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We extend the model presented in Garratt and Tröger (2006) to environments with
multiple symmetric independent private-value bidders and prove the results stated in
Section 5 of that paper. Section 2 deals with first-price and Dutch auctions. Section 3
covers second-price auctions. Section 4 explains that the second-price auction results
remain valid for English auctions.
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1. EXTENDING THE MODEL TO MULTIPLE PRIVATE-VALUE BIDDERS

WE CONSIDER ENVIRONMENTS with n ≥ 2 risk-neutral bidders i = 1� � � � � n,
called regular bidders, who are interested in consuming a single indivisible pri-
vate good, and an additional risk-neutral bidder s, called the speculator. Let
I = {1� � � � � n}. Let θ̃i ∈ [0�1] denote the use value of bidder i ∈ I for the good
and let θ̃s = θs = 0 denote the speculator’s use value for the good. For all
i ∈ I ∪ {s}, let θ̃(1)

−i = maxj∈I\{i} θ̃j denote the random variable for the highest
use value among bidders other than i. The random variables θ̃1� � � � � θ̃n are sto-
chastically independent and each θ̃i (i ∈ I) is distributed according to the same
distribution F . We assume that F has a density f that is positive and continu-
ous on [0�1] and identically 0 elsewhere. Because each bidder privately learns
her realized use value before the interaction begins, we say, following Vickrey
(1961), that the bidders 1� � � � � n are symmetric with independent private val-
ues (SIPV). We make the standard assumption that F has a weakly increasing
hazard rate.

ASSUMPTION 1: The mapping θ �→ f (θ)/(1 − F(θ)) is weakly increasing on
[0�1).

We consider a two-period interaction. In period 1, the good is offered via
a sealed-bid first-price auction or second-price auction without reserve price
(our analysis extends to English and Dutch auctions; see below). The highest
bidder becomes the new owner of the good. Our results do not depend on the
tieing rule, but to simplify some proofs we assume that the speculator loses all
ties. The bidder who wins in period 1 either consumes the good in period 1 or
offers the good for resale in period 2; if she fails to resell the good, she con-
sumes it in period 2. Period-2 payoffs are discounted according to a common
factor δ ∈ (0�1).
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Modelling Period 1—The Auction

Because our focus is on the impact of the speculator and because the regular
bidders are ex ante identical, we will focus on equilibria such that all regular
bidders use the same bid function β in period 1. This bid function is assumed
to be strictly increasing in the winning range (this simplifies the computation of
post-auction beliefs). Moreover, any regular-bidder type who does not expect
to ever win the auction does not participate (formally, we assume such a type
bids 0, but we will show that with bid 0 she never wins).1

ASSUMPTION 2: In equilibrium, all regular bidders use the same bid function β
in period 1. For all θ�θ′ ∈ [0�1] with θ > θ′, we have β(θ) > β(θ′) if the bid β(θ′)
wins in equilibrium with positive probability and we have β(θ′)= 0 otherwise.

For later use, let us introduce some notation for random vectors of bids and
highest-order statistics. For all i ∈ I, let b̃i = β(θ̃i) denote the random variable
for i’s bid. Let b̃s denote an independent random variable for the speculator’s,
possibly randomized, bid. For all i ∈ I ∪ {s}, let b̃−i = (b̃j)j∈(I∪{s})\{i} denote the
random vector of bids by bidders other than i and let b̃(1)

−i = maxj∈(I∪{s})\{i} b̃j

denote the random variable for the highest among these bids. For all i� j ∈
I ∪ {s}, let b̃−i−j = (b̃k)k∈(I∪{s})\{i�j} denote the random vector of bids by bidders
other than i and j, and let b̃(1)

−i−j = maxk∈(I∪{s})\{i�j} b̃k denote the random variable
for the highest among these bids.

The next assumption extends the bid revelation assumptions from Garratt
and Tröger (2006).

ASSUMPTION 3: After a first-price auction, the winner’s bid becomes public; the
losers’ bids remain private. After a second-price auction, the losers’ bids become
public; the winner’s bid remains private.

These bid revelation assumptions make the first-price auction setting strate-
gically equivalent to the Dutch auction setting. Concerning the second-price
auction, the bid revelation assumptions are such that after the auction the same
information is revealed as after an English auction. In Section 4 we show that
our second-price auction results remain valid in the English auction setting.2

By Assumption 3, all bidders make the same bid observations. It is thus rea-
sonable to assume that any two bidders have identical post-auction beliefs

1As for further regularity properties of the bid function β, note that we will construct equilibria
in the second-price auction case where β is not continuous. In the first-price auction case, there
will be a unique equilibrium, where β is always continuous, but not necessarily differentiable.

2In the second-price auction setting, we expect that our equilibria remain valid even if the
initial seller does not announce any information about the bids. This is because in the equilibria
that we will construct, the only dependence of the outcome of the resale market on the auction
bids is via the highest losing bid, and in a second-price auction, the auction winner learns the
highest losing bid from the price she pays.



SPECULATION IN STANDARD AUCTIONS WITH RESALE 3

about a third bidder, even if an unexpected event occurs so that Bayesian
updating is not possible, and to assume that it is commonly believed that all
bidders have these beliefs. Moreover, it is reasonable to maintain stochastic
independence of the post-auction beliefs across bidders because use values are
stochastically independent ex ante. Hence, given any auction outcome, we can
assume that post-auction beliefs are summarized by a vector of distributions
� = (Πj)j∈I , where Πj represents the post-auction belief about bidder j’s use
value. Note that � includes the beliefs about the resale seller’s use value unless
the resale seller is the speculator.

The post-auction beliefs that occur in our equilibrium constructions are rep-
resented by distributions of the following kind. For any θ�θ ∈ [0�1] such that
θ ≤ θ, consider a bidder who infers from the observed bidding behavior in pe-
riod 1 that bidder i’s (i ∈ I) use value belongs to the interval [θ�θ]. According
to Bayes rule, the resulting posterior distribution function F̂[θ�θ] for bidder i’s
use value is given by

F̂[θ�θ](θi)=




F(θi)− F(θ)

F(θ)− F(θ)
� if θi ∈ [θ�θ),

1� if θi ≥ θ,
0� if θi < θ.

Note that F̂[θ�θ] is a point distribution if θ = θ. If θ > θ, the distribution F̂[θ�θ]
has (on its support [θ�θ]) the same regularity properties as F : a positive and
continuous density and an increasing hazard rate. By Assumption 2, the case
θ > θ becomes relevant only if an off-equilibrium bid or bid 0 is observed.

Modelling Period 2—The Resale Market

The period-2 environment where resale takes place is determined by the
identity i ∈ I ∪ {s} and use value θi of the resale seller (i.e., the auction win-
ner), and by the post-auction beliefs � = (Πj)j∈I . Any tuple (�� θi� i) is called
a resale environment. A resale mechanism is a game form to be played in pe-
riod 2 with players I ∪ {s}, where an outcome is a probability distribution over
who gets the good and a vector of side payments among the players, together
with an equilibrium such that the participation constraints are satisfied; if mul-
tiple equilibria exist, we assume an equilibrium that is best for the resale seller
is played. A resale mechanism is called optimal if there exists no other resale
mechanism that yields a higher expected payoff for the resale seller. For any re-
sale environment (�� θi� i), let M̂(�� θi� i) denote the resale mechanism used.

ASSUMPTION 4: For all resale environments (�� θi� i), where every standard
auction with an optimal reserve price is an optimal resale mechanism, the resale
mechanism M̂(�� θi� i) is a standard auction with an optimal reserve price.
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Observe that, according to this assumption, in any resale environment where
not all four standard auctions are optimal, any resale mechanism may be used.
Hence, Assumption 4 covers two important special cases: the resale seller may
always use any standard auction with an optimal reserve price3 or she may al-
ways use an optimal resale mechanism.4 The first case is attractive because
the cost of implementing a standard auction is negligible in many applications.
The second case is attractive because it allows the resale seller to be fully ra-
tional concerning the choice of a resale mechanism if any mechanism can be
costlessly implemented.

The reason that Assumption 4 is sufficient for our results is that in the resale
environments that are relevant for our equilibrium constructions, any standard
auction with an optimal reserve price is an optimal resale mechanism. Other
resale environments become relevant if a bidder deviates from her equilibrium
bid in an attempt to win the auction more often and subsequently offer the
good for resale, but we will show that even if the deviating bidder appropriates
the entire surplus in the resale market, no such deviation is profitable.

Equilibrium Resale Environments

The following two classes of resale environments are relevant for our equi-
librium constructions: (i) the resale environments where the resale seller is
certain about the maximum use value among all bidders; (ii) the resale envi-
ronments where the resale seller is the speculator and, according to the post-
auction beliefs, the n regular bidders have independent private values, where
each bidder’s value is distributed according to F̂[0�θ̂] for some θ̂ ∈ (0�1].

In class (i), any standard auction with a reserve price equal to the maximum
use value is an optimal resale mechanism because the resale seller appropriates
the entire surplus. The equilibrium resale allocation is that the resale seller
keeps the good if she has the maximum use value and otherwise sells it to the
bidder with the maximum use value. In class (ii), it is well known (cf. Myerson
(1981)) that any standard auction with reserve price r̂(θ̂) implicitly defined
by r̂(θ̂) = (F(θ̂) − F(r̂(θ̂)))/f (r̂(θ̂)) is an optimal resale mechanism (observe
that the function r̂ is uniquely determined on (0�1], and is strictly increasing
and continuous). The equilibrium resale allocation is that the bidder with the

3Strictly speaking, an optimal reserve price may not always exist (because post-auction beliefs
may be represented by nonsmooth distributions). In such a resale environment, Assumption 4
allows any resale mechanism to be used. In particular, a standard auction with any reserve price
that is arbitrarily close to being optimal may be used.

4If an optimal resale mechanism does not exist, the resale seller may use any resale mechanism
that is arbitrarily close to being optimal. Observe that, due to independent private values in the
resale market, an optimal resale mechanism exists and can by computed using Myerson’s (1981)
methods as long as the resale seller’s use value is commonly known and the beliefs about the
other bidders are represented by smooth distributions.
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highest value obtains the good, unless her value is below r̂(θ̂), in which case the
resale seller keeps the good. In both classes (i) and (ii) of resale environments,
we use the notation S(ř) to denote any standard auction with any reserve price
ř ≥ 0.

Throughout the rest of this section, we consider the resale environments
of class (ii). We derive auxiliary technical results about the resale mechanism
S(r̂(θ̂)) for all θ̂ ∈ (0�1]. Denote by P̂θ̂(θ) the expected payment of a regular
bidder with use value θ ∈ [0�1] in the mechanism S(r̂(θ̂)) and denote by Q̂θ̂(θ)
the probability that the bidder obtains the good.5 Properties of the functions
P̂ and Q̂ are summarized in the following lemma.

LEMMA 1: Consider any θ̂ ∈ (0�1]. For all θ ∈ [0� r̂(θ̂)), we have P̂θ̂(θ) = 0
and Q̂θ̂(θ) = 0. For all θ ∈ [r̂(θ̂)� θ̂],

P̂θ̂(θ)

Q̂θ̂(θ)
= θ−

∫ θ

r̂(θ̂)

F(θ′)n−1

F(θ)n−1
dθ′�(1)

P̂θ̂(θ)

Q̂θ̂(θ)
is weakly increasing in θ and θ̂�(2)

Q̂θ̂(θ)= F(θ)n−1

F(θ̂)n−1
�(3)

For all θ ∈ [θ̂�1],
Q̂θ̂(θ)= 1� P̂θ̂(θ)= P̂θ̂(θ̂)�(4)

PROOF: Formulas (1), (3), and (4) are standard. To see (2), use that r̂ is
increasing and that the derivative of P̂θ̂(θ)/Q̂θ̂(θ) with respect to θ is nonneg-
ative. Q.E.D.

