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APPENDIX A: STOCHASTIC ALGORITHM

To compute the strategies associated with a Nash equilibrium of the dynamic
game, I adapt the stochastic algorithm of Pakes and McGuire (2001) to the
discrete action setup used in this paper since the state space has up to 1.4
million states.!

I define the hit counter, denoted h(a;, x), as the number of times the loca-
tion / = (a;, x) has been visited by my algorithm. The hit counter is important
since it allows me to keep track of the precision of the computation of W (a;, x)
and ¥[a;|x] using the discrete action stochastic algorithm (henceforth, DASA).
Given a reward and transition cost function r(-) and 7(-), as well as a demand
transition matrix D, the DASA computes a solution to the dynamic game, char-
acterized by the choice-specific value function W (a;, x), and the conditional
choice probabilities V.

ALGORITHM—Discrete Action Stochastic Algorithm (DASA): An iteration
k of the DASA follows these steps:

1. Start in a location I* = {a¥, x*}, with values for W*, ¥*, and A* in memory.

2. Draw an action profile for other players a*; ~ [],_, ¥*[a}|x*]. Given the

action profile a* = {af, a*}, draw a state in the next period x**':

(S.1)  x*a* ND[Mk“lM"]Hb(xf.‘“laf.‘,xf),

where L(xf.‘+1|af?, xf.‘) is the updating function, which updates the firm’s state

based on a firm’s action and the firm’s largest size in the past.’
3. Increment the hit counter (how often you have visited the state-action
pair): A* (a¥, x*) = h*(af, x*) + 1.

"There are 10 firms, 7 possible states per firm, and, in the most complex model, 50 demand
states. I reduce the size of the state from 107 x 50 to 1.4 million by using the assumption of
exchangeability described by Gowrisankaran (1999).

Later in the paper, I make the firm’s previous state relevant to the transition cost. Specifically,
Ck
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4. Compute the value R of the action as

(S.2) R= r(ak“, xk“) — T(a'f“, xlf)

+BZWk(]7 xk+1)1pk[j|xk+1] +BE(€|xk+l, 1pk),
jeA;
where E(g|x*, W) = (y — Y iea In(Pk[j|x*+ 1) P j|x**1]) (where vy is Eu-

ler’s constant).
5. Update the W function:

(S.3) W (af, x*) = afaf, x*|R+ (1 — afal, x* ) W*(at, x"),
1 3

WGk 5Ky

6. Update the policy function ¥ for state x*:

where a =

k+1( ,k k
S wfatiet] - U@L )
Zexp(Wk+l(j, xk))

jeA;

for all actions a¥ € A.

7. Draw a new action a* ! ~ Wk k1,

8. Check the stopping rule.* If it is not satisfied, update the current location
to [¥+! = {a**!, x*1}, increment k to k + 1, and return to step 1.

The stopping rule for this algorithm is based on Fershtman and Pakes (2012),
which compares the W function to a simulated average based on rewards from
steps 2 and 4 for states that are recurrent. If the W function is exact, then
the squared difference between these two objects (weighted by the ergodic
distribution) can be accounted for by simulation error. The stopping rule is
presented in the next section.

3The main problem with the stochastic algorithm is (1) making sure the entire state space
is searched, (2) ensuring fast learning about the W function at the start of the algorithm, and
(3) making sure that the convergence properties of the algorithm are satisfied. First, I initialize
the starting W using fairly high values so that the algorithm visits all states before lowering the

estimate of W. Second, at the start of the algorithm, I use a = 1/,/h*¥+1(ak, x¥) to ensure that
initially inaccurate W’s get updated quickly. As well, I reset the hit counter after 20 million it-
erations to ensure that the first rounds of updates are down-weighted. Third, in the final stage
of the algorithm, I switch to the a = 1/A*+!(a¥, x*) update rule, which satisfies the convergence
properties of stochastic approximation algorithms described in Powell (2007 p. 216). However, in
the context of a game, this condition on a may not be enough to guarantee convergence.

