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ROBUST INFERENCE ON INFINITE AND GROWING DIMENSIONAL
TIME-SERIES REGRESSION
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We develop a class of tests for time-series models such as multiple regression with
growing dimension, infinite-order autoregression, and nonparametric sieve regression.
Examples include the Chow test and general linear restriction tests of growing rank
p. Employing such increasing p asymptotics, we introduce a new scale correction to
conventional test statistics, which accounts for a high-order long-run variance (HLV),
which emerges as p grows with sample size. We also propose a bias correction via a
null-imposed bootstrap to alleviate finite-sample bias without sacrificing power unduly.
A simulation study shows the importance of robustifying testing procedures against the
HLV even when p is moderate. The tests are illustrated with an application to the oil
regressions in Hamilton (2003).

KEYWORDS: Growing number of restrictions, high-order long-run variance, non-
parametric regression, infinite-order autoregression.

1. INTRODUCTION

THIS PAPER develops asymptotically valid tests for inference on infinite-order and grow-
ing dimensional time-series regression models, revealing the presence of an hitherto un-
detected nonlinear serial dependence or high-order long-run variance (HLV) factor. This
factor depends on the model error and regressors in a nonlinear fashion, and can appear
in limit distributions when the data exhibit dependence and the number of restrictions
grows. Chow tests and tests for linear restrictions are both covered. Our theory, simula-
tions, and empirical results show the deleterious effect of ignoring the HLV term, and
we propose a testing procedure that is robust to its presence. This is shown to possess
desirable finite-sample properties. While the HLV factor is revealed by our increasing
dimension asymptotics, it can contaminate inference even in multiple regressions with a
moderate number of covariates. Such specifications are ubiquitous in practice. Thus, the
findings and recommendations of this paper are important for practitioners wishing to
make correct inferences when data are dependent.

Models of infinite or growing dimension have been widely studied in the recent econo-
metric literature, reflecting modern applications with rich sets of variables. For example,
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the asset pricing literature has suggested hundreds of potential risk factors to explain
returns; see Feng, Giglio, and Xiu (2020). With a larger number of observations accumu-
lating over time, it is natural to include more of these variables as covariates even without
resorting to penalized estimation methods. In fact, an attitude that permits the number of
covariates to grow as a function of sample size is tacitly adopted in the literature. In a sur-
vey, Koenker (1988) observed that the number of regressors in empirical work increases
as the sample size n increases, roughly like n1/4, suggesting that practitioners implicitly
treat model complexity as a function of sample size. Finally, nonparametric methods such
as series estimation have found wide applications in the economics and finance literature;
see, for example, Jordà (2005), Chen (2007), Chen and Christensen (2015). These meth-
ods involve the approximation of an infinite-order model with a sequence of growing di-
mensional models. Taken together, this proliferation of models highlights the importance
of developing appropriate techniques for their study.

Our approach is to develop tests for null hypotheses that involve a growing number of
restrictions p in time-series regression, with p increasing slower than sample size. As a
leading example, we consider the Chow test, due to Chow (1960), to test for a structural
break at a prescribed time. This has the advantage of being a simple exclusion restric-
tion test with wide applicability. After examining the key issues in this simple context, we
present results for the testing of general linear restrictions. This extends specification tests
with slowly growing p; see, for example, Hong and White (1995) and Gupta (2018), to
time-series regression. However, our testing problem is distinct from the so-called “many
restrictions” setting in, for example, Calhoun (2011), Anatolyev (2012, 2019), Kline, Sag-
gio, and Sølvsten (2020), among others, where the number of restrictions grows propor-
tionally to sample size.

We derive the asymptotic distribution of the Chow test Wald statistic centered by p and
normalized by

√
2p. This yields asymptotic normality with an unknown asymptotic vari-

ance V , which we term the HLV, provided that p meets certain growth conditions. The
HLV factor V captures high-order autocovariances of the regressors and disturbances,
echoing the long-run variance that appears in fixed dimensional time-series regression,
and vanishes under simplifying assumptions that remove these high-order autocovari-
ances. The new HLV factor V does not appear in fixed p asymptotic regimes, nor does
it appear in the independent data setting of Hong and White (1995), who use the same
transformation and obtain asymptotic standard normality.

We robustify the Chow test against the HLV by a random scaling because of numerical
evidence that asymptotic normal inference based on consistent estimators of HLV per-
forms poorly in finite samples, reported in Section 6. The random scaling is motivated
by heteroskedasticity autocorrelation robust (HAR) inference; see, for example, Kiefer
and Vogelsang (2002), Sun (2014), and Lazarus, Lewis, Stock, and Watson (2018), just
to name a few. The resulting asymptotic distribution is pivotal. However, unlike conven-
tional HAR inference, where the standard Wiener process characterizes mixed normality,
our limit distribution is represented by two dependent centered Gaussian processesW (r)
and W̄ (r) such that EW (r)2 = r2 and EW̄ (r)2 = (1− r)2. Although pivotal, the asymptotic
distribution depends on the location of the hypothesized break date, and thus we provide
R code to compute the p-values. Similarly, we robustify the general linear restrictions
Wald test to the HLV and provide suitable R code.

Finite sample bias in the Wald statistic, or in quadratic statistics, more generally, is a
serious issue when p is large; see, for example, Kline, Saggio, and Sølvsten (2020) for
more discussion and a bias correction proposal that works well even when p is propor-
tional to the sample size but under independent sampling. Our simulations document
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that the problem is even worse in time-series regression. Thus, we propose a bootstrap
bias correction, which imposes the null hypothesis in the resampling so as not to sacrifice
power unduly. Even a small number of bootstrap iterations appear sufficient to reduce the
bias, making computation easily manageable. Based on these findings, we recommend a
bias-corrected and HLV-robust test to practitioners.

In simulations for a range of settings across regression with many covariates, long AR
fits and sieve regression, we demonstrate that our statistic exhibits excellent size control
without sacrificing power excessively. Failure to correct for the HLV can seriously affect
inference, in general leading to overrejection and often severely so. Such a pattern is
shown to persist for the two types of tests that we provide: Chow tests and exclusion
restrictions. In an empirical example based on Hamilton (2003, 2009), we show that using
our bias-corrected and HLV-robust tests can yield inferences that lead to new conclusions
when considering the relation between oil prices and economic activity.

The paper is organized as follows. Section 2 introduces the model and the Chow test,
along with some basic assumptions and examples. In Section 3, we provide an asymptotic
theory while Section 4 introduces our HLV-robust and bias-corrected test statistic. The
testing of general linear restrictions is covered in Section 5. Section 6 contains a Monte
Carlo study of finite-sample performance, and Section 7 demonstrates our test with real
data. All the proofs of theorems and lemmas are collected in two further Appendices, the
second of which is available online (Gupta and Seo (2023)). Throughout the paper, cross-
referenced items prefixed with “S” can be found in this Online Supplementary Appendix.
An R-package to reproduce the simulations and empirical example is available in the
replication files.

2. CHOW TEST IN GROWING AND INFINITE-ORDER REGRESSION

We consider the issue of testing for a structural break at a known point in the condi-
tional mean function of yt given the information available up to t − 1, that is, E(yt|Ft−1),
where Ft−1 denotes the filtration up to time t − 1. In nonparametric regression, Ft−1 typi-
cally consists of a finite number of observable covariates zt . In the context of the infinite-
order autoregressive AR(∞) model, Ft−1 is the collection of all the lagged dependent
variables, {yt−j}j≥1. Alternatively, it can be viewed as a genuine high-dimensional regres-
sion model, which may contain an infinite number of covariates and their lags. We allow
for array structure but we do not introduce further notation to denote it unless necessary.

Given a sample of size n, we estimate the unknown regression function via a growing-
dimensional (or truncated) linear regression

yt = x′
ntβn + ent� (2.1)

where xnt and βn are p-dimensional vectors and p→ ∞ as n→ ∞ to estimate E(yt|Ft−1)
consistently. To be more precise, let

εt = yt −E(yt|Ft−1)�

βn be the best linear predictor of yt given xnt , and rnt = E(yt|Ft−1) − x′
ntβn. Then ent =

rnt + εt . Throughout the paper, let C (c) denote a generic positive and finite constant,
arbitrarily large (small) but independent of n, and “a.s.” stand for “almost surely.” We
introduce the following assumptions.

ASSUMPTION 1: The martingale difference sequence {εt} satisfies σ2
t ≤ C, where E(ε2

t|
Ft−1) = σ2

t , and E(ε4
t|Ft−1) ≤ C, a.s.
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The theory presented in the paper may not hold if in fact we only have E(xntεt) = 0 as
the long run variance of xntεt will then appear in the type of quadratic statistics that we
consider.

ASSUMPTION 2: For a= 1�2,

sup
t

E
(
r2a
nt

) = o(n−1
)
� (2.2)

We discuss this assumption on the negligibility of the approximation error in more de-
tail in Section 6, where specific examples are introduced. The subscript n will now usually
be dropped, although we will emphasize this occasionally to remind the reader of the
n-dependence of certain quantities.

Introduce a potential structural break for these models at a given time, say t = [nγ],
γ ∈ �⊂ (0�1), with � compact and [·] denoting the integer part of the argument. That is,
β= β1if t/n≤ γ and β= β2if t/n > γ. We write the model as

yt = x′
tβ11{t/n≤ γ}+ x′

tβ21{t/n > γ}+ et = x′
tδ1 + x′

tδ21{t/n > γ}+ et� (2.3)

where δ1 = β1, δ2 = β2 − β1, and 1{·} denotes the indicator function. Consider the Wald
test for the exclusion restriction δ2 = 0, namely the Chow test for the presence of a struc-
tural break at a known date.

