0�1] and
where Qb is the appropriate submatrix of Q that corresponds to the elements
of xbt . Hence,

Ud′
1�j+1PZ1�j+1U

d
1�j+1 ⇒ [Wpb(λj+1)

′Wpb(λj+1)]/λj+1�

Using similar arguments

Ud′
1�jPZ1�jU

d
1�j ⇒ [Wpb(λj)

′Wpb(λj)]/λj
and

Ud′
j+1PZ̄j+1

Ud
j+1

⇒ (Wpb(λj+1)−Wpb(λj))
′(Wpb(λj+1)−Wpb(λj))/(λj+1 − λj)�
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These results imply that the first component in (S.16) has the limit

F
j
1�T ⇒ (λjWpb(λj+1)− λj+1Wpb(λj))

′(λjWpb(λj+1)− λj+1Wpb(λj))

(λj+1 − λj)λjλj+1
�(S.22)

Consider now the limit of
∑m

j=1 F
j
2�T when changes in Σ0 are allowed. We have

F
j
2�T = −1

2

m∑
j=1

tr
(
Tj+1((Σ

0)−1Σ̃1�j+1 − I)2
)

− Tj((Σ0)−1Σ̃1�j − I)2 − (Tj+1 − Tj)((Σ0)−1Σ̂j+1 − I)2�

Let ((Σ0)−1Σ̃1�j+1 − I)F be the matrix whose entries are those of ((Σ0)−1Σ̃1�j+1 −
I) for the corresponding entries of Σ0 that are not allowed to vary across
regimes; the remaining entries are filled with zeros. We use the superscript F
because the nonzero elements are estimates constructed using the full sample,
that is,

{
((Σ0)−1Σ̃1�j+1 − I)F}

i�k
= σik

T

T∑
t=1

(yit − x′
it β̃)

′(ykt − x′
ktβ̃)− Ii�k�

where σik is the (i�k) element of (Σ0)−1 and Ii�k is the (i�k) element of I. Also
let ((Σ0)−1Σ̃1�j+1 −I)S be the matrix whose entries are those of ((Σ0)−1Σ̃1�j+1 −
I) for the corresponding entries of Σ0 that are allowed to vary across regimes,
the remaining entries being filled with zeros. We use the superscript S because
the nonzero elements are estimates constructed using the relevant segments,
that is,

{
((Σ0)−1Σ̃1�j+1 − I)S}

i�k
= σik

Tj+1

Tj+1∑
t=1

(yit − x′
it β̃)

′(ykt − x′
ktβ̃)− Ik�j�

Note that the entries for ((Σ0)−1Σ̃1�j+1 − I)F are the same for all segments. De-
fine ((Σ0)−1Σ̃1�j − I)F , ((Σ0)−1Σ̃1�j − I)S , ((Σ0)−1Σ̂j+1 − I)F , and ((Σ0)−1Σ̂j+1 −
I)S in an analogous fashion. Then

((Σ0)−1Σ̃1�j+1 − I)= ((Σ0)−1Σ̃1�j+1 − I)F + ((Σ0)−1Σ̃1�j+1 − I)S�
((Σ0)−1Σ̃1�j − I)= ((Σ0)−1Σ̃1�j − I)F + ((Σ0)−1Σ̃1�j − I)S�
((Σ0)−1Σ̂j+1 − I)= ((Σ0)−1Σ̂j+1 − I)F + ((Σ0)−1Σ̂j+1 − I)S�
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and, in view of (S.17),

m∑
j=1

F
j
2�T = −1

2
tr

(
m∑
j=1

[
Tj+1((Σ

0)−1Σ̃1�j+1 − I)S((Σ0)−1Σ̃1�j+1 − I)S

− Tj((Σ0)−1Σ̃1�j − I)S((Σ0)−1Σ̃1�j − I)S

− (Tj+1 − Tj)((Σ0)−1Σ̂Sj+1 − I)S((Σ0)−1Σ̂Sj+1 − I)S]
)