The resale seller’s expected revenue in the mechanism S(r̂(θ̂)) is de-
noted M(θ̂); also let M(0) = 0. Observe that M is strictly increasing. Other
properties of M are summarized in the following lemma.

LEMMA 2: For all θ̂ ∈ (0�1],

M(θ̂)=
∫ θ̂

r̂(θ̂)

(
θ− F(θ̂)− F(θ)

f (θ)

)
d(F(θ)n)

F(θ̂)n
�(5)

5Observe that according to the post-auction beliefs, the probability equals 0 that a bidder type
in (θ̂�1] participates in the resale market. It is nevertheless important to define the functions
P̂θ̂(θ) and Q̂θ̂(θ) for θ > θ̂, because participation of a type θ > θ̂ may arise from a deviation in
period 1.
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M ′(θ̂)= n
f(θ̂)

F(θ̂)

(
θ̂−M(θ̂)−

∫ θ̂

r̂(θ̂)

F(θ)n−1

F(θ̂)n−1
dθ

)
�(6)

Moreover,

M ′(0) <
n− 1
n

�(7)

The function M is Lipschitz continuous on [0�1] and its derivative M ′ is continu-
ous.

PROOF: Formula (5) is standard from Myerson (1981), while (6) follows
from standard differentiation rules. By differentiability, F(θ) = f (0)θ + O(θ).
Using this and r̂(θ̂)/θ̂ → 1/2 as θ̂ → 0, (5) can be used to show

M ′(0)= lim
θ̂→0

M(θ̂)

θ̂
= n− 1

n+ 1
+ 1

2n(n+ 1)
�(8)

which implies (7). Using (6) and (8), it can be confirmed that limθ̂→0 M
′(θ̂) =

M ′(0). Therefore, M ′ is continuous on [0�1]. Hence, M ′ is bounded above on
[0�1], which implies Lipschitz continuity of M . Q.E.D.

The final result in this section shows that the payment of the highest type of
bidder who participates in the resale market is higher than the resale seller’s
expected revenue.

LEMMA 3: The following holds:

∀ θ̂ ∈ (0�1]� P̂θ̂(θ̂) >M(θ̂)�(9)

PROOF: Using Lemma 1, we find

M(θ̂) = n

∫ θ̂

r̂(θ̂)

P̂θ̂(θ)
dF(θ)

F(θ̂)
= n

∫ θ̂

r̂(θ̂)

P̂θ̂(θ)

Q̂θ̂(θ)
Q̂θ̂(θ)

dF(θ)

F(θ̂)

(3)=
∫ θ̂

r̂(θ̂)

P̂θ̂(θ)

Q̂θ̂(θ)

d(F(θ)n)

F(θ̂)n

(2)≤
∫ θ̂

r̂(θ̂)

P̂θ̂(θ̂)

Q̂θ̂(θ̂)

d(F(θ)n)

F(θ̂)n

(4)= P̂θ̂(θ̂)

(
1 − F(r̂(θ̂))n

F(θ̂)n

)
< P̂θ̂(θ̂)

because r̂(θ̂) < θ̂. Q.E.D.

Observe that Lemma 3 would be trivial if n = 1 because nobody would pay
more than the highest participating type. If n > 1, the expected payment of
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any given bidder type is collected n times if all resale bidders have this type.
The proof instead works with any given type’s expected payment divided by
her winning probability. Because this divided payment is increasing in type and
because with positive probability nobody wins, the highest type’s divided pay-
ment exceeds the seller’s revenue. However, the highest type wins for sure,
which completes the proof.

2. FIRST-PRICE AND DUTCH AUCTIONS WITH RESALE

In this section we construct and discuss the unique perfect Bayesian
equilibrium of a first-price auction with resale. Proposition 1 describes the
equilibrium. Proposition 2 identifies parameter constellations for which the
speculator plays an active role. Proposition 3 evaluates the impact of a resale
opportunity on initial seller revenue.

Let β denote bidder i’s (i ∈ I) bid in the first-price auction as a function of
her use value. Let H denote the probability distribution for the speculator’s
bid b̃s.

To define post-auction beliefs, consider any bidder j ∈ I. Let i ∈ I ∪ {s} de-
note the label of the winner and let bi ≥ 0 denote the winner’s bid. Then the
probability distribution Πj(·|i� bi) denotes the post-auction belief about j’s use
value held by bidders other than j.

Let M(i� bi� θi) denote the resale mechanism used by the resale seller i ∈
I ∪ {s} after a first-price auction when bi ≥ 0 denotes i’s auction winning bid
and i’s use value is θi. For all i� j ∈ I ∪ {s} with j 	= i, all bi ≥ 0, and all θi� θj ,
let Pj(i� bi� θi� θj) denote the net expected transfer from bidder j of type θj to
the other bidders (including the transfer to i) in the mechanism M(i� bi� θi).
Let Qj(i� bi� θi� θj) denote the probability that bidder j obtains the good. Let
P(i�bi� θi) denote the expected transfer to the resale seller i and let Q(i�bi� θi)
denote the probability that the resale seller keeps the good.

For all i ∈ I, bidder i’s expected payoff when she bids bi ≥ 0 and has the use
value θi equals

ui(bi� θi)

=E

[(−bi + max
{
θi� δ(θiQ(i� bi� θi)+ P(i�bi� θi))

})
1w(bi�b̃−i)=i

+
∑
j 	=i

δ
(
θiQi(j� b̃j� θ̃j� θi)− Pi(j� b̃j� θ̃j� θi)

)
1w(bi�b̃−i)=j

]
�

where w denotes the period-1 winner as a function of the bid profile and where
the max term reflects the condition that after winning in period 1, bidder i
decides optimally whether to consume the good or to offer it for resale. The
speculator’s payoff when she bids bs ≥ 0 is given by

us(bs)=E
[
(−bs + δP(s�bs� θs))1w(bs�b̃−s)=s

]
�
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The equilibrium conditions are that post-auction beliefs about auction losers
are determined by Bayes rule whenever possible (10), that the resale mecha-
nism is chosen according to Assumption 4 (11), and that period-1 behavior is
optimal (12) and (13).

DEFINITION 1: A tuple (β�H�M) is a quasisymmetric regular equilibrium
of the first-price auction with resale if there exists a belief system (Πj(·|i�
bi))j∈I�i∈I∪{s}�bi≥0 such that the following conditions hold:

∀ i ∈ I ∪ {s}� bi > 0� j ∈ I \ {i}�(10)

�j(·|i� bi)= F̂β−1([0�bi]) if [0� bi] ∩β([0�1]) 	= ∅�
∀ i ∈ I ∪ {s}� bi ≥ 0� θi� M(i� bi� θi) = M̂

(
(�j(·|i� bi))j∈I� θi� i

)
�(11)

∀ i ∈ I�θi� β(θi) ∈ arg max
bi≥0

ui(bi� θi)�(12)

Pr
[
b̃s ∈ arg max

bs≥0
us(bs)

]
= 1�(13)

This equilibrium concept is in the spirit of perfect Bayesian equilibrium,
combined with the symmetry and regularity restrictions formulated in Assump-
tion 2, and with two presentational simplifications. First, we have omitted
a condition on the post-auction beliefs about the auction winner because it
would play no role for our analysis. Second, condition (10) excludes the case
bi = 0; the appropriate Bayesian updating condition for this case would depend
on the auction tieing rule (whereas, by Assumption 2, ties occur with probabil-
ity 0 if bi > 0), but the case bi = 0 is irrelevant for our analysis because it will
turn out that in equilibrium only positive bids can win the auction with positive
probability.

Additional notation is needed to state the main result, Proposition 1, which
describes the equilibrium. For all θ ∈ (0�1] and b ∈ R, define

K(θ�b)=
{
N(θ�b) if b > δM(θ),
max{δM ′(θ)�N(θ�b)} if b ≤ δM(θ),

(14)

where

N(θ�b) = (n− 1)
f (θ)

F(θ)
(θ− b)�(15)

Observe that in a first-price auction with n regular bidders and without a re-
sale opportunity, N(θ�b) is the slope of the equilibrium bid function at θ
when b equals type θ’s equilibrium bid. Hence, N(θ�b) represents the compe-
tition among the regular bidders in the absence of resale. The function K(θ�b)
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equals N(θ�b) if b > δM(θ); that is, if b and θ are such that, if resale is pos-
sible, a speculator who comes in with a bid of b and wins against the regular-
bidder types up to θ makes a loss. If type θ’s bid b is such that the speculator
breaks even (b = δM(θ)), then K(θ�b) is the larger of N(θ�b) and the slope
δM ′(θ) that keeps the speculator at the break-even point. In summary, K(θ�b)
is the smallest slope that respects the competition among the regular bidders
without resale and does not allow the speculator to make a profit via resale.

For any b > 0, consider a strictly increasing Lipschitz continuous function
φ : [0� b] → [0�1] such that φ(b) > b ≥ δM(φ(b)) for all b > 0. For all b ∈
(0� b] where the derivative φ′(b) exists, define

Lφ(b)=



Rφ(b)

Sφ(b)
if b = δM(φ(b)),

0 if b > δM(φ(b)),
(16)

where

Rφ(b)= 1 −N(φ(b)�b)φ′(b)�(17)

Sφ(b)= (1 − δ)φ(b)− b+ δP̂φ(b)(φ(b))�

Observe that Lφ is well defined because b = δM(φ(b)) implies Sφ(b) > 0
by (9). Also observe that Lφ(b)= 0 if b is such that the speculator would make
a loss if she did bid b and did win against the types in [0�φ(b)].

Proposition 1 describes the unique equilibrium.6 Condition (18) establishes
a differential equation for the regular bidders’ bid function β. The differential
equation, which holds almost everywhere according to the Lebesgue measure,
reflects the bidding competition among the regular bidders and a no-profit
condition for the speculator (recall the properties of the function K explained
above). The speculator randomizes her bid according to (19), in which the dis-
tribution H is constructed so that it is optimal for the regular bidders to use
the bid function defined by (18). Using (16) one sees that the support of H
is confined to the points θ where β(θ) = δM(θ) so that the speculator does
not make a loss.7 The post-auction beliefs (20) of the winning bidder are that

6The uniqueness property differs from “essential uniqueness” in Garratt and Tröger (2006),
where multiple optimal resale prices cannot be excluded because value distributions F with a
nonincreasing hazard rate are allowed; cf. Garratt and Tröger (2006, footnote 2) and the text
below Proposition 1 of that paper.

7The feature that the regular bidders use a strictly increasing bid function while an additional
bidder with no private information randomizes over a subset of the regular bidders’ bid range
also appears in Martinez (2002). She constructs an equilibrium for first-price auctions without
resale in an environment with three or more regular bidders and one additional bidder with a
commonly known valuation. The differences between Martinez’ equilibrium and ours are parallel
to the differences between Vickrey’s (1961, Appendix III) equilibrium and our equilibrium in the
two-bidder case; cf. Garratt and Tröger (2006, footnote 7).
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the highest type among the losing regular bidders is the type that would have
resulted in a tie. Hence, if one of the regular bidders wins the auction after
making her equilibrium bid, she believes that she has the highest use value in
the market and thus consumes the good. Condition (21) states that if the auc-
tion winner is the speculator, then her resale mechanism is a standard auction
with a reserve price that is optimal given her post-auction beliefs.