Let δ̂(γ) and êt (γ) denote the OLS estimate and the OLS residuals, respectively, and
xt (γ) := (x′

t � x
′
t1{t/n > γ})′. Also, let M̂(γ) = n−1

∑n

t=1 xt (γ)xt (γ)′, and 
̂(γ) denote an
estimator of Eε2

t xt (γ)x′
t (γ). For instance, 
̂(γ) can be set as n−1

∑n

t=1 xt (γ)xt (γ)′êt (γ)2

(the Eicker–White formula) or, assuming conditional homoskedasticity, it can be
σ̂ (γ)2M̂(γ), where σ̂2(γ) = n−1

∑n

t=1 êt (γ)2. The choice depends on the case being con-
sidered. Then the Wald statistic for the familiar Chow test is defined as

Wn(γ) := nδ̂2(γ)′(RM̂(γ)−1
̂(γ)M̂(γ)−1R′)−1
δ̂2(γ)� (2.4)

where R= (0p×p : Ip) is a selection matrix.
When the dimension p of xt grows with the sample size n, the Wald statistic diverges

as it is approximately chi-squared distributed with p degrees of freedom. Thus, a con-
ventional approach, as used, for example, by de Jong and Bierens (1994) and Hong and
White (1995) in the cross-sectional (independent data) framework is to introduce a new
centering and scaling to define

Qn(γ) := (
Wn(γ) −p)

/
√

2p� (2.5)

since the mean and variance of a chi-square distribution with p degrees of freedom are
p and 2p, respectively. Furthermore, it has been established that the standard normal
approximation of Qn is valid in their settings. Subsequent sections investigate how this
conventional approach fails in the context of growing or infinite-dimensional time-series
models, mirroring the failure of time-series inference procedures without heteroscedas-
ticity and autocorrelation correction or robustification.

3. ASYMPTOTIC DISTRIBUTION OF Qn

This section provides the asymptotic distribution of the Chow test statistic under the
null and also shows that the statistic has nontrivial power against local alternatives at an
appropriate nonparametric rate.
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There has been some recent interest in the so-called many regressor setting where p is
allowed to be proportional to n; see, for example, Cattaneo, Jansson, and Newey (2018)
and Kline, Saggio, and Sølvsten (2020). We do not permit such a large p as our hypothesis
of interest concerns a p-dimensional restriction and the design matrix of time-series data
faces more difficulties in satisfying the rank condition. In this regard, Chen and Lockhart
(2001) provide an interesting example from an ANOVA design where the weak conver-
gence of the empirical distribution of residuals from the linear regression with growing
dimension fails when the dimension p is of order n1/3. They compare various growth con-
ditions for p in the literature and conclude that p3 log2p = o(n) is nearly necessary for
a general stochastic design. Heuristically, a hypothesis represented through the empirical
distribution function imposes an infinite number of restrictions, as our structural break
testing also does, and valid testing of such a hypothesis demands a tighter control on the
growth rate of p.

3.1. Asymptotic Null Distribution

Define ‖A‖ ={λ(A′A)}
1
2 for a generic matrix A, where λ (resp., λ) denotes the small-

est (largest) eigenvalue of a symmetric nonnegative definite matrix. Any limit stated as
“n→ ∞” is taken as both n and p grow to infinity simultaneously unless specified other-
wise. We also introduce the p×p nonstochastic matrix sequences M and 
 and define

M(γ) =
[

M (1 − γ)M
(1 − γ)M (1 − γ)M

]
� 
(γ) =

[

 (1 − γ)


(1 − γ)
 (1 − γ)


]
�

ASSUMPTION 3: (i) supi�t Ex
4
ti <∞.

(ii) For r ∈ �∪{1},∥∥∥∥∥n−1
[nr]∑
t=1

xtx
′
t − rM

∥∥∥∥∥ +
∥∥∥∥∥n−1

[nr]∑
t=1

xtx
′
tσ

2
t − r


∥∥∥∥∥ =Op(κp)�

∥∥
̂(r) −
(r)
∥∥ =Op(vp)�

λ(M) > λn� λ(
) > λn�

for some positive sequences of numbers κp, vp, and λn satisfying

λ−4
n

√
p

(
λ−1
n κp + vp

) → 0 and λ6
np→ ∞� (3.1)

(iii) limn→∞ λ(M) <∞, limn→∞ λ(
) <∞.

Several factors determine the bound κp for nonparametric series regression. It is pro-
portional to

√
p/n or p/

√
n up to logarithmic factors with iid data, depending on the

choice of basis functions. For dependent data, the mixing decay rate also contributes to
κp. The exact rate vp depends on a particular example. We formally introduce our ex-
amples of multiple linear regression, AR(∞) and nonparametric sieve regression in Sec-
tion 6. Primitive conditions and expressions for κp and vp are given in Propositions B.1
and B.2 in Appendix B, using the results of Peligrad (1982), Newey (1997), Gonçalves and
Kilian (2007), and Chen and Christensen (2015).
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Recall that the eigenvalues of the Kronecker product of two symmetric matrices are the
products of their eigenvalues, and γ is bounded away from zero and one. Thus,M(γ) and

(γ) inherit the eigenvalue restrictions on M and 
 in Assumption 3(ii) and (iii), up to
positive constants.

To develop the distributional limit of Qn(γ) where both n and p diverge simultaneously,
we introduce more conditions. Now, for convenience we let ξt = 
−1/2xtεt , Gt denote a
filtration for ξt , ϒt = E(ξtξ′

t|Gt−1), and �s = ∑s−1
t1=1

∑s−1
t2=1 ξt1ξ

′
t2

. The filtration Gt need not
be Ft but a simpler one as long as it makes ξt a mds. Indeed, some conditions may be
easier to verify under simpler filtrations. The next assumption introduces the HLV factor
V formally.

ASSUMPTION 4: Suppose that max1≤t≤n λ(ϒt) = op(nν), for some ν ∈ [0�1/3),
max1≤t≤n E((ξ′

tξt)
2|Gt−1) = op(nω), for some ω ∈ [0�1 − ν),

∑n

t=1

∑t−1
s=1 cov(tr(ϒt�t)�

tr(ϒs�s)) = o(n4p2), and there exists V such that for l= 0 or [nγ] and for m that is propor-
tional to n,

lim
n→∞

1
mp

tr
m−1∑
t1=1

m−1∑
t2=1

E
(
ξm+lξ′

m+lξt1+lξ′
t2+l

) = V � (3.2)

The first condition can be met if moments of λ(ϒt) of an order higher than 1/ν are
bounded for all t. The restriction on the summability rate of cov(tr(ϒt�t)� tr(ϒs�s)) is
related to the dimension p. To gain some insight, consider the case where the conditional
moment ϒt is homogeneous, so that ϒt = Ip for all t. Then some tedious algebra yields
that cov(tr(ϒt�t)� tr(ϒs�s)) =O(n2p) uniformly over all s� t with s < t. This implies that
the double sum of the covariances is O(n4p), and thus meets the required condition as
p→ ∞. Our assumption says that more generally this double sum over covariances must
be o(n4p2) as n�p→ ∞.

Also, note that under the special case where {xtεt} is an iid sequence, we have V =
limm�p→∞m−1

∑m−1
t=1 p

−1trE(ξmξ′
m)E(ξtξ′

t) = 1; thus V is an extra factor that appears in
the limit due to nonlinear dependence in the data. In particular, it captures a high-order
serial correlation of ξt , while ξt itself does not have serial correlation since it is a martingale
difference sequence.

For mean zero random variables a1i� a2j� a3k� a4l, let cumijkl(a1i� a2j� a3k� a4l) denote the
fourth cumulant.

ASSUMPTION 5: {xtiεt}t∈Z is fourth-order stationary for all i = 1� � � � �p. Furthermore,
supi�j=1�����p

∑∞
t=−∞ |cij(t)| < ∞, where cij(t) = E(xr�iεrxr+t�jεr+t) for integer r, and

supi�j�k�l=1�����p

∑n

t1�t2�t3=−n |cumijkl(x0�iε0�xt1�jεt1�xt2�kεt2�xt3�lεt3 )| =O(n2).

This assumption controls the temporal dependence in {xtεt} and is discussed in An-
drews (1991b), for example, wherein sufficient conditions for it to hold are also provided.
The following theorem establishes distributional convergence for a given γ.

THEOREM 3.1: Let Assumptions 1–5 and H0 hold. Then Qn(γ)
d→ N (0�V), for a given

γ ∈ �.

Theorem 3.1 highlights the distinctive feature of testing growing number of restrictions
in time-series regressions. Unlike the independent cross-sectional case, we have to ro-
bustify the test against the HLV term V . The provenance of this term can be illustrated
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by some formulae, details of which are contained in the full proofs. These proofs first
establish (Theorem SL.B.6) that

Qn(γ) := Wn(γ) −p√
2p

= Rn(γ) −p√
2p

+ op(1)� (3.3)

where

Rn(γ) = [
γ(1 − γ)n

]−1

∥∥∥∥∥
[nγ]∑
t=1

ξt − γ
n∑
t=1

ξt

∥∥∥∥∥
2

=
∥∥∥∥∥n−1/2

n∑
t=1

ψt (γ)ξt

∥∥∥∥∥
2

� (3.4)

and ψt (γ) = (1(t/n≤ γ) −γ)/
√
γ(1 − γ). Also, note that n−1

∑n

t=1ψt (γ)2 → 1. Thus, just
as for the familiar Wald statistic, we have a quadratic form structure for Rn(γ). When p
is fixed and there is no approximation error, we note that (3.3) has also been established
by Andrews (1993), Cho and Vogelsang (2017), and Sun and Wang (2022).