+ op(1)�

Now, because β̃−β0 =Op(T−1/2), we have

Tj+1((Σ
0)−1Σ̃1�j+1 − I)S((Σ0)−1Σ̃1�j+1 − I)S

= T

Tj+1

(
1√
T

Tj+1∑
t=1

[(Σ0)−1utu
′
t − I]

)S(
1√
T

Tj+1∑
t=1

[(Σ0)−1utu
′
t − I]

)S

+ op(1)

⇒ ξn(λj+1)
Sξn(λj+1)

S

λj+1
�

Tj((Σ
0)−1Σ̃1�j − I)S((Σ0)−1Σ̃1�j − I)S

= T

Tj

(
1√
T

Tj∑
t=1

[(Σ0)−1utu
′
t − I]

)S(
1√
T

Tj∑
t=1

[(Σ0)−1utu
′
t − I]

)S

+ op(1)

⇒ ξn(λj)
Sξn(λj)

S

λj
�

and

(Tj+1 − Tj)((Σ0)−1Σ̂Sj+1 − I)S((Σ0)−1Σ̂Sj+1 − I)S

= T

Tj+1 − Tj

(
1√
T

Tj+1∑
t=Tj+1

[(Σ0)−1utu
′
t − I]

)S

×
(

1√
T

Tj+1∑
t=Tj+1

[(Σ0)−1utu
′
t − I]

)S

+ op(1)
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⇒ (ξn(λj+1)− ξn(λj))S(ξn(λj+1)− ξn(λj))S
λj+1 − λj �

where ξ(·) is an n × n matrix whose elements are (nonstandard) Brownian
motions defined on [0�1] such that var(vec(ξ(1)))=Ω. Hence,

m∑
j=1

F
j
2�T ⇒ −1

2
tr

(
ξn(λj+1)

Sξn(λj+1)
S

λj+1
− ξn(λj)

Sξn(λj)
S

λj

+ (ξn(λi+1)− ξn(λi))S(ξn(λi+1)− ξn(λi))S
λi+1 − λi

)

= −1
2

[
vec(ξn(λj+1)

S)′ vec(ξn(λj+1)
S)

λj+1

− vec(ξn(λj)S)′ vec(ξn(λj)S)
λj

× (
vec(ξn(λj+1)

S)− vec(ξn(λj)S)
)′

× (vec(ξn(λj+1)
S)− vec(ξn(λj)S)

(λi+1 − λi)
]
�

using the fact that tr(AA) = vec(A)′ vec(A) for a symmetric matrix A. Now
let H be the matrix that selects the elements of vec(Σ0) that are allowed to
change. Then

vec(ξn(λj+1)
S)′ vec(ξn(λj+1)

S)= vec(ξn(λj+1))
′H ′H vec(ξn(λj+1))

d=Wn∗
b
(λj+1)

′HΩH ′Wn∗
b
(λj+1)�

whereWn∗
b
(·) is an n∗

b vector of independent standard Wiener processes. Hence,
we have

m∑
j=1

F
j
2�T ⇒ −1

2

[
Wn∗

b
(λj+1)

′H ′ΩHWn∗
b
(λj+1)

λj+1
− Wn∗

b
(λj)

′H ′ΩHWn∗
b
(λj)

λj
(S.23)

− (Wn∗
b
(λj+1)−Wn∗

b
(λj))

′H ′ΩH(Wn∗
b
(λj+1)−Wn∗

b
(λj))

λj+1 − λj
]

= (λjWn∗
b
(λj+1)− λj+1Wn∗

b
(λj))

′H ′ΩH

× (λjWn∗
b
(λj+1)− λj+1Wn∗

b
(λj))

/(λjλj+1(λj+1 − λj))�
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It remains to show that the limiting distribution of the test is given by (S.22)
when only changes in β are allowed and is given by (S.23) when only changes
in β are allowed. We have