PROPOSITION 1: For any regular-bidder number n ≥ 2, discount factor δ ∈
(0�1), and distribution F that satisfies Assumption 1, the first-price auction with
resale has a unique quasisymmetric regular equilibrium (β�H�M). The equilib-
rium satisfies conditions (18), (19), and (21) and is supported by beliefs that sat-
isfy (20):

β is Lipschitz� β(0)= 0� β′(θ)= K(θ�β(θ)) a.e. θ ∈ (0�1)�(18)

∀b ∈ (0�β(1)]� H(b)= exp
(

−
∫ β(1)

b

Lφ(b)db

)
�(19)

where φ denotes the inverse of β,

∀ i� bi ≥ 0� j /∈ {s� i}� θj� Πj(θj|i� bi)= min
{

F(θj)

F(φ(bi))
�1

}
�(20)

where we define φ(bi)= 1 for all bi > β(1), and

∀bs > 0� M(s� bs�0)= S
(
r̂(φ(bs))

)
�(21)

PROOF: We first show uniqueness (Lemmas 4–11), then existence (Lem-
mas 12–15).

Lemma 4 shows that no regular bidder will bid above her value. Lemma 5
establishes a convenient representation for the speculator’s payoff function.
Lemma 6 shows that, with positive probability, the speculator makes arbi-
trarily small bids. Lemma 7 shows that the speculator’s equilibrium payoff
equals 0. Lemma 8 shows that the speculator’s bid distribution has no atoms.
Lemma 9 states that the regular bidders’ equilibrium bid function is continu-
ous. Lemma 10 states that every regular bidder with a positive use value will
bid lower than her use value. Lemma 11 shows that the regular bidders’ equi-
librium bid function satisfies (18) and is uniquely characterized by (18), and
the speculator’s bid distribution is given by (19). Conditions (20) and (21) are
then straightforward. This completes the equilibrium uniqueness proof.

In Lemmas 12 and 14, we apply techniques from the theory of differential
inclusions to show that the differential equation (18) has a solution.8 In doing
this, we also recall in Lemma 13 the differential equation satisfied by the stan-
dard no-resale first-price auction equilibrium bid function. Lemma 15 com-
pletes the equilibrium existence proof.

8We thank Jörg Oechssler for help with this part of the proof.



SPECULATION IN STANDARD AUCTIONS WITH RESALE 11

For any bid function β satisfying Assumption 2 and all b ∈ [0�β(1)], let

φ(b)= sup
{
θi ∈ [0�1] | β(θi) < b

}
�(22)

where sup∅ = 0.

LEMMA 4: Let (β�H�M) be a quasisymmetric regular equilibrium of the first-
price auction with resale and let φ be defined by (22). Then β(θi) ≤ θi for all
θi ∈ [0�1] and φ(b)≥ b for all b ∈ [0�β(1)].

PROOF: By Assumption 2, β(0) = 0. Now suppose that β(θi) > θi for some
θi > 0. In particular, β(θi) > 0 and thus β(θi) wins with positive probability by
Assumption 2. Therefore, H(β(θi)) > 0 and F(φ(β(θi)))

n−1 > 0. A deviation
to the bid bi = θi is profitable because

ui(θi� θi)− ui(β(θi)� θi)

=H(β(θi))F
(
φ(β(θi))

)n−1
(β(θi)− θi)

+ δE
[(
θiQ̂φ(b̃s)

(θi)− P̂φ(b̃s)
(θi)

)︸ ︷︷ ︸
≥0

1
b̃s>b̃

(1)
−s−i�θi<b̃s≤β(θi)

]

> 0�

To prove the second part of the lemma, fix b > 0 and consider any θi < b. Then
β(θi)≤ θi < b. Because θi is arbitrary, φ(b)≥ b. Q.E.D.

LEMMA 5: Let (β�H�M) be a quasisymmetric regular equilibrium of the first-
price auction with resale and let φ be defined by (22). Then

∀b > 0� if H(b) > 0� then us(b)= F(φ(b))n
(
δM(φ(b))− b

)
�

PROOF: Consider any b > 0 such that H(b) > 0 and any θ′ < φ(b). It fol-
lows that β(θ′) < b (otherwise β(θ) ≥ b for all θ > θ′ by Assumption 2, im-
plying φ(b) ≤ θ′). Hence, the set {θ ∈ [0�1] | β(θ) < b} equals [0�φ(b)) or
[0�φ(b)]. Q.E.D.

The following lemma shows that the speculator makes, with positive proba-
bility, arbitrarily small bids. The proof is similar to that of Garratt and Tröger
(2006, Lemma 1). One supposes that the speculator’s infimum equilibrium bid
b > 0. Then low regular-bidder types never win the auction. For some of these
types it is profitable to deviate to a bid slightly above b because, combining (9)
with a continuity argument, the deviating bid is smaller than the speculator’s
resale price.

LEMMA 6: Let (β�H�M) be a quasisymmetric regular equilibrium of the first-
price auction with resale. Then H(b) > 0 for all b > 0.
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PROOF: Let b = inf{b | H(b) > 0}. Suppose that b > 0. Let Us ≥ 0 denote
the speculator’s equilibrium payoff. First consider the case H(b) = 0 (i.e., no
atom at b ). Then there exists a sequence (bm)m∈N such that bm → b as m → ∞,
us(b

m)=Us, and bm > b for all m. By Lemma 5,

∀m� Us = F(φ(bm))n
(
δM(φ(bm))− bm

)
�(23)

By Lemma 4, φ(bm) > 0; hence (23) implies δM(φ(bm)) − bm ≥ 0. Defining
θ = limmφ(bm), it follows that δM(θ)≥ b. This together with (9) implies

∃ξ > 0� P̂θ(θ)≥M(θ)+ ξ ≥ b

δ
+ ξ�(24)

Continuity of P̂ by Lemma 1 together with (24) implies that there exist b′ > b
and θ′ < θ such that

∀b ∈ (b�b′)� P̂φ(b)(θ
′)≥ b

δ
+ ξ

2
�(25)

Now consider any bidder i ∈ I with type θi = θ′. By construction, her equilib-
rium bid bi = β(θ′) never wins. Moreover, if some bidder j ∈ I \ {i} wins, then
bj = β(θj) > b ≥ bi, implying θj > θ′; i.e., bidder j will not resell to bidder i.
Therefore, Qi(j�bj� θj� θ

′)= 0 and Pi(j� bj� θj� θ
′)= 0. Therefore,

ui(β(θ
′)�θ′)= δE

[(
θ′Q̂φ(b̃s)

(θ′)− P̂φ(b̃s)
(θ′)

)
1
b̃s>b̃

(1)
−s−i

]
�

On the other hand, for all bi > b,

ui(bi� θ
′) ≥ δE

[(
θ′Q̂φ(b̃s)

(θ′)− P̂φ(b̃s)
(θ′)

)
1
b̃s>b̃

(1)
−s−i� b̃s>bi

]
+ (θ′ − bi)Pr[b̃s > b̃(1)

−s−i� b̃s ≤ bi]�
Therefore, for all bi ∈ (b�b′),

ui(bi� θ
′)− ui(β(θ

′)�θ′)

≥ −δE
[(
θ′Q̂φ(b̃s)

(θ′)− P̂φ(b̃s)
(θ′)

)
1
b̃s>b̃

(1)
−s−i�b̃s≤bi

]
+ (θ′ − bi)Pr[b̃s > b̃(1)

−s−i� b̃s ≤ bi]
≥E

[(
δP̂φ(b̃s)

(θ′)− bi

)
1
b̃s>b̃

(1)
−s−i�b̃s≤bi

]
(25)≥ E

[(
b+ δξ

2
− bi

)
1
b̃s>b̃

(1)
−s−i� b̃s≤bi

]

=
(
b+ δξ

2
− bi

)
Pr[b̃s > b̃(1)

−s−i� b̃s ≤ bi]︸ ︷︷ ︸
≥Pr[θ̃(1)−i <θ�b̃s≤bi]>0

�
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Hence, ui(bi� θ
′) > ui(β(θ

′)�θ′) for all bi > b that are sufficiently close to b.
This contradicts (12).

In the case H(b) > 0, the proof is similar. One defines θ = φ(b) and shows
that the deviation bi = b is profitable for some type θ′ < θ. Q.E.D.

LEMMA 7: In any quasisymmetric regular equilibrium of the first-price auction
with resale, the speculator’s payoff equals 0.

PROOF: Let Us ≥ 0 denote the speculator’s equilibrium payoff. Suppose that
Us > 0. This implies H(0) = 0. Hence, by Lemma 6 there exists a sequence
(bm)m∈N such that bm → 0 as m → ∞, us(b

m) = Us, and bm > 0 for all m. By
Lemma 5,

∀m� Us = F(φ(bm))n
(
δM(φ(bm))− bm

) ≤M(φ(bm))�

Hence, M(θ)≥ Us > 0, where θ ≡ limmφ(bm). Note that

∀θ < θ� β(θ) = 0�(26)

By (9), P̂θ(θ) > Us. As in the proof of Lemma 6, continuity of P̂ , by Lemma 1,
now shows the existence of b′ > 0 and θ′ < θ such that

∀b ∈ (0� b′)� P̂φ(b)(θ
′)≥ Us

2
�

Consider a bidder i ∈ I with type θi = θ′. By (26), her equilibrium bid β(θ′)= 0
never wins. In the same manner as in the proof of Lemma 6, one obtains a
contradiction by showing that a deviation to a small positive bid bi > 0 is prof-
itable. Q.E.D.

LEMMA 8: Let (β�H�M) be a quasisymmetric regular equilibrium of the first-
price auction with resale. Then H is continuous on (0�∞).

PROOF: Suppose that there exists b′ > 0 where H is not continuous; i.e.,
Pr[b̃s = b′] > 0. Define θm = φ(b′) − 1/m for all m large enough such that
θm > 0. Let b = limm→∞ β(θm). We have b = b′ because otherwise Pr[β(θ̃i) ∈
(b�b′)] = 0, which would imply us((b

′ + b)/2) > us(b
′).

By (9) there exists ξ > 0 such that P̂φ(b′)(φ(b′)) ≥ M(φ(b′))+ ξ ≥ b′/δ+ ξ,
because otherwise us(b

′) < 0. By Lemma 1, the function P̂φ(b′) is continuous
at φ(b′) and thus

P̂φ(b′)(θ
m) > b′/δ+ ξ/2
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for all large m. Therefore, for large m,

ui(b
′� θm)− ui(β(θ

m)�θm)

≥H(β(θm))F
(
φ(β(θm))

)n−1
(β(θm)− b′)

+ Pr
[
b̃s ∈ (β(θm)�b′)

]
(−1)

+ Pr[b̃s = b′]F(φ(b′))n−1
(
(1 − δ)θm + (δP̂φ(b′)(θ

m)− b′)
)
�

Therefore,

lim inf
m→∞

u1(b
′� θm)− u1(β(θ

m)�θm)

≥ Pr[b̃s = b′]F(φ(b′))n−1(δP̂φ(b′)(θ
m)− b′) > 0;

i.e., for large m, type θm has a profitable deviation. Q.E.D.

LEMMA 9: Let (β�H�M) be a quasisymmetric regular equilibrium of the first-
price auction with resale and let φ be defined by (22). Then β is continuous.
Moreover, φ(β(θi)) = θi for all θi ∈ [0�1]. The function φ is continuous and
strictly increasing.

PROOF: Standard. Q.E.D.

LEMMA 10: Let (β�H�M) be a quasisymmetric regular equilibrium of the
first-price auction with resale and let φ be defined by (22). Then β(θi) < θi for
all θi ∈ (0�1]. Moreover, φ(b) > b for all b ∈ (0�β(1)].

PROOF: Suppose that β(θi) ≥ θi > 0. Then β(θi) > 0, implying
H(β(θi)) > 0 by Lemma 6. Now Lemma 4 shows that β(θi) = θi. Finally,
a computation similar to that in the proof of Lemma 4 shows that a devia-
tion to the bid bi = θi/2 is profitable—a contradiction. The claim about φ now
follows from Lemma 9. Q.E.D.