This then yields the approximation

Rn(γ) −p√
2p

= Sn(γ) + op(1)� (3.5)

where

Sn(γ) = 2√
2p

1
n

n∑
t=2

ψt (γ)ξ′
t

∑
s<t

ψs(γ)ξs =
√

2√
n

n∑
t=2

vt (γ)�

say, by Lemma SL.B.8. Then V = limn�p→∞ 2n−1
∑n

s�t=2 cov(vs(γ)� vt(γ)), that is, the limit-
ing variance of Sn(γ). Note that the vt (γ) are defined as products of terms of the type xtεt
and the cumulative sum of their lags, implying that the variances of the vt (γ) themselves
contain high-order covariance terms. This explains why we call V a HLV despite the mds
property of the vt (γ), which implies that {vt (γ)} is uncorrelated.

The next section establishes that the test based on Qn has nontrivial local power under
suitable sequences of local alternatives, following which we study more detailed charac-
teristics of V and develop a HLV-robust test.

3.2. Local Alternatives

We consider a sequence of local alternatives that converge to the null at p1/4/
√
n-rate

to study the local power properties of the test. This is slower than the usual 1/
√
n para-

metric rate and has been employed by a number of other authors, for example, de Jong
and Bierens (1994), Hong and White (1995), Gupta (2018). It is a cost of the growing
dimensional nature of the problem. Our sequence of local alternatives is

H� : δ2� = 21/4τp1/4/
√
n� (3.6)

where τ is a unit length p× 1 vector.

THEOREM 3.2: Suppose that Assumptions 1–5 and H� hold and let τ∞ =
limn→∞ τ′M
−1Mτ. Then Qn(γ)

d→N (τ∞γ(1 − γ)�V).
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Note that the noncentrality term is positive, implying nontrivial power of the test since
the critical region is formed by Qn(γ) being greater than equal to a critical value. Also,
|τ′M
−1Mτ| ≤ ‖τ‖‖M‖2‖
−1‖ = λ(M)2/λ(
) for any n. As Assumption 3 assumes that
the numerator λ̄(M) is bounded but the denominator may not be bounded away from
zero, τ∞ = limn→∞ τ′M
−1Mτ may diverge to positive infinity to imply more power.

4. V ROBUST TESTING

In this section, we provide a detailed study of the HLV V that our analysis has discov-
ered. In particular, we present some alternative representations of V that shed more light
on its structure.

4.1. Discussion

We first examine the relevance of V . Specifically, we analyze the “pre-limiting” quantity
Vn = 2 var(n−1

∑n

t=2 ξ
′
tp

−1/2
∑t−1

s=1 ξs). This can be rewritten as

Vn = 2n−1
n−1∑
i=1

(
γ(i�0)(n− i)/n+ 2

n−i∑
j=1

γ(i� j)(n− i− j)/n
)
�

where

γ(i� j) = p−1E
(
ξ′
tξt−iξ

′
tξt−i−j

) = p−1E
(
x′
t


−1xt−ix′
t


−1xt−i−jε2
t εt−iεt−i−j

)
�

This is a high-order autocovariance and captures a nonlinear serial dependence in the
sequence xtεt , which disappears entirely for j > 0 in independent cross-sectional data. We
encounter Vn → V �= 1 when n−1

∑n−1
i=1

∑n−i
j=1 γ(i� j)(n− i− j)/n has a nonzero limit, with

terms arising that are fourth-order cross-moments of the εt and xt . Thus, the behavior of
such cross-moments is the key to obtaining nonunity V . Robinson (1991), studying time-
series specification testing, encountered a term of the form E(ε2

t εt−iεt−i−j), somewhat
different from ours albeit also of cross-moment type, but imposed conditions that nullify
it when j > 0.

The Wald statistic is a quadratic form in the moment process. To establish the limit of
the Wald statistic when the number of variables (i.e., the number of moments) grows with
the sample size, we need to account for the variance of the quadratic form, hence the
appearance of fourth-order dependence of a certain type in the moment process. A form
of fourth-order dependence has also been encountered in HAR testing; see, for example,
Lobato, Nankervis, and Savin (2002). In Section 6, we present some figures to show how
V can vary for various designs and deviate significantly from unity.

4.2. HLV-Robust Test Statistic

This section propose a random scaling approach to robustify our test statistic against the
unknown HLV term V . We opt for this because our numerical experiments in Section 6
(specifically Figure 5 and its discussion therein) reveal poor finite-sample performance
of the standard sample variance of qt = (np)−1/2x′

t 
̂
−1êt

∑t−1
s=1 xsês . The presence of the

cumulative sums
∑t−1

s=1 and the estimated quantities 
̂−1 and ês in the construction of qt
are likely to contribute to poor finite-sample behavior of its sample variance.
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The random scaling approach has been employed when consistent estimators of the
asymptotic variance perform poorly in finite samples. For instance, heteroscedasticity and
autocorrelation consistent (HAC) estimators, for example, Newey and West (1987), An-
drews (1991b), to name but two examples, have been followed by the fixed-bandwidth
kernel approach to obtain an asymptotically pivotal and mixed-normal test; see, for exam-
ple, Kiefer, Vogelsang, and Bunzel (2000) and Lazarus et al. (2018) for a recent review. In
the machine learning literature, Lee, Liao, Seo, and Shin (2022) also employ the random
scaling approach for computationally efficient online inference based on the stochastic
gradient descent algorithm.

While a simple random scaling can be implemented by the integral of the square of the
partial sum process of centered qt , that is, n−2

∑n

t=1

∑t

s=1(qt − n−1
∑n

i=1 qi)
2, we present a

class of more general random scaling methods following the heteroscedasticity and auto-
correlation robust (HAR) inference literature. We note that the resulting pivotal distri-
butions differ from the HAR literature, however.

Introduce a kernel function k(·) that meets the following conditions.

ASSUMPTION 6: (1) For all x ∈ R, k(x) = k(−x), and |k(x)| ≤ 1; k(0) = 1; k(x) is con-
tinuous at zero and almost everywhere on R;

∫
R
|k(x)|dx <∞. (2) For any b ∈ (0�1] and ρ≥

1, kb(x) = k(x/b) and kρ(x) are symmetric, continuous, piecewise monotonic, and piece-
wise continuously differentiable on [−1�1]. (3)

∫
[0�∞) k̄(x) <∞, where k̄(x) = supy≥x |k(y)|.

Since εt and 
 are not directly observable in practice, we replace them with the least
squares estimates as in Section 2 and introduce qt = (np)−1/2x′

t 
̂
−1êt

∑t−1
s=1 xsês and its de-

meaned version, q̄t = qt − n−1
∑n

t=2 qt . Then define a feasible estimate of V by

V̂ = 2
n

n∑
t=2

n∑
s=2

k

(
t − s
nb

)
q̄sq̄t � (4.1)

Thus, we have a seemingly long-run variance estimate, analogous to traditional HAC/
HAR inference, of a nonlinear transformation of the primitive variables.

The choice of bandwidth b has been a topic of much discussion in the HAC literature.
Since V captures high-order autocovariances in the growing dimensional vector xtεt , the
finite-sample variation in the estimate V̂ is generally larger than in more familiar long-run
variances, and the moment condition is more expensive. Motivated by this, we follow a
fixed bandwidth approach, as in Sun (2014).

Our estimator is based on the weighting functionKh(r� s) = k(h(r−s)), where h= 1/b.
We present numerical results in this paper with k(u) = (1 − |u|)h1{|u| < 1}, employing
the Bartlett kernel case with h = 1. Sun (2014) terms this the sharp kernel estimator.
Other options include the steep quadratic kernel estimator and the orthonormal series
estimator with K basis function, of which Sun (2014) contains a more detailed discussion.
Sun (2014) also shows that the centering in q̄t can be conveniently represented through
a centered version of Kh(·), that is, K∗

h(r� s) =Kh(r� s) − ∫ 1
0 Kh(τ� s) dτ− ∫ 1

0 Kh(r� τ) dτ+∫ 1
0

∫ 1
0 Kh(τ1� τ2) dτ1 dτ2.

Building on the representation in Lemma 1 of Sun (2014), where the estimate V̂ is not
consistent, we characterize the joint weak limit of V̂ and Qn(γ). For real numbers a and
b, let a∨ b (a∧ b) denote their maximum (minimum), and introduce a process

Q(γ) = W (γ)
γ

+ W̄ (γ)
(1 − γ)

−W (1)� (4.2)
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where (W (r)� W̄ (r))′, r ∈ [0�1], is a bivariate Gaussian process that does not depend on
any model parameters including the break point γ, and has covariance kernel

C(r1� r2) =
(

(r1 ∧ r2)2 1{r1 > r2}(r1 − r2)2

1{r1 < r2}(r1 − r2)2
(
1 − (r1 ∨ r2)

)2

)
� (4.3)

For any given γ ∈ �, the marginal distribution of Q(γ) is standard normal. Thus, the

conclusion of Theorem 3.1 can be expressed as Qn(γ)
d→ √

VQ(γ), pointwise in γ ∈ �. By
taking a suitable ratio, we obtain a pivotal variable as in the following theorem, which is
the basis of our test statistic.

THEOREM 4.1: Let Assumptions 1–6 hold, together with

λ−2
n p

(
vp + p√

n

)
→ 0 as n→ ∞� (4.4)

Under H0, we have V̂ d→ V
∫ 1

0

∫ 1
0 K

∗
h(r� s) dW (r) dW (s) and

Tn(γ) := Qn(γ)√
V̂

d→ Q(γ)√∫ 1

0

∫ 1

0
K∗
h(r� s) dW (r) dW (s)

�

The numerator in the limit becomes Q(γ) + τ∞γ(1 − γ) under H�.

