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BY MANUEL AMADOR, IVÁN WERNING, AND GEORGE-MARIOS ANGELETOS

THIS SUPPLEMENTARY DOCUMENT collects two results. First, we cover some
findings regarding the possibilities for money burning with three types. Sec-
ond, we present a result on how simple minimum savings allocations can be
improved upon if Assumption A in the paper fails.

1. MONEY BURNING WITH THREE TYPES

In this section, we study the optimality of money burning when there are
only three possible shocks. Our main result concerns the case when the prob-
ability of the middle shock vanishes. We also report some numerical findings
for higher values of the probability of the middle shock.

Let Θ = {θl� θm�θh} with θl < θm < θh. With monotonicity constraints the
downward incentive compatibility constraints can be ignored, and the problem
is

max
∑

s∈{l�m�h}
[θsU(cs)+W (ks)]ps

subject to

cs + ks ≤ y for s ∈ {l�m�h}�
θlU(cl)+βW (kl)≥ θlU(cm)+βW (km)�

θmU(cm)+βW (km)≥ θmU(ch)+βW (kh)�

cl ≤ cm ≤ ch�

Let (cfbs �kfb
s ) represent the first-best allocation for given s, which is indepen-

dent of the probabilities (ph�pm�pl).
The full parameters of the problem are (β, θl, θm, θh, ph, pm, pl). To state

our result, we consider all families of problems that are indexed by pm as fol-
lows. Let ph(pm) and pl(pm) be continuous functions such that ph(pm) +
pl(pm)+pm = 1 with limpm→0 ph(pm) ∈ (0�1). The following conditions guar-
antee the optimality of money burning for small enough pm.

PROPOSITION 1: There exists a p̄m > 0 such that the optimal allocation of the
problem with parameters (β�θl� θm�θh�ph(pm)�pm�pl(pm)) has cm + km < y
for 0 <pm ≤ p̄m if

(i) β< θl/θm;
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(ii) β>β∗, i.e., the first-best allocation is such that

θlU(c
fb
l )+βW (k

fb
l ) > θlU(c

fb
h )+βW (k

fb
h );

(iii) the (ĉ� k̂) defined by

θlU(c
fb
l )+βW (k

fb
l )= θlU(ĉ)+βW (k̂)�(1)

θmU(ĉ)+βW (k̂)= θmU(c
fb
h )+βW (k

fb
h )(2)

is such that ĉ + k̂ < y .
Conversely, if any of the inequalities in conditions (i)–(iii) are reversed, then
money burning cannot be optimal for small enough pm (i.e., there does not ex-
ist such a p̄m).

PROOF: An allocation (cs�ks) with cl < cm < ch is optimal if and only if it is
feasible and there exists nonnegative multipliers such that the following first-
order conditions hold:

(pl +µl)θlU
′(cl)= λl�(3)

(pl +βµl)W
′(kl)= λl�(4) (

pm − θl

θm

µl +µm

)
θmU

′(cm)= λm�(5)

(pm −βµl +βµm)W
′(km)= λm�(6) (

ph − θm

θh

µm

)
θhU

′(ch)= λh�(7)

(ph −βµm)W
′(kh)= λh�(8)

where λs are the Lagrange multipliers on the resource constraints and µs are
the multipliers on the incentive constraints. In addition, we require the usual
complementary slackness conditions, i.e., that the multipliers are zero if the
associated inequalities are strict.

For the sufficiency part, we proceed by explicitly constructing an allocation
as a function of the probability pm. We then show that, for low enough pm,
the constructed allocation is optimal and has money burning. The allocation
we construct satisfies the first-order conditions (3)–(8), has the resource con-
straints binding for the low and high types, and imposes the complementary
slackness condition that λm(pm)= 0.

Using (5) and (6) we can now solve for the multipliers

µl(pm)= 1 −β

β

1
1 − θl/θm

pm�(9)
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µm(pm)= 1
β

(
θl/θm −β

1 − θl/θm

)
pm�(10)

which are positive since θl/θm − β ≥ 0 and β < 1. Either equation (3) or (4)
implies that λl(pm) is strictly positive. Since µm(pm) goes to zero as pm goes
to zero, both equations (7) and (8) require that λh(pm) be strictly positive for
small enough pm.