The following lemma establishes the differential equation that character-
izes the bid function β and simultaneously determines the bid distribution H.
The proof relies on local optimality of every regular-bidder type’s bid and on
the result from Lemma 7 that the speculator’s payoff equals 0. Throughout
the proof, we distinguish two kinds of bids b ∈ (0�β(1)]: we write Ξ(b) = 0
if b has a neighborhood where the speculator bids with probability 0 and we
write Ξ(b)= 1 otherwise.

We begin by using upward optimality of the bid function β to derive inequal-
ity (30) in terms of H and the inverse bid function φ. Inequality (30) shows that
the payoff increase effect from buying more often in the auction and less often
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from the speculator, weighted by the probability mass H(bi)−H(b′
i), is dom-

inated by the payoff decrease effect from bidding higher and winning more
often against one of the other regular bidders.

We continue by showing that H is locally Lipschitz continuous on (0�β(1)].
Local Lipschitz continuity around any b with Ξ(b) = 0 is easy because H is
locally constant there. If Ξ(b) = 1, then we use (9) and the result that the
speculator obtains 0 payoff (32) to obtain a positive lower bound (33) for the
payoff increase effect in (30). Because the payoff increase effect is weighted
with the probability mass H(bi) − H(b′

i), we can conclude that H is locally
Lipschitz around b.

The payoff decrease effect in (30) is confirmed in (34) and is then used to
show in (35) that the slope of the inverse bid function φ is bounded above by
the slope that would be relevant in the absence of a resale opportunity.

Next we use downward optimality of the bid function β to derive inequal-
ity (36), which is parallel to (30). Inequality (36) includes a payoff increase ef-
fect from bidding lower and winning less often against one of the other regular
bidders, as confirmed in (37).

Combining the payoff decrease effect (34) with the payoff increase ef-
fect (37), we obtain the slope of the inverse bid function φ in the neighbor-
hood of points where the speculator does not bid (38). Combining this with the
0-payoff condition for the speculator and with the upper bound (35), we obtain
a differential equation (41) for φ. Inverting this equation yields the differen-
tial equation (18) for β. Using the fact that K is strictly decreasing in its second
argument, we show that the solution to (18) is unique.

Finally, we combine inequalities (30) and (36), derived from upward and
downward optimality of β, with the fact that H is locally Lipschitz to obtain
a differential equation for H; see (43). This equation has the unique solu-
tion (19).

LEMMA 11: Let (β�H�M) be a quasisymmetric regular equilibrium of the
first-price auction with resale and let φ be defined by (22). Then β satisfies (18)
and is uniquely determined by these conditions. The distribution H is given by (19).

PROOF: For all i ∈ I, bi ∈ (0�β(1)], and θi ∈ [0�1], let

v̌i(bi� θi) = H(bi)F(φ(bi))
n−1(θi − bi)(27)

+ δ

∫ ∞

bi

F(φ(bs))
n−1

(
θiQ̂φ(bs)(θi)− P̂φ(bs)(θi)

)
dH(bs)

denote bidder i’s expected payoff if she consumes the good after winning in
period 1. Because bidder i can alternatively offer the good for resale,

ui(bi� θi)

{= v̌i(bi� θi) if φ(bi)≤ θi,
≥ v̌i(bi� θi) if φ(bi) > θi.

(28)
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Consider bi� b
′
i ∈ (0�β(1)] with b′

i < bi and θ′
i =φ(b′

i). Note that

δ

∫ bi

b′
i

F(φ(bs))
n−1 Q̂φ(bs)(θ

′
i)︸ ︷︷ ︸

decreasing in bs

(
θ′
i −

P̂φ(bs)(θ
′
i)

Q̂φ(bs)(θ
′
i)

)
︸ ︷︷ ︸

decreasing in bs by (1)

dH(bs)(29)

≤ δF(φ(bi))
n−1

(
φ(b′

i)− P̂φ(b′
i)
(φ(b′

i))
)
(H(bi)−H(b′

i))�

because Q̂φ(b′
i)
(φ(b′

i)) = 1. Hence,

0
(12)≥ ui(bi� θ

′
i)− ui(b

′
i� θ

′
i)(30)

(28)≥ v̌i(bi� θ
′
i)− v̌i(b

′
i� θ

′
i)

(27)= (
H(bi)F(φ(bi))

n−1 −H(b′
i)F(φ(b′

i))
n−1

)
θ′
i

− (
H(bi)F(φ(bi))

n−1bi −H(b′
i)F(φ(b′

i))
n−1b′

i

)
− δ

∫ bi

b′
i

F(φ(bs))
n−1

(
Q̂φ(bs)(θ

′
i)θ

′
i − P̂φ(bs)(θ

′
i)
)
dH(bs)

(29)≥ −H(b′
i)k1(bi� b

′
i)(bi − b′

i)+ k2(bi� b
′
i)(H(bi)−H(b′

i))�

where

k1(bi� b
′
i)= F(φ(bi))

n−1 − F(φ(bi))
n−1 − F(φ(b′

i))
n−1

bi − b′
i

(φ(b′
i)− b′

i)�

k2(bi� b
′
i)= F(φ(bi))

n−1
(
φ(b′

i)(1 − δ)+ δP̂φ(b′
i)
(φ(b′

i))− bi

)
�

Consider any b ∈ (0�β(1)]. We write Ξ(b)= 0 if

∃ν > 0� Pr[b̃s ∈ (b− ν�b+ ν)] = 0�

and we write Ξ(b)= 1 otherwise. By Lemma 7,

if Ξ(b)= 1�(31)

then ∃ (cm)� cm → b� cm 	= b� δM(φ(cm))= cm�

Therefore, by continuity of M and φ,

if Ξ(b)= 1� then M(φ(b))= b�(32)

Suppose that Ξ(b) = 0. Then there exists ν > 0 such that in the neighborhood
N(b) = (b− ν�b+ ν)∩ (0�β(1)] of b, the function H is constant. In particular,
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H is Lipschitz in N(b). Now suppose that Ξ(b) = 1. Using (9) and (32), there
exists ξ > 0 such that for all bi� b

′
i in some neighborhood of b, if b′

i < bi,

k2(bi� b
′
i) ≥ F(φ(bi))

n−1
(
φ(b′

i)(1 − δ)+ δM(φ(b′
i))+ δξ − bi

)
≥ F(φ(bi))

n−1δξ

2
�

Therefore,

∀b�Ξ(b)= 1� ∃k(b) > 0 and a neighborhood N (b) � b� such that(33)

∀bi� b
′
i ∈N (b)�b′

i < bi� k2(bi� b
′
i)≥ k(b)�

Together with (30) and k1(bi� b
′
i)≤ 1, (33) implies that H is Lipschitz in N (b).

We therefore conclude that in either case, Ξ(b) = 0 or Ξ(b) = 1, the function
H is Lipschitz in a neighborhood of b, proving that H is locally Lipschitz in
(0�β(1)]. In particular, H is differentiable almost everywhere on (0�β(1)].

Next we show that

∀bi ∈ (0�β(1)]� b′
i ∈ (0�β(1)]� b′

i < bi� k1(bi� b
′
i)≥ 0�(34)

Consider any b ∈ (0�β(1)]. If Ξ(b) = 0, then k1(bi� b
′
i) ≥ 0 holds for all bi� b

′
i

in a neighborhood of b because H(bi)= H(b′
i). If Ξ(b)= 1, then (33) together

with (30) implies that k1(bi� b
′
i) ≥ 0 holds for all bi, b′

i in a neighborhood of b.
This completes the proof of (34).

Using the definition of k1, (34) implies

∀bi ∈ (0�β(1))� if φ differentiable at bi� thenφ′(bi)≤ 1
N(φ(bi)� bi)

�(35)

Note that for all bi� b
′
i ∈ (0�β(1)] with b′

i < bi and θi =φ(bi),

0
(12)≤ ui(bi� θi)− ui(b

′
i� θi)(36)

(28)= v̌i(bi� θi)− v̌i(b
′
i� θi)

(27)= (
H(bi)F(φ(bi))

n−1 −H(b′
i)F(φ(b′

i))
n−1

)
θi

− (
H(bi)F(φ(bi))

n−1bi −H(b′
i)F(φ(b′

i))
n−1b′

i

)
− δ

∫ bi

b′
i

F(φ(bs))
n−1

(
Q̂φ(bs)(θi)︸ ︷︷ ︸

=1 by (4)

θi − P̂φ(bs)(θi)︸ ︷︷ ︸
=P̂θi (θi) by (4)

)
dH(bs)

≤ −H(bi)l1(bi� b
′
i)(bi − b′

i)+ l2(bi� b
′
i)(H(bi)−H(b′

i))�
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where

l1(bi� b
′
i)= F(φ(bi))

n−1 − F(φ(bi))
n−1 − F(φ(b′

i))
n−1

bi − b′
i

(φ(bi)− b′
i)�

l2(bi� b
′
i)= F(φ(b′

i))
n−1

(
φ(bi)(1 − δ)+ δP̂φ(bi)(φ(bi))− b′

i

)
�

Consider any b ∈ (0�β(1)] such that Ξ(b)= 0. Then (36) implies the existence
of a neighborhood N (b) of b such that

∀bi ∈N (b)�b′
i ∈N (b)�b′

i < bi� l1(bi� b
′
i)≤ 0�(37)

Taken together, (34) and (37) imply for all bi ∈ N (b) that F(φ)n−1 is differen-
tiable at bi and

lim
b′
i→bi

F(φ(bi))
n−1 − F(φ(b′

i))
n−1

bi − b′
i

= F(φ(bi))
n−1

φ(bi)− bi

�

Hence, φ is differentiable at bi ∈N (b) and

∀b�Ξ(b)= 0� bi ∈N (b)� φ′(bi)= 1
N(φ(bi)� bi)

�(38)

Note also that

∀b�δM(φ(b))= b� if φ differentiable at b� then(39)

δM ′(φ(b))φ′(b) = lim
bi↘b

δM(φ(bi))− δM(φ(b))

bi − b
≤ 1�

because δM(φ(bi))≤ bi for all bi, by Lemma 7. By (31),

∀b�Ξ(b)= 1� if φ differentiable at b, then δM ′(φ(b))φ′(b) = 1�(40)

In summary, for all b ∈ (0�β(1)] such that φ is differentiable at b,

φ′(b)=




1
N(φ(b)�b)

if δM(φ(b)) < b,

min
{

1
N(φ(b)�b)

�
1

δM ′(φ(b))

}
if δM(φ(b))= b,

(41)

by (32), (35), (38), (39), and (40). Next we show that β is Lipschitz continuous.
By (34), F(φ)n−1 is locally Lipschitz in (0�1], implying that φ is locally Lipschitz
in (0�1]. Hence,

∀ c�d ∈ (0�β(1)]� φ(d)−φ(c)=
∫ d

c

φ′(b)db�(42)
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where φ′ is given almost everywhere by (41).
The mapping b �→ N(φ(b)�b) is bounded above on [0�β(1)] because

N(φ(b)�b) ≤ (n − 1)f (φ(b))φ(b)/F(φ(b)) → n − 1 as b → 0. Moreover,
M ′ is bounded above on [0�1] by Lemma 2. Therefore, φ′ is bounded below by
a positive number. Hence, β is Lipschitz on [0�1] by (42).

Because β is the inverse of φ, (41) implies (18).
As for uniqueness, let β and γ be two Lipschitz continuous functions that

satisfy (18). By definition of K, if β(θ) > γ(θ), then K(θ�β(θ)) < K(θ�γ(θ))
for all θ ∈ (0�1). Therefore, β ≤ γ. The same argument shows β≥ γ.

