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BY JOHN K.-H. QUAH

The purpose of this supplement is to discuss some of the central concepts and re-
sults of the main paper in the case where the objective function is defined on a subset
of R2. The general theory developed in the main paper in an l-dimensional context is
particularly simple and intuitive in this special case. The results here are also interest-
ing because comparative statics problems in R2 are ubiquitous in economic theory. We
give an application of our techniques to the portfolio problem with two risky assets.
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WE BEGIN BY CONSTRUCTING a comparative statics theorem that is applicable
to two-dimensional problems. We show that it is a corollary of the central com-
parative statics result (Theorem 2) in the main paper. In the process, we revisit
the notions of Ci-quasisupermodularity and Ci-flexible set order and explain
what they mean in a two-dimensional context.

The objective function is f :X1 × X2 → R, where X1 = (x1�x1) and X2 =
(x2�x2) are nonempty open intervals inR. Our theorem gives conditions on the
function f and the constraint setsH andG that guarantee that arg maxx∈H f (x)
is 2-higher than arg maxx∈g f (x).1

We say that the function f :X1 ×X2 →R is type I well behaved if the following
conditions hold: (i) f is a C1 function with f2 > 0 and (ii) the set {f (x1�x2) ∈
R :x2 ∈X2} does not vary with x1, i.e., for any x′

1 and x′′
1 in X1,

{f (x′
1�x2) ∈R :x2 ∈X2} = {f (x′′

1�x2) ∈R :x2 ∈X2}�
The crucial implication of these conditions is that f has well-behaved indiffer-
ence curves in the sense that each curve is a differentiable function of x1. We
state this precisely in the next result.

LEMMA S1: Suppose f :X1 × X2 → R is type I well behaved. Then at each
x∗ = (x∗

1�x
∗
2) in X1 ×X2, there is a C1 function ψ :X1 →R such that ψ(x∗

1)= x∗
2

and f (x1�ψ(x1))= f (x∗
1�x

∗
2) for all x1 in X1.

PROOF: Let f (x∗
1�x

∗
2) = K, so K is in {f (x∗

1�x2) ∈ R :x2 ∈ X2}. Using con-
dition (ii) in the definition of a type I well-behaved function, we know that at

1Recall (from Section 2 of the main paper) that for sets S′ and S in R2, the set S′ is said to
be 2-higher than S if, whenever both sets are nonempty, for any x in S there is x′ in S′ such that
x′

2 ≥ x2, and for any x′ in S′ there is x in S such that x′
2 ≥ x2. When the optimal solutions are

unique, this simply means that the optimal value of x2 increases as the constraint set changes
from G to H .

1
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each x̂1 in X1, there is x̂2 such that f (x̂1� x̂2)=K. Given that, by condition (i),
f2 > 0, we know that x̂2 is unique. Thus there is indeed a function ψ :X1 →X2

such that f (x1�ψ(x1))=K. The fact that ψ is C1 follows from the assumption
that f is C1 with f2 �= 0. Q.E.D.

Similarly, we say that the function f is type II well behaved if the following
conditions hold: (i) f is a C1 function with f1 > 0 and (ii) the set {f (x1�x2) ∈
R :x1 ∈ X1} does not vary with x2. Lemma S1 guarantees that, for a type II
well-behaved function f , every indifference curve is a differentiable function
of x2.

Note that it is certainly possible for an objective function to be both
types I and II well behaved; for example, this is true if f :R2

++ → R is given
by f (x1�x2) = x1x2. However, a type I well-behaved function (with, by defin-
ition, f2 > 0) may have f1 taking different signs at different points. If so, the
indifference curves are not 1–1 functions of x1; thus they are not expressible as
functions of x2.

We say that the indifference curves of f :X1 × X2 → R have the declining
slope property if either of the following statements holds:

(i) The function f is type I well behaved and f1(x1�x2)/f2(x1�x2) is decreas-
ing in x1.

(ii) The function f is type II well behaved and f2(x1�x2)/f1(x1�x2) is in-
creasing in x1.
The motivation for this terminology is clear when we consider the case where
f1 > 0 and f2 > 0, so that each indifference curve must be downward sloping.
Then −f1(x1�x2)/f2(x1�x2) is the slope of the indifference curve and for this
to be increasing means that the curve is getting flatter as x1 increases (com-
pare the curves I ′ and I ′′ in Figure S1). For simple conditions that guarantee
the declining slope property, recall that we have shown in the main paper (Sec-
tion 4.1) that f satisfies this property if f1 ≥ 0, f2 > 0, f11 ≤ 0, and f12 ≥ 0.

