SUPPLEMENT TO "EFFICIENCY IN REPEATED GAMES
 REVISITED: THE ROLE OF PRIVATE STRATEGIES." TECHNICAL DETAILS FOR EXAMPLE 2
 (Econometrica, Vol. 74, No. 2, March 2006, 499-519)

By Kandori, Michihiro and Obara, Ichiro

FIrst, we show how to derive the PE payoff in Figure 2 in the main paper. The private equilibrium in Section 3.2 of the main paper relies only on the assumption $p(Y \mid D, D)>0=p(Y \mid D, C)=p(Y \mid C, D)$; thus it also works in the present example, irrespective of the level of ε. The incentive constraints (6) and (7) in Section 3.2 reduce to a quadratic equation in q,

$$
\begin{equation*}
(1-\delta)\{(h-d) q+d\}=\delta q p(Y \mid D, D)(1-q-q h) \tag{1}
\end{equation*}
$$

where q is the probability to play D. In Example 2, we have $h=6, d=1$, and $p(Y \mid D, D)=1 / 3$. Hence (1) becomes

$$
7 \delta q^{2}+(15-16 \delta) q+3(1-\delta)=0
$$

Whereas we are interested in the most efficient equilibrium, we choose the smaller root: $q(\delta) \equiv q=\frac{1}{14 \delta}\left(-15+16 \delta-\sqrt{225-564 \delta+340 \delta^{2}}\right)$. Computation shows that this solution is real and lies in $[0,1]$ when $\delta \geq 0.992$. The associated symmetric private equilibrium payoff for each player is $v(\delta)=1-7 q(\delta)$, the graph of which is depicted by the solid line in Figure 2.

Next, we present the lemmas and the derivation of $\delta(\bar{v})$ that we cited when we derived the upper bound of the PPE payoffs. Throughout this supplement, \bar{v} refers to the best symmetric payoff of the PPE payoffs.

Lemma 1: When $\bar{v}>0$, there exists a positive constant L independent of ε such that $\Delta_{1}(\omega)+\Delta_{2}(\omega) \geq L$ is satisfied for all ω.

Proof: When $\bar{v}>0$, the first-period action profile in the best symmetric PPE lies in the set

$$
Q_{+}=\left\{\left(q_{1}, q_{2}\right) \mid g_{1}\left(q_{1}, q_{2}\right)+g_{2}\left(q_{1}, q_{2}\right)>0\right\}
$$

where q_{i} is the probability that player i chooses action D. If this were not the case, so that $g_{1}^{\prime}+g_{2}^{\prime} \leq 0$ in the formula (16) in the paper, a continuation equilibrium would provide a better symmetric PPE with payoff $\left(v_{1}^{\prime}(\omega)+v_{2}^{\prime}(\omega)\right) /$ $2>\bar{v}$, which contradicts our premise that \bar{v} is the best symmetric PPE payoff. Whereas $F\left(q_{1}, q_{2}\right) \equiv g_{1}\left(q_{1}, q_{2}\right)+g_{2}\left(q_{1}, q_{2}\right)=2-6 q_{2}-6 q_{1}+10 q_{1} q_{2}$, we have

$$
\begin{equation*}
\left(q_{1}, q_{2}\right) \in Q_{+} \quad \Rightarrow \quad q_{i}<1 / 3 \quad \text { for } \quad i=1,2 . \tag{2}
\end{equation*}
$$

This is shown as follows. Note that $F\left(q_{1}, q_{2}\right)$ is linear in q_{1} and that both $F\left(0, q_{2}\right)=2-6 q_{2}$ and $F\left(1, q_{2}\right)=4\left(q_{2}-1\right)$ are nonpositive if $q_{2} \geq 1 / 3$. Hence $F\left(q_{1}, q_{2}\right)$, which is a convex combination of those values, is nonpositive if $q_{2} \geq 1 / 3$. A symmetric argument shows that F is nonpositive if $q_{1} \geq 1 / 3$. Hence F is positive only if $q_{1}, q_{2}<1 / 3$.

Note that, for any $\left(q_{1}, q_{2}\right)$, we have (i) $p\left(Y \mid q_{1}, q_{2}\right) \leq p\left(X_{k} \mid q_{1}, q_{2}\right), k=1,2$, and (ii) $p\left(Y \mid q_{1}, q_{2}\right)$ does not depend on ε. Hence, for any $\left(q_{1}, q_{2}\right) \in Q_{+}$ and any $\omega, p\left(\omega \mid q_{1}, q_{2}\right)$ is bounded below by $r \equiv \min _{q_{1}, q_{2} \in[0,1 / 3]} p\left(Y \mid q_{1}, q_{2}\right)$ (we used (2) here), which is a positive number independent of ε. Now consider the dynamic programming equation (16) in the paper. Because $\bar{v}>0, g_{1}^{\prime}\left(q_{1}, q_{2}\right)+g_{2}^{\prime}\left(q_{1}, q_{2}\right) \leq 2$, and $\sum_{\omega}\left(\Delta_{1}(\omega)+\Delta_{2}(\omega)\right) p\left(\omega \mid q_{1}, q_{2}\right) \leq$ $r \min _{\omega}\left(\Delta_{1}(\omega)+\Delta_{2}(\omega)\right.$) (this is implied by $\Delta_{1}(\omega)+\Delta_{2}(\omega) \leq 0$ (see the main paper) and $r \leq p\left(\omega \mid q_{1}, q_{2}\right)$, we have

$$
\forall \omega, \quad-L \leq \Delta_{1}(\omega)+\Delta_{2}(\omega)
$$

for $L \equiv 2 / r$. Q.E.D.