Next we show that H satisfies

h(b) ≡H ′(b) =H(b)Lφ(b) a.e. b ∈ (0�β(1)]�(43)

Consider any b ∈ (0�β(1)]. If Ξ[b] = 0 and b = δM(φ(b)), then h(b) = 0
and, by (38), Rφ(b) = 0. Hence, h(b) = 0 = H(b)Lφ(b), as was to be shown.
If Ξ[b] = 0 and b > δM(φ(b)), then h(b) = 0 = H(b)Lφ(b) by definition
of Lφ. Finally suppose that Ξ[b] = 1. The function r̂ is continuous. Hence,
using Lemma 1, the function b′ �→ P̂φ(b′)(φ(b′)) is continuous on (0�1]. There-
fore,

lim
b′↗b

k2(b�b
′)= Sφ(b)F(φ(b)) = lim

b′′↘b
l2(b

′′� b) ∀b ∈ (0�β(1)]�(44)

Because φ is differentiable almost everywhere,

lim
b′↗b

k1(b�b
′)= Rφ(b)F(φ(b)) = lim

b′′↘b
l1(b

′′� b) a.e. b ∈ (0�β(1)]�(45)

From (30), (36), (44), and (45) we get (43).
It is straightforward that (19) satisfies (43). It remains to be shown that (43)

together with the boundary condition H(β(1)) = 1 (which holds because the
speculator does not bid more than necessary to win for sure) has only one
solution. Observe that, for all ε > 0, L is bounded above on [ε�β(1)] due
to (9). Therefore, applying the Picard–Lindelöf theorem to the differential
equation (43) implies that H is unique on [ε�1]. As a distribution function,
H is right-continuous at 0 and thus uniquely determined at 0 as well. Q.E.D.

We now turn to the equilibrium existence proof. Lemma 12 shows the ex-
istence of a solution for a class of discontinuous differential equations. These
equations are constructed by altering a continuous differential equation so that
if the solution function hits the boundary value 0, the solution remains there
until the slope becomes positive again.

To prove the existence of a solution, the differential equation is transformed
into an upper hemicontinuous differential inclusion that allows a set of slopes
(including 0) for the solution function if it reaches the value 0 and allows only
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the slope 0 if a negative value is reached. For the differential inclusion, a solu-
tion exists by a theorem of Aubin and Cellina (1984). One then shows that the
solution, in fact, does not take negative values and solves the original differen-
tial equation almost everywhere.

LEMMA 12: Let θ�θ ∈ R and consider a bounded and continuous function
N̂ : [θ�θ] × R → R. Define

K̂(θ�b) =
{
N̂(θ�b) if b > 0,

max{0� N̂(θ�b)} if b≤ 0.
(46)

Then the initial value problem

β̂(θ)= 0� β̂′(θ)= K̂(θ� β̂(θ)) a.e. θ ∈ [θ�θ](47)

has a Lipschitz continuous solution β̂. For all θ such that β̂(θ) > 0, the function
β̂ is differentiable at θ.

PROOF: Following Aubin and Cellina (1984, p. 101), define

K(θ�b) =
⋂
ε>0

co K̂(Bε(θ�b))�

where Bε(θ�b) denotes the ε-ball around (θ�b) according to any norm in R
2

and where co denotes the closed-convex-hull operator. Then K is an upper
hemicontinuous (or, in Aubin and Cellina’s (1984) terminology, upper semi-
continuous) correspondence, and its values are closed and convex. Moreover,
K is globally bounded. Therefore, the differential inclusion problem

β̂′(θ) ∈ K(θ� β̂(θ)) a.e. θ ∈ (θ�θ)� β̂(θ)= 0�(48)

has an absolutely continuous solution β̂ (see Aubin and Cellina (1984, Theo-
rem 4, p. 101)). Note that, by (48), for a.e. θ ∈ [θ�θ], if β̂(θ) < 0, then β̂′(θ)≥ 0.
Hence

∀θ ∈ [θ�θ]� β̂(θ)≥ 0�(49)

We will now show that β̂ satisfies (47). First, consider θ ∈ [θ�θ] with β̂(θ) > 0,
or β̂(θ)= 0 and N̂(θ�0)≥ 0. Then K(θ� β̂(θ))= K̂(θ� β̂(θ)).

Second, consider θ ∈ [θ�θ] with β̂(θ) = 0 and N̂(θ�0) < 0. For a.e.
such θ, (48) implies β̂′(θ)≤ 0. On the other hand, β̂′(θ)≥ 0 by (49). Therefore,
β̂′(θ)= 0 = K̂(θ� β̂(θ)), completing the proof of (47).
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Because β̂ is absolutely continuous,

∀θ ∈ [θ�θ]� β̂(θ)=
∫ θ

θ

K̂(θ′� β̂(θ′))dθ′�(50)

This together with the fact that K̂ is bounded, implies that β̂ is Lipschitz con-
tinuous. If β̂(θ) > 0 for some θ, then K̂(θ′� β̂(θ′))= N̂(θ′� β̂(θ′)) for all θ′ that
are sufficiently close to θ. Continuity of N̂ together with (50) then implies that
β̂ is differentiable at θ. Q.E.D.

Let βI denote the standard equilibrium bid function of the first-price auction
with n regular bidders and no resale opportunity. The following result is well
known.

LEMMA 13: Let N be defined as in (15). Then

βI(0)= 0 and ∀θ ∈ [0�1]� βI′(θ)=N(θ�βI(θ))�

The next lemma constructs the equilibrium bid function β for the regular
bidders. One first shows that bidder types close to 0 make the same bid as in the
absence of a resale opportunity. To extend the bid function to the higher types,
Lemma 12 is applied to a differential equation for the excess of the regular
bidders’ bid function β over the fictitious bid function δM that corresponds to
a 0 payoff for the speculator.

LEMMA 14: The initial value problem (18) has a solution β on [0�1] with the
following properties:

β is Lipschitz continuous on [0�1],(51)

∀θ ∈ (0�1]� β(θ) < θ�(52)

β is strictly increasing on [0�1]�(53)

∀θ ∈ [0�1]� β(θ) ≥ δM(θ)�(54)

φ≡ β−1 is Lipschitz continuous on [0�β(1)]�(55)

PROOF: Define θ to be the smallest θ ∈ [0�1] with βI(θ) = δM(θ) (let θ = 1
if no such θ exists). Because βI′(0)= (n−1)/n > δM ′(0) by (7), we have θ > 0.
Defining β(θ)= βI(θ) for θ ∈ [0� θ], it follows from Lemma 13 that (18) is sat-
isfied for θ ∈ [0� θ] and it follows from the theory of first-price auctions without
resale that β has the desired properties (51)–(55) on [0� θ].

Define N̂ : [θ�1] × R → R by

N̂(θ�b) =


N(θ�b+ δM(θ))− δM ′(θ) if b ∈ [0� θ− δM(θ)],
N(θ�θ)− δM ′(θ) if b > θ− δM(θ)�

N(θ�δM(θ))− δM ′(θ) if b < 0�
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and define K̂ as in (46) with θ = 1. Then, Lemma 12 implies that there exists a
Lipschitz continuous β̂ such that (47) holds. By definition of K̂,

∀θ ∈ [θ�1]� 0 ≤ β̂(θ)≤ θ− δM(θ)�

Therefore, β(θ) ≡ β̂(θ)+ δM(θ), θ ∈ [θ�1], yields a Lipschitz continuous so-
lution for (18).

To prove (52), suppose that β(θ) ≥ θ for some θ > θ. Let θ′ be minimal
with that property. Then β(θ′)= θ′ > δM(θ′). Thus, β is differentiable at θ′ by
Lemma 12. Also, N̂(θ� β̂(θ)) = −δM ′(θ). Hence, β′(θ′) = 0. Thus, β(θ) > θ
for some θ < θ′, a contradiction.

To prove (53), observe that

β′(θ)
(18)= K(θ�β(θ))

(14)≥ N(θ�β(θ))
(52)
> 0 a.e. θ ≥ θ�

This also implies that β′ is bounded below by a positive number on [θ�1].
Hence, φ is Lipschitz on [β(θ)�β(1)]; i.e., (55) follows. Inequality (54) is im-
mediate from (14) and (18). Q.E.D.

The final lemma toward the proof of Proposition 1 shows equilibrium exis-
tence. We begin by showing that (19) yields a well-defined distribution func-
tion. Next, although by construction of the differential equation (18) the bid
function β satisfies the first-order condition for optimal bidding for every
regular-bidder type, it remains to be shown that β is globally optimal. To get
this, we show quasiconcavity of the regular bidders’ payoff function. When con-
sidering upward deviations, we must take care of the possibility that a regular
bidder deviates to a higher bid in an attempt to offer the good for resale. No
such complication arises in the context of downward deviations because such
a deviation does not lead to additional resale offers from competing regular
bidders. Optimality of the speculator’s bid distribution follows by construction.

LEMMA 15: The first-price auction with resale has a quasisymmetric regular
equilibrium (β�H�M).

PROOF: Define β according to Lemma 14 and define φ = β−1. The first step
is to show that H, as defined by (19), is a well-defined distribution function.
For any given ε > 0, (9) implies that there exists ξ > 0 such that

∀b ∈ [ε�β(1)]�(56)

if b= δM(φ(b))� then δP̂φ(b)(φ(b))≥ b+ δξ�

By definition of K,

β′(φ(b))≥N(φ(b)�β(φ(b))) a.e. b ∈ (0�β(1)]�



SPECULATION IN STANDARD AUCTIONS WITH RESALE 23

implying

Rφ(b)
(17)≥ 0 a.e. b ∈ (0�β(1)]�(57)

From (56) and (57) it follows that Lφ (cf. (16)) is well defined almost
everywhere and is bounded above on [ε�β(1)] for any given ε > 0. Hence,
H is Lipschitz continuous on [ε�β(1)] for every ε > 0. Moreover, because
Lφ is nonnegative, H is weakly increasing on (0�β(1)] and the limit H(0) =
limb↘0 H(b) exists. Therefore, H is a distribution function.

Let post-auction beliefs and resale mechanisms be defined by (10) and (11).
It remains to be shown that (12) and (13) hold.

To show (12), first consider any deviating bid bi ∈ (0�β(θi)) of a bidder i 	= s
with type θi ∈ (0�1]. After winning at bi, it is optimal for bidder i to consume
the good because she believes that the highest use value among bidders other
than herself is at most φ(bi) < θi. Also, if some bidder j ∈ I \{i} wins after mak-
ing her equilibrium bid, then bidder j consumes the good in period 1. Hence,
bidder i’s payoff is given by

ui(bi� θi) = H(bi)F(φ(bi))
n−1(θi − bi)

+ δ

∫ ∞

bi

F(φ(bs))
n−1Ûφ(bs)(θi) dH(bs)�

where

Ûφ(bs)(θi)≡ θiQ̂φ(bs)(θi)− P̂φ(bs)(θi)�

Because φ and H are locally Lipschitz continuous on (0�β(1)], the mapping
bi �→ ui(bi� θi) has the same property and is differentiable Lebesgue-a.e. in
(0�1). Hence, for a.e. bi ∈ (0�β(θi)),

∂ui

∂bi

(bi� θi)

= H(bi)F(φ(bi))
n−2

× (
(n− 1)f (φ(bi))φ

′(bi)(θi − bi)− F(φ(bi))
)

+H ′(bi)F(φ(bi))
n−1

(
θi − bi − δÛφ(bi)(θi)

)
θi≥φ(bi)≥ H(bi)F(φ(bi))

n−1

×
(
(n− 1)

f (φ(bi))

F(φ(bi))
(φ(bi)− bi)φ

′(bi)− 1
)

+H ′(bi)F(φ(bi))
n−1

(
θi − bi − δÛφ(bi)(θi)

)
�
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By definition of Rφ and because H ′(bi)=Lφ(bi)H(bi) by (19),

∂ui
∂bi

(bi� θi)

H(bi)F(φ(bi))n−1
≥ −Rφ(bi)+Lφ(bi)

(
θi − bi − δÛφ(bi)(θi)

)
�(58)

To show that

∂ui

∂bi

(bi� θi)≥ 0 a.e. bi ∈ (0�β(θi))�(59)

we distinguish two cases. If bi > δM(φ(bi)), then β(φ(bi)) > δM(φ(bi));
hence, β′(φ(bi)) = N(φ(bi)� bi) by (18). Thus, Rφ(bi) = 0. Moreover,
Lφ(bi)= 0 by definition of Lφ. Hence, (59) follows from (58).