LRT (T1� � � � �Tm)= T log |Σ̃| − T log |Σ̂|�
where Σ̂ and Σ̃ denote the covariance matrix of the errors estimated under
the null and alternative hypotheses, respectively. Taking a second-order Taylor
expansion yields

LRT(T1� � � � �Tm)= tr(TΣ−1
0 (Σ̃− Σ̂))+ T

2
tr

([(Σ0)−1(Σ̂−Σ0)]2
)

− T

2
tr

([(Σ0)−1(Σ̃−Σ0)]2
) + op(T−1)�

Consider first the third term

[(Σ0)−1(Σ̃−Σ0)]2 =
[
(Σ0)−1

(
T−1

T∑
t=1

(yt − x′
t β̃)(yt − x′

t β̃)
′ −Σ0

)]2

=
[
(Σ0)−1

(
T−1

T∑
t=1

(ut + x′
t(β

0 − β̃))

× (ut + x′
t(β

0 − β̃))′ −Σ0

)]2

=
[
(Σ0)−1

(
T−1

T∑
t=1

utu
′
t −Σ0

)]2

+Op(T−3/2)�

where the last equality follows because β0 − β̃= Op(T
−1/2). Similarly, we can

show that

[(Σ0)−1(Σ̂−Σ0)]2 =
[
(Σ0)−1

(
T−1

T∑
t=1

utu
′
t −Σ0

)]2

+ op(T−1)�

Hence, the likelihood ratio simplifies to

lrT (T1� � � � � Tk)

= T tr((Σ0)−1(Σ̃− Σ̂))+ op(1)

≡ tr

(
(Σ0)−1

(
TΣ̃−

m∑
j=0

(Tj+1 − Tj)Σ̂j+1

))
+ op(1)
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= tr

(
(Σ0)−1

m∑
j=1

(Tj+1Σ̃1�j+1 − TjΣ̃1�j − (Tj+1 − Tj)Σ̂j+1)

)
+ op(1)

=
m∑
j=1

F
j
1�T + op(1)�

Now, when only changes in Σ occur, assuming without loss of generality that
all elements of the covariance matrix are allowed to change, we have

T log |Σ̃| −
m∑
j=0

(Tj+1 − Ti) log |Σ̂j+1|

=
m∑
j=1

(Tj+1 log |Σ̃1�j+1| − Tj log |Σ̃1�j| − (Tj+1 − Tj) log |Σ̂j+1|)

+ T1(log |Σ̃1�1| − log |Σ̂1|)

≡
m∑
j=1

LR
j
T + T1(log |Σ̃1�1| − log |Σ̂1|)�

where

Σ̃1�j = T−1
j

Tj∑
t=1

(yt − x′
t β̃)(yt − x′

t β̃)
′�

Σ̂j = (Tj − Tj−1)
−1

Tj∑
t=Tj−1+1

(yt − x′
t β̂)(yt − x′

t β̂)
′

with β̃ and β̂ the estimates under the null and alternative hypotheses, respec-
tively. Now, taking a second-order Taylor expansion of LRj

T yields

LRj
T = tr(Tj+1(Σ

0)−1Σ̃1�j+1 − Tj(Σ0)−1Σ̃1�j − (Tj+1 − Tj)(Σ0)−1Σ̂j+1)

+ Tj+1

2
tr[(Σ0)−1(Σ̂j+1 −Σ0)]2 + Tj

2
tr[(Σ0)−1(Σ̃1�j −Σ0)]2

− (Tj+1 − Tj)
2

tr[(Σ0)−1(Σ̃1�j+1 −Σ0)]2 + op(T−1)�

Both β̃ and β̂ are regime independent and we also have β̃ − β̂ = op(T
−1/2).