LEMMA 2: For any (large) constant $K>0$, we can find a (small enough) $\underline{\varepsilon}>0$ such that $\bar{v}>0$ requires

$$
\begin{aligned}
& \left(\Delta_{1}(\omega), \Delta_{2}(\omega)\right) \in D \\
& \quad=\left\{\left(\Delta_{1}, \Delta_{2}\right) \mid-L \leq \Delta_{1}+\Delta_{2} \leq 0 \text { and } \Delta_{i}>K \text { for } i=1 \text { or } 2\right\}
\end{aligned}
$$

for some ω if $\varepsilon \leq \underline{\varepsilon}$.
Proof: Suppose the claim does not hold. Then, for any $K>0$ and any $\underline{\varepsilon}>0$, there must be some $\varepsilon \leq \underline{\varepsilon}$ for which $\bar{v}>0$ is sustained as a symmetric $\overline{\text { PPE by }}\left(\Delta_{1}(\omega), \Delta_{2}(\omega)\right)$, which lies for all ω in a compact set

$$
D^{\prime}=\left\{\left(\Delta_{1}, \Delta_{2}\right) \mid-L \leq \Delta_{1}+\Delta_{2} \leq 0 \text { and } \Delta_{i} \leq K \text { for } i=1,2\right\} .
$$

Let $\left(q_{1}, q_{2}\right)$ be the first-period action to sustain \bar{v}. Whereas $\bar{v}>0$, the proof of Lemma 1 above shows that $\left(q_{1}, q_{2}\right) \in Q_{+}$. In addition, the incentive compatibility condition

$$
\begin{equation*}
g\left(D, q_{j}\right)-g\left(C, q_{j}\right) \leq \sum_{\omega=X_{1}, X_{2}, Y} \Delta_{i}(\omega)\left[p\left(\omega \mid C, q_{j}\right)-p\left(\omega \mid D, q_{j}\right)\right] \tag{3}
\end{equation*}
$$

is satisfied for $i, j=1,2$ and $j \neq i$, which should hold with equality if player i mixes C and D.

Given that this is true for any $\underline{\varepsilon}>0$, there is a sequence $\left\{\varepsilon^{n}, \Delta_{1}^{n}, \Delta_{2}^{n}, q_{1}^{n}, q_{2}^{n}\right\}$ such that $\varepsilon^{n} \rightarrow 0$ as $n \rightarrow \infty$, where (i) $\Delta_{i}^{n} \equiv\left(\Delta_{i}^{n}(Y), \Delta_{i}^{n}\left(X_{1}\right), \Delta_{i}^{n}\left(X_{2}\right)\right)$, (ii) $\left(\Delta_{1}^{n}, \Delta_{2}^{n}, q_{1}^{n}, q_{2}^{n}\right)$ satisfies incentive constraint (3), and (iii) $\left(\Delta_{1}^{n}, \Delta_{2}^{n}, q_{1}^{n}, q_{2}^{n}\right)$
lies in compact set $\left(D^{\prime}\right)^{3} \times[0,1 / 3]^{2}$ (here we used (2)). By (iii), there is a converging subsequence; let $\left(\Delta_{1}^{\#}, \Delta_{2}^{\#}, q_{1}^{\#}, q_{2}^{\#}\right)$ be its limit. Whereas both sides of incentive constraint (3) are continuous in ($\varepsilon, \Delta_{1}, \Delta_{2}, q_{1}, q_{2}$), the limit also satisfies (3). ${ }^{1}$ In the limit where $\varepsilon=0$, outcomes X_{1} and X_{2} always realize with an equal probability for any action profile. Hence, essentially we can regard $\left\{X_{1}, X_{2}\right\}$ as a single outcome X. This enables us to use our results in Section 3.1 of the main paper, which presumes two outcomes X and Y. To this end, define $\Delta_{i}^{\#}(X) \equiv \frac{1}{2} \Delta_{i}^{\#}\left(X_{1}\right)+\frac{1}{2} \Delta_{i}^{\#}\left(X_{2}\right)$. Whereas the limit satisfies (3), a simple calculation shows that $\left(\Delta_{i}^{\#}(X), \Delta_{i}^{\#}(Y)\right)$ satisfies the incentive constraint for the game with two outcomes X and Y.