We turn now to the constraint sets G and H. The constraint set G is said
to be regular if its boundary is the graph of a decreasing and differentiable
function. In formal terms, there is an open interval IG = (x2�x

G
2 ) ⊆X2 and a

differentiable function g : IG →X1, with g′ ≤ 0, such that

G= {x ∈X1 ×X2 :x2 ∈ IG and x1 ≤ g(x2)}�
Assume that G and H are both regular sets with the boundary of H given by
h : IH → X1, where IH = (x2�x

H
2 ). Then H is said to have a steeper boundary

than G if the (i) IG ⊆ IH (equivalently, xG2 ≤ xH2 ), (ii) for all x2 in IG, we have
g(x2) ≤ h(x2), and (iii) for all x2 in IG, we have g′(x2) ≤ h′(x2). This is illus-
trated in Figure S1. Note that conditions (i) and (ii) imply that H contains G,
while condition (iii) guarantees that the boundary of H at (ã1� a2) is steeper
than the boundary of G at (a1� a2).
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FIGURE S1.

We can now state the comparative statics result.

THEOREM S1: Suppose that the indifference curves of f :X1 ×X2 → R obey
the declining slope condition and that the constraint setsH andG are both regular
with H having a steeper boundary than G. Then arg maxx∈H f (x) is 2-higher than
arg maxx∈G f (x).

Comparative statics problems can often be formulated in a way that con-
forms to the setup of Theorem S1. One instance, which we have already en-
countered in the main paper (Example 4), is Rybcsynski’s theorem. (In that
case, G and H are the production possibility sets of the economy before
and after the increase in the capital stock.) The standard approach for deal-
ing with these problems is by substitution. Suppose we are interested in how
the value of x2, which maximizes f (x1�x2) subject to x1 ≤ g(x2� t), changes
as the parameter t changes. Provided we know that f is locally nonsatiated,
so that the constraint is binding, this problem can be converted into the
one-dimensional problem of maximizing f (g(x2� t)�x2). This latter problem
can often then be fruitfully studied using techniques already developed for
studying one-dimensional problems (see, in particular, Athey, Milgrom, and
Roberts (1998)). However, this does not negate the value of Theorem S1, be-
cause even when other techniques can be used, this theorem provides a partic-
ularly transparent approach to many such comparative statics problems.
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Before we give a formal proof of Theorem S1, it is worth looking at Fig-
ure S1 to convince ourselves that it is completely intuitive. The function f ,
when subject to the constraint G, is maximized at (a1� a2). By the declining
slope property, the indifference curve is flatter at (ã1� a2) than at (a1� a2). On
the other hand, the slope of the constraint set H at (ã1� a2) is steeper than the
slope ofG at (a1� a2). Together they imply that f is maximized at a higher value
of x2 when the constraint set is H. Note also that this conclusion does not rely
on the convexity of the indifference curves or the concavity of the constraint
set boundaries.

Proof of Theorem S1

We prove this result by applying Theorem 2 from the main paper. Before we
do that, it is worth recalling the main concepts in that theorem, specialized to
the two-dimensional context. It requires the objective function f :X1 ×X2 →R
to be C2-quasisupermodular; this condition says that for any two points (x′

1�x
′
2)

and (x′′
1�x

′′
2) with x′

2 > x
′′
2 and x′

1 < x
′′
1, and for any k in the interval [0�x′′

1 − x′
1],

we have

f (x′
1�x

′
2)− f (x′

1 + k�x′′
2)≥ (>)0

	⇒ f (x′′
1 − k�x′

2)− f (x′′
1�x

′′
2)≥ (>)0�

We see from Figure S2 that the points a, b, c, and d form a backward bending
parallelogram; as k takes different values in the interval [0�x′′

1 − x′
1], we ob-

tain a family of parallelograms. The C2-quasisupermodularity requires that the
expression f (d)− f (c) be positive whenever f (a)− f (b) is positive.

On the constraint sets G and H, the theorem requires that H dominates G
in the C2-flexible set order. In the case when G and H are both regular, with H
containing G, this conditions requires that for any two points (x′

1�x
′
2) in G

and (x′′
1�x

′′
2) in H with x′

2 > x
′′
2 and x′

1 < x
′′
1, there exists a real number K in the

interval [0�x′′
1 −x′

1] such that (x′
1 +K�x′′

2) is inG and (x′′
1 −K�x′

2) is inH. Note
that, once again, the points (x′

1�x
′
2), (x

′′
1�x

′′
2), (x

′
1 + K�x′′

2), and (x′′
1 − K�x′

2)
form a backward-bending parallelogram.

The following result combines Theorem 2 and Proposition 3(i) from the
main paper, specialized to the two-dimensional case.