“Since the stopping rule is computationally intensive relative to a single iteration of the DASA,
it is better to check the stopping rule only every several million iterations.
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The initial values of W in the stochastic algorithm are important, since if I
initialize W (a, x) with a high value, the algorithm might get trapped at this
state. To find initial values of W, I use value iteration, in which I simulate the
expectation via Monte Carlo.

A.1. Discrete Action Stochastic Algorithm: Termination Criteria

The stopping rule is based on the fact that if I have the “correct” W function,
then it satisfies the Bellman equation. However, it is computationally expensive
to calculate the W function exactly; instead, we can approximate the value func-
tion using forward simulation. Consider the locations R C A4; x X defined as
the state-action pairs visited in the last 1 million iterations (keep a hit counter
that tracks the last 1 million iterations denoted rh(l)).

ALGORITHM—Fershtman-Pakes Stopping Rule (FPStop): For all locations
[ ={a;, x} € A; x X which have been visited in the last 1 million iterations:

1. Compute an approximation to the W function using a one step forward
simulation (denoted W). For g =1, ..., Q (Iuse Q = 10,000):

(a) Draw a state tomorrow x? given location / = {a;, x}.

(b) Get rewards:

(S5)  RiI=r(a’x?, 6) + 7(af|x;, 6)
B YW ()]
+ B(y — Zln(![’[j|x"’])‘[’[j|x"/]>.

(c) Compute the approximation to the W function:
. 1L
(S6) W= o > R
q=1

2. Compute the difference in value functions weighted by the recent hit
counter rh:
S7) T S rh(hy « (W) - WD),

1
S 5
1

If the test statistic 7 is small enough, then we can argue that we have a good
approximation. In practice, I use the recent hit counter weighted R* between
W (I) and W (I) being greater than 0.999. This usually happens after as little as
50 million iterations, and it is usually more efficient to run the DASA for 150
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million iterations (i.e., 15 minutes), which leads to a W function that satisfies
the FPStop criteria. Furthermore, in this application, there are only about 3000
state-action pairs (where the action is not 0) that are visited in the last 1 million
iterations. Thus, the ergodic class R is quite small compared to the size of the
entire state space.

APPENDIX B: MODIFIED DASA TO COMPUTE THE GAMMA FUNCTION

I use a modified DASA to compute the I" function. The two differences are
that (i) I shut down the policy function update in the DASA, and (ii) I compute
the net present value of the components of rewards rather than the rewards
themselves (which would require me to have information on the parameters
6).5

ALGORITHM—I'-Compute Discrete Action Stochastic Algorithm (GC-
DASA): An iteration k of the GC-DASA is given by the following steps:

1. Start in a location /* = {a¥, x*} with values for I'* and A* in memory.

2. Draw an action profile a*|af ~ 1(a; = af) [, ﬁ[a’ii|xk] and a state in the

next period x**! given action profile a*:
(S9)  x*Ma* ~ﬁ[Mk+1|Mk]l_[L(xf“laf.‘,xf),

1

where L(xf-‘+'|af.‘, x¥) is the updating function, which updates the firm’s state

based on a firm’s action and the firm’s largest size in the past.

3. Increment the hit counter (how often you have visited the state-action
pair): h**(ak, x¥) = h* (a¥, x*) + 1.

4. Compute the ith component of payoffs R’ of the action a as

(S.10)  R'=r'(al, x""")
+ BZrk,i(j, Xk+1)ﬁ[j|xk+1].

jeA

5. Update the I'-function:
(S11)  I'*(af,x*)=aR + (1 — )" (af, x*),
°I could have computed the I'™ using forward simulation, that is,
1 K oo
(S.8) '™ (a;,s)~ X Zﬁlﬁ(a[rky Xu),

k=1 t=0

where the sequence of states x’* can be simulated using demand transition process D and the

choice probabilities for firms P. However, there are about 350,000 states and 4 actions; thus,
I would need to do this forward simulation 1.4 million times the number of simulation draws K.
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_ 1
where a = T

6. Update current location to [+ = {a¥, x*+1}.

The stopping rule is that of Fershtman and Pakes (2012).