Hence,

tr(Tj+1(Σ
0)−1Σ̃1�j+1 − Tj(Σ0)−1Σ̃1�j − (Tj+1 − Tj)(Σ0)−1Σ̂i+1)
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= (Σ0)−1

Tj+1∑
t=Tj+1

[(yt − x′
t β̃)(yt − x′

t β̃)
′ − (yt − x′

t β̂)(yt − x′
t β̂)

′]

= op(1)�
Also,

T1(log |Σ̃1�1| − log |Σ̂1|)
= T1 tr((Σ0)−1(Σ̃1�1 − Σ̂1))

+ 1
2
T1 tr([(Σ0)−1(Σ̂1 −Σ0)]2 − [(Σ0)−1(Σ̃1�1 −Σ0)]2)

= op(1)�
Hence,

LRT (T1� � � � �Tm)=
m∑
j=1

1
2

tr
(
Tj+1[(Σ0)−1(Σ̂j+1 −Σ0)]2

+ Tj[(Σ0)−1(Σ̃1�j −Σ0)]2

− (Tj+1 − Tj)[(Σ0)−1(Σ̃1�j+1 −Σ0)]2
) + op(1)

=
m∑
j=1

F
j
2�T + op(1)�

Q.E.D.

PROOF OF COROLLARY 2: Note that, becauseH is a selection matrix applied
to vec(Σ), any row that selects the (i�k) element of Σ can be written as an n2

vector of the form e′
n�i ⊗ e′

n�k, where en�i is an n× 1 vector with a 1 in the ith
position and 0 elsewhere. Hence, assuming Normality, any element of HΩH ′

that involves the selection of the (i�k) and (l�m) element of Σ can be written,
in view of (12), as (with the second equality following from, e.g., Magnus (1988,
Exercise 3.3))

(HΩH ′)(i�k)�(l�m) = (e′
n�i ⊗ e′

n�k)(In2 +Kn)(en�l ⊗ en�m)
= (e′

n�i ⊗ e′
n�k)(en�l ⊗ en�m)+ (e′

n�i ⊗ e′
n�k)(en�m ⊗ en�l)

=
{2� if i= k= l=m,

1� if i= l �= k=m or i=m �= k= l,
0� otherwise.

This result greatly simplifies the form of the limiting distribution. In particular,
the matrixHΩH ′ is such that inference about changes in any one element of Σ
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is independent of changes in any other independent element (i.e., not the two
entries for a covariance term). The value of an entry differs, however, when a
variance or a covariance is allowed to change. Suppose that only nb diagonal
elements of Σ (i.e., variances) are allowed to change. Then (HΩH ′) = 2Inb
and the limiting distribution of sup LRT (m�pb�ndb�0� ε) is also of the form
(19) with nb instead of pb. When only nb independent off-diagonal elements of
Σ are allowed to change, (HΩH ′)= ii′, where i is a 2nb × 1 vector of 1’s, that
is, (HΩH ′) is a 2nb × 2nb matrix of 1’s. Then straightforward algebra reveals
that the limiting distribution is still given by (19). Q.E.D.

PROOF OF THEOREM 7: Assume, without loss of generality, no disjoint
break are allowed under the alternative hypothesis and all regression coeffi-
cients are allowed to change. For the general case, the proof extends straight-
forwardly. Hence, using the convention that T2 = T and T0 = 1, the set of ad-
missible partitions is

Λ∗
ε = {

(k1�k2);εT ≤ k1 ≤ k2 ≤ (1 − ε)T and v2
T (k2 − k1)≤MT

with MT → 0� vT → 0� and T 1/2vT/(logT)2 → ∞ as T → ∞}
�

For a given partition, the likelihood ratio statistic is defined as LRT (k1�k2;ε)=
T log |Σ̃| − T log |Σ̂|, where Σ̂ and Σ̃ denote the covariance matrix estimated
under the null and the alternative hypotheses, respectively. Now, consider
the likelihood function under the common break alternative, which imposes
k2 = k1, and denote the corresponding estimate of the covariance matrix as
Σ̂∗. Then,

LRT (k1�k2;ε)= (T log |Σ̃| − T log |Σ̂∗|)+ (T log |Σ̂∗| − T log |Σ̂|)�
Hence,

sup
(k1�k2)∈Λ∗

ε

LRT (k1�k2;ε)