If bi = δM(φ(bi)), then Rφ(bi) = Lφ(bi)Sφ(bi) by definition of Lφ. Using
this and the definition of Sφ(bi), (58) implies

∂ui
∂bi

(bi� θi)

H(bi)F(φ(bi))n−1

≥Lφ(bi)
(
θi − δÛφ(bi)(θi)− (1 − δ)φ(bi)− δP̂φ(bi)(φ(bi))

)
�

Now (59) follows from Ûφ(bi)(θi) = θi − P̂φ(bi)(φ(bi)) by (4). From (59) it fol-
lows that type θi cannot gain from deviating to any bid bi ∈ [0�β(θi)).

Now consider a deviating bid bi ∈ (β(θi)�β(1)]. Suppose first that bidder i
offers the good for resale upon winning. We obtain an upper bound vi(bi� θi)
for bidder i’s payoff by assuming she gets the entire surplus that is available in
the resale market,

vi(bi� θi)

=H(bi)

(
F(φ(bi))

n−1(δθi − bi)+ δ

∫ φ(bi)

θi

(θ′ − θi)d(F(θ
′)n−1)

)

+ δ

∫ ∞

bi

F(φ(bs))
n−1Ûφ(bs)(θi) dH(bs)�

For a.e. bi ∈ (β(θi)�β(1)),

∂vi

∂bi

(bi� θi)

θi≤φ(bi)≤ H(bi)F(φ(bi))
n−1

×
(
(n− 1)

f (φ(bi))

F(φ(bi))
(δφ(bi)− bi)φ

′(bi)− 1
)

+H ′(bi)F(φ(bi))
n−1
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×
(
δθi − bi − δÛφ(bi)(θi)

+ δ

∫ φ(bi)

θi

θ′ − θi

F(φ(bi))n−1
d(F(θ′)n−1)

)
�

By definition of Rφ and δ ≤ 1, and because H ′(bi)= Lφ(bi)H(bi) by (19),

∂vi
∂bi
(bi� θi)

H(bi)F(φ(bi))n−1
(60)

≤ −Rφ(bi)+Lφ(bi)

(
δθi − bi − δÛφ(bi)(θi)

+ δ

∫ φ(bi)

θi

θ′ − θi

F(φ(bi))n−1
d(F(θ′)n−1)

)
�

To show that

∂vi

∂bi

(bi� θi)≤ 0 a.e. bi ∈ (β(θi)�β(1))�(61)

we distinguish two cases. If bi > δM(φ(bi)), then Rφ(bi) = 0 by (18) and
Lφ(bi)= 0 by definition of Lφ. Hence, (61) follows from (60).

If bi = δM(φ(bi)), then Rφ(bi)=Lφ(bi)Sφ(bi). Using this and the definition
of Sφ(bi), (60) implies

∂vi
∂bi
(bi� θi)

H(bi)F(φ(bi))n−1
(62)

≤Lφ(bi)

(
δθi − δÛφ(bi)(θi)+ δ

∫ φ(bi)

θi

θ′ − θi

F(φ(bi))n−1
d(F(θ′)n−1)

− (1 − δ)φ(bi)− δP̂φ(bi)(φ(bi))

)
�

Using the envelope theorem in integral form and integration by parts, the ex-
pression in brackets on the right-hand side of (62) can be simplified:

(· · ·) = δθi −φ(bi)+ δ
(
Ûφ(bi)(φ(bi))− Ûφ(bi)(θi)

)
+ δ

∫ φ(bi)

θi

θ′ − θi

F(φ(bi))n−1
d(F(θ′)n−1)

= δθi −φ(bi)+ δ

∫ φ(bi)

θi

F(θ′)n−1

F(φ(bi))n−1
dθ′
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+ δ

∫ φ(bi)

θi

θ′ − θi

F(φ(bi))n−1
d(F(θ′)n−1)

= δθi −φ(bi)+ δθ′ F(θ′)n−1

F(φ(bi))n−1

∣∣∣∣φ(bi)

θi

− δθi

F(φ(bi))
n−1 − F(θi)

n−1

F(φ(bi))n−1

= −(1 − δ)φ(bi)≤ 0�

Hence, (61) follows from (62).
Finally, consider a deviating bid bi ∈ (β(θi)�β(1)] and suppose that bidder i

consumes the good upon winning. Let v̌i(bi� θi) denote the corresponding pay-
off. Using techniques analogous to those leading to (59) and (61), one shows
that

∂v̌i

∂bi

(bi� θi)≤ 0 a.e. bi ∈ (β(θi)�β(1))�(63)

An upper bound for bidder i’s payoff with any bid bi ∈ (β(θi)�β(1)] is

ui(bi� θi)≡ max{vi(bi� θi)� v̌i(bi� θi)}�
Because the maximum of two locally Lipschitz continuous functions is locally
Lipschitz itself, the mapping bi �→ ui(bi� θi) can be written as the integral over
its derivative. Moreover, ui(β(θi)� θi)= ui(β(θi)� θi). Therefore, (61) and (63)
imply that for all bi ∈ (β(θi)�β(1)],

ui(bi� θi)− ui(β(θi)� θi) ≤ ui(bi� θi)− ui(β(θi)� θi)

=
∫ bi

β(θi)

∂ui

∂bi

(b�θi)db≤ 0�

Hence, no type θi > 0 has an incentive to deviate. By continuity of ui, type
θi = 0 has no incentive to deviate either. This completes the proof of (12).

To complete the equilibrium existence proof, we have to show (13).
From (54) it follows that bs ≥ δM(φ(bs)) and thus us(bs) ≤ 0 for all bs ∈
(0�β(1)]. It remains to be shown that

Pr[us(b̃s) < 0] = 0�

Consider the event us(b̃s) < 0. Then β(φ(b̃s)) > δM(φ(b̃s)) and thus
Lφ(b̃s)= 0. Using (19), the probability of that event is∫

(0�β(1)]
1Lφ(bs)=0h(bs)dbs =

∫
(0�β(1)]

1Lφ(bs)=0Lφ(bs)H(bs)dbs

= 0� Q.E.D.
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This completes the proof of Proposition 1. Q.E.D.

Observe that Proposition 1 allows the possibility that H(0)= 1; i.e., the spec-
ulator may not play an active role at all. The following Proposition 2 shows that
the answer to the question of whether the speculator plays an active role de-
pends on the distribution F , the discount factor δ, and the number of regular
bidders n. For any given n, Proposition 2 determines the smallest discount fac-
tor δn such that the speculator plays an active role for some F . To this end,
we show that the type of distribution described in Garratt and Tröger (2006,
Section 5) is the most favorable for speculative activity so that we can define

δn = min
z∈[0�1]

η(z�n)

ρ(z�n)
�(64)

The intuition is as follows. Because the distribution of the types below the re-
sale reserve price is irrelevant for the resale revenue, the most favorable distri-
bution for the speculator is the one with the smallest expectation conditional
on the information that the value is below the reserve price. One cannot shift
all the probability weight to 0 because that would violate the increasing hazard
rate assumption. The best one can do is to shift probability weight to lower val-
ues until the hazard rate is constant—this yields the exponential shape. Above
the resale reserve price, the best situation for the speculator is for all of the
probability weight to be concentrated just above the reserve price so that the
bidders obtain no information rent. This yields the type of distribution de-
scribed in Garratt and Tröger (2006, Section 5).

PROPOSITION 2: For every regular-bidder number n ≥ 2, there exists a discount
factor δn < 1 such that the following statements hold in the quasisymmetric regular
equilibrium of a first-price or Dutch auction with resale:

(i) For all δ > δn, there exists a distribution F that satisfies Assumption 1 such
that the speculator plays an active role.

(ii) For all δ ≤ δn and all F that satisfy Assumption 1, the speculator bids 0
and the regular bidders use the same bid function as in the absence of a resale
opportunity.

Moreover, δn → 1 as n→ ∞.

PROOF: Observe that, for all (F�n�δ),

if H(0)= 1� then β= βI�(65)

To see (65), suppose that H(0) = 1. Then (19) implies Lφ(b) = 0 a.e. b ∈
[0�β(1)]. Hence, β= βI by Lemma 13, (16), (17), and (18).9

9The result that the bid function β = βI yields an equilibrium in the absence of bids by the
speculator appears in Haile (1999, Theorem 1).
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The argument given in Garratt and Tröger (2006, Section 5) together
with (65) proves part (i). To prove the “moreover” part, note that

ρ(z�n)≤ 1� min
z∈[0�1]

η(z�n) →
n→∞

1�

To prove part (ii), we need additional notation concerning order statistics. For
any distribution function D, let D(k�l) denote the distribution function for the
lth highest-order statistic among k independent and identically distributed
(i.i.d.) random variables (k = 1�2� � � � ; l = 1� � � � �k) that are distributed ac-
cording to D.

Fix any n ≥ 2, δ ≤ δn, and F with an increasing hazard rate. Suppose that
β= βI. To complete the proof of (ii), it is sufficient to show that us(bs)≤ 0 for
all bs ≥ 0 (because then H with H(0) = 1 is a best-response bid distribution
of the speculator and β is a best-response bid function of the regular bidders
by (65)).