Hence, for small enough pm, we can rearrange the first-order conditions (3),
(4), (7), and (8) as

θlU
′(cl(pm))

W ′(kl(pm))
= pl(pm)+βµl(pm)

pl(pm)+µl(pm)
�(11)

θhU
′(ch(pm))

W ′(kh(pm))
= ph(pm)−βµm(pm)

ph(pm)− θm
θh
µm(pm)

�(12)

which together with the binding resource constraints cl(pm)+ kl(pm) = y and
ch(pm) + kh(pm) = y can be solved uniquely for cl(pm), kl(pm), ch(pm), and
kh(pm), as continuous functions of pm.

Given that µl(pm)�µm(pm) > 0, we solve for cm(pm)�km(pm) from the bind-
ing incentive constraints

θlU(cl(pm))+βW (kl(pm))= θlU(cm(pm))+βW (km(pm))�(13)

θmU(cm(pm))+βW (km(pm))= θmU(ch(pm))+βW (kh(pm))�(14)

Note that cm(pm) and km(pm) are continuous in pm.
Equations (9) and (10) imply that as pm → 0, we have that µl(pm) → 0 and

µm(pm)→ 0. Equations (11) and (12) imply that as pm → 0,

(cl(pm)�kl(pm))→ (c
fb
l � k

fb
l )�(15)

(ch(pm)�kh(pm))→ (c
fb
h �k

fb
h )�(16)

because limpm→0 ph(pm) > 0 and limpm→0 pl(pm) > 0. Continuity of (cm(pm)�
km(pm)) implies that, as pm → 0,

(cm(pm)�km(pm)) → (ĉ� k̂)�

so that for sufficiently low pm there is money burning. Finally, parts (ii) and (iii)
imply that cfbl < ĉ < c

fb
h , so that indeed, for small enough pm, the monotonicity

constraints are slack: cl(pm) < cm(pm) < ch(pm).
Summarizing, for sufficiently low pm, the constructed allocation is feasible,

the monotonicity condition is slack, and all the first-order conditions are met;
hence, it is optimal.
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FIGURE 1.—Total expenditure for middle type, cm + km, as a function of the probability pm.

The converse statement follows from the fact that the allocation we con-
structed above is the only one consistent with optimality and the hypothesis of
money burning for sufficiently small pm. Hence, if condition (i) is reversed,
then µm(pm) is strictly negative; if condition (ii) is reversed, then, because
the allocation must satisfy (15) and (16), it cannot be incentive compatible
for low pm; if the inequality in condition (iii) is reversed, then the resource
constraint for the middle type cannot be met for small pm. Q.E.D.

We have also verified numerically that money burning is possible for high
enough pm for cases when condition (ii) in the previous proposition is violated.
A concrete example that yields money burning has the parameter values

β= 0�7� θh = 1�6� θm = 1� θl = 0�8� pl/ph = 0�7� y = 1

with U(c)= −c−1. This example is illustrated in Figure 1, which was produced
by the Matlab code named burn.m provided in Appendix B.1

2. DRILLING RESULT

In this section we show that, for the model with a continuous distribution of
types, if Assumption A is violated we can improve upon the proposed minimum

1This code produces two graphs that show the regions of pm where money burning can be
possible. The first graph plots the allocations of consumption given to each of the three types.
The second one shows the expenditure allocated to the middle type cm + km, as in the figure
reproduced here.
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savings allocation described by Proposition 3 in the paper. The improvement
involves removing (“drilling”) intervals previously offered.

Suppose we are offering the unconstrained optimum for some closed interval
[θa�θb] of agents and we consider removing the open interval (θa�θb). Agents
that previously found their tangency within the interval will move to one of the
two extremes θa or θb. The critical issue in evaluating the change in welfare is
counting how many agents move to θa versus θb. For a small enough interval,
welfare rises from those moving to θa and falls from those moving to θb.

Because the relative measure of agents moving to the right versus the left
depends on the slope of the density function, this explains its role in Assump-
tion A. The proof of the next result formalizes these ideas.

Let θind ∈ [θa�θb] be the agent type that obtains the same utility from report-
ing θa or θb. We find it more convenient to state the next result in terms of the
consumption allocation c(θ) and k(θ).

PROPOSITION 2: Suppose a feasible allocation has c(θ) = cf (θ) and k(θ) =
kf (θ) for θ ∈ [θa�θb], where θb ≤ θp. Then if G′(θ) is negative on [θa�θb], the
alternative allocation

c̃(θ)� k̃(θ)=
{
c(θ)�k(θ) for θ /∈ [θa�θb],
c(θa)�k(θa) for θ ∈ (θa�θind),
c(θb)�k(θb) for θ ∈ [θind� θb)

increases the objective function and remains feasible.