APPENDIX C: MARKET FIXED EFFECTS
C.1. Conditional Choice Probability Estimation

In the main model, I use a market categories model which is meant to mimic
the inclusion of market-fixed effects. These market-fixed effects are critical to
the estimation of the model since persistent market-level differences in prof-
itability lead to upward bias on the effect of competition. This bias, especially
when it induces positive effects of competition, leads to very aberrant indus-
try dynamics, such as having a market flip between 0 and 10 plants due to a
positive externality due to competition. The goal of this section is to motivate
the use of market-category effects based on the average number of firms in a
market over time, and explain why other plausible corrections for market-fixed
effects using average construction employment or the number of plants in a
pre-period, do not give the right answer.

I consider the following different specifications of the market-category ef-
fects:

(a) No Market Effects.

(b) Average Number of Firms in Market (rounded to nearest integer). In the
main estimates of the model, I use the average number of firms in the market
rounded to the nearest integer. However, this approach suffers from an endo-
geneity problem. To put it most clearly, consider the following dynamic, two
firm model of the type

(S.12)  ay=aa_y+ Bai_1+ ;.

If I include a;,; in the above regression, then I am including an endogenous
regressor since a;,4 is a function of a;, which, in turn, depends on ¢;,, and more
broadly, on the entire history of &; for 7 < ¢.

(c) Average Number of Firms in Market in Years Before This One (rounded
to nearest integer). However, if I include lagged a;,_,, then this is not an en-
dogenous regressor, since there is no dependence on a;,_, except through a;,_4,
which is already included in the regression. The only issue with using the aver-
age number of firms in the market in previous years is that a market can switch
categories over time, which makes for a more difficult state space to deal with,
which is the reason that I do not use these market-category controls in the main
part of the paper.

(d) Average Number of Firms in the 19761983 Period, With Data on the Post-
1983 Period. Notice that, for this model, I am using the early period to condition
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the number of firms in the market. This is a version of model (c), but the pre-
period on which I condition does not change within a market.

(e) Average Construction Employment. Here 1 classify markets by the average
level of construction employment from 1976 to 1999. This is an exogenous clas-
sification scheme since it does not depend on what ready-mix concrete firms
are doing.

(f) Market-Fixed Effects (Conditional Logit).

Table S.I presents estimates from the binary logit model of entry and exit
for specifications (a)—(f). I have chosen the binary logit model since it allows
me to use the conditional logit with market-fixed effects.® Column (a) shows
estimates without market-category controls (henceforth referred to as no mar-
ket effects), column (f) shows estimates with market-fixed effects (henceforth
referred to as market-fixed effects), while columns (b)—(e) show different
market-category controls. Columns (b) and (c), that is, with market controls
based on the average number of plants and the average number of plants in
the periods before this one, are similar to the market-fixed effect estimates in
column (f). Likewise, columns (d) and (e) show estimates that are more similar
to the no market effects estimates in column (a).

The effects of past plant size on activity are fairly similar in all of these es-
timates, with smaller effects of plant size in the market-fixed effect specifica-
tions (f), (b), and (c) than in the no market effect specifications (a), (d), and
(e). Unobserved heterogeneity between markets is loaded onto variable indi-
cating state dependence, such as past plant size. The effect of log construction
employment is higher at 0.133 to 0.099 in the no market effect models (a), (d),
and (e) than in the market-fixed effect estimates, which have estimates from
0.033 to —0.034. These higher effects of demand are due to the fact that firms
are far more likely to react to cross-sectional differences in demand (which are
more likely to be persistent) than to year-to-year changes in demand. Like-
wise, the effect of the second competitor (which will be representative of the
effect of competition more broadly) varies from —0.074 to 0.003 in the no mar-
ket effect columns (a), (d), and (e), but ranges from —0.635 to —0.529 in the
market-fixed effect columns (f), (b), and (c). This is indicative of the fact that
unobserved differences in the profitability of a market will be correlated with
the number of plants in the market.

There are two main conclusions from the table that are relevant for my
choice of market categories. First, the market categories based on either the
average number of firms (b) or the average number of firms in all periods be-
fore today (c) do a good job in mimicking true market-fixed effects. However,

Technically, I can also use a multinomial conditional logit, but the number of categories I
need to condition on becomes fairly large. As well, I am not presenting marginal effects here,
since the conditional logit does not estimate the market-fixed effects.
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TABLE S.1
MARKET EFFECTS IN THE BINOMIAL LOGIT REGRESSION OF ENTRY AND EXIT?

