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1. INTRODUCTION

THIS PAPER CONTAINS supplemental material to the main paper (hereafter ref-
erenced as AMS). Tables of the conditional critical values of the conditional
likelihood ratio (CLR) test are given in a separate file. Section 2 provides de-
tails concerning the sign-invariant power envelope for similar tests introduced
in AMS. Section 3 does likewise for the locally unbiased (LU) power envelope
for invariant similar tests. Section 4 reports additional numerical results. The
figures for Section 4 are provided in a separate file. Section 5 establishes con-
sistency of the covariance matrix estimator. Section 6 gives proofs of Lemmas
1 and 2. Section 7 proves the claim made in comment (ii) to Corollary 1 of
AMS that when k= 1, the optimal invariant similar test in terms of two-point
weighted average power is the Anderson–Rubin (AR) test (which is equivalent
in this case to the Lagrange multiplier (LM) and CLR tests). An Appendix de-
scribes numerical methods used in Section 4 of this supplement.

2. POWER ENVELOPE FOR SIGN-INVARIANT TESTS

Here we consider similar tests that satisfy a sign-invariance condition in ad-
dition to the invariance condition of (3.1):

[S :T ] → [−S :T ]�(S2.1)

The corresponding transformation in the parameter space is (β∗�λ∗) →
(β∗

2�λ
∗
2), where (β∗

2�λ
∗
2) is defined in (4.1). This sign-invariance condition is

a natural condition to impose to obtain two-sided tests, because the para-
meter vector (β∗

2�λ
∗
2) is the appropriate “other-sided” parameter vector to

(β∗�λ∗) for the reasons stated in AMS. The maximal invariant under this sign-
invariance condition (plus the invariance conditions in (3.1)) is

(S′S� |S′T |�T ′T)= (QS� |QST |�QT)�(S2.2)

The likelihood ratio (LR), LM, and AR test statistics all depend on the data
only through this maximal invariant and, hence, satisfy the sign-invariance con-
dition (S2.1).

The density of the maximal invariant (QS� |QST |�QT) at (qS�qST � qT ) for
qST ≥ 0, when the true parameters are (β∗�λ∗), is

1
2
[
fQ1�QT (qS�qST � qT ;β∗�λ∗)+ fQ1�QT (qS�−qST �qT ;β∗�λ∗)

]
�(S2.3)

1
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Lemma 3(a) provides an expression for fQ1�QT (qS�qST � qT ). Straightforward
calculations show that

fQ1�QT (qS�−qST �qT ;β∗�λ∗)= fQ1�QT (qS�qST � qT ;β∗
2�λ

∗
2)(S2.4)

using (4.1). Hence, the density of (QS� |QST |�QT) when the true parameters
are (β∗�λ∗) equals f ∗

Q1�QT
(q1� qT ;β∗�λ∗) as defined in (4.4). Now, following the

same argument as in Section 4 of AMS, this implies that the power envelope for
invariant similar tests using the invariance condition (3.1) coupled with (S2.1)
is the same as the asymptotically efficient (AE) two-sided power envelope for
invariant similar tests given in AMS.

3. POWER ENVELOPE FOR LOCALLY UNBIASED TESTS

3.1. Results

Another approach to constructing a power envelope designed for two-sided
alternatives is to impose a necessary condition for unbiasedness—what we call
a locally unbiased condition. This approach has a long tradition in the statis-
tics literature and is a standard way to derive optimal tests for two-sided al-
ternatives. In exponential families, uniformly most powerful (UMP) two-sided
tests exist among the class of unbiased tests; see Lehmann (1986, Theorem 4.3,
p. 147). This is not the case in the curved exponential family testing problem
considered here. Nevertheless, one can construct a power envelope for LU in-
variant similar tests.

We start by determining two necessary conditions for an invariant test (with
respect to (3.1)) to be unbiased. The first condition is similarity and the second
condition is the requirement that the power function has zero derivative at the
null hypothesis. Otherwise, the power function would dip below the size of the
test for some alternatives close to the null.

THEOREM S.1: An invariant test φ(Q) is unbiased with size α only if
Eβ0(φ(Q)|QT = qT )= α and Eβ0(φ(Q)QST |QT = qT )= 0 for almost all qT .