By definition of βI, if bs = βI(1),

us(bs)= π(F�n�δ)≡ δM(1)−
∫ 1

0
θdF(n−1�1)(θ)�(66)

If bs < βI(1) and θ̂ ≡ (βI)−1(bs),

us(bs)= F(θ̂)n
(
δM(θ̂)−

∫ 1

0
θdF̂(n−1�1)

[0�θ̂] (θ)

)
= F(θ̂)nπ(F̂[0�θ̂]� n�δ)�

Hence, without loss of generality, it is sufficient to show that

π(F�n�δ)≤ 0�(67)

Rearranging (5), one finds

M(1)= n(1 − F(ř))F(ř)n−1ř +
∫ 1

ř

θ dF(n�2)(θ)�

where ř ≡ r̂(1). Hence, using (66),

π(F�n�δ) = δ

(
n(1 − F(ř))F(ř)n−1ř +

∫ 1

ř

θ dF(n�2)(θ)

)
(68)

−
∫ 1

0
θdF(n−1�1)(θ)�
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Observe that ř = 1/λ(ř) by definition of the function r̂, where λ(θ) =
f (θ)/(1 − F(θ)) denotes for all θ ∈ [0�1) the hazard function for F . We can
write

F(θ)= 1 − exp
(

−
∫ θ

0
λ(t)dt

)
�

Let µ= (1/ř)
∫ ř

0 λ(t)dt. Then

∫ ř

0
(λ(t)−µ)dt = 0�

Because λ(t)−µ is weakly increasing in t,

∀θ ∈ [0� ř]�
∫ θ

0
λ(t)dt ≤

∫ θ

0
µdt = θµ�

Therefore,

∀θ ∈ [0� ř]� F(θ) ≤ J(θ) ≡ 1 − e−θµ�

Also define J(θ) = F(θ) for θ ∈ (ř�1]. Then J(ř) = F(ř) and F stochastically
dominates J. Therefore, using (68),

π(F�n�δ)≤ π̌ ≡ δ

(
n(1 − J(ř))J(ř)n−1ř +

∫ 1

ř

θ dJ(n�2)(θ)

)
(69)

−
∫ 1

0
θdJ(n−1�1)(θ)�

For arbitrary i.i.d. random variables with densities, the highest of n − 1 dom-
inates the second highest of n in terms of the likelihood ratio. Therefore, the
expectation of the highest of n− 1 conditional on being greater or equal to ř is
greater or equal to the respective conditional expectation of the second highest
of n,

1
1 − J(n�2)(ř)

∫ 1

ř

θ dJ(n�2)(θ) ≤ ě≡ 1
1 − J(n−1�1)(ř)

∫ 1

ř

θ dJ(n−1�1)(θ)�

Therefore, using the definition of π̌ from (69),

π̌ ≤ δ
(
n(1 − J(ř))J(ř)n−1ř + (1 − J(n�2)(ř))ě

)
−

∫ ř

0
θdJ(n−1�1)(θ)− (1 − J(n−1�1)(ř))ě�
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Because J(n−1�1)(ř)≤ J(n�2)(ř) and ě ≥ ř, it follows that

π̌ ≤ δ
(
n(1 − J(ř))J(ř)n−1ř + (1 − J(n�2)(ř))ř

)
(70)

−
∫ ř

0
θdJ(n−1�1)(θ)− (1 − J(n−1�1)(ř))ř

= δ(1 − (1 − e−z)n)ř

− ř(n− 1)
1
z

∫ z

0
τe−τ(1 − e−τ)n−2 dτ − (1 − (1 − e−z)n−1)ř

= ř(δρ(z�n)−η(z�n))�

where z ≡ µř = µ/λ(ř) ≤ 1 and we have made the substitution τ = θµ in the
integral. Because δ ≤ δn, (64) implies δρ(z�n) − η(z�n) ≤ 0. Hence, (70) to-
gether with (69) shows (67). Q.E.D.

Proposition 3 shows that the presence of a resale opportunity never reduces
initial seller revenue and strictly increases it if the speculator plays an active
role. We provide two proofs. In Proof 1 we compare the differential equa-
tion (18) with the differential equation that is relevant in the absence of a re-
sale opportunity (cf. Lemma 13) so as to argue that each regular-bidder type
bids at least as much in the presence of a resale opportunity as without one
and, moreover, the initial seller collects the speculator’s bid if she wins. Proof 2
follows the intuition provided in Garratt and Tröger (2006, Section 5).

PROPOSITION 3: For any regular-bidder number n ≥ 2, discount factor δ ∈
(0�1), and distribution F that satisfies Assumption 1, the presence of a resale op-
portunity does not reduce initial seller revenue from a first-price or Dutch auction,
and strictly increases it if (F�n�δ) is such that the speculator plays an active role.

PROOF 1: From (18) it follows that

β′(θ)≥N(θ�β(θ)) a.e. θ ∈ [0�1]�(71)

By β(0)= 0, Lemma 13, and (71),

∀θ ∈ [0�1]� β(θ) ≥ βI(θ)�(72)

The result is immediate from (72). Q.E.D.

PROOF 2: Consider bidder i ∈ I with type θi ∈ (0�1] and bid bi ≥ 0. Her ex-
pected payoff if she consumes the good after winning in period 1 is given by
v̌i(bi� θi) as defined in (27). Because δ < 1, it is optimal for bidder i to con-
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sume the good upon winning if she makes a bid bi sufficiently close to β(θi).10

Hence, ui(bi� θi) = v̌i(bi� θi) for all bi sufficiently close to β(θi). The mapping
bi �→ v̌i(bi� θi) is locally Lipschitz continuous on (0�β(1)] (because φ is Lip-
schitz continuous on [0�β(1)] by (18) and H is locally Lipschitz continuous on
(0�β(1)] by (19)). Hence, for a.e. b ∈ (0�β(1)), the optimality of the bid b for
type θi =φ(b) implies the first-order condition

0 = ∂ui

∂b
(b�θi)

∣∣∣∣
θi=φ(b)

= ∂v̌i

∂b
(b�θi)

∣∣∣∣
θi=φ(b)

(73)

= H ′(b)F(φ(b))n−1
(
φ(b)− b− δ

(
φ(b)− P̂φ(b)(φ(b))

))
+H(b)F(φ(b))n−2

× (
(n− 1)f (φ(b))φ′(b)(φ(b)− b)− F(φ(b))

)
�

If H ′(b) > 0, then b ≤ δM(φ(b)) because otherwise the speculator would
make losses with bid b. Hence, if H ′(b) > 0, then b < δP̂φ(b)(φ(b)) by (9).
Hence, (73) implies

(n− 1)f (φ(b))φ′(b)(φ(b)− b)− F(φ(b))

{
< 0 if H ′(b) > 0,
= 0 if H ′(b)= 0.

(74)

Using the bid function β instead of its inverse φ, (74) can be equivalently writ-
ten as

β′(θ)
{
>N(θ�β(θ)) if H ′(β(θ)) > 0,
=N(θ�β(θ)) if H ′(β(θ)) = 0,

a.e. θ ∈ [0�1]�

Comparing this with Lemma 13, it is immediate that (72) holds and that β(θ) >
βI(θ) for a positive mass of θ-values if the speculator plays an active role.

Q.E.D.

3. THE SECOND-PRICE AUCTION WITH RESALE

In this section we construct and discuss a continuum of pure-strategy perfect
Bayesian equilibria for second-price auctions with resale where the speculator
plays an active role. Proposition 4 describes the equilibria. Propositions 5 and 6
evaluate the impact of a resale opportunity on initial seller revenue.

Let β denote bidder i’s (i ∈ I) bid in the second-price auction as a func-
tion of her use value. Let b̂s = b̃s denote the speculator’s bid (we do not allow
randomization; hence, b̃s is a degenerate random variable).

10The proof would be slightly different if δ = 1. It would then be optimal for bidder i to offer
the good for resale after winning with a bid bi arbitrarily close to β(θi). However, the additional
payoff gain from reselling the good is only a second-order effect because the highest losing type,
φ(bi), is approximately equal to θi .
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To define post-auction beliefs, consider any bidder j ∈ I and let bj ≥ 0 denote
her bid. Let i ∈ I ∪ {s} denote the label of the winner. Then the probability
distribution Πj(·|i� bj) denotes the post-auction belief about j’s use value of
bidders other than j.

Let M(i�b−i� θi) denote the resale mechanism used by the resale seller
i ∈ I ∪ {s} after a second-price auction when the vector of losing bids is
b−i ∈ [0�∞)n and i’s use value is θi. For all i� j ∈ I ∪ s with j 	= i, all b−i,
and all θi� θj , let Pj(i�b−i� θi� θj) denote the net expected transfer from bid-
der j of type θj to the other bidders (including the transfer to i) in the mech-
anism M(i�b−i� θi). Let Qj(i�b−i� θi� θj) denote the probability that bidder j
obtains the good. Let P(i�b−i� θi) denote the expected transfer to the resale
seller i and let Q(i�b−i� θi) denote the probability that the resale seller keeps
the good.

For all i ∈ I, bidder i’s expected payoff when she bids bi ≥ 0 and has the use
value θi equals

ui(bi� θi)

=E

[(−b̃(1)
−i + max

{
θi� δ(θiQ(i� b̃−i� θi)+ P(i� b̃−i� θi))

})
1w(bi�b̃−i)=i

+
∑
j 	=i

δ
(
θiQi(j� (bi� b̃−j−i)� θ̃j� θi)

− Pi(j� (bi� b̃−j−i)� θ̃j� θi)
)
1w(bi�b̃−i)=j

]
�

where w denotes the period-1 winner as a function of the bid profile and where
the max term reflects the condition that after winning in period 1, bidder i de-
cides optimally whether to consume the good or offer it for resale. The specu-
lator’s payoff when she bids bs ≥ 0 is given by

us(bs)=E
[
(−b̃(1)

−s + δP(s� b̃−s� θs))1w(bs�b̃−s)=s

]
�

The equilibrium conditions are that post-auction beliefs about auction losers
are determined by Bayes rule whenever possible (75), that the resale mecha-
nism is chosen according to Assumption 4 (76), and that period-1 behavior is
optimal (77) and (78).

DEFINITION 2: A tuple (β� b̂s�M) is a quasisymmetric regular equilibrium
of the second-price auction with resale if there exists a belief system (Πj(·|
i� bj))j∈I�i∈I∪{s}�bj≥0 such that the following conditions hold:

∀ i ∈ I ∪ {s}� j ∈ I \ {i}� bj ≥ 0�(75)

Πj(·|i� bj) = F̂β−1(bj)
if bj ∈ β([0�1])�
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∀ i ∈ I ∪ {s}�b−i ∈ [0�∞)n� θi�(76)

M(i�b−i� θi)= M̂
(
(Πj(·|i� bj))j∈I� θi� i

)
�

∀ i 	= s� θi� β(θi) ∈ arg max
bi≥0

ui(bi� θi)�(77)

b̂s ∈ arg max
bs≥0

us(bs)�(78)

This equilibrium concept is in the spirit of perfect Bayesian equilibrium,
combined with the symmetry and regularity restrictions formulated in Assump-
tion 2. Like in the first-price auction case (see the explanation below Defini-
tion 1), an equilibrium condition on the post-auction beliefs about the auction
winner is omitted because it would play no role for our analysis.

The result below describes our equilibria. The structure of these equilibria is
analogous to the structure of the equilibria constructed in Garratt and Tröger
(2006, Proposition 2). Condition (81) states that the resale mechanism used by
the speculator is a standard auction with an optimal reserve price. Observe that
if the speculator wins at a strictly positive price, then she is certain about the
maximum use value among all bidders (see (82)); hence the standard auction
yields the same outcome as a take-it-or-leave-it offer equal to the auction’s
reserve price.

PROPOSITION 4: For any regular-bidder number n ≥ 2, discount factor δ ∈
(0�1), distribution F that satisfies Assumption 1, and every θ∗ ∈ [0�1], the second-
price auction with resale has a quasisymmetric regular equilibrium (β� b̂s�M)
with the properties

∀θi� β(θi)=
{

0 if θi ∈ [0� θ∗),
θi if θi ∈ (θ∗�1],(79)

b̂s = θ∗ − δ(θ∗ − P̂θ∗(θ∗))�(80)

∀b−s� M(s�b−s�0)=



S(r̂(θ∗)) if b(1)

−s = 0,

S(θ∗) if b(1)
−s ∈ (0� θ∗),

S(b(1)
−s ) if b(1)

−s ∈ (θ∗�1].
(81)

It is supported by beliefs that satisfy

∀ i� j /∈ {s� i}� bj� θj� Πj(θj|i� bj)=



F̂[0�θ∗](θj) if bj = 0,
1θj≥θ∗ if bj ∈ (0� θ∗),
1θj≥bj if bj ∈ (θ∗�1].

