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FIRST, WE SHOW how to derive the PE payoff in Figure 2 in the main paper.
The private equilibrium in Section 3.2 of the main paper relies only on the
assumption p(Y |D�D) > 0 = p(Y |D�C) = p(Y |C�D); thus it also works in
the present example, irrespective of the level of ε. The incentive constraints
(6) and (7) in Section 3.2 reduce to a quadratic equation in q,

(1 − δ){(h− d)q+ d} = δqp(Y |D�D)(1 − q− qh)�(1)

where q is the probability to play D. In Example 2, we have h = 6, d = 1, and
p(Y |D�D) = 1/3. Hence (1) becomes

7δq2 + (15 − 16δ)q+ 3(1 − δ)= 0�

Whereas we are interested in the most efficient equilibrium, we choose the
smaller root: q(δ) ≡ q = 1

14δ(−15 + 16δ − √
225 − 564δ+ 340δ2 ). Computa-

tion shows that this solution is real and lies in [0�1] when δ ≥ 0�992. The asso-
ciated symmetric private equilibrium payoff for each player is v(δ) = 1−7q(δ),
the graph of which is depicted by the solid line in Figure 2.

Next, we present the lemmas and the derivation of δ(v) that we cited when
we derived the upper bound of the PPE payoffs. Throughout this supplement,
v refers to the best symmetric payoff of the PPE payoffs.

LEMMA 1: When v > 0� there exists a positive constant L independent of ε
such that ∆1(ω)+∆2(ω)≥L is satisfied for all ω.

PROOF: When v > 0, the first-period action profile in the best symmetric
PPE lies in the set

Q+ = {
(q1� q2)|g1(q1� q2)+ g2(q1� q2) > 0

}
�

where qi is the probability that player i chooses action D. If this were not the
case, so that g′

1 + g′
2 ≤ 0 in the formula (16) in the paper, a continuation equi-

librium would provide a better symmetric PPE with payoff (v′
1(ω)+ v′

2(ω))/
2 > v, which contradicts our premise that v is the best symmetric PPE payoff.
Whereas F(q1� q2)≡ g1(q1� q2)+ g2(q1� q2)= 2 − 6q2 − 6q1 + 10q1q2, we have

(q1� q2) ∈ Q+ ⇒ qi < 1/3 for i = 1�2�(2)
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This is shown as follows. Note that F(q1� q2) is linear in q1 and that both
F(0� q2)= 2 − 6q2 and F(1� q2)= 4(q2 − 1) are nonpositive if q2 ≥ 1/3. Hence
F(q1� q2), which is a convex combination of those values, is nonpositive if
q2 ≥ 1/3. A symmetric argument shows that F is nonpositive if q1 ≥ 1/3. Hence
F is positive only if q1� q2 < 1/3.

Note that, for any (q1� q2), we have (i) p(Y |q1� q2) ≤ p(Xk|q1� q2), k = 1�2,
and (ii) p(Y |q1� q2) does not depend on ε. Hence, for any (q1� q2) ∈ Q+
and any ω, p(ω|q1� q2) is bounded below by r ≡ minq1�q2∈[0�1/3] p(Y |q1� q2)
(we used (2) here), which is a positive number independent of ε. Now
consider the dynamic programming equation (16) in the paper. Because
v > 0, g′

1(q1� q2) + g′
2(q1� q2) ≤ 2, and

∑
ω(∆1(ω) + ∆2(ω))p(ω|q1� q2) ≤

r minω(∆1(ω) + ∆2(ω)) (this is implied by ∆1(ω) + ∆2(ω) ≤ 0 (see the main
paper) and r ≤ p(ω|q1� q2)), we have

∀ω� −L ≤ ∆1(ω)+∆2(ω)

for L≡ 2/r. Q.E.D.

LEMMA 2: For any (large) constant K > 0, we can find a (small enough) ε > 0
such that v > 0 requires

(∆1(ω)�∆2(ω)) ∈D

= {
(∆1�∆2)|−L≤ ∆1 +∆2 ≤ 0 and ∆i >K for i = 1 or 2

}
for some ω if ε ≤ ε.

PROOF: Suppose the claim does not hold. Then, for any K > 0 and any
ε > 0, there must be some ε ≤ ε for which v > 0 is sustained as a symmetric
PPE by (∆1(ω)�∆2(ω)), which lies for all ω in a compact set

D′ = {
(∆1�∆2)|−L≤ ∆1 +∆2 ≤ 0 and ∆i ≤K for i = 1�2

}
�

Let (q1� q2) be the first-period action to sustain v. Whereas v > 0, the proof of
Lemma 1 above shows that (q1� q2) ∈ Q+. In addition, the incentive compati-
bility condition

g(D�qj)− g(C�qj)≤
∑

ω=X1�X2�Y

∆i(ω)
[
p(ω|C�qj)−p(ω|D�qj)

]
(3)

is satisfied for i� j = 1�2 and j 	= i, which should hold with equality if player i
mixes C and D.