(f) Conditional
Dependent Variable: Activity (a) (b) (c) (d) (e) Logit
Log County Construction ~ 0.133*** —0.034** —0.034*** 0.129*** 0.099*** 0.033
Employment (0.011)  (0.011)  (0.010)  (0.015)  (0.019) (0.023)
First Competitor —1.403%*** —1.805%** —1.748*** —1.306™** —1.421*** —2.002%**
(0.052)  (0.051)  (0.048)  (0.066)  (0.052) (0.043)
Second Competitor 0.003 —0.529*** —0.553*** —0.074  —0.008 —0.635%**
(0.036)  (0.037)  (0.036)  (0.047)  (0.037) (0.030)
Third Competitor 0.026 —0.359*** —0.384*** —0.071 0.027  —0.394%**
(0.044)  (0.044)  (0.043)  (0.058) (0.044) (0.036)
Log Competitors Above 4 0.022 —0.118*** —0.170*** —0.001 0.035  —0.187***
(0.029)  (0.028)  (0.028)  (0.040)  (0.029) (0.025)
Small 5.889%**%  5.703***  5.720%** 5.977*** 5.887***  5585%**
(0.037)  (0.035) (0.035)  (0.047)  (0.037) (0.025)
Small, Medium in Past 5.665%**% 5.388*** 5303%** 5707*F* 5.657***  5.220%**
(0.048)  (0.045)  (0.045)  (0.057)  (0.048) (0.033)
Small, Large in Past 4.866%**  4.636%** 4.643%**  4.944%** 4 865%**  4.450***
(0.065)  (0.063)  (0.062)  (0.075)  (0.065) (0.041)
Medium 7.503%#F 7.292%** 7 315FRE T.606%FF  T.495%%*  7.234%**
(0.057)  (0.055) (0.055)  (0.075)  (0.057) (0.050)
Medium, Large in Past 7.511%HF 723 7HEx 725 7 585%FF 7503 **  7.122%**
(0.080)  (0.079)  (0.079)  (0.094)  (0.081) (0.074)
Large 7.671%%*  7.446%** 7450 7724%FF T.6T76%**  7.436%**
(0.056)  (0.054)  (0.054)  (0.068)  (0.056) (0.050)
Market Classification
Variable
Average Number of Plants X
Lagged Average Plants X
Before 1983 Average Plants X
Construction Employment X
Category 2 1.053%***  1.118*** 0.225%**  0.132%**
(0.036)  (0.032)  (0.062)  (0.049)
Category 3 1.668*** 1.836™** 0.348***  (.199**
(0.050)  (0.047)  (0.058)  (0.061)
Category 4 2.203%%%  2.424%**  (0.482***  (0.169*
(0.063)  (0.062)  (0.061)  (0.082)
Constant —3.805%** —2.985%** —2.970%*** —4.089*** —3.715%**
(0.065)  (0.066)  (0.062)  (0.089)  (0.090)
Observations 409,850 409,850 409,850 260,170 409,850 409,850
Markets 2029 2029 2029 2029 2029 2029
Log-Likelihood —45,695 —44,483 —44304 27,334 45,682 —39,670
X 44,067 47,153 46,207 29,860 44985 284,475

aStandard errors are clustered by market. *, **, *** indicate statistical significance at the 5%, 1%, and 0.1% levels,

respectively.
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using categories based on the number of firms before 1983 (d), or using infor-
mation about the average level of construction demand (e), does not replicate
market-fixed effect estimates, and, in fact, mimics not having any market con-
trols whatsoever. Second, while it is true that using the average number of
firms over time conditions on an endogenous variable, I can equally easily use
the lagged number of firms that does not condition on an endogenous variable
and obtain virtually identical results. Thus, the issue of endogeneity is of lim-
ited practical importance in the use of the average number of firms over time
as a grouping.