The asymptotic null distribution is mixed normal and pivotal. The critical values can
be tabulated for each γ via Monte Carlo simulation and the replication files provide R
code. Note that the same Gaussian process W (·) occurs in both the limiting numerator
and denominator, and this process is different from the Brownian motion in Sun (2014).
In fact, it can be represented by the partial sum of

√
t/n times an iid normal sequence.

Since the limit also involves another variable W̄ (·), the critical values will be different
from those previously tabulated in the literature.

4.3. Bias Correction

The degrees of freedom p provide a correct centering for Wn(γ) in first-order asymp-
totic analysis. However, in the finite-sample experiments given in Section 6, for example,
Figure 2 and Figure 6, we find that the bias in Qn(γ) gets bigger for typical values of p in
nonparametric regression. Therefore, we propose a bootstrap bias correction of Qn(γ).
To estimate the bias, we implement the null-imposed wild bootstrap by generating

y�t = x′
t δ̂1(γ) + êt (γ)ut� t = 1� � � � � n� (4.5)

where ut is an iid sequence of centered and normalized variables, for example, the
Rademacher variables, to compute Q�

n(γ). It is worthwhile to note that the bootstrap
DGP (4.5) imposes the null hypothesis δ2 = 0, so as not to sacrifice the power of the test.
See also Gonçalves and Kilian (2007) for a thorough discussion on the wild bootstrap for
infinite-order autoregression. Iterating this B times, we obtain Q̄�

n(γ) = B−1
∑B

j Q��j
n (γ),
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the bootstrap estimate of the bias. In our experiment, B= 200 suffices, and thus the boot-
strap is not computationally expensive. Therefore, we suggest the following bias corrected
test statistic:

T b
n (γ) := Qn(γ) − Q̄�

n(γ)√
V̂

� (4.6)

The numerical experiments in Section 6 show that the bootstrap bias corrected test con-
trols the type I error reliably without sacrificing power unduly.1 Now, with the superscript
� indicating the bootstrap analogue, we have the following result.

THEOREM 4.2: Under Assumptions 1–3 and H0,∣∣E�W �
n (γ) −p∣∣ = op

(
p1/2

)
� (4.7)

and

T b
n (γ)

d→ Q(γ)√∫ 1

0

∫ 1

0
K∗
h(r� s) dW (r) dW (s)

� (4.8)

Theorem 4.2 implies that the bootstrap bias correction is first-order correct but does
not imply any higher-order improvement. We demonstrate its merits not analytically but
numerically in Section 6, which is common with the wild bootstrap; see, for example,
Gonçalves and Kilian (2004) and references therein. Details of the components of W �

n (γ)
are left to Section S.C of the Online Supplement.

5. WALD TEST FOR GENERAL LINEAR RESTRICTIONS OF GROWING RANK

For a linear regression model yt = x′
tβ+ εt , we consider testing linear restrictions He

0 :
Reβ= r, where Re is a matrix of rank p≤ dim(β). For the usual Wald statistic

W e
n := n(Reβ̂− r)′(

ReM̂−1
̂M̂−1R′e)−1(
Reβ̂− r)� (5.1)

M̂ = n−1
∑

t xtx
′
t and 
̂ is an estimator ofEε2

t xtx
′
t , define Qe

n := (W e
n −p)/

√
2p. Although

the test statistic appears to be very similar to the Chow test, the next theorem shows
that the numerator and denominator in our corrected test statistic are related differently,
calling for different critical values. Furthermore, the HLV is now obtained by replacing

−1 in Assumption 4 with L=M−1Re′(ReM−1
M−1Re′)−1ReM−1, and the resulting limit
denoted Ve.

To estimate Ve and employ bootstrap bias correction, it is convenient to reformulate
the restriction as an exclusion restriction of growing dimension, without loss of generality.
Indeed, let S be the orthogonal complement of Re and Q= (S�Re). Then let ◦

xt =Q′−1xt ,
δ = Qβ − (0′� r ′)′ such that δ = (δ′

1� δ
′
2)′, with ◦

xt = ( ◦
x′

1t �
◦
x′

2t)
′ conformably partitioned,

δ2 = Reβ − r and ỹt = yt − ◦
x′

2t r. We can now test the null hypothesis He
0 : δ2 = 0 in the

regression of ỹt on ◦
xt .

1It is worth noting that the wild bootstrap may not be valid to approximate the quantiles of Qn(γ) as it does
not capture the high-order dependence embodied in V .
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This transformation makes it particularly convenient to impose the null in the bootstrap
resampling at the bias correction stage. Let Q̄�

n denote the bootstrap bias correction factor

forW e
n . This yields the bias-corrected statistic T e�b

n = (Qe
n − Q̄�

n)/
√
V̂�, where V̂e is defined

analogously to V̂ , but now with qt = (np)−1/2x̃′
2t 
̂

e−1êt
∑t−1

s=1 x̃2t ês , where x̃2t denotes the
residuals from the regression of ◦

x2t on ◦
x1t and 
̂e = n−1

∑
t x̃2t x̃

′
2t ê

2
t . Then, with W (·)

defined in (4.3), we have the following theorem.

THEOREM 5.1: Let Assumptions 1–6 hold with the following modifications: (1) L replac-
ing 
−1 in Assumption 4 and the resulting limit denoted Ve, (2) The conditions in Assump-
tion 3(ii) hold for r = 1. Also, suppose that (4.4) holds. Then, under He

0,

T e�b
n = Qe

n − Q̄�
n√

V̂�

d→ W (1)√∫ 1

0

∫ 1

0
K∗
h(r� s) dW (r) dW (s)

� (5.2)

Under He
� : Reβ− r = 21/4τp1/4/

√
n, the numerator in the limit becomes W (1) + τe∞, where

τe∞ = limn→∞ τ′(ReM−1
M−1Re′)−1τ.

The limiting distribution is mixed normal and pivotal but different from the limit in
Theorem 3.1. This is because the Chow test considers a quadratic form in
n−1/2

∑n

t=1ψt (γ)ξt , which differs from this section by introducing a trend into the regres-
sors via the factor ψt (γ). Due to this difference, the partial sum processes converge to
Gaussian processes with different covariance kernels. An R code to compute the critical
values is available in the replication files.

6. MONTE CARLO EXPERIMENTS

This section examines the finite sample properties of our bias corrected HLV-robust test
T b
n compared to the standard chi-square test Wn, which does not account for growing p,

and the unscaled Qn statistic with standard normal critical values, which does not account
for V , in terms of bias, size, and power.

We will consider the examples below in our Monte Carlo experiments. In Appendix B,
we check our assumptions for these settings.

E1—Multiple Regression of Growing Dimension: Koenker (1988) found through his
metastudy that it is common practice in econometrics to increase the number of regressors as
the sample size n grows, at a rate of roughly O(n1/4). In this case, the approximation error rt
is not explicitly modeled and may be set as zero. Practitioners thus adopt a flexible approach
to modeling, where the assumed model becomes richer with more covariates and with more
lagged terms to account for the dynamic effect in the spirit of the distributed lag model, as
illustrated in, for example, Stock and Watson (2015).

E2—Infinite-Order Autoregression: This model is one of the most fundamental models
in time-series analysis; see, for example, Brockwell, Davis, and Fienberg (1991) or Hamil-
ton (2020). For the process to be stationary, the coefficients {bj} in the AR(∞) model
yt = b0 + ∑∞

j=1 bjyt−j + εt are assumed to obey a certain decay rate. Specifically, the tail
sum of the coefficients satisfies Assumption 2 if

∑∞
j=p |bj| = o(n−1/2). While we take p as
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given in our analysis, for practical purposes various methods based on information criteria
are available to choose the truncation lag p; see, for example, Shibata (1980) and references
therein. Wang, Li, and Tsai (2007) propose a lasso-based autoregressive-order selection rule
while Lee, Okui, and Shintani (2018) propose a lag selection rule in an infinite-order panel
autoregression. For expositional ease, we assume that the observations begin from t = 1 − p
and x1 = (1� y0� � � � � y1−p).

E3—Nonparametric Series Regression: In case of the nonparametric series least squares
estimation of E(yt|zt), there exists a sequence of transformations of the covariates zt given by
xnt := xn(zt) : Rk �→ R

p, and coefficients βn such that E(yt|Ft−1) = f (zt) = x′
ntβn + rn(zt),

where rnt = rn(zt) meets Assumption 2 for a broad class of functions f ; see, for example, An-
drews (1991a), Newey (1997), Chen (2007), and Lee and Robinson (2016). By Lemma 1 of
Lee and Robinson (2016), it is met if |rt|∞ =O(pα) for some α < 0 and p2α ≤ n−1. Depend-
ing on the smoothness of the nonparametric function f (·), the regressor support dimension
k, and the type of basis functions used, different values of α may be implied; see, for exam-
ple, Newey (1997), Chen (2007), page 5573, for examples and further references. Often, the
condition (2.2) holds under the so-called undersmoothing selection of p. Another closely re-
lated example is the partially linear regression model, for example, Engle, Granger, Rice, and
Weiss (1986) and Robinson (1988). Again, while we do not consider data-dependent p, for
practical purposes the literature proposes methods for the choice of p using cross-validation
or information criteria; see, for example, page 5623 of Chen (2007) for a list of references.