COMMENTS: (i) The first condition establishes that all unbiased invariant
tests must be similar; the second establishes that the power function of an un-
biased test must have zero derivative under H0. The two conditions together
are what we call the LU condition. (Note that the two conditions are only first-
order conditions, not sufficient conditions, for a test’s power function to have a
local minimum at the null hypothesis.) Obviously, the class of LU tests contains
the class of unbiased tests.

(ii) The two conditions in Theorem S.1 are closely related to the conditions
used for two-sided alternatives in the classical hypothesis testing theory for
exponential families; see Lehmann (1986, Chap. 4).
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(iii) The second condition of Theorem S.1 is equivalent to

Eβ0

(
φ(Q)QST/Q

1/2
T

) = 0�(S3.1)

That is, any LU invariant test statistic φ(Q) must be uncorrelated with the
pivotal statistic QST/Q

1/2
T under H0.1

The LR, LM, and AR test statistics depend on the data through (QS� |QST |�
QT). The following result shows that these tests satisfy the second condition of
Theorem S.1.

COROLLARY S.1: Any similar level α test that depends on the observations
through (QS� |QST |�QT) satisfies the LU condition of Theorem S.1.

Next, we determine the test that maximizes power against any given parame-
ter vector (β∗�λ∗) among the class of LU invariant tests. We do so using the
same conditioning argument as in Section 4 of AMS, and using the general-
ized Neyman–Pearson lemma (see Lehmann (1986, Theorem 3.5, pp. 96–97)).
Define

LR(q1� qT ;β∗�λ∗)= fQ1�QT (q1� qT ;β∗�λ∗)
fQT (qT ;β∗�λ∗)fQ1|QT (q1|qT ;β0)

(S3.2)

= ψ(q1� qT ;β∗�λ∗)
ψ2(qT ;β∗�λ∗)

�

THEOREM S.2: The test that maximizes power against (β�λ) = (β∗�λ∗)
among LU invariant tests with significance level α rejects H0 if

LR(Q1�QT ;β∗�λ∗) > κ1α(QT ;β∗�λ∗)+QSTκ2α(QT ;β∗�λ∗)�

where κ1α(QT ;β∗�λ∗) and κ2α(QT ;β∗�λ∗) are chosen such that the two condi-
tions in Theorem S.1 hold.

COMMENT: The power of the tests LR(Q1�QT ;β∗�λ∗) as (β∗�λ∗) varies
maps out the power envelope for LU invariant tests.

3.2. Proofs of Local-Unbiasedness Results

PROOF OF THEOREM S.1: By continuity of the power function, which holds
by Lehmann (1986, Theorem 2.9, p. 59), any unbiased test φ(Q) is similar.
Hence, the first condition of Theorem S.1 holds by Theorem 2.

1The second condition of Theorem S.1 clearly implies (S3.1). The converse holds by the com-
pleteness of QT , because by iterated expectations the left-hand side in (S3.1) can be written as
Eβ0h(QT ), where h(QT )=Eβ0(φ(Q)QST |QT = qT )/Q1/2

T .
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Now, for a test to be unbiased, (∂/∂β)Eβ�λφ(Q1�QT)|β=β0 = 0 for all values
of λ. By interchanging derivatives and integrals (which is justified by Lehmann
(1986, Theorem 2.9, p. 59)) and the chain rule, the left-hand side of this equal-
ity equals I1 + I2, where

I1 =
∫ ∫

φ(q1� qT )
∂fQ1|QT (q1|qT ;β0�λ)

∂β
dq1 fQT (qT ;β0�λ)dqT �(S3.3)

I2 =
∫ ∫

φ(q1� qT )fQ1|QT (q1|qT ;β0)dq1
∂fQT (qT ;β0�λ)

∂β
dqT

=
∫
α
∂fQT (qT ;β0�λ)

∂β
dqT = 0�

where the second to the last equality holds by the condition for similarity and
the last equality holds because

∫
fQT (qT ;β�λ)dqT = 1 for all β.