THEOREM S2: Suppose that f :X1 ×X2 →R is a C2-quasisupermodular func-
tion and that the constraint set H dominates G in the C2-flexible set order. Then
arg maxx∈H f (x) is 2-higher than arg maxx∈G f (x).

Clearly, Theorem S1 follows immediately from Theorem S2 if the next two
propositions are true.
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FIGURE S2.

PROPOSITION S1: Suppose that the indifference curves of f : X1 × X2 → R
obey the declining slope property. Then f is C2-quasisupermodular.

PROPOSITION S2: Suppose that the sets H and G in X1 ×X2 are both regular
withH having a steeper boundary thanG. ThenH dominatesG in the C2-flexible
set order.

We already proved Proposition S2 when we considered an extension of Ry-
bcsynski’s theorem in the main paper (see Example 4 and Lemma A1), so we
now turn to the proof of Proposition S1.

PROOF OF PROPOSITION S1: Assume that the indifference curve of f has
the declining slope property; we confine ourselves to the case where f is type I
well behaved and f1(x1�x2)/f2(x1�x2) is decreasing in x1. The other case can
be proved in a similar manner. Our proof is a variation of the one given by
Milgrom and Shannon (1994, Theorem 3) for the single crossing property. Sup-
pose that x′

1 < x
′′
1 and x′

2 > x
′′
2 with f (x′

1�x
′
2)≥ f (x′′

1�x
′′
2). We wish to show that

f (x′
1 +k�x′

2)≥ f (x′′
1 +k�x′′

2) for k> 0. Define I = [x′
1�x

′′
1]. Let the indifference

curve through the point (x′′
1�x

′′
2) be represented on I by the function τ : I →R,
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where τ(x′′
1)= x′′

2. Then f (x′′
1 + k�τ(x′′

1))− f (x′
1 + k�τ(x′

1)) equals

∫ x′′
1+k

x′
1+k

df

dt
(t� τ(t − k)) dt

=
∫ x′′

1+k

x′
1+k

f1(t� τ(t − k))+ f2(t� τ(t − k))τ′(t − k) dt

=
∫ x′′

1+k

x′
1+k

[
f1(t� τ(t − k))
f2(t� τ(t − k)) + τ′(t − k)

]
f2(t� τ(t − k)) dt�

By the declining slope property, this expression is less than

∫ x′′
1+k

x′
1+k

[
f1(t − k�τ(t − k))
f2(t − k�τ(t − k)) + τ′(t − k)

]
f2(t� τ(t − k)) dt = 0�

It equals zero because f (t� τ(t)) is identically constant. So f (x′
1 + k�τ(x′

1))≥
f (x′′

1 + k�τ(x′′
1)) = f (x′′

1 + k�x′′
2). Given that f (x′

1�x
′
2) ≥ (>)f (x′′

1�x
′′
2)

by assumption and f is increasing in x2, we have x′
2 ≥ (>)τ(x′

1). The fact
that f is increasing in x2 also guarantees that f (x′

1 + k�x′
2) ≥ (>)f (x′′

1 +
k�x′′

2). Q.E.D.

We have shown at the end of Section 4.1 in the main paper that when the
partial derivatives of f are both positive, the declining slope property is also
necessary for f to be C2-quasisupermodular. However, the condition is not nec-
essary if the partial derivatives are not always positive. For example, if f2(x) > 0
and f1(x) < 0 for all x inX , then f is (trivially) C2-quasisupermodular because
the indifference curves must all slope upward, but they need not satisfy the
declining slope property.

It is possible to write down a result similar to Theorem S1 with the stronger
conclusion that arg maxx∈H f (x) is higher than arg maxx∈G f (x).2 Note that
Theorem S1 gives us conditions that guarantee that arg maxx∈H f (x) is 2-higher
than arg maxx∈G f (x). Clearly, we can write down analogous conditions on
the indifference curves of f and the boundaries of H and G that guarantee
that arg maxx∈H f (x) is 1-higher than arg maxx∈G f (x). If both sets of condi-
tions are imposed, then, by Propositions S1 and S2, we obtain that f is Ci-
quasisupermodular and H dominates G in the Ci-flexible set order for i = 1
and 2. By Theorem 2 and Proposition 3(ii) in the main paper, this guarantees
that arg maxx∈H f (x) is higher than arg maxx∈G f (x).

2Recall, from Section 2 of the main paper that a set S′ is higher than S if, whenever both sets
are nonempty, for any x in S there is x′ in S′ such that x′ ≥ x and for any x′ in S′ there is x in S
such that x′ ≥ x.
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An Application of Theorem S1

We end with an application of Theorem S1 to the portfolio problem. More
two-dimensional applications can be found in Quah (2006).