The tests are applied to the setting of the Chow test and testing general linear restric-
tions. We consider various sample sizes n and dimensions p from the three examples,
E1–E3, with the error generated from a bounded ARCH process

εt = σtηt� σ2
t = (1 − α) + αφ(εt−1)� (6.1)

where φ(x) = x21{|x|≤ c}+ c21{|x|> c}, ηt = (ut −Eut)/
√

var(ut), and {ut} is an iid se-
quence from the Marron and Wand (1992) normal mixture distributions of type 1–3, which
we refer to as errors 1, 2, and 3. Their error 1 is standard normal. For a standard normal
vector (Z1� � � � �Zk) and multinomial vector (d1� � � � � dk) with probability (1/5�1/5�3/5),
error 2 skewed unimodal variate is ut =Z1d1 +(2Z2/3+1/2)d2 +d3(5Z3/9+13/12), while
error 3 strongly skewed variate is ut = ∑7

l=0 dl+1(Zl+1(2/3)l + 3((2/3)l − 1)) with equally
likely di’s. We report results using (6.1) with α ∈ {0�3�0�4�0�5�0�55�0�57} and c = 2�5.
Results from c = 3 and ∞ are similar and omitted.

More specifically, for multiple regression, E1, the regressors xt consist of independent
AR(1) processes with coefficient αx and ARCH innovation as in (6.1) and their lags of
order up to 3. That is, we consider the distributed lag model with a growing number of
variables. The first five elements of β in (2.1) are set as d0(5−1/2� � � � �5−1/2)p1/4n−1/2 and
the others as zeros. When there is a break, all the values become zero after the break so
that the value d0 controls the magnitude of the change. We vary p ∈{5�9�13} to examine
the effect of the dimension on our tests.

For the infinite-order AR regression, E2, we generate the sample from the MA(1)
model yt = εt + θ1{t ≤ μ}εt−1, with μ = n for the size experiment and μ = [nγ] for the
power evaluation, and estimate the AR(p) model with p= 9 for n= 250 and p= 13 for
n = 500. For the sieve regression, E3, we consider two variables ζ1t and ζ2t and their
lags ζ1�t−1 and ζ2�t−1 as regressors, denoted by z1t � � � � � z4t , after transforming them as
2 arctan(ζit)/π. Each ζit follows an AR(1) process with ARCH error. The regression func-
tion is set as f (z1� � � � � z4) = d0(1� z1� � � � � z4� z

2
1� � � � � z

p1
4 )(1−2� � � � �p−2

2 )′ + √|z1|/n with
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FIGURE 1.—Simulated pre-limit of V for n=m= 500 and l= 0. Error 1: square; Error 2: dot; Error 3: triangle.

p1 = �n1/4� and p2 = 1 + 4(p1 − 1). To estimate the regression function, we construct
xt from polynomial basis functions and its dimension p= p2.

We first employ these DGPs to simulate pre-limit values of V in (3.2) with n = m =
500� l = 0, and p as described above for each case, which are plotted in Figure 1, report-
ing averages from 10,000 iterations. This serves as a useful illustration to observe visually
that pre-limiting V deviates from unity for various specifications. A broad observation we
make is that the deviation is bigger with larger ARCH coefficients and bigger autocorrela-
tion in xt , although this feature is not always monotone. To conclude, we observe that the
nonlinear serial autocorrelation factor can induce serious distortion in inference without
a suitable robustifying treatment, as we provide in Section 4.2.

Also, Appendix B gives the verification of the high-level conditions in Assumptions 1–4
for these examples.

6.1. Chow Test

We consider three candidate break points as proportions of the sample sizes, γ ∈
{0�2�0�3�0�5}. We begin by examining the bias of Qn(γ), conventionally centered by the
degrees of freedom p, under the null hypothesis. Note that a severe bias in Qn(γ) also
implies that the size of the Wald test Wn(γ) can be distorted severely. We report the re-
sults in Figure 2, in which the line with dot markers shows the bias in Qn(γ) for n= 250
and n= 500. For E1, (Figures 2(a), 2(d)) each vertical partition (marked by a dotted ver-
tical line) corresponds to a specific value of p. Within each vertical partition, the DGP
parameters change along the horizontal axes as (error type�α), in lexicographic order.
As p grows, we observe that the Qn(γ) statistic exhibits severe finite-sample bias for all
values of the DGP parameters.

A similar visualization of bias in Qn(γ) for E2 is presented in Figures 2(b), 2(e). Rather
than report values for different p, here we focus on the case p= 9 for n= 250 and p= 13
for n = 500, and allow the values of α and θ to vary along the horizontal axis lexico-
graphically as (error type�α or θ), as detailed in the caption. A substantial bias in Qn(γ)
is observed for all cases, regardless of n= 250 or n= 500, albeit the biases are generally
smaller in the latter case. Finally, Figures 2(c), 2(f) show the bias in Qn(γ) for E3, with the
same p as for E2, to mimic the asymptotic regime of a sieve regression, and parameters
as in E2. We observe a similar pattern of substantial bias for both sample sizes.

As discussed above, Figures 2(a)–2(f) clearly show that the biases present in Qn(γ) are
severe. In these figures, we also plot the bias of the bias-corrected HLV-robust statistic
T b
n (γ), shown in black with square markers. The bootstrap bias correction seems to work

well for all the cases, substantially alleviating bias. In Figure 2, we observe that T b
n (γ) can
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FIGURE 2.—Bias in Qn(γ) (dot) and T b
n (γ) (square, black). For E1, the vertical partitions in (a) and (d)

correspond to p= 5�9 and p= 5�9�13, respectively. Within each vertical partition results are ordered lexico-
graphically as (γ ∈ {0�2�0�3�0�5}�error ∈ {1�2}�α ∈ {0�3�0�57}). E2 and E3: p= 9 for n= 250 and p= 13 for
n= 500. Results horizontally ordered lexicographically as (γ�error �α or θ).

still exhibit some bias for specific cases but for E1 and E3, unlike the bias of Qn(γ), this
is centered around zero, while for E2 it is generally smaller in absolute value. Thus, we
recommend the use of the bootstrap bias correction in practice especially when faced with
large values of p.

We now study the finite-sample rejection frequencies of four competing tests: T b
n (γ)�

Tn(γ)�Qn(γ), and Wn(γ), with specific parameter values as given in the respective fig-
ure captions. As shown earlier, the unknown HLV scaling factor V varies along different
ARCH parameters. This motivates our approach of experimenting with different α val-
ues and innovations. The Monte Carlo sizes resulting from the experiment are plotted
in Figure 3, wherein we place a horizontal dotted line to mark the nominal size of 5%.
We report results for γ = 0�3. The vertical partitions in each panel of Figure 3 corre-
spond, as discussed earlier, to increasing values of p from left to right in E1. We cover
multiple regression (Figures 3(a), 3(d)), AR fits (Figures 3(b), 3(e)), and sieve regression
(Figures 3(c), 3(f)) for n= 250�500.

For all DGPs, the usual Wald statistic Wn(γ) (diamond markers) overrejects. Simply
standardizing the test statistic Wn(γ) to Qn(γ), hence ignoring the HLV V , does not im-
prove matters. In fact, it usually worsens the problem of overrejection. This can be seen
in the lines with triangle markers. Our HLV-robust statistic Tn(γ) does much better, as
the lines with dot markers indicate. While this shows the importance of the correction for
V that we stress in the paper, there is still a tendency to over-reject. On the other hand,
applying the bootstrap bias correction and using the bias corrected HLV-robust statistic
T b
n (γ) achieves excellent size control, as can be seen in the line with square markers. The

discussion holds regardless of whether n = 250 or n = 500. Thus, the importance of our
proposed testing procedure is clearly visible.
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FIGURE 3.—Size of Chow tests with γ = 0�3: Wn(γ) (diamond), Qn(γ) (triangle), Tn(γ) (dot), and T b
n (γ)

(square, black). Nominal size is 5%. For E1, vertical partitions in (a) correspond to n = 250 and p = 5�9
and those in (d) correspond to n = 500 and p = 5�9�13. Within each vertical partition results are ordered
lexicographically as (error ∈ {1�2}�α ∈ {0�3�0�57}). For E2, p = 9 for n = 250 and p = 13 for n = 500.
Results horizontally ordered lexicographically as (error ∈ {1�2}�α ∈ {0�3�0�57} or θ ∈ {−0�5�−0�1�0�5}).
For E3, p = 9 for n = 250 and p = 13 for n = 500. Results horizontally ordered lexicographically as
(error ∈{1�2}�α ∈{0�3� � � � �0�57}).

We now analyze the power features of the competing test statistics for the proposed
DGPs, allowing for breaks of different magnitudes and setting γ = 0�5. After the break,
all the coefficients become zero so that the values of d0 govern the size of the breaks in E1
and E3, while the values of θ do so for E2. The power performance is plotted in Figure 4,
where to conserve space we report results only for n = 400. Again, we use p = 9 for E2
and E3, while a range of p is employed for E1. The line marker schemes for each of the
competing tests are as described earlier. Examining the figure, the power of our HLV-
robust statistics Tn(γ) (dots) and T b

n (γ) (squares) tracks that of the uncorrected ones as
the break size increases for both E2 (center panel) and E3 (right panel). For E1 (left
panel), we only report results for d0 = 2 for clarity. We observe that Wn(γ) tends to have
the highest power but our statistics still perform reasonably well with power in excess
of 80% even for large p. Recall that our size experiments earlier indicate that Wn(γ)
overrejects, a phenomenon of which high power is likely an artefact. Thus, we conclude
that our test is able to control size without sacrificing power to an undue extent.