To compute the derivative of the conditional density of Q1 given QT = qT
with respect to β evaluated at β0, it is convenient to write the conditional den-
sity of Q1 given QT = qT as

fQ1|QT (q1|qT ;β�λ)(S3.4)

=K1K
−1
2 exp

(
−λc

2
β

2

)
exp

(
−qS

2

)
det(q)(k−3)/2q−(k−2)/2

T

×
∞∑
j=0

(λξβ(q)/4)j

j!�((k− 2)/2 + j + 1)

/ ∞∑
j=0

(λd2
βqT/4)

j

j!�((k− 2/2)+ j + 1)

using Lemma 3(a) and (b) and (4.8).
Tedious algebraic manipulations show that

∂fQ1|QT (q1|qT ;β0�λ)

∂β
= λ1/2

2(d2
βqT )

1/2
fQ1|QT (q1|qT ;β0)qST (det(Ω))−1/2(S3.5)

× Ik/2(
√
λa′

0Ω
−1a0qT )

I(k−2)/2(
√
λa′

0Ω
−1a0qT )

�

The function Ik/2(·) arises because

∂

∂β

∞∑
j=0

(λξβ(q)/4)j

j!�((k− 2)/2 + j + 1)
= λ

4
∂ξβ(q)

∂β

∞∑
s=0

(λξβ(q)/4)s

s!�(k/2 + s+ 1)
(S3.6)

and likewise with ξβ(q) replaced by (d2
βqT ).
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The necessary condition for unbiasedness, (S3.3), and (S3.5) give

0 =
∫
h(qT )fQT (qT ;β0�λ)

Ik/2(
√
λa′

0Ω
−1a0qT )

I(k−2)/2(
√
λa′

0Ω
−1a0qT )

dqT � where(S3.7)

h(qT )=
∫
φ(q1� qT )qST fQ1|QT (q1|qT ;β0)dq1�

By completeness of QT under H0 (see the proof of Theorem 2), it must be the
case that h(qT ) is zero for almost all qT and all λ≥ 0, which yields the second
condition of the theorem. Q.E.D.

PROOF OF COROLLARY S.1: Any test that depends on (QS�Q
2
ST �QT) can be

written as φ(QS�S2
2 �QT), where S2 =QST/(QSQT)

1/2. By Lemma 3(e) and (f),
QS , S2, and QT are independent under H0, and S2 has a distribution that is
symmetric about zero. Hence, we have

Eβ0

(
φ(QS�S2

2 �QT)QST |QT = qT
)

(S3.8)

=Eβ0

(
φ(QS�S2

2 � qT )S2Q
1/2
S

)
q1/2
T

=
∫
Eβ0(φ(qS�S2

2 � qT )S2)q
1/2
S fQS (qS)dqS · q1/2

T = 0

for all qT , where the last equality holds becauseφ(qS�S2
2 � qT )S2 is an odd func-

tion of S2 and S2 is symmetrically distributed about zero. Q.E.D.

PROOF OF THEOREM S.2: By the same argument as in Section 4 of AMS,
it suffices to find the test that maximizes power against the single alternative
conditional density fQ1|QT (q1|qT ;β∗�λ∗) conditional on QT = qT . Given the re-
striction to LU tests, we apply the generalized Neyman–Pearson (GNP) lemma
(see Lehmann (1986, Theorem 3.5, pp. 96–97)). The GNP lemma implies that
the optimal (conditional) test rejects when LR(Q1� qT ;β∗�λ∗) > κ1α(qT ;β∗,
λ∗)+ κ2α(qT ;β∗�λ∗)QST for some κ1α(qT ;β∗�λ∗) and κ2α(qT ;β∗�λ∗) that are
chosen such that the two conditions of Theorem S.1 hold.

It remains to verify the conditions needed to apply the generalized Neyman–
Pearson lemma. Let M be the set of points(

E
(
φ(Q1�QT)|QT = qT

)
�E

(
φ(Q1�QT)QST |QT = qT

))
(S3.9)

as φ ranges over all possible critical functions. It suffices to show that (α�0) is
an interior point of M , see Lehmann (1986, Theorem 3.5(iv), p. 97).