PROOF: Suppose that we are offering a segment of the budget line between
the tangency point for θL and that of θH� with associated allocation cL and cH .
Define the θ∗ that is indifferent to the allocation cL and cH . Then θ∗ ∈ (θL�θH)
for θH > θL. Upon removing the interval, θ ∈ (θ∗� θH) types move to cH and
θ ∈ (θL�θ

∗) types move to cL allocation.
Let ∆(θH�θL) be the change in utility for the principal of such a move

∆(θH�θL) ≡
∫ θH

θf (θH�θL)

{
θU(cf (θH))+W (y − cf (θH))

}
f (θ)dθ

+
∫ θf (θH�θL)

θL

{
θU(cf (θL))+W (y − cf (θL))

}
f (θ)dθ

−
∫ θH

θL

{
θU(cf (θ))+W (y − cf (θ))

}
f (θ)dθ�

where the function cf (θ) is defined implicitly by

θU ′[cf (θ)] = βW ′(y − cf (θ))(17)
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and θ∗(θH�θL) is then defined by

θ∗(θH�θL)U(cf (θH))+βW (y − cf (θH))(18)

= θ∗(θH�θL)U(cf (θL))+βW (y − cf (θL))�

Notice that ∆(θL�θL)= 0�
The partial of ∆(θH�θL) with respect to θH can be expressed as

∂∆

∂θH

(θH�θL)= S(θH;θ∗)
U ′(cf (θH))

β

∂cf (θH)

∂θH

�

where S(θ;θ∗) is defined by

S(θ�θ∗)≡ (1 −β)(θ− θ∗)θ∗f (θ∗)−
∫ θ

θ∗
(θ−βθ̃)f (θ̃)dθ̃�

Because U ′(cf (θH)) > 0 and ∂cf (θH)/∂θH > 0, then sign(∆1) = sign(S(θH�
θ∗)). This result is shown in Appendix A.

We only need to sign S(θH�θ
∗). Clearly, S(θ∗� θ∗)= 0. Taking derivatives we

also get that

∂S(θ�θ∗)
∂θ

= [1 −β]θ∗f (θ∗)− (1 −β)θf (θ)−
∫ θ

θ∗
f (θ̃)dθ̃�

Notice that

∂S(θ�θ∗)
∂θ

∣∣∣∣
θ∗

= 0�

∂2S(θ�θ∗)
(∂θ)2

= −(2 −β)f (θ)− (1 −β)θf ′(θ)�

Note that ∂2S(θ�θ∗)/(∂θ)2 does not depend on θ∗� just on θ. It follows that

sign
(
∂2S(θ�θ∗)
(∂θ)2

)
≤ 0

if and only if

θf ′(θ)
f (θ)

≥ −2 −β

1 −β
�(19)

that is, if Assumption A holds. Integrating ∂2S(θ�θ∗)/(∂θ)2 twice,

S(θH�θ
∗)=

∫ θH

θ∗

∫ θ

θ∗

∂2S(θ̃� θ∗)

(∂θ̃)2
dθ̃dθ�
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Thus S(θH�θ
∗)≤ 0 if Assumption A holds.

This implies then that ∆1(θ�θL) ≤ 0 for all θ ≥ θL if Assumption A holds.
Note that

∆(θH�θL)=
∫ θH

θL

∆1(θ;θL)dθ�

Hence

θf ′(θ)
f (θ)

≥ −2 −β

1 −β
⇒ ∆(θH�θL)≤ 0 for all θH and θL�

and clearly θL ∈ arg maxθH≥θL ∆(θH�θL). In other words, if Assumption A
holds, then punching holes into any offered interval is not an improvement.

The converse is also true: if Assumption A does not hold for some open
interval θ ∈ (θa�θb), then the previous calculations show that it is an improve-
ment to remove the whole interval. In other words,

(θa�θb) ∈ arg max
θL�θH

∆(θH�θL) s.t. θa ≤ θL ≤ θH ≤ θb�

This concludes the proof. Q.E.D.
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CA 94305, U.S.A.; amador@stanford.edu,

Dept. of Economics, Massachusetts Institute of Technology, E52–251A, 50 Me-
morial Drive, Cambridge, MA 02142, U.S.A.; iwerning@mit.edu,

and
Dept. of Economics, Massachusetts Institute of Technology, E52–251A, 50 Me-

morial Drive, Cambridge, MA 02142, U.S.A.; angelet@mit.edu.