C.2. Alternative Market Categories From Market-Fixed Effects

In this section, I present an alternative procedure for constructing market
categories based on values of the market-fixed effect. Consider the binary logit
model:

Vimt = 1(aXimt + fm > 8iml)-

I can construct market categories based on estimates of the market fixed
effect variable ¢;,,, using the following procedure:

Step 1: Run a conditional logit (with market-fixed effects) on the number of
active plants to recover parameters &, that is, everything except the market-
fixed effect £&”. Note that we can get a without the problem of incidental pa-
rameters using a conditional logit.

Step 2: Create the variable Z% = @ X, the part of the covariates that is not
the market-fixed effect.

Step 3: Run the logit on the model

Yimt = 1(Z;.m; + gm > 8imt)7

which can be done separately for each market in the data. Note that this means

that I am estimating market-fixed effects & (for which I need the number of
time periods to be large).

Step 4: Use estimated & to form groups of markets.
The estimated £™ has the distribution in Table S.II.

TABLE S.I1
DISTRIBUTION OF MARKET-FIXED EFFECT &

Percentile 10 25 50 75 90

& =3.7 -3.0 -21 —1.4 —0.7
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TABLE S.II1

BINARY LOGIT REGRESSIONS OF THE DECISION TO HAVE AN ACTIVE PLANT WITH
MARKET-FIXED EFFECTS AND MARKET-CATEGORY EFFECTS

Dependent Variable: Activity I II(FET) I (w) v \% VI VII
Log County Construction ~ 0.13 0.03 —0.03 0.053 0.051 0.030 0.024
Employment (0.01)  (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)
First Competitor -140 -202 -1.81 214 225 226 227
(0.05)  (0.04)  (0.05) (0.05) (0.05) (0.05) (0.05)
Second Competitor 0.00 -064 -053 -056 -061 —-0.61 —0.62
(0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04)
Third Competitor 0.03 -040 -036 -026 -033 —-034 034
(0.04)  (0.04)  (0.04) (0.04) (0.04) (0.04) (0.04)
Log Competitors Above 4  0.02 -0.19 -0.12 0.04 0.00 -0.13 -0.14
(0.03)  (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Small 5.89 5.59 5.70 6.49 6.46 6.46 6.46
(0.04)  (0.03) (0.04) (0.03) (0.03) (0.03) (0.03)
Small, Medium in Past 5.67 5.22 5.39 6.33 6.30 6.29 6.30
(0.05)  (0.03) (0.05) (0.05) (0.05) (0.05) (0.05)
Small, Large in Past 4.87 4.45 4.64 5.92 5.87 5.87 5.87
(0.07)  (0.04) (0.06) (0.07) (0.07) (0.07) (0.07)
Medium 7.50 7.23 7.30 7.34 7.34 7.34 7.34
(0.06)  (0.05) (0.06) (0.06) (0.06) (0.06) (0.06)
Medium, Large in Past 7.51 7.12 7.24 7.29 7.26 7.25 7.25
(0.08)  (0.07)  (0.08)  (0.08)  (0.08)  (0.08)  (0.08)
Large 7.67 7.44 7.45 7.50 7.50 7.50 7.50
(0.06)  (0.05)  (0.05) (0.06) (0.06)  (0.06)  (0.06)
Market Classification
Variable®
4 Fixed Effect Groups X
10 Fixed Effect Groups X
20 Fixed Effect Groups X
40 Fixed Effect Groups X
Observations 409,850 409,850 409,850 405,143 405,143 405,143 405,143
Markets 2029 2029 2029 2014 2014 2014 2014
Log-Likelihood —45,695 —44,483 —44,304 —35,000 —35,000 —35,000 —35,000
X? 44,067 47,153 46,207 55,000 55,000 61,000 81,000

T Market fixed-effects implemented via a conditional logit.
®Market classification variable constructed using the procedure described in the text.

Table S.III shows the binary logit results on activity, where columns 1V, V,
VI, and VII show fixed effects constructed by rounding é’" into 4, 10, 20, and
40 categories (where each category contains the same number of markets).
Notice that using these fixed effect categories yields similar results to Column
I (fixed effects) and Column II (market categories). However, to match the
market-category effects in Column III, in particular to get similar effects of log
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competitors above 4, I need to have at least 10 market groups. In the estimates
I will show you, I use 20 market categories of 4.