The set M is convex because the conditional expectation operator is lin-
ear. Moreover, M contains (α�0) by considering the LM test. It also contains
points (α�u+

α ) with u+
α > 0 by considering the one-sided LM test, which re-



6 D. W. K. ANDREWS, M. J. MOREIRA, AND J. H. STOCK

jects H0 when QST/Q
1/2
T > cα. This follows because the derivative of the condi-

tional power function of this test is an increasing linear transformation of∫
1(qST /q

1/2
T > cα)qST fQ1|QT (q1|qT ;β0)dq1�(S3.10)

which is strictly positive. Likewise, M also contains points (α�u−
α ) with u−

α < 0
by considering the test that rejects H0 when −QST/Q

1/2
T > cα by an analo-

gous argument. This completes the verification that (α�0) lies in the interior
of M . Q.E.D.

4. NUMERICAL RESULTS: MODEL WITH KNOWN COVARIANCE MATRIX

This section reports numerical results for power envelopes and power func-
tions of two-sided invariant similar tests. A representative subset of these re-
sults is reported in AMS.

Throughout, we focus on tests with significance level 5% and, without loss of
generality, on the case β0 = 0. As discussed in AMS, the remaining parameters
that characterize the distribution of the tests are λ, k, ρ = corr(v1i� v2i), and
the alternative, β. (The distribution of Q and thus the power depends on the
sample size only through λ.) Results are reported here for λ/k= 0�5, 1, 2� 4, 8,
and 16, which spans the range from weak to strong instruments, for ρ= 0�95,
0.5, and 0.2, and for k= 2�5�10, and 20. Numerical issues are discussed in the
Appendix.

The results are summarized in Figures S1–S6 which are provided in a sepa-
rate file. As in AMS, the horizontal axis is the scaled “local” alternative,

√
λβ.

Figure S1 presents the asymptotically efficient two-sided power envelope
(for invariant similar tests) and the power envelope for LU invariant tests for
k= 5.

Figure S2 presents the asymptotically efficient two-sided power envelope
and the power functions of the two-sided CLR, LM, and AR tests for k = 2.
These power envelopes and power functions are plotted for k= 5, 10, and 20
in Figures S3, S4, and S5, respectively.

Figure S6 presents the asymptotically efficient two-sided power envelope
and the power functions of two two-point optimal invariant similar (POIS2)
tests, labeled POIS2a and POIS2b. One approach to testing when there is not
a UMPI invariant test is to consider a point optimal invariant (POI) test that
has a power function tangent to the power envelope at a certain value. If the
power functions remain sufficiently close to the power envelope against alter-
natives other than that for which the test is point optimal, then that particular
POI test provides a good practical choice (cf. King (1988)). Specifically, the
POIS2a test is the LR∗ test against (β∗ = 0�8�λ∗ = 5), and the POISb test is
the LR∗ test against (β∗ = 1�45�λ∗ = 5). When λ∗ = 5 and ρ= 0�95, the power
functions of the POIS2a and POIS2b tests are tangent to the power envelope
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at approximately 25% power and 75% power, respectively. Like the power en-
velope itself, these tests depend on ρ; these tests are infeasible if ρ is unknown,
although a feasible version of these tests could be computed by plugging in a
consistent estimator of ρ.

Summary of Findings

(i) In theory, the two-sided asymptotically efficient (AE) power envelope is
no higher than the LU power envelope. Numerically, it appears from Figure S1
that the two power envelopes are essentially the same for most values of ρ, λ,
and β. In the cases considered, the greatest difference occurs in Figure S1(c)
for

√
λβ∼= 2�2, where the difference between the two power envelopes is ap-

proximately 0�05.
(ii) In Figures S2–S5, the two-sided CLR test has a power function that is

essentially on the power envelope in every case.
(iii) Figures S2–S5 extend previous findings that the LM statistic can have a

nonmonotone power function and has poor power properties compared with
the CLR statistic.

(iv) Figures S2–S5 show that the AR statistic can have power well below
the AE power envelope and well below that of the CLR statistic. The power
gap increases with k. This gap is present for both weak and strong instru-
ments.