APPENDIX A: LEMMA ON DERIVATIVES

LEMMA: The partial of ∆(θH�θL) with respect to θH can be expressed as

∂∆

∂θH

(θH�θL) = S(θH;θ∗)
U ′(cf (θH))

β

∂cf (θH)

∂θH

�

where S(θ;θ∗) is defined by

S(θ�θ∗)≡ (1 −β)(θ− θ∗)θ∗f (θ∗)−
∫ θ

θ∗
(θ−βθ̃)f (θ̃)dθ̃�

Since U ′(cf (θH)) > 0 and ∂cf (θH)

∂θH
> 0, then sign(∆1)= sign(S(θH�θ

∗)).
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PROOF: We have

∆1(θH�θL)

= [
θHU(cf (θH))+W (y − cf (θH))

]
f (θH)

− [
θ∗(θH�θL)U(cf (θH))+W (y − cf (θH))

]
f (θ∗)

∂θ∗

∂θH

+
∫ θH

θ∗(θH�θL)

{
θU ′(cf (θH))−W ′(y − cf (θH))

}
f (θ)

∂cf (θH)

∂θH

dθ

+ {
θ∗(θH�θL)U(cf (θL))+W (y − cf (θL))

}
f (θ∗)

∂θ∗

∂θH

− [
θHU(cf (θH))+W (y − cf (θH))f (θH)

]
�

Combining terms, we have

∆1(θH�θL)

=
(∫ θH

θ∗(θH�θL)

{
θU ′(cf (θH))−W ′(y − cf (θH))

}
f (θ)dθ

)
∂cf (θH)

∂θH

+ {
θ∗(θH�θL)

[
U(cf (θL))−U(cf (θH))

]
+W (y − cf (θL))−W (y − cf (θH))

}
f (θ∗)

∂θ∗

∂θH

�

Now, from (17) we have

θU ′[cf (θ)] −W ′(y − cf (θ)) =
[
β− 1
β

]
θU ′[cf (θ)]�

Substituting above, we get

∆1(θH�θL)

=
(∫ θH

θ∗(θH�θL)

(
θ− 1

β
θH

)
f (θ)dθ

)
U ′(cf (θH))

∂cf (θH)

∂θH

+ {
θ∗(θH�θL)

[
U(cf (θL))−U(cf (θH))

]
+W (y − cf (θL))−W (y − cf (θH))

}
f (θ∗)

∂θ∗

∂θH

�

We also have that from (18),

−θ∗(θH�θL)

β

[
U(cf (θL))−U(cf (θH))

]
= {

W (y − cf (θL))−W (y − cf (θH))
}
�
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so

∆1(θH�θL) =
{[

1
β

− 1
]
θ∗f (θ∗)

}[
U(cf (θH))−U(cf (θL))

] ∂θ∗

∂θH

−
(∫ θH

θ∗

(
1
β
θH − θ

)
f (θ)dθ

)
U ′(cf (θH))

∂cf (θH)

∂θH

�

Differentiating (18), we obtain

∂θ∗

∂θH

[
U(cf (θH))−U(cf (θL))

]

= −[
θ∗U ′(cf (θH))−βW ′(y − cf (θH))

]∂cf (θH)

∂θH

�

Using the fact that θU ′[cf (θ)] −βW ′(1 − cf (θ)) = 0 implies

∂θ∗

∂θH

[
U(cf (θH))−U(cf (θL))

] = [θH − θ∗]U ′[cf (θH)]∂c
f (θH)

∂θH

�

Substituting back, the result follows. Q.E.D.

APPENDIX B: MATLAB burn.m CODE: MONEY BURNING
WITH THREE TYPES

function burn
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% computes potential money burning allocation for the 3 type case
% reports allocation and whether or not it satisfies
% auxiliary conditions to be deemed incentive compatible
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% parameterization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% sigma=2, thetal = .8, thetah=1.6, thetam=1, ploverph = .7 betta=.7
% leads to money burning for the middle type for high enough pm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear
global betta sigma thetal thetah thetam lamda y p

% parameters
ploverph = .7; %ratio of pl over ph

ppmm=(.001:.005:.999)’; %possible values for pm
sigma = 2;
thetal = .8;
thetah = 1.6;
thetam = 1;
betta = .7;
y=1;