APPENDIX D: IDENTIFICATION OF FIXED COSTS, SUNK COSTS,
AND SCRAP VALUES

To show the intuition behind the identification of fixed costs, sunk costs, and
scrap values, I will use a simplified model. Suppose that I have variable profits
V(X ) where X are time invariant profit shifters, fixed cost f, entry costs i, and
exit costs ¢. Then the entry and exit rules in a stationary environment are:

e Enter iff:

Sy VX))~ f

;ﬁwvmn—ﬂ= =5 =V
o Exit iff:

Sy VX))~ f

;ﬁuvmn—n= =5 <%

In this case it is clear that f, ¢, and ¢ are linearly independent. Adding future

exit rates, 6 (which at this point are generated by shocks to the exit value ¢ + &

that I do not want to put in this simple model), will adjust these equations to:
e Enter iff:

VXx)—-f ¢

T—pi-0s) "1-ps ="
o Exit iff:

VX)—-f ¢

T—pi—s 1-ps %

Again, we have the same collinearity problem as before. However, if future
exit rates are different in different markets (say, due to differences in future
demand shocks, such as a market at the top demand level, versus one at the
bottom demand level), then we have a §(X) that depends on the state X. This
allows us to separately identify f and ¢ in the exit equation given that we know
V(X) and 6(X):

Vx)—f + ¢ -
1-B(1-6(X)) 1-pB6(X)

®.

Now, given that we know f and ¢, the entry equation becomes

V(X)—f N b
1-BI—8(X))  1—B5(X)

> .
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So, formally, I can separately identify f, ¢, and . What makes this difficult is
that I need enough variation in §(X) for this to work, and this variation is not
very important either in Monte Carlo simulations or in the data.

APPENDIX E: SIMULATED INDIRECT INFERENCE ESTIMATION

The simulated indirect inference estimator used in equation (S.19) uses
the choice probabilities W(a|x, I', #) as an outcome vector, that is, y, =
V(alx, I', 0). Typically, one would sample outcomes y, from the choice prob-
abilities ¥ (alx, I', 6). I can show that using the y, is equivalent to sampling
actions as the number of actions tends to infinity.

Denote the outcome vectors y;, as

1(a$ = small)
(8.13) y, =| 1(a}, = medium) |,

1(as, = big)
where the action a, ~ ¥(-|x, I', 8) is drawn from the choice probabilities V.
The simulation draws are indexed from s =1,...,S. The B5(0) coefficient is

estimated using outcome vectors {y’};-1..s... The criterion function using S
simulation draws of actions is thus

(S.14)  Q%(8) = (B — B(O)) W(B — B(0)).

E.1. Consistency Proof

In this section, I show conditions under which the procedure I use in this
paper is a consistent estimator of 6. Specifically, I show the conditions that
need to be satisfied for Proposition 1 on p. S89 in Gourieroux, Monfort, and
Renault (1993), dealing with the consistency of indirect inference estimators,
to be satisfied. ~

Define the criterion function used to compute B(6) (for a given value of 6)
as

N K
(S.15) SV, 0)=>" > [1(ak =small) - Z,8,]’

n=1 k=1
+ [1(a) = medium) — Z,,,Bm]2
+ [1(ay =large) — Zn,Bz]z,

where N denotes the number of observations and K denotes the number of
simulation draws to draw actions a* from the policy function ¢ (a,|x,, 6, I'(P~,
DY)). Note that SV-X(, 9) is the criterion used in OLS estimation, just the
sum of squared errors.



12 ALLAN COLLARD-WEXLER

The first step is to show that I can replace draws of a* with the actual pol-
icy function ¢, or in other words, SV-X(B, ) —*% SN-*(B, #) uniformly as
K — oc.

THEOREM 1: As the number of simulation draws K tends to infinity,
SNVK(B, 0) == SN->(B, 0) uniformly.