Finally, Figure 5 reports the size distortions when the sample variance of qt multiplied
by 2 is employed instead of V̂ , noting that qt is a martingale difference array. While we
discussed the potential reasons for this severe size distortion in Section 4.2, the investi-
gation on a more precise approximation to the finite-sample distribution of this statistic
is an interesting issue but out of the scope of this paper due to the complex nature of
the statistic. Nevertheless, Figure 5 provides numerical evidence that the typical scaling
by variance is not sufficient to control size. Specifically, define the test statistic T b�2

n (γ)
exactly like T b

n (γ) but with random scaling replaced by twice the variance of qt and the
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FIGURE 4.—Power of Chow tests, Wn(γ) (diamond), Qn(γ) (triangle), Tn(γ) (dot) and T b
n (γ) (square,

black): E1 (left), E2 (center) and E3 (right), n = 400, γ = 0�5. Vertical partitions correspond to
p = 5�9�13 (left), θ = 0�2�0�4�0�6�0�8 (center) and δ = 0�5p1/4/n1/2(1�5�10) (right). Within each ver-
tical partition results are ordered lexicographically as (error ∈ {1�2�3}�α ∈ {0�3�0�5}) for E1 and
(error ∈{1�2�3}�α ∈{0�3�0�5} or θ) for E2 and E3.

standard normal approximation. It is clear that the test (triangle markers) is oversized
relative to our recommended test T b

n (γ).

6.2. Testing Linear Restrictions

This section presents the outcomes of bias, size, and power experiments for testing
general linear restrictions, analogous to those for the Chow test in the preceding discus-
sion. We use the reparameterization of the linear restrictions to the exclusion restrictions
δ2 = 0, as discussed in Section 5. We focus on E1 with n= 400, p= 8�12�16, d0 = 1, error
1 and 2 disturbances, and α = 0�4�0�55. The results are displayed in Figure 6, with the
same marking scheme as before and three test statistics employed: W e

n , Qe
n, and T e�b

n . In
all three figures, each vertical partition marks a different value of p, increasing from left
to right.

The left panel of Figure 6 shows that the bootstrap bias correction indeed improves
matters, as was the case for the Chow test. The center panel again demonstrates the im-
portance of our proposed corrections for size control. W e

n and Qe
n tend to over-reject,

becoming worse as p increases. T e�b
n controls size very well for medium to large p, while

still outperforming W e
n and Qe

n for smaller p. The right panel shows that T e�b
n sacrifices

some power relative to W e
n and Qe

n, but not unduly so.

7. EMPIRICAL EXAMPLE

We revisit structural stability in the Hamilton (2003) study of the effect of oil shocks on
economic activities. The autoregressive distributed lag model, ADL(p�p), with quarterly

FIGURE 5.—Size distortions in the test based on T b�2
n (γ), which is computed exactly like T b

n (γ) except that
the scaling is done by the sample variance of qt along with the standard normal approximation.
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FIGURE 6.—Bias, Size, and Power of Exclusion Tests in E1: Qe
n (dot) and T e�b

n (square, black). Left to right:
vertical partitions correspond to p= 8�12�16. Within each vertical partition results are ordered lexicographi-
cally as (error ∈{1�2}�α ∈{0�4�0�55}).

time series of outputs and several oil price measures are employed. For real output, the
quarterly growth rate of chain-weighted real GDP is used, while the oil price is the nomi-
nal crude oil producer price index, seasonally unadjusted. As in Hamilton, three oil price
measures were considered: the growth rate ot from the previous quarter, the rectified lin-
ear unit, o+

t = ot1{ot > 0}, and the net oil price increase, ont , defined as the amount by
which log oil prices in quarter t exceed their peak value over the previous 12 months. If
it does not exceed the previous peak, then ont is taken to be zero. We extend the original
sample using the FRED database at the St. Louis Fed to obtain a sample from January
1949 to October 2019.

First, we reevaluate structural stability of the GDP dynamics using AR(p) fits, and that
of the regression function of GDP growth on oil price change using an ADL(p�p) model
with the three alternative measures of oil price change. Following Table 4 in Hamilton
(2003), we investigate four exogenous disruptions in the world petroleum supply. These
are: the Arab–Israel War (November 1973), the Iranian Revolution (November 1978), the
Iran–Iraq War (October 1980), and the Persian Gulf War (August 1990).

The p-values of the tests are reported in subtables (a) and (b) in Table I, where for
W (γ) these are computed using the ordinary Chow test. We observe that in many cases
the usual Chow test supports a structural break in both regressions more strongly than our
recommended T b

n (γ) test. Thus, the evidence for structural instability is often no longer
as strong. In fact, the p-values that we calculate using our test exceed those of the standard
Chow test in 22 out of 32 cases.

Second, we explore the relevance of the oil price measures and of the nonlinear trans-
formations (o+

t , ont ) by testing two exclusion restrictions in the ADL(p�p) regression that
include all the three oil price measures as covariates. The first exclusion restriction is to
set the coefficients of all the measures as zero and the second is to set those of the nonlin-
ear transformations (o+

t , ont ) to zero. This yields 12 and 8 df, respectively, when p= 4 and
18 and 12 df, respectively, when p = 6. As shown in subtable (c) of Table I, our recom-
mended test T e�bn produces p-values bigger than 5% for all cases, suggesting the effect of
oil price as measured by these transformations is not statistically significant, nor are the
nonlinear transformations. The standard Wald test for the exclusion restrictions is more
supportive of their inclusion but may lack robustness with large df. Overall, our tests pro-
duce larger p-values than the standard Chow or Wald tests in 72% of cases (26 out of 36)
cases in Table I.

As another measure of economic activity, we now consider the industrial production
(IP) index. This is available at monthly frequency, and thus we consider ADL(12�12) and
ADL(18�18) to include lags of 1 year and 1.5 years, respectively. With monthly data, the
dimensionality becomes more important: the number of restrictions we test varies from
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TABLE I

100×P-VALUES OF CHOW TESTS AND EXCLUSION RESTRICTION TESTS FOR FULL SAMPLE. (A) TESTS FOR
STABILITY OF GDP DYNAMICS VIA AR(p) FITS. (B) TESTS FOR STABILITY OF ADL(p�p) REGRESSIONS OF
GDP ON ot , o+

t , OR ont . (C) TESTS FOR EXCLUSION RESTRICTIONS ON ALL OIL PRICE MEASURES (ot , o+
t , ont )

OR NONLINEAR OIL PRICE MEASURES (o+
t , ont .) IN ADL(p�p) REGRESSIONS OF GDP ON OIL PRICES.

Stability Test Exclusion Test

(a) AR(p) (b) ADL(p�p) (c) ADL(p�p)

GDP ot o+
t ont All Oil NL

lags p 4 6 4 6 4 6 4 6 4 6 4 6

Arab–Israel War, November 1973
T b
n (γ) 51�3 43�9 3�5 0�52 1�64 1�33 1�58 0 T e�b

n 8�7 26�9 7�6 19
Wn(γ) 52�9 38 0�5 0 0�58 0 0�7 0 W e

n 9 4�4 2�8 4�4
Iranian Revolution, November 1978

T b
n (γ) 41�8 52�8 1�04 0�03 7 0�1 0 0
Wn(γ) 48�5 53�2 0�6 0 7�57 0 0�1 0

Iran–Iraq War, October 1980
T b
n (γ) 13�1 28�2 0�3 0�4 0�33 0�64 0�33 0
Wn(γ) 10�6 19�7 0 0 0�1 0 0 0

Persian Gulf War, August 1990
T b
n (γ) 54�6 53�6 73�3 43�7 17�8 31�2 4�53 4�85
Wn(γ) 56�2 65 39�5 16 17�1 14�4 1�9 1�17

13 and 25 in the structural break test for the AR(12) and ADL(12�12) regressions to 36
and 48 for the exclusion tests in the ADL(18�18) regression.

The results in Table II illustrate much stronger differences in the conclusions of our test
versus the standard Chow test, compared to the GDP study in Table I. The rejection of

TABLE II

100×P-VALUES OF CHOW TESTS AND EXCLUSION RESTRICTION TESTS FOR FULL SAMPLE. (A) TESTS FOR
STABILITY OF IP DYNAMICS VIA AR(p) FITS. (B) TESTS FOR STABILITY OF ADL(p�p) REGRESSIONS OF IP
ON ot , o+

t , OR ont . (C) TESTS FOR EXCLUSION RESTRICTIONS ON ALL OIL PRICE MEASURES (ot , o+
t , ont ) OR

NONLINEAR OIL PRICE MEASURES (o+
t , ont .) IN ADL(p�p) REGRESSIONS OF IP ON OIL PRICES.

Stability Test Exclusion Test

(a) AR(p) (b) ADL(p�p) (c) ADL(p�p)

IP ot o+
t ont All Oil NL

lags p 12 18 12 18 12 18 12 18 12 18 12 18

Arab–Israel War, November 1973
T b
n (γ) 20�9 32�9 33�9 28�4 24�9 18�9 10�6 17�8 T e�b

n 27 30�9 11�9 18�5
Wn(γ) 8�46 26�4 5�18 1�71 3�93 0�78 1�23 1�65 W e

n 1�7 0�8 0�5 0�5
Iranian Revolution, November 1978

T b
n (γ) 11 21�5 1�39 0�74 0�7 0�26 0�15 0�04
Wn(γ) 0�96 4�3 0 0 0 0 0 0

Iran–Iraq War, October 1980
T b
n (γ) 3�31 9�34 1�96 1�87 1�15 1�68 0�08 0�46
Wn(γ) 0 0�04 0 0 0 0 0 0

Persian Gulf War, August 1990
T b
n (γ) 5�82 14�6 3�95 19�4 2�03 12�8 0�94 8�04
Wn(γ) 0�08 1�13 0�21 2�98 0�23 2�43 0�02 0�22
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the null of no structural break is now often overturned at reasonable significance levels.
For example, for the Arab–Israel War, the ADL(p�p) model fails to reject the null of
no structural break for any significance level below 10.6% when using our test T b

n (γ), in
contrast to the standard Chow test Wn(γ). Conclusions are likewise overturned for the
AR(p) model and the Iranian Revolution and Iran–Iraq War, and indeed for both the
ADL(p�p) and AR(p) in several cases for the Persian Gulf War.