% first best allocation
cl_fb = y*((thetal)^(-1/sigma)+1)^(-1);
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ch_fb = y*((thetah)^(-1/sigma)+1)^(-1);
kl_fb = y - cl_fb;
kh_fb = y - ch_fb;

beta_star = thetal*(u(cl_fb) - u(ch_fb)) / (u(kh_fb) - u(kl_fb));
% when betta<beta_star, first best for low and high not IC
Ym =0; % dummy variable initialized

if (betta > thetal/thetam | betta < thetam/thetah)
’no money burning possible-!!!! change parameters’

else

for i = 1: length(ppmm)
% pause

clc;
pm=ppmm(i);

%construction ph and pl given pm and the ratio pl/pm
ph=(1-pm)/(1+ploverph);
pl=1-pm-ph;

% solve for mu
A = [-thetal/thetam, 1 ; - betta, betta];
B = [-pm ; -pm];
mu=inv(A)*B;
if mu(1) < 0 | mu(2) < 0;

display(’mu1 or mu2 is negative’); problem(i,1)=1;
else

% compute cL and cH from mu
rl = thetal*(pl + mu(1))/(pl + betta*mu(1));
% ratio of marginal utilities for the low type
rh = thetah*(ph - mu(2)*thetam/thetah)/(ph - betta*mu(2));
% ratio of marginal utilities for the high type
% if any of these ratios is negative .. this cannot be
% possible.. stop
if rl<0 | rh<0; display(’rl or rh are negative’);
problem(i,1)=1.5; else

% compute the allocation for low and high from the ratio
% of marginal utilities and income
c1l = y*[1 + rl.^(-1/sigma)].^-1; c2l = y - c1l;
c1h = y*[1 + rh.^(-1/sigma)].^-1; c2h = y - c1h;

u1l = u(c1l); u2l = u(c2l); u1h = u(c1h); u2h = u(c2h);

% now compute u1m and u2m from binding linear IC equations
% for low and medium types
Aic = [thetal, betta ; thetam, betta];
Bic = [thetal*u1l + betta*u2l ; thetam*u1h + betta*u2h];

um = inv(Aic)*Bic;

%checking that those utility values are feasible
if (sigma-1)*um(1)>0 | (sigma-1)*um(2) >0

’ utility is out of bounds’
problem(i,1) = 2;

else

%finding the consumption bundle for the middle type
c1m =[(1-sigma)*um(1)].^(1/(1-sigma));
c2m =[(1-sigma)*um(2)].^(1/(1-sigma));
c1 = [c1l, c1m, c1h]
C1(i,:) = c1;
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% check monotonicity, which is a necessary condition
% for IC and has not been imposed yet
if c1l > c1h | c1m > c1h | c1l > c1m | c2m > c2l | c2m < c2h |

c2l < c2h
’proposed solution is not IC!’
problem(i,1)=3;

else

% check sign of lamdaH (multiplier of the resource for the high
% type)
% the multiplier for the low type is positive if mu is positive
if ph - thetam/thetah*mu(2) < 0 | ph - betta*mu(2) < 0 ;

’lamdam turned out negative’
problem(i,1) = 4;

else

ym = c1m + c2m
Ym(i,1) = ym;
u1m = u(c1m); u2m = u(c2m);
U = pl*[thetal*u1l + u2l] + pm*[thetam*u1m + u2m]

+ ph*[thetah*u1h + u2h];
Etheta = (pl*thetal+pm*thetam+ph*thetah);
cpool = (1+Etheta^(-1/sigma))^(-1);
Upool = Etheta*u(cpool)+u(1-cpool);

if Upool > U
’pooling is better :p’
problem(i,1) = 5;

else
’separating is better than pooling’

end
end
end
end
end
end
end

end

clf
figure(1)
titletext(1) = {’c1 allocation for l, m and h ’};
titletext(2) = {[’\sigma =’,num2str(sigma),...

’ \theta_l =’,num2str(thetal), ’\theta_h =’,num2str(thetam),...
’ pl/ph =’,num2str(ploverph), ’\beta =’,num2str(betta)]};

beta_star

plot(ppmm(find(problem==0)), C1(find(problem==0),:))
grid
xlabel(’pm’)
ylabel(’c_1’)
legend(’c_1_l’,’c_1_m’,’c_1_h’)
title(titletext, ’fontweight’, ’bold’)

figure(2)
plot(ppmm(find(problem==0)), Ym(find(problem==0)))
grid
xlabel(’p_m’)
ylabel(’c_m + k_m ’)
title(’Total consumption for m-type’,’fontweight’,’bold’)

function f=u(x)
global sigma
f = (1/(1-sigma))*x.^(1-sigma);