PROOF: I show the proof using only the choice to be small to lighten the
notation, but the proof extends to as many actions as I want:

N K
(S.16)  SVK(B.0) =) & LS 1(af = small) - Z,8,F
k=1

n=1

N N K 1
= Z(Znﬁs)z + Z Z El(aﬁ = Small)2

As K — oo, Zf . ll<1(a = small) — ¢(a, = small|x,, 6, I“(I3 13)), since this
is just an average, and Zk , 1(al = small)> - (a, = small|x,, 6, I'(P, D))
Thus I can rewrite SV-*°(B, 0) as

N N
(S17)  SV*(B,0) = (Z.B)*+ Y ¥(a,=smalllx,, 6, I'(P, D))’

n=1 n=1

N
—2) " Z,B(a, =smalllx,, 0, I'(P, D))

n=1

N
= Z[gl/(an =small|x,, 6, ['(P, D)) — ZHBS]Z.
n=1

Second, I need to show that SV->(B, 0) —*= §%>*(B, §) as N — oo. The first
condition is that the linear probability estimator is consistent, which is just an
outcome of the OLS estimator being a consistent estimator, which is a stan-
dard proof. However, I am not using the true I'°(P°, D°), but an estimate of
I'(P, D) due to sampling error in the conditional choice probabilities P and
the demand transition process D, as well as approximation error in the compu-
tation of I". The CCP’s PN — P°, which happens since I am using a consistent
estimator of the CCP’s, just a parametric multinomial logit, which is consistent
using the usual proofs on the consistency of M-estimators. Likewise, DV — D°
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as N — oo, since I am using a consistent estimator of D, just a bin estimator
where the number of bins is fixed as N — co. Now, the next point is to show
that I'* (P°, D°) — I'°(P°, D°) as the number of iterations L in the DASA goes
to infinity. It will be difficult to show convergence of the DASA, since to my
knowledge there is no proof of the convergence of algorithms that compute
the solutions to games (in contrast to single agent problems). However, the
Fershtman and Pakes (2012) convergence criterion can be used to check the
convergence of the DASA, and I can send the tolerance of the Fershtman—
Pakes criterion to 0 as N — oo.’

The convergence of I'“(P°, D°) — I'(P°, D") implies the convergence of
SNE(B, 6) — §=(B, 0) as K — oo and N — oo. This satisfies Assumption
(A2) in indirect inference, where the notation (A2) referes to the numbering
of assumptions in Gorieroux, Monfort, and Renault (1993).

Assumption (A3) of indirect inference requires that

(S.18) ,é(@) = argmax S>> (B, 6)
B

be a continuous function and have a unique value. Continuity is an outcome
of the OLS structure of S, while uniqueness occurs if Z, is full rank and the
dimension of B is smaller than the dimension of Z,,.

The final condition, (A4), requires that 3(6) be one to one and have full
rank. I assume this condition, but notice that the dimension of 8 is larger than
the dimension of 8, and I have checked that B(O) is full rank in the estimation
of the model.

Since conditions (A1), (A2), (A3), and (A4) are satisfied, then 6, defined as
the minimizer of

(S.19)  Q(8) = (B - B(B)W(B—B(9)),

will be a consistent estimator of 6 as N — oo. Q.E.D.

"Notice that, since there is a full support shock & to the payoffs of any actions, I" is computed
correctly on the entire state space S, since the set of recurrent points is the entire state space,
that is, S = R. The DASA used to compute I” is a version of the Q-learning algorithm, where
consistency proofs are provided for the single agent (non-game version) in Propositions 5.5 and
5.6 on pp. 248-249 in Bertsekas and Tsitsiklis (1996), which show conditions under which the
DASA's (which is the game version of a Q-learning algorithm) computation of I"* converges with
probability 1 to I'’. These conditions are (1) that policies are proper, that is, there is a positive
probability that a firm will exit after ¢ period, which is true in this context due to the full support
of the shock distribution for each action, including the choice to exit; and (2) for improper poli-
cies, there is a negative infinite value of W for at least one state. Unfortunately, there is, to my
knowledge, no proof that shows the convergence of the Q-learning algorithm in the context of a
game.
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APPENDIX F: SERIAL CORRELATION

The assumption that the unobserved state ¢, are i.i.d. logits implies the fol-
lowing assumption:

ASSUMPTION 1—Serial Independence: Unobserved states are serially inde-
pendent, that is, Pr(&t|e¥) = Pr(e!) for k # t.