Given that this is true for any ε > 0, there is a sequence {εn�∆n
1�∆

n
2� q

n
1� q

n
2}

such that εn → 0 as n → ∞, where (i) ∆n
i ≡ (∆n

i (Y)�∆n
i (X1)�∆

n
i (X2)),

(ii) (∆n
1�∆

n
2� q

n
1� q

n
2) satisfies incentive constraint (3), and (iii) (∆n

1�∆
n
2� q

n
1� q

n
2)
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lies in compact set (D′)3 × [0�1/3]2 (here we used (2)). By (iii), there is a con-
verging subsequence; let (∆#

1 �∆
#
2 � q

#
1 � q

#
2 ) be its limit. Whereas both sides of

incentive constraint (3) are continuous in (ε�∆1�∆2� q1� q2), the limit also sat-
isfies (3).1 In the limit where ε = 0, outcomes X1 and X2 always realize with
an equal probability for any action profile. Hence, essentially we can regard
{X1�X2} as a single outcome X . This enables us to use our results in Section 3.1
of the main paper, which presumes two outcomes X and Y . To this end, define
∆#

i (X)≡ 1
2∆

#
i (X1)+ 1

2∆
#
i (X2). Whereas the limit satisfies (3), a simple calcula-

tion shows that (∆#
i (X)�∆#

i (Y)) satisfies the incentive constraint for the game
with two outcomes X and Y .

The limit also satisfies q#
1 � q

#
2 ≤ 1/3, which implies that a unilateral deviation

from (q#
1 � q

#
2 ) makes X (i.e., {X1�X2}) more likely. Hence, (q#

1 � q
#
2 ) is in set Q

defined in Section 3.1 of the main paper. Then the upper bound in Lemma 1
in the main paper applies.2 Therefore, the payoff associated with the limit is
bounded above by

max
q∈[0�1]

g(C�q)− d(q)

L(q)− 1
= max

q∈[0�1]
(1 − 7q)− 1 + 5q

3−q

2+q
− 1

< 1 − 1
3
2 − 1

= 1 − 2 < 0�

However, whereas the payoffs along the sequence are strictly positive, their
limits should be nonnegative. This constitutes a contradiction. Q.E.D.

Finally, we show how to derive δ(v), a lower bound of δ to satisfy
(

1 − δ

δ
D+ (v0

1� v
0
2)

)
∩ V F 	= ∅�(4)

where (v0
1� v

0
2) is an equilibrium payoff profile to obtain symmetric payoff v

(possibly with public randomization). Note that if this condition (4) is satisfied
for some δ′, then it is also satisfied for all δ > δ′. Hence, any value of δ such
that ( 1−δ

δ
D+(v0

1� v
0
2))∩V F = ∅ is a lower bound of discount factor to satisfy (4).

A reasonably tight lower bound is obtained by the value of δ that is deter-
mined as in Figure S1. The two lines defined by v1 +7v2 = 8 and 7v1 +v2 = 8 lie
on the Pareto frontier of the feasible payoff set V F , so that V F is contained in
set W in the figure. The shaded areas correspond to set 1−δ

δ
D+ v′. We pick the

point v′ (such that 2v = v′
1 + v′

2) off the 45◦ line to deal with the possibility that
(v0

1� v
0
2) may not be a symmetric payoff profile. The particular choice of point v′

1Note that signal distribution p is a continuous function of ε.
2This follows from the fact that the upper bound in Lemma 1 in the main paper is derived by

the incentive constraint and q ∈ Q, both of which are satisfied by the limit point.
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FIGURE S1.

makes sure that, if δ is determined as in Figure S1, then 1−δ
δ
D+ (v0

1� v
0
2) always

lies outside of W (hence outside of V F ) for any possible choice of (v0
1� v

0
2) (i.e.,

for any (v0
1� v

0
2) in W (hence in V F) that satisfies v0

1 + v0
2 = 2v). In summary, if

δ is determined as in Figure S1, then we have 1−δ
δ
D+ (v0

1� v
0
2)∩ V F = ∅.

Figure S1 shows that we have

v′′
1 − v′

1 = 1 − δ

δ
K�(5)

The value of v′
1 is obtained by solving v1 + v2 = 2v and v1 + 7v2 = 8, and we

find v′
1 = 7v−4

3 . Similarly, v′′
1 is determined by v1 + v2 = 2v − ( 1−δ

δ
)L and 7v1 +

v2 = 8, and we find v′′
1 = (8 − 2v+ ( 1−δ

δ
)L)/6. By plugging these results into

equation (5), we obtain a lower bound of the discount factor to support v:

δ(v)= 3K − L
2

3K − L
2 + 8(1 − v)

�
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