= sup
(k1�k2)∈Λ∗

ε

{
(T log |Σ̃| − T log |Σ̂∗|)+ (T log |Σ̂∗| − T log |Σ̂|)}�

The proof is complete if we can show that sup(k1�k2)∈Λ∗
ε
(T log |Σ̂∗| −T log |Σ̂|)=

op(1). To prove this, apply a second-order Taylor expansion,

T log |Σ̂∗| − T log |Σ̂| = tr(TΣ−1
0 (Σ̂

∗ − Σ̂))+ T

2
tr

([(Σ0)−1(Σ̂−Σ0)]2
)

− T

2
tr

([(Σ0)−1(Σ̂∗ −Σ0)]2
) + op(T−1)

= tr(TΣ−1
0 (Σ̂

∗ − Σ̂))+ op(1)�
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where the op(1) term is uniform in (k1�k2) ∈ Λ∗
ε and where the last equality

holds because

((Σ0)−1(Σ̂−Σ0))2 =
(
(Σ0)−1

(
T−1

T∑
t=1

utu
′
t −Σ0

))2

+ op(T−1)�

((Σ0)−1(Σ̂∗ −Σ0))2 =
(
(Σ0)−1

(
T−1

T∑
t=1

utu
′
t −Σ0

))2

+ op(T−1)

uniformly in (k1�k2) ∈ Λ∗
ε. Let β̂t be the estimate under the locally ordered

break model: β̂t = (β̂′
1�1� β̂

′
2�1)

′ if t ≤ k1, β̂t = (β̂′
1�2� β̂

′
2�1)

′ if k1 < t ≤ k2, and
β̂t = (β̂′

1�2� β̂
′
2�2)

′ if t > k2. Also let β̂∗
t be the estimate under the common

break model: β̂∗
t = (β̂∗′

1�1� β̂
∗′
2�1)

′ if t ≤ k1 and β̂∗
t = (β̂∗′

1�2� β̂
∗′
2�2)

′ if t > k1. Then,
for a given partition (k1�k2) ∈ Λ∗

ε� simple arguments lead to β̂1�j − β̂∗
1�j =

Op((TvT )
−1 logv−2

T ) and β̂2�j − β̂∗
2�j = Op((TvT )

−1 logv−2
T ) for j = 1�2, which

further implies

tr(T(Σ̂1�1 − Σ̂1�2))

= tr

(
T∑
t=1

(yt − x′
t β̂t)(yt − x′

t β̂t)
′ −

T∑
t=1

(yt − x′
t β̂

∗
t )(yt − x′

t β̂
∗
t )

′
)

= tr

(
k2∑

t=k1+1

(yt − x′
t β̂t)(yt − x′

t β̂t)
′ −

k2∑
t=k1+1

(yt − x′
t β̂

∗
t )(yt − x′

t β̂
∗
t )

′
)

+ op(1)

= tr

(
k2∑

t=k1+1

(ut − x′
t(β̂t −β0))(ut − x′

t(β̂t −β0))′
)

− tr

(
k2∑

t=k1+1

(ut − x′
t(β̂

∗
t −β0))(ut − x′

t(β̂
∗
t −β0))′

)
+ op(1)�

Now, from Lemma A.5, β̂t − β0 = Op(T
−1/2) and β̂∗

t − β0 = Op(T
−1/2) uni-

formly in (k1�k2) ∈ Λ∗
ε. Using the fact that (k2 − k1)/T → 0, we have

tr(
∑k2

t=k1+1 x
′
t(β̂t−β0)(β̂t−β0)′xt)= op(1), tr(

∑k2
t=k1+1 ut(β̂t−β0)′xt)= op(1),

tr(
∑k2

t=k1+1 x
′
t(β̂

∗
t − β0)(β̂∗

t − β0)′xt)= op(1), and tr(
∑k2

t=k1+1 ut(β̂
∗
t − β0)′xt)=

op(1). Hence Σ̂1�1 − Σ̂1�2 = op(1), the bound being uniform in (k1�k2) ∈ Λ∗
ε�

This completes the proof. Q.E.D.
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PROOF OF THEOREM 8: Without loss of generality, assume all the coeffi-
cients are subject to change. Let β̂t denote the coefficients estimates under
the globally ordered breaks alternative. Then, for a given admissible partition
(λ1�λ2) ∈ΛG