Serial independence of unobserved components of a firm’s profitability is
violated by any form of persistent productivity difference between firms, or
long-term reputations of ready-mix concrete operators. Note that, in the con-
text of a dynamic game, unobserved states are a first-order problem since the
size of the firm-level state x! is severely restricted by the difficulty of keeping
track of the joint distribution of the states of all firms.

I simulate the age profile of exit using the exit and size changes in Ta-
ble II, which captures what the age profile of exit would look like in the
absence of selection on an unobserved state. With a serially correlated un-
observed state, as plants age their exit rate falls due to the effect of select-
ing out plants with a bad unobserved state. Figure S.I shows the exit haz-

Exit Hazard and Plant Age

7% [
6%
[0
T
o
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4%
30/0 Il Il Il J
0 5 10 15 20
Plant Age

FIGURE S.I.—The data predict a slightly steeper decline of the exit hazard with age.
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ard with age in the data and simulated data. Both the data and the simula-
tion have the same average exit rate of about 6%, but the data have a some-
what steeper decline in exit rates over time, so a plant aged 20 years old
has an exit rate of about 3.5% in the data, while the simulated data yield a
exit rate of about 5.2%. This is consistent with most models of industry dy-
namics with a serially correlated unobserved state, and the active or passive
learning models of Pakes and Ericson (1998) and Jovanovic (1982), but is a
small effect compared to other industries such as restaurants, where we would
worry more about unobserved states. I do not deal with serial correlation,
and both the estimates and counterfactuals will be contaminated by this prob-
lem.

APPENDIX G: PRICE DATA

The Census Bureau does not generally collect price data. This job is left to
the Bureau of Economic Analysis and the Bureau of Labor Statistics. How-
ever, following Syverson (2004a), we can generate prices using the following
equation:

si(c)
qi(¢) ’

(8.20)  pu(o)=

which is just sales of the commodity divided by quantity sold. While these
“prices” may be good indicators of price dispersion (the application Syverson
considered), they are particularly poor measures of actual plant prices, with an
interquartile range over 2 log points (the third quartile is 100 times bigger than
the first price quartile). This is probably because of how measurement error in
the numerator and especially the denominator interact.

To reduce the impact of imputed data and measurement error on the disper-
sion of prices, I apply a version of Syverson’s (2004b) procedures:

1. Hot Imputes in the data are identified as prices that satisfy the follow-
ing:

(S21)  |pi— pi| <0.0001 forsome iand j in the data.

I drop all prices that are hot imputes. Notice that this procedure will also
eliminate cold imputes, defined as prices that equal the mode in the current
year.

2. I trim the data by dropping observations that are less than 1/5 or more
than 5 times the median price for the current year.

The deflated data are computed by p?* = p!/cpi’, where I normalize the
cpi in 1977 to be equal to 1 (i.e., cpi’ = raw cpi’/raw cpi" ). This eliminates
differences in price level across time, but does not incorporate differences in

prices between regions.
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APPENDIX H: ADDITIONAL TABLES AND FIGURES

TABLE S.IV

THE NUMBER OF BIRTHS, DEATHS, AND CONTINUERS IS FAIRLY STABLE OVER THE
LAST 25 YEARS

Year Birth Continuer Death
1976 501 4737 N.A.
1977 557 4791 410
1978 327 5043 445
1979 392 5093 333
1980 271 5140 387
1981 313 5069 360
1982 313 4875 423
1983 273 4991 315
1984 328 4972 295
1985 309 4988 339
1986 300 5003 305
1987 390 4898 404
1988 270 5016 269
1989 248 4275 448
1990 194 4103 304
1991 220 3882 291
1992 214 4643 348
1993 133 3668 270
1994 163 3952 232
1995 196 3840 243
1996 195 3734 230
1997 338 4768 274
1998 239 4949 267
1999 320 4961 234
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