(v) The strong instrument local alternative asymptotic results in AMS in-
dicate that the LM and CLR tests have power functions that coincide with
the AE power envelope when λ is large. As a numerical matter, in the cases
considered in Figures S2–S5, for most values of k, ρ, and β, this coincidence
occurs by λ/k= 16, sometimes by λ/k= 8.

(vi) Comparing the AE two-sided power envelope across all the panels of
Figures S2–S5 reveals that the AE power envelope, viewed as a function of√
λβ, takes on similar values regardless of ρ, k, or λ/k. Said differently,√
λβ evidently is the appropriate “local” parameterization.
(vii) The power functions of the POIS2a and POIS2b tests are close to the

AE two-sided power envelope. For ρ= 0.5, the POIS2a performs slightly bet-
ter than the POIS2b. The very good performance of the POIS2a suggests that
further work on a feasible version of this test (in which ρ is estimated) is a
promising way to develop a new test, based on the theory of tangency test-
ing, that has power approaching the AE two-sided power envelope. A the-
oretical advantage of this test over the CLR test is that it is known to be
asymptotically admissible among sign-invariant tests (under weak instrument
asymptotics). The practical disadvantage of this test, relative to the CLR
test, is that it is numerically more difficult to work with because it involves
Bessel functions, whereas the CLR test does not. Moreover, the results in Fig-
ures S2–S5 indicate that there is little room for improvement over the CLR
test.
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5. CONSISTENCY OF THE COVARIANCE MATRIX ESTIMATOR

In AMS, the covariance matrix Ω (∈ R
2×2) (defined in Assumption 2) is esti-

mated via

Ω̂n = (n− k−p)−1V̂ ′V̂ � where V̂ = Y − PZY − PXY�(S5.1)

where k and p are the dimensions of Zi andXi, respectively. Let V̂i denote the
ith row of V̂ written as a column 2-vector.

Under Assumptions 1–3, the variance estimator is consistent.

LEMMA S.1: Under Assumptions 1–3, Ω̂n →p Ω.

COMMENT: The convergence in the lemma occurs uniformly over all true
parameters β, C , γ, and ξ no matter what the parameter space is. This can be
seen by inspection of the proof of the lemma.

PROOF OF LEMMA S.1: Using the definition Y =Zπa′ +Xη+V , we obtain
V̂ = V − PZV − PXV . This and PZPX = 0 give

n−1V̂ ′V̂ −Ω= (n−1V ′V −Ω)− n−1V ′PZV − n−1V ′PXV �(S5.2)

The first summand on the right-hand side of (S5.2) converges in probability to
zero by Assumption 2. The second summand satisfies

0 ≤ n−1V ′PZV ≤ n−1V ′P
ZV(S5.3)

= n−1(n−1/2V ′
Z)(n−1 
Z′
Z)−1(n−1/2 
Z ′V )→p 0�

where the second inequality holds because the span of Z is contained in the
span of 
Z and the convergence to zero holds by Assumptions 1 and 3. The
third summand of (S5.2) converges in probability to zero by an analogous ar-
gument. Q.E.D.

6. PROOFS OF LEMMAS 1 AND 2

Here, we state Lemmas 1 and 2 and provide proofs of these lemmas.
The two equation reduced-form model can be written in matrix notation as

Y =Zπa′ +Xη+ V � where(S6.1)

Y = [y1 : y2]� V = [v1 :v2]�
a= (β�1)′� η= [γ :ξ]�

The distribution of Y ∈ R
n×2 is multivariate normal with mean matrix Zπa′ +

Xη, independence across rows, and covariance matrix Ω for each row. The
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parameter space for θ= (β�π ′�γ′� ξ′)′ is taken to be R × R
k × R

p × R
p.

LEMMA AMS-1: For the model in (S6.1):
(a) Z′Y and X ′Y are sufficient statistics for θ;
(b) Z′Y and X ′Y are independent;
(c) X ′Y has a multivariate normal distribution that does not depend

on (β�π ′)′;
(d) Z′Y has a multivariate normal distribution that does not depend on η=

[γ :ξ];
(e) Z′Y is a sufficient statistic for (β�π ′)′.