The results in Tables I and II are not surprising given our simulation evidence. In-
deed, our Monte Carlo simulation illustrates the effect of the degrees of freedom (df) on
finite-sample properties of the two tests, Wn(γ) tends to have larger p-values in the AR
case (p + 1 df) than in the ADL case (2p + 1 df), while T b

n (γ) would be the opposite.
These are exactly the patterns that we also observe. Finally, subtable (c) of Table II shows
even stronger differences than Table I(c), with all conclusions on the exclusion restrictions
overturned at significance levels below 11.6%. Overall, our tests produce larger p-values
in every single case considered in Table II when compared to the standard Chow or Wald
tests.

APPENDIX A: PROOFS OF THEOREMS

We begin with some notation. Let

A(γ) = (
X∗(γ)′MXX

∗(γ)
)−1
X∗(γ)′MX

with X∗(γ) having tth row x∗
t (γ)′ = x′

t1{t/n > γ}, MX the residual maker for the matrix
X with tth row x′

t , and

B(γ) =RM(γ)−1
(γ)M(γ)−1R′�

Also, let 
̄(γ) = n−1
∑n

t=1 xt (γ)x′
t (γ)σ2

t and xt (γ) = (x′
t � x

′∗
t (γ))′. It is also convenient to

recall that M̂ = n−1X ′X and define Ŝ(γ) = n−1X ′∗(γ)X(γ). Recall that cross-referenced
items prefixed with “S” can be found in the Online Supplementary Appendix.

A.1. Proofs for Section 3

PROOF OF THEOREMS 3.1 AND 3.2: For the convenience of exposition, these are com-
bined with the proof of Theorem 4.1 in the next section. Q.E.D.

A.2. Proof of Theorem 4.1:

For the result under the null, Section A.2.1 first establishes the asymptotic normality
for Qn(γ), and then Section A.2.2 proves V̂ d→ ∫ 1

0

∫ 1
0 K

∗
h(r� s) dW (r) dW (s), where W (r)

denotes the same limit Gaussian process as in Theorem ST.B.2. Then the claim follows by
Theorem ST.B.2 and the continuous mapping theorem. After completing the proof under
the null, we prove convergence under the local alternative in Section A.2.4.

A.2.1. Asymptotic Normality of Qn(γ) Under H0

PROOF: This step is quite involved and we delegate proofs of many intermediate steps
to Section S.B. Summarizing these steps, Theorem ST.B.1 therein develops the initial
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approximation Qn(γ) = (Rn(γ) −p)/
√

2p+op(1), where Rn(γ) is defined in (3.4). Then
(SB.45) and Lemma SL.B.8 yield the second approximation

Rn(γ) −p√
2p

= Sn(γ) + op(1)�

where

Sn(γ) =
n−1

∑
s �=t
gt (γ)′
−1gs(γ)εtεs

γ(1 − γ)
√

2p
� (A.1)

and gt (γ) = xt1{t/n≤ γ}− γxt . The claim now follows by a CLT for Sn(γ) established in
Theorem ST.B.2. Q.E.D.

A.2.2. Weak Convergence of V̂
PROOF: First, we establish tightness of the stochastic process

An(γ) = 1
n
√
p

[nγ]∑
s=2

s−1∑
t=1

ξ′
tξs�

with ξt ={ξti}
p
i=1 =
−1/2xtεt being an mds.

Note that An(γ) is a partial sum process of a heterogeneous martingale difference array
wns = ξ′

s

∑s−1
t=1ξt/

√
np, and thus it is sufficient to show

E
∣∣An(γ1) −An(γ2)

∣∣4 = E

∣∣∣∣∣ 1√
n

[nγ2]∑
s=[nγ1]+1

wns

∣∣∣∣∣
4

≤ E
(∑

s

E
(
w2
ns|Gs−1

)
/n

)2

+ n−1 max
s
E|wns|4O

(|γ2 − γ1|
)

= O
(|γ2 − γ1|

)
� (A.2)

where we apply the Rosenthal inequality, for example, Hall and Heyde (1980), for the in-
equality and a calculation similar to (SB.11) and (SB.14) for the last equality. Specifically,

n−1 max
s
E|wns|4 ≤ max

s
E

(
E

((
ξ′
sξs

)2
|Gs−1

)( ∑
t1�t2<s

ξ′
t1
ξt2

)2)
n−3p−2 = o(1)� (A.3)

by Assumption 4 and the same reasoning as for (SB.12) and (SB.14).
Having established tightness, by Lemma 1(c) of Sun (2014) weak convergence follows

if

V̂ − Ṽ = op(1)� (A.4)

where Ṽ = 2
n

∑n

t=2

∑n

s=2 k( t−s
n/h

)q̄�s q̄
�
t , q

�
t = (np)−1/2x′

t

−1εt

∑t−1
s=1 xsεs , q̄

�
t = q�t − n−1

∑n

t=2 q
�
t .

Strictly speaking, Sun’s Lemma 1(c) is stated for the case where the partial sums of qt are
approximated by the partial sums of et , which is iid normal, but it also holds when it is
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approximated by the partial sums of antet for any real bounded array ant by repeating the
same argument in the proof. In our case, ant = √

t/n.
Let ς = n/h, ζ̂t = ĥ′

t

∑
s<t ĥs/

√
p = √

nqt , ĥt = 
̂−1/2xtêt ,
¯̂
ζ/

√
n = n−1

∑n

t=2 qt =
n−1

∑n

t=2 ζ̂t/
√
n, with analogous definitions using 
 and εt for ζt , ht , and ζ̄. Then

V̂ − Ṽ = n−2
n−1∑

j=−(n−1)

k(j/ς)n−1
n−|j∧0|∑
t=1+(j∨0)

{
(ζ̂t ζ̂t+|j| − ζtζt+|j|) + 2 ¯̂

ζ(ζ̂t − ζt)

+ ( ¯̂
ζ − ζ̄)ζ̂t +

( ¯̂
ζ2 − ζ̄2

)}
� (A.5)

We obtain a bound for

ζ̂t ζ̂t+|j| − ζtζt+|j| = (ζ̂t − ζt)ζ̂t+|j| + (ζ̂t+|j| − ζt+|j|)ζ̂t� (A.6)

while omitting similar details for the other three terms. To find a bound for (A.6), first
note that ‖ĥt‖ = Op(‖xt‖) = Op(

√
p), by Assumption 3(ii) and finite fourth moments of

xt components (Assumption 3(i)), and because

êt = yt − x′
t δ̂1(γ) = x′

t

(
δ̂1(γ) − δ1

) + x′
t1(t/n > γ)δ2� + rt + εt =Op(1)� (A.7)

Hence,

ζ̂t = ĥ′
t

∑
s<t

ĥs/
√
p=Op(n

√
p)� (A.8)

By the same argument, ‖ht‖ =Op(
√
p) and ζt =Op(n

√
p) as well.

Now recall that êt − εt = x′
t (δ̂1(γ) − δ1) + x′

t1(t/n > γ)δ2� + rt and ‖δ̂1(γ) − δ1‖ =
Op(‖δ̂(γ) − δ‖) =Op(λ−1

n

√
p/

√
n) implying that

êt − εt =Op
(
max

{
λ−1
n p/

√
n�p3/4/

√
n
})
� (A.9)

Thus, we obtain

‖ĥt − ht‖ = ∥∥
−1(
− 
̂)
̂−1xtêt +
−1xt (êt − εt)
∥∥

=Op
(
λ−2
n

√
pmax{vp�p/

√
n}

)
� (A.10)

using Assumption 3(iii). Using (A.10), we get

ζ̂t − ζt = (ĥt − ht)′ ∑
s<t

ĥs/
√
p+ ĥ′

t

∑
s<t

(ĥs − hs)/√p

=Op
(
λ−2
n n

√
pmax{vp�p/

√
n}

)
� (A.11)

Using (A.8) and (A.11) in (A.6), we obtain ζ̂t ζ̂t+|j| − ζtζt+|j| = Op(λ−2
n n

2pmax{vp�
p/

√
n}). This, along with similarly obtained bounds for the remaining terms in (A.5) and

Lemma 1 of Jansson (2002), yield

V̂ − Ṽ =Op
(
ς

(∫
R

∣∣k(x)
∣∣dx)λ−2

n pmax{vp�p/
√
n}

)
=Op

(
λ−2
n max

{
pvp�p

2/
√
n
})
�

which is negligible by (4.4). Q.E.D.
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A.2.3. Characterize the Relationship Between the Numerator and Denominator

For this, we derive the covariance kernel of (An(γ)� Ān(γ))′, where

Ān(γ) = 1
n
√
p

n∑
s=[nγ]+1

s−1∑
t=[nγ]+1

ξ′
tξs�

Note that E(An(γ2) − An(γ1))An(γ1) = 0 for any γ1 < γ2. From the proof of Theo-
rem ST.B.2 in the Supplementary Material, we have

E
∣∣An(γ)

∣∣2 = γ2V
2

+ o(1)�

E
∣∣Ān(γ)

∣∣2 = (1 − γ)2V
2

+ o(1)�

where V is given in (3.2). Thus,

E
(
An(γ1)An(γ2)

) → (γ1 ∧ γ2)2

2
V�

and, similarly noting that E(Ān(γ2) − Ān(γ1))Ān(γ1) = 0 for any γ1 > γ2, we have

E
(
Ān(γ1)Ān(γ2)

) →
(
1 − (γ1 ∨ γ2)

)2

2
V �

Finally,

E
(
An(γ1)Ān(γ2)