The limit also satisfies $q_{1}^{\#}, q_{2}^{\#} \leq 1 / 3$, which implies that a unilateral deviation from $\left(q_{1}^{\#}, q_{2}^{\#}\right)$ makes X (i.e., $\left.\left\{X_{1}, X_{2}\right\}\right)$ more likely. Hence, $\left(q_{1}^{\#}, q_{2}^{\#}\right)$ is in set Q defined in Section 3.1 of the main paper. Then the upper bound in Lemma 1 in the main paper applies. ${ }^{2}$ Therefore, the payoff associated with the limit is bounded above by

$$
\begin{aligned}
\max _{\mathbf{q} \in[0,1]} g(C, q)-\frac{d(q)}{L(q)-1} & =\max _{\mathbf{q} \in[0,1]}(1-7 q)-\frac{1+5 q}{\frac{3-q}{2+q}-1} \\
& <1-\frac{1}{\frac{3}{2}-1}=1-2<0
\end{aligned}
$$

However, whereas the payoffs along the sequence are strictly positive, their limits should be nonnegative. This constitutes a contradiction.
Q.E.D.

Finally, we show how to derive $\delta(\bar{v})$, a lower bound of δ to satisfy

$$
\begin{equation*}
\left(\frac{1-\delta}{\delta} D+\left(v_{1}^{0}, v_{2}^{0}\right)\right) \cap V^{F} \neq \emptyset \tag{4}
\end{equation*}
$$

where (v_{1}^{0}, v_{2}^{0}) is an equilibrium payoff profile to obtain symmetric payoff \bar{v} (possibly with public randomization). Note that if this condition (4) is satisfied for some δ^{\prime}, then it is also satisfied for all $\delta>\delta^{\prime}$. Hence, any value of δ such that $\left(\frac{1-\delta}{\delta} D+\left(v_{1}^{0}, v_{2}^{0}\right)\right) \cap V^{F}=\emptyset$ is a lower bound of discount factor to satisfy (4).

A reasonably tight lower bound is obtained by the value of δ that is determined as in Figure S1. The two lines defined by $v_{1}+7 v_{2}=8$ and $7 v_{1}+v_{2}=8$ lie on the Pareto frontier of the feasible payoff set V^{F}, so that V^{F} is contained in set W in the figure. The shaded areas correspond to set $\frac{1-\delta}{\delta} D+v^{\prime}$. We pick the point v^{\prime} (such that $2 \bar{v}=v_{1}^{\prime}+v_{2}^{\prime}$) off the 45° line to deal with the possibility that $\left(v_{1}^{0}, v_{2}^{0}\right)$ may not be a symmetric payoff profile. The particular choice of point v^{\prime}

[^0]

Figure S1.
makes sure that, if δ is determined as in Figure S 1 , then $\frac{1-\delta}{\delta} D+\left(v_{1}^{0}, v_{2}^{0}\right)$ always lies outside of W (hence outside of V^{F}) for any possible choice of (v_{1}^{0}, v_{2}^{0}) (i.e., for any (v_{1}^{0}, v_{2}^{0}) in W (hence in V^{F}) that satisfies $v_{1}^{0}+v_{2}^{0}=2 \bar{v}$). In summary, if δ is determined as in Figure S1, then we have $\frac{1-\delta}{\delta} D+\left(v_{1}^{0}, v_{2}^{0}\right) \cap V^{F}=\emptyset$.

Figure S1 shows that we have

$$
\begin{equation*}
v_{1}^{\prime \prime}-v_{1}^{\prime}=\frac{1-\delta}{\delta} K \tag{5}
\end{equation*}
$$

The value of v_{1}^{\prime} is obtained by solving $v_{1}+v_{2}=2 \bar{v}$ and $v_{1}+7 v_{2}=8$, and we find $v_{1}^{\prime}=\frac{7 \bar{v}-4}{3}$. Similarly, $v_{1}^{\prime \prime}$ is determined by $v_{1}+v_{2}=2 \bar{v}-\left(\frac{1-\delta}{\delta}\right) L$ and $7 v_{1}+$ $v_{2}=8$, and we find $v_{1}^{\prime \prime}=\left(8-2 \bar{v}+\left(\frac{1-\delta}{\delta}\right) L\right) / 6$. By plugging these results into equation (5), we obtain a lower bound of the discount factor to support \bar{v} :

$$
\delta(\bar{v})=\frac{3 K-\frac{L}{2}}{3 K-\frac{L}{2}+8(1-\bar{v})} .
$$

Faculty of Economics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; kandori@e.u-tokyo.ac.jp

and

Dept. of Economics, UCLA, 405 Hilgard Ave., Los Angeles, CA 90095-1477, U.S.A.; iobara@econ.ucla.edu; http://www.econ.ucla.edu/iobara/.

[^0]: ${ }^{1}$ Note that signal distribution p is a continuous function of ε.
 ${ }^{2}$ This follows from the fact that the upper bound in Lemma 1 in the main paper is derived by the incentive constraint and $\mathbf{q} \in Q$, both of which are satisfied by the limit point.