LEMMA AMS-2: For the model in (S6.1):
(a) S ∼N(cβµπ , Ik);
(b) T ∼N(dβµπ , Ik);
(c) S and T are independent.

PROOF OF LEMMA AMS-1: Let Z = [Z1 : · · · :Zn]′ and let X = [X1 : · · · :
Xn]′. The distribution of Y is multivariate normal with

EY =Zπa′ +Xη�(S6.2)

independence across rows, and covariance matrix Ω for each row. Hence, the
density of Y evaluated at the n× 2 matrix y = [y1 : · · · : yn]′ is

(2π)−n/2|Ω|−n/2(S6.3)

× exp

(
−1

2

n∑
i=1

(Yi − aπ ′Zi −η′Xi)
′Ω−1(Yi − aπ ′Zi −η′Xi)

)

= (2π)−n/2|Ω|−n/2 exp

(
−1

2

[
n∑
i=1

Y ′
i Ω

−1Yi − 2π ′
(

n∑
i=1

ZiY
′
i

)
Ω−1a

− 2 tr

((
n∑
i=1

XiY
′
i

)
Ω−1η′

)

+
n∑
i=1

(aπ ′Zi −η′Xi)
′Ω−1(aπ ′Zi −η′Xi)

])
�

If a density can be factorized as pθ(x) = fθ(T(x))h(x), then T(X) is a
sufficient statistic for θ. In consequence, given that Ω is known, Zi and Xi

are fixed and known, a = (β�1)′, and η = [γ :ξ], sufficient statistics for θ =
(β�π ′�γ′� ξ′)′ are

∑n

i=1ZiY
′
i = Z′Y and

∑n

i=1XiY
′
i =X ′Y , and part (a) of the

lemma holds.
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To prove part (b) of the lemma, note that Z′Y and X ′Y are (jointly) multi-
variate normal random matrices and Z′X = 0. For any m1�m2 ∈ R

2, we have

cov(Z′Ym1�X
′Ym2)(S6.4)

= cov

(
n∑
i=1

ZiY
′
im1�

n∑
i=1

XiY
′
im2

)

=
n∑
i=1

ZiX
′
i cov(Y ′

im1�Y
′
im2)=Z′X ·m′

1Ωm2 = 0�

where the second equality uses independence across i and the third equality
uses the assumption that the covariance matrix Ω of Yi does not depend on i.
Hence, Z′Y and X ′Y are independent.

The distribution of X ′Y is multivariate normal with variances and covari-
ances that depend on X and Ω, but not on θ, and with mean

X ′EY =X ′(Zπa′ +Xη)=X ′Xη(S6.5)

because X ′Z = 0. Hence, the distribution of X ′Y does not depend on (β�π)
and part (c) of the lemma holds.

The distribution of Z′Y is multivariate normal with variances and covari-
ances that depend on Z and Ω, but not on θ, and with mean

Z′EY =Z′(Zπa′ +Xη)=Z′Zπa′(S6.6)

because Z′X = 0. Hence, the distribution of Z′Y does not depend on (γ�ξ)
and part (d) of the lemma holds.

Part (e) of the lemma follows from parts (b)–(d). Q.E.D.

PROOF OF LEMMA AMS-2: The k-vector S is multivariate normal with
mean

ES = (Z′Z)−1/2Z′EYb0 · (b′
0Ωb0)

−1/2(S6.7)

= (Z′Z)−1/2Z′(Zπa′ +Xη)b0 · (b′
0Ωb0)

−1/2 = cβµπ�
using (S6.2), Z′X = 0, and a′β0 = β−β0. We have

var(Z′Yb0)= var

(
n∑
i=1

ZiY
′
i b0

)
=

n∑
i=1

ZiZ
′
i var(Y ′

i b0)(S6.8)

=
n∑
i=1

ZiZ
′
ib

′
0Ωb0 =Z′Zb′

0Ωb0�
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Hence, from the definition of S, var(S)= Ik and part (a) of the lemma holds.
The k-vector T is multivariate normal with mean

ET = (Z′Z)−1/2Z′YΩ−1a0 · (a′
0Ω

−1a0)
−1/2(S6.9)

= (Z′Z)−1/2Z′(Zπa′ +Xη)Ω−1a0 · (a′
0Ω

−1a0)
−1/2 = dβµπ�

From (S6.8) with b0 replaced byΩ−1a0, we have var(Z′YΩ−1a0)=Z′Za′
0Ω

−1a0.
Hence, from the definition of T , var(T)= Ik and part (b) of the lemma holds.