Consider the standard portfolio problem of an agent who has to choose be-
tween two assets: a safe asset with constant and positive payoff r and a risky
asset with payoff s governed by the density function f . The agent has the
Bernoulli utility function u :R→ R, so that its objective function is U(a�b)=∫
u(bs + ar)f (s)ds. It is well known that the agent’s investment in the risky

asset will increase with wealth if his coefficient of risk aversion decreases with
wealth. The standard proof of this result converts the agent’s problem into a
single variable (the level of risky investment) problem by making a substitution
using the budget identity and then establishing that some version of the single
crossing property holds (see, for example, Gollier (2001) or Athey (2002)).

Another natural way to obtain this result is to use Theorem S1. The budget
line before and after the increase in wealth has the same slope, so the only
work that needs doing is to establish that U obeys the declining slope property.
The function U is strictly increasing in a if u is strictly increasing, so we need
to show that

∫
u′(bs+ ar)sf (s)ds∫
u′(bs+ ar)rf (s)ds

is increasing with a. For this to hold, it is sufficient that u′(as + br) be log-
supermodular in (s� b).3 The cross-derivative of lnu′(as + br) is (lnu′)′′(as +
br)ar; it is not hard to check that u has decreasing risk aversion if and only if
(lnu′)′′ ≥ 0 (in other words, lnu′ is convex), so u′(as+ br) is log supermodular
if we restrict the domain of a to a > 0. As is well known (see Gollier (2001)),
we can, if we prefer, make this last restriction nonbinding by assuming that the
risky payoff has a mean return greater than r and that u is concave (until this
point, the concavity of u has not been used).

We can use our approach to generalize this standard result to the case when
both assets are risky.4 Suppose that asset A has a payoff rt, where r is a positive
constant and t > 0 is stochastic, and asset B has a payoff st, where s is also sto-
chastic. We assume that s and t are independent and are distributed according
to density functions f and h, respectively. If we wish, we can interpret this as a
situation in which both assets have nominal payoffs and the price level is sto-

3The ratio
∫
g(s)φ(s�θ)ds/

∫
h(s)φ(s�θ)ds increases with θ if g(s)/h(s) increases with s and

φ is a log-supermodular function of (s�θ) (see Athey (2002)). In our case, θ= a, φ= u′, g(s)=
sf (s), and h(s)= rf (s).

4For other comparative statics results with two risky assets, see Jewitt (2000).
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chastic, so that rt and st measure the real returns of the two assets. The agent’s
utility when he holds a of asset A and b of asset B is then given by

U(a�b)=
∫
u(bst + art)f (s)h(t)ds dt�(S1)

The next proposition guarantees that U obeys the declining slope property.
Thus, by Theorem S1, the demand for asset B is normal.

PROPOSITION S3: The function U as defined by (S1) obeys the declining slope
property if u is C3, u′ > 0, u′′ ≤ 0 and the coefficient of risk aversion of u is de-
creasing.

PROOF: We need to show that the ratio

R(a�b)=
∫
u′(bst + art)stf (s)h(t)dt ds∫
u′(bst + art)rtf (s)h(t)dt ds

is increasing with a. Define v(z) = ∫
u(tz)h(t)dt. Then v′(z) = ∫

u′(tz)t
×h(t)dt, so that R(a�b) = ∫

v′(bs + ar)sf (s)ds/
∫
v′(bs + ar)rf (s)ds� From

the previous argument, we know that this is increasing in a provided v ex-
hibits decreasing risk aversion. It is not hard to check (alternatively, see Gol-
lier (2001)) that, when v is concave (which it is because u is concave), this
property holds if and only if

−v
′′′(z)
v′′(z)

≥ −v
′′(z)
v′(z)

for all z.

To show this, we set −v′′(z)/v′(z)= λ and claim that

v′′′(z)+ λv′′(z)=
∫

[t3u′′′(tz)+ λt2u′′(tz)]h(t)dt ≥ 0�

Clearly, this is true if there is some number m such that

t3u′′′(tz)+ λt2u′′(tz)≥m[λu′(tz)t + u′′(tz)t2]�(S2)

because the integral of the right-hand side gives λv′(z)+ v′′(z)= 0.5 Denoting
a = −u′′(tz)/u′(tz) and recalling that −u′′′(tz)/u′′(tz) ≥ a because u has di-
minishing risk aversion, we can check that a sufficient condition for (S2) to be
true (after dividing by t > 0) is that a2t2 − λat ≥m[λ− at]� This is true if we
set m= −λ. Q.E.D.

Dept. of Economics, St. Hugh’s College, Oxford University, Oxford OX2 6LE,
United Kingdom; john.quah@economics.ox.ac.uk.

5In fact, the existence of m is also necessary. See Gollier (2001), who refers to this equivalence
as the diffidence theorem.
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