) = 1{γ1 > γ2}
n2p

[nγ1]∑
s=[nγ2]+1

trE

(
ξsξ

′
s

s−1∑
t=1

s−1∑
u=[nγ2]+1

ξtξ
′
u

)

= 1{γ1 > γ2}
n2

[nγ1]∑
s=[nγ2]+1

(
s− 1 − [nγ2]

)
V + o(1)

= 1{γ1 > γ2}
2

(γ1 − γ2)2V + o(1)�

A.2.4. Under the Alternative

PROOF: We present a general proof where the true break point is γ0, and setting γ = γ0

gives our claim in the paper. Under H�, we have δ̂2(γ) = A(γ)X∗(γ0)δ2� + A(γ)ε +
A(γ)r. So that, writing D(γ�γ0) = A(γ)X∗(γ0) and B̂(γ) = RM̂(γ)−1
̂(γ)M̂(γ)−1R′,
similar algebra to that used in the Online Appendix and Lemmas SL.B.6–SL.B.10 yields

Qn(γ) = Sn(γ) + 2nδ′
2�D(γ�γ0)′B̂(γ)−1A(γ)ε√

2p
+ 2nδ′

2�D(γ�γ0)′B̂(γ)−1A(γ)r√
2p

+ nδ′
2�D(γ�γ0)′(B̂(γ)−1 −B(γ)−1

)
D(γ�γ0)δ2�√

2p
(A.12)
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+ nδ′
2�D(γ�γ0)′B̂(γ)−1D(γ�γ0)δ2�√

2p
+ op(1)�

For the second term on the RHS of (A.12), note that this equals

2nδ′
2�D(γ�γ0)′B(γ)−1A(γ)ε√

2p
+ 2nδ′

2�D(γ�γ0)′(B̂(γ)−1 −B(γ)−1
)
A(γ)ε√

2p

= 2nδ′
2�D(γ�γ0)B(γ)−1A(γ)ε√

2p
+Op

(
λ−2
n n‖δ2�‖

∥∥n−1X ′ε
∥∥∥∥B̂(γ) −B(γ)

∥∥/√p)

= 2nδ′
2�D(γ�γ0)′B(γ)−1A(γ)ε√

2p
+Op

(
λ−4
n p

1/4 max
{
λ−1
n κp� vp

})
�

proceeding like (SB.39), the second stochastic order above being negligible by (3.1). By
Assumption 1, the first term has mean zero and variance equal to a constant times

τ′D(γ�γ0)′B(γ)−1A(γ)A(γ)′B(γ)−1D(γ�γ0)τ√
p

=Op(1/
√
p)�

uniformly in γ by Lemmas SL.B.4 and SL.B.5 and the calculations therein.
By Assumption 2, the third term on the RHS of (A.12) is

Op
(
n‖δ2�‖

∥∥n−1X ′r
∥∥/√p) =Op

(
p−1/4

)
�

The fourth term on the RHS of (A.12) is readily seen to be Op(‖B̂(γ)−1 − B(γ)−1‖) =
Op(λ−4

n max{λ−1
n κp� vp}), which is negligible by (3.1). Thus, using similar steps to replace

B̂(γ)−1 by B(γ)−1 in the fifth term on the RHS and by (SB.29), (A.12) becomes

Qn(γ) = Sn(γ) + nδ′
2�D(γ�γ0)′B(γ)−1D(γ�γ0)δ2�√

2p
+ op(1)

= Sn(γ) + γ(1 − γ)τ′D(γ�γ0)′M
−1MD(γ�γ0)τ+ op(1)�

Now, by the definition of its components and steps similar to those elsewhere in the pa-
per, it is readily seen that ‖D(γ�γ0) −{(γ+ γ0(1 − γ) − (γ ∨ γ0))/γ(1 − γ)}Ip‖ = op(1),
uniformly on � and that γ+γ0(1 −γ) − (γ∨γ0) = −γγ0 + (γ∧γ0) as γ+γ0 − (γ∨γ0) =
(γ ∧ γ0). Thus,

Qn(γ)
d→Q(γ) +

(
γγ0 − (γ ∧ γ0)

)2

γ(1 − γ)
lim
n→∞

τ′M
−1Mτ� (A.13)

by Theorem ST.B.2, which gives the distribution of Qn(γ) under H�. Q.E.D.

PROOF OF THEOREM 4.2: In Section S.C of the online supplement. Q.E.D.

A.3. Proofs for Section 5

PROOF OF THEOREM 5.1: The proof proceeds exactly as that of Theorem 4.1, but with-
out γ. We give a brief summary and omit the details. Because Reβ̂ − r =
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FIGURE B.1.—Simulated Vn for various DGPs with increasing n=m= 2000� � � � �105 on a horizontal axis.

Rn−1M̂−1
∑n

t=1 xtεt under He
0, we can obtain the approximation

Qe
n =

n−1

(
n∑
t=1

xtεt

)′

L

(
n∑
t=1

xtεt

)
−p

√
2p

+ op(1)�

Then the proof of asymptotic normality follows with wns = ξ′
s

∑s−1
t=1 ξt/

√
np as in Theo-

rem ST.B.2, but now defining ξt = (ReM−1
M−1Re′)−1/2ReM−1xtεt . From this, it is readily
seen that E(

∑n

s=1wns)
2 = Ve + o(1). Q.E.D.

APPENDIX B: VERIFICATION OF HIGH-LEVEL CONDITIONS FOR EXAMPLES E1, E2,
AND E3

This section verifies some of the high-level conditions for our examples analytically,
while others are verified numerically.

First, we show that Assumptions 1 and 2 are satisfied for all the examples. For this, note
that the innovations ηt in the DGPs are mixed-normal with finite moments of all order.
Recall that an AR(1) or MA(1) process with bounded ARCH innovations whose AR or
MA coefficients satisfy |α| < 1 and |αx| < 1 (as in our DGP for xit) is strictly stationary
and β-mixing; see, for example, Theorem 15.0.1 of Meyn and Tweedie (1993). Thus, xit
is strictly stationary and β-mixing with a finite moment generating function. This implies
that Assumptions 1 and 2 are met for all the examples.

E1: Multivariate Regression

The regressor xt is a collection of independent centered stationary AR(1) processes xit
and their lags up to order 3. Thus, Assumption 3(i) is trivially satisfied. For (ii), we note
that M and 
 are block diagonal, implying that the minimum eigenvalues are bounded
away from zero. As for Assumption 3(iii), the usual maximal inequality for mixing, as
in, for example, Lemma 7 in Linton, Seo, and Whang (forthcoming), holds to yield the
bounds Op(pn−1/2 logn) on ‖n−1

∑[nr]
t=1 xtx

′
t − rM‖ and ‖n−1

∑[nr]
t=1 xtx

′
tσ

2
t − r
‖.

Turning to Assumption 4, first recall that the maximum of n random variables is
Op(logn) if the moment generating function of each random variable exists. Thus,

Emax
1≤t≤n

λ̄
(
ξtξ

′
t

) ≤ Emax
1≤t≤n

(
ξ′
tξt

) ≤
p∑
i=1

Emax
1≤t≤n

ξ2
it = pO(logn)� (B.1)
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as desired for p = o(n1/3/ logn), and similarly we can deduce the bound for
E|E(max1≤t≤n(ξ′

tξt)
2|Gt−1)|, which equals E(max1≤t≤n(ξ′

tξt)
2) = p2O(logn), due to the

nonnegativity of the square and the law of iterated expectations.
Next, the two conditions on convergence in Assumption 4 are difficult to derive analyt-

ically, so we present some numerical evidence in Figure B.1 and Table S.Tab.D.1 in the
Online Appendix. The coefficient α is chosen from 0�0�3, or 0�8 for the experiments. The
AR coefficient in E1 is set as −0�5 or 0�5, the MA coefficient in E2 as −0�5 or −0�1, and
the AR coefficient in E3 as 0.3, 0.5, or 0.7. The expectations in (3.2) are approximated
by the average of 10,000 iterations. For each coefficient combination, we experiment with
growing sample sizes from n =m = 2000 to 105, l = 0, and p = n1/3 for E1 and E2 and
p= 2n1/4 for E3. The results are plotted as lines in the figure. We note that the values do
not diverge even for the most persistent case of α = 0�8 and tend to stabilize for larger
n. On the other hand, the degeneracy of (n4p2)−1

∑n

t=1

∑t−1
s=1 cov(tr(ϒt�t)� tr(ϒs�s)) in

Assumption 4 is given in Table S.Tab.D.1 for various parameter vales and error types. The
table shows clear evidence of decaying covariances.

Finally, Assumption 5 is rather trivially met given that εt is mds and all the moments
exist for εt and xit for all i= 1� � � � �p.

E2: Infinite-Order AR

A set of primitive conditions is given in the next Proposition. Gonçalves and Kilian
(2007) has emphasized the empirical relevance of allowing for conditional heteroscedas-
ticity in autoregressive models, which is allowed below by relaxing Berk (1974)’s condition
of an iid error to an mds process. Let L be the lag operator and b(L) = ∑∞

j=1 bjL
j denote

the lag polynomial. The MA(1) with the coefficient less than the unity in modulus satisfies
the conditions in the next proposition.

PROPOSITION B.1: Suppose that (1) b(z) �= 0 for any |z| ≤ 1 and b−1(eiλ) exists and is
nonzero for −π < λ ≤ π. (2) {εt} is a stationary mds that possesses a density of bounded
variation, Eεt = 0 and E|εt |κ < C for some κ≥ 4 and E(ε2

t|Ft−1) is bounded and bounded
away from zero. (3) p3 = o(n). (4)

∑∞
j=p |bj| = o(n−1/2). (5) (σt� yt−1) is ρ-mixing with