The random vectors S and T are independent because they are nonstochas-
tic functions of Z′Yb0 and Z′YΩ−1a0, respectively, and the latter are jointly
multivariate normal with covariance given by

cov(Z′Yb0�Z
′YΩ−1a0)(S6.10)

= cov

(
n∑
i=1

ZiY
′
i b0�

n∑
i=1

ZiY
′
i Ω

−1a0

)

=
n∑
i=1

ZiZ
′
i cov(Y ′

i b0�Y
′
i Ω

−1a0)=
n∑
i=1

ZiZ
′
ib

′
0ΩΩ

−1a0 = 0�

using b′
0a0 = 0. Hence, part (c) of the lemma holds. Q.E.D.

7. RESULTS FOR THE JUST-IDENTIFIED MODEL

Here we prove the claim given in comment (ii) following Corollary 1 that
ψ(q1� qT ;β∗�λ∗)+ψ(q1� qT ;β∗

2�λ
∗
2) is increasing in S2 when k= 1. (It is strictly

increasing unless S = 0.) This claim leads to the result that the AR, LM, and
CLR tests (which are equivalent when k= 1) maximize average power against
(β∗�λ∗) and (β∗

2�λ
∗
2) for all (β∗�λ∗) in the class of invariant similar tests. That

is, these tests are UMP two-sided invariant similar tests.
By the definition given in Corollary 1, we have

ψ(q1� qT ;β�λ)(S7.1)

= exp
(−λ(c2

β + d2
β)/2

)
(λξβ(q))

−(k−2)/4I(k−2)/2

(√
λξβ(q)

)
�

When k= 1, we have

I−1/2(x)= x−1/2(2/pi)1/2
(
exp(x)+ exp(−x))/2(S7.2)

= x−1/2(2/pi)1/2 cosh(x);
see comment (ii) to Lemma 3. When k= 1, QST = S · T . Using this and Equa-
tions (4.1) and (4.7), we have

λ∗ξβ∗(q)= λ∗(cβ∗S + dβ∗T)2�(S7.3)
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λ∗
2ξβ∗

2
(q)= λ∗(cβ∗S − dβ∗T)2�

λ∗(c2
β∗ + d2

β∗)= λ∗
2(c

2
β∗

2
+ d2

β∗
2
)�

Combining (S7.1)–(S7.3) gives

ψ(q1� qT ;β∗�λ∗)+ψ(q1� qT ;β∗
2�λ

∗
2)(S7.4)

= 1
4

exp
(−λ∗(c2

β∗ + d2
β∗)/2

)
(2/pi)1/2

× (
cosh

(√
λ∗(cβ∗S + dβ∗T)

) + cosh
(√
λ∗(cβ∗S − dβ∗T)

))
�

using the fact that cosh(·) is symmetric about zero.
Define

h1(x)= exp(x+K)+ exp(−x−K)+ exp(x−K)+ exp(−x+K)�(S7.5)

where K is a constant. The function h1(x) only depends on x through |x| be-
cause it is symmetric in x. The same is true for K, so without loss of generality
assumeK ≥ 0. We show that h1(x) is increasing in |x| by showing that its deriv-
ative is nonnegative for x≥ 0. Combining this with (S7.4) and the definition of
cosh(·) gives the desired result that the left-hand side of (S7.4) is increasing
in |S|.