ε � we have

β̂t =



(β̂′

1�1� β̂
′
2�1)

′� if t ≤ k1,
(β̂′

1�2� β̂
′
2�1)

′� if k1 < t ≤ k2,
(β̂′

1�2� β̂
′
2�2)

′� if t > k2,

with the corresponding log-likelihood function being

LG
T (k1�k2)= −T

2
(log 2π + 1)− T

2
log |Σ̂|�

with

Σ̂= 1
T

T∑
t=1

(yt − x′
t β̂t)(yt − x′

t β̂t)
′�

Consider a related model in which only the coefficients in the second set of
equations are allowed to change. Let β̃t denote the corresponding estimates.
Then, under the same partition as before, we have

β̃t =
{
(β̃′

1� β̃
′
2�1)

′� if t ≤ k2,
(β̃′

1� β̃
′
2�2)

′� if t > k2,

with the corresponding likelihood function being

LG
T (1�k2)= −T

2
(log 2π + 1)− T

2
log |Σ̃2|�

with

Σ̃2 = 1
T

T∑
t=1

(yt − x′
t β̃t)(yt − x′

t β̃t)
′�

Hence, the likelihood ratio under the given partition can be expressed as

LRG
T (k1�k2�pb1�pb2� ε)

= T(log |Σ̃2| − log |Σ̂|)+ T(log |Σ̃| − log |Σ̃2|)�
The likelihood ratio is the sum of two components, each involving only one
break, with some coefficients restricted not to change. Given this, the rest of
the proof follows that of Theorem 5, that is, the analysis of Fj1�T . Q.E.D.
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THE LIMIT DISTRIBUTION OF THE STRUCTURAL CHANGE TEST IN THE CASE OF
SWITCHING REGIMES

Consider a situation where the system switches from regime 1 to regime 2,
then switches back to regime 1. This type of phenomenon was noticed by Sen-
sier and van Dijk (2004), who argued that the volatility of the time series of
aggregate price indices showed an increase in the early 1970s and a decrease
of roughly similar absolute magnitude in the early 1980s. Let pb and nb denote
the number of regressors and of independent entries of the covariance matrix
of the errors, respectively, subject to change. The test is then

sup LRS
T (k1�k2�pb�nb� ε)= sup

(λ1�λ2)∈Λε
[2 log L̂T (k1�k2)− 2 log L̃T ]�

where log L̃T denotes the log-likelihood function estimated under the null hy-
pothesis of no change and log L̂T (k1�k2) denotes the maximized value of the
likelihood function under the alternative hypothesis of two changes but im-
posing the restriction that the first and the third regimes are the same, and
imposing that the maximization is taken over the set of admissible partitions

Λε = {(λ1�λ2);λ1 ≥ ε�λ2 − λ1 ≥ ε�λ2 ≤ 1 − ε}�
The limiting distribution of the test is presented in the next theorem, whose
proof is straightforward and is omitted.

THEOREM S.1: Let Wpb+nb(·) be a pb + nb vector of independent Wiener
processes on [0�1]� Then under Assumptions A11 and A12 (assuming Normal
errors when allowing changes in the covariance matrix of the errors),

sup LRS
T ⇒ Sup

(λ1�λ2)∈Λε

∥∥[Wpb+nb(λ2)− λ2Wpb+nb(1)]

− [Wpb+nb(λ1)− λ1Wpb+nb(1)]
∥∥2

/((λ2 − λ1)(1 − λ2 + λ1))�
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