(82)

The proof is a straightforward generalization of the arguments leading to
the proof of Proposition 2 in Garratt and Tröger (2006), except for the follow-
ing complication. With multiple private-value bidders, we have to show that a



34 R. GARRATT AND T. TRÖGER

regular bidder with type θi < θ∗ will not deviate to a bid in [b̂s� θ
∗] and subse-

quently offer the good for resale if she wins. A detailed proof is below; here
is a sketch of the argument. Suppose that bidder i makes such a deviation and
suppose if she wins, then she appropriates the entire expected surplus that is
available in the resale market. Because an increase in θi changes the resale sur-
plus only if all bidders other than i have types below θi, the marginal change in
expected resale surplus due to an increase in θi equals the probability that all
bidders other than i have types below θi. However, this probability equals (or is
an upper bound for if θi is below the resale reserve price r̂(θ∗)) the probability
that bidder i obtains the good if she bids 0 and waits for the speculator’s re-
sale mechanism. Hence, using the envelope theorem, the derivative of bidder
i’s equilibrium payoff with respect to θi is at most as great as the derivative of
the expected resale surplus obtained from the deviation. Hence, if for any type
θi < θ∗, the deviation is profitable, then the deviation is also profitable for type
θi = θ∗. However, for type θ∗ the deviation is not profitable by construction
of b̂s.

PROOF OF PROPOSITION 4: The proof of (75), (76), and (78) is straightfor-
ward. The proof of (77) is straightforward, too, except for one step: we have to
show that a bidder i ∈ I with type θi ≤ θ∗ cannot profit from deviating to a bid
bi ∈ [b̂s� θ

∗] and offering the good for resale if she wins. Observe that bidder i’s
resale payoff cannot exceed the entire expected surplus that is available in the
resale market:

ui(bi� θi)≤ ui(θi)≡ (−b̂s + δE[max{θi� θ̃
(1)
−i } | θ̃(1)

−i ≤ θ∗])F(θ∗)n−1�(83)

A straightforward computation shows that

∂ui

∂θi

(θi)= δF(θi)
n−1�(84)

Bidder i’s equilibrium payoff equals

ui(0� θi) = δ(θiQ̂θ∗(θi)− P̂θ∗(θi))F(θ
∗)n−1�

The envelope theorem implies

∂ui

∂θi

(0� θi) =
{
δF(θi)

n−1 if θi > r̂(θ∗),
0 if θi < r̂(θ∗).

(85)

By (80),

ui(0� θ∗)≥ ui(θ
∗)�(86)
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Hence, for all θ′
i ≤ θ∗,

ui(0� θ′
i)− ui(θ

′
i)

(86)≥ ui(0� θ′
i)− ui(0� θ∗)− (ui(θ

′
i)− ui(θ

∗))

=
∫ θ∗

θ′
i

(
∂ui

∂θi

(θi)− ∂ui

∂θi

(0� θi)

)
dθi

(84)�(85)≥ 0�

which completes the proof. Q.E.D.

In contrast to the first-price/Dutch auction setting (cf. Proposition 3), the
presence of a resale opportunity may either increase or decrease initial seller
revenue, depending on which θ∗-equilibrium is played. This comparison as-
sumes that in the absence of a resale opportunity all bidders use the dominant
strategy of bidding their use values.

PROPOSITION 5: For any regular-bidder number n ≥ 2, discount factor δ ∈
(0�1), and distribution F that satisfies Assumption 1, the second-price auction
with resale has quasisymmetric regular equilibria such that the initial seller’s ex-
pected revenue is larger (alternatively, smaller) than the expected revenue that re-
sults when all bidders bid their use values.

PROOF: For all θ∗ ∈ [0�1], let R(θ∗) denote the initial seller’s expected rev-
enue in a θ∗-equilibrium. In particular, π(0) is the expected revenue of the
initial seller when every bidder bids her use value in period 1. We will show
that R(θ∗) > R(0) for all θ∗ sufficiently close to 0 and R(θ∗) < R(0) for all θ∗

sufficiently close to 1.
Let θ̃(1) and θ̃(2) denote the highest and second-highest use values among the

regular bidders:

R(θ∗)−R(0) = Pr[θ̃(2) < θ∗ < θ̃(1)](b̂s −E[θ̃(2) | θ̃(2) < θ∗ < θ̃(1)])(87)

+ Pr[θ̃(1) < θ∗](0 −E[θ̃(2) | θ̃(1) < θ∗])�
We have Pr[θ̃(2) < θ∗ < θ̃(1)] = nF(θ∗)n−1(1 − F(θ∗)) → 0 as θ∗ → 1. Thus,
R(θ∗) < R(0) for all θ∗ sufficiently close to 1.

Let us now consider the case where θ∗ is close to 0. From (80) it follows that
b̂s ≥ P̂θ∗(θ∗). Hence, (87) implies

R(θ∗)−R(0)(88)

≥ Pr[θ̃(2) < θ∗ < θ̃(1)](P̂θ∗(θ∗)−E[θ̃(2) | θ̃(2) < θ∗ < θ̃(1)])
− Pr[θ̃(1) < θ∗]E[θ̃(2) | θ̃(1) < θ∗]�
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By Lemma 1 and because r̂ ′(0)= 1/2,

P̂θ∗(θ∗)
θ∗ = 1 − 1

θ∗F(θ∗)n−1

∫ θ∗

θ∗/2
(f (0)θ+ O(θ))n−1 dθ+ O(θ∗)

θ∗

= 1 − 1
θ∗F(θ∗)n−1

∫ θ∗

θ∗/2

(
f (0)n−1θn−1 + O(θn−1)

)
dθ+ O(θ∗)

θ∗

= 1 − f (0)n−1

θ∗F(θ∗)n−1

(
θ∗n

n

(
1 − 1

2n

)
+ O(θ∗n)

)
+ O(θ∗)

θ∗ �

Therefore,

lim
θ∗→0

P̂θ∗(θ∗)
θ∗ = 1 − 1

n

(
1 − 1

2n

)
= n− 1

n
+ 1

n2n
�(89)

Similarly,

lim
θ∗→0

E[θ̃(2) | θ̃(2) < θ∗ < θ̃(1)]
θ∗ = n− 1

n
(90)

and

lim
θ∗→0

E[θ̃(2) | θ̃(1) < θ∗]
θ∗ = n− 1

n+ 1
�(91)

Moreover,

Pr[θ̃(2) < θ∗ < θ̃(1)]
Pr[θ̃(1) < θ∗] = n

1 − F(θ∗)
F(θ∗)

θ∗→0−→∞�(92)

Taking (88), (89), (90), (91), and (92) together implies that R(θ∗) > R(0) if
θ∗ is small. Q.E.D.

The final Proposition 6 assumes that the initial seller is a player whose ob-
jective is to maximize expected revenue. We maintain the assumption that the
initial seller is restricted to a second-price auction, but assume that she can set
an arbitrary reserve price before the auction begins. Proposition 6 shows that
the initial seller’s revenue in such an extended second-price auction game with
resale can be smaller than her revenue in the absence of a resale opportunity
(where all bidders have a dominant strategy to bid their use values).

Observe that a special case covered by Assumption 4 is that the resale seller
is, like the initial seller, restricted to a second-price auction with reserve price.
Hence, Proposition 6 shows that the presence of a resale opportunity can be
harmful to the initial seller even if she has access to the same class of sales
mechanisms as the resale seller.
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PROPOSITION 6: For any regular-bidder number n ≥ 2 and distribution F that
satisfies Assumption 1, let R∗ denote the initial seller’s revenue in a second-price
auction when all bidders bid their use values and she chooses an optimal reserve
price. Then, for all sufficiently large n and for all δ sufficiently close to 1, the
extended second-price auction game with resale, where the initial seller can set
a reserve price, has a perfect Bayesian equilibrium such that the initial seller’s
expected revenue is smaller than R∗.

PROOF: Let r∗ denote the reserve price that is optimal for the initial seller if
all agents bid their use values in period 1. We will show that if δ is sufficiently
close to 1, then there exists an equilibrium such that the initial seller sets a
reserve price r > r∗ and her expected revenue is smaller than R∗.

Because r∗ < 1 is independent of n (Myerson (1981)) and R∗ → 1 as n → ∞,

r∗ < δR∗�(93)

assuming that n is sufficiently large and δ is sufficiently close to 1.
Observe that the speculator’s payoff in the θ∗-equilibrium with θ∗ = 1 con-

structed in Proposition 4 equals δR∗, and her auction bid b̂s > R∗ by (80) and
Lemma 3. Hence, the 1-equilibrium remains valid, with a reduced payoff for
the speculator, if the initial seller sets any reserve price r < δR∗.

By (93), there exists r such that r∗ < r < δR∗. Using r we can construct
continuation equilibria for the continuation games following any reserve price
r ≥ 0 by the initial seller. If r < r, let the 1-equilibrium be played in the con-
tinuation game. If r > r, let the θ∗-equilibrium with θ∗ = 0 be played in the
continuation game. If r = r, let either the 1-equilibrium or the 0-equilibrium
be played, depending on which of these two leads to a higher initial seller rev-
enue.

Given these continuation equilibria, every reserve price r < r results in an
expected revenue of r < R∗ for the initial seller. Any reserve price r > r leads
to an initial seller revenue below R∗ because otherwise we would have r = r∗ by
definition of r∗. The reserve price r = r leads to the initial seller revenue r < R∗

if the 1-equilibrium is played and leads to an initial seller revenue below R∗ if
the 0-equilibrium is played (if the revenue R∗ were reached, we would have
r = r∗ by definition of r∗). In summary, any reserve price r ≥ 0 leads to an
initial seller revenue below R∗. Q.E.D.

4. THE ENGLISH AUCTION WITH RESALE

In this section we explain why the equilibrium outcomes that we have con-
structed for second-price auctions with resale remain valid if in period 1 an
English auction, as modelled by Milgrom and Weber (1982), takes place. Ob-
serve that the second-price auction and the English auction are not strategi-
cally equivalent because we are considering environments with three or more
bidders.



38 R. GARRATT AND T. TRÖGER

After the English auction is completed, the losers’ bids are publicly known,
while the winner’s bid remains private. This corresponds exactly to the bid rev-
elation that we have assumed in our analysis of the second-price auction with
resale. Hence, if the bidders’ stopping points in the English auction are identi-
cal to their bids in the second-price auction, the bidders’ payoffs are the same
across the two auction formats. Thus, the only thing we need to argue to show
that the equilibrium outcomes of Proposition 4 remain valid for the English
auction is that bidding incentives are the same as in a second-price auction.
The difference between the second-price auction and the English auction is
that the losing bids become public during instead of after the auction, so that
bidders can revise their beliefs each time a bidder drops out.

We define bidding in the English auction as follows. Every bidder i ∈ I with
use value θi ∈ [0�1] stops bidding at price 0 if θi < θ∗ and is willing to bid up
to her use value if θi > θ∗, independently of who stays in and how long. The
speculator is willing to bid up to b̂s, also independently of who stays in and how
long.

To see that these bidding strategies are optimal, consider first the specula-
tor’s bidding incentives, given the regular bidders’ strategies. At the bid 0, it
is better to stay in than to drop out because the latter means she foregoes her
chances of winning and making a resale profit. If some regular bidder stays in
beyond 0 as well, Bayesian updating requires the speculator to believe that the
use value of this regular bidder is distributed on the support [θ∗�1]. She expects
the regular bidder to stay in up to her use value, which is beyond b̂s. Hence, it
is optimal for the speculator to drop out at b̂s. If one regular bidder deviates
by stopping at a bid in (0� θ∗], the speculator switches to the belief that the use
value of this regular bidder equals θ∗. Thus, if the speculator wins, then she
uses the same resale mechanism as in the second-price auction case.

Now consider the bidding incentives of a bidder i ∈ I with use value θi ∈
[0�1]. If θi < θ∗, bidder i has no incentive to stay in beyond the bid 0, for the
same reasons as in the second-price auction case. Finally, consider the case
θi > θ∗. Bidder i will stay in until the price reaches her use value because she
expects the same from all other regular bidders once they stay in at positive
bids. When bidder i observes that a competing regular bidder drops out at a
bid in (0� θ∗], she switches to the belief that this regular bidder has the use
value θ∗, and it remains optimal for bidder i to stay in until the price reaches
her use value.
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