The derivative of h1(x) is

h′
1(x)= exp(x+K)− exp(−x−K)+ exp(x−K)− exp(−x+K)�(S7.6)

Whereas x ≥ 0 and K ≥ 0, there are two cases to consider: (i) 0 ≤ K ≤ x
and (ii) 0 ≤ x ≤ K. For case (i), we have exp(x + K) − exp(−x − K) ≥ 0
and exp(x − K) − exp(−x + K) ≥ 0 because x + K ≥ 0, x − K ≥ 0, and
exp(·) is increasing. For case (ii), we have exp(x+K)− exp(−x+K)≥ 0 and
exp(x−K)− exp(−x−K)≥ 0 because x≥ 0 and exp(·) is increasing. Hence,
h′

1(x) is nonnegative. The inequalities are strict if x > 0.
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APPENDIX: NUMERICAL METHODS

A.1. General Numerical Notes

(a) All numerical results are based on 5,000 Monte Carlo draws ofQ except
that CLR, LM, and AR power functions are computed using 10,000 draws, and
the asymptotically efficient two-sided power envelopes for k = 2 and k = 10
are based on 2,000 draws. All computations were done in GAUSS.

(b) The statistics ψ and ψ2 have a range of many orders of magnitude,
so they were computed in logarithms. The statistic ψ2 is a function of QT

only so that, in theory, the denominator term in the LR∗ statistic can be ab-
sorbed into the conditional critical value function. However, the conditional
critical values of ln(ψ(Q1� qT ;β∗�λ∗)+ψ(Q1� qT ;β∗

2�λ
∗
2)) turn out to depend

strongly on qT , whereas the conditional critical values of this term minus
ln(ψ2(Q1� qT ;β∗�λ∗)+ψ2(Q1� qT ;β∗

2�λ
∗
2)) typically depend less strongly on qT .

Hence, numerical accuracy is improved by computing the LR∗ statistic (and its
critical values) as the difference of the two log terms.

(c) Bessel functions were computed in logarithms using the GAUSS func-
tion mbesselei.

A.2. Computation of Conditional Critical Values for Similar Tests

(a) For the conditional similar tests that involve Bessel functions, condi-
tional critical value functions were computed on a grid of 150 values of QT

(125 of which were equispaced on a log scale between the 0.5% percentile of a
central chi-squared (k) distribution andQT = 1,000, plus 25 additional points).
The 5% critical values were stored in a lookup table that was then accessed
(with linear interpolation) to compute rejection rates under the alternative.

(b) The algorithm for numerical evaluation of the p-values for the CLR
statistic is described in Andrews, Moreira, and Stock (2006).

A.3. Power Envelope for LU Invariant Tests

According to Theorems S.1, the POI LU test is constructed as the condi-
tional test of the LR form in (S3.2), against a given point alternative, where
the conditional critical value function is of the form given in Theorem S.2, and
κ1 and κ2 are chosen to satisfy the conditions of Theorem S.1.

Specifically, consider the problem of construction of the LU test that is POI
against a given (fixed) value of the alternative (β∗�λ∗) for a given value of ρ.
Denote this LR test by φ. The numerical task is to find κ1 and κ2 such that

E(φ|QT = qT )= α�(SA.1)

E(φQST |QT = qT )= 0�(SA.2)

Note that κ1 and κ2 are functions of qT . This POI LU test is implemented by
constructing two lookup tables: one for κ1 and one for κ2 (both as a function
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of qT ). At each value of qT , κ1 and κ2 can be computed by solving the Equa-
tions (SA.1) and (SA.2). These two equations were solved using the following
algorithm: (i) For a given value of qT , compute 5,000 Monte Carlo draws of Q
under the null hypothesis. (ii) Select a value of κ2. Given this value, compute κ1

as the 0.05 percentile of LR − QSTκ2; that is, κ1 is chosen to satisfy (SA.1)
(where the expectation is replaced by the summation over the 5,000 draws).
(iii) Construct

∑
MC DrawsφQST . Repeat steps (ii) and (iii) for different κ2 with

the objective of minimizing |∑MC DrawsφQST |. The minimization was done us-
ing a line search and the minimized value of | corr(φ�QST )| was always less
than 0.001. This was repeated for each value of qT on the standard grid of qT
(discussed in Section A.2) to construct the lookup tables for κ1, κ2.

To construct the power envelopes, the null rejection frequency based
on 5,000 Monte Carlo draws was calculated for each point alternative, (β∗�λ∗),
for each value of ρ and λ/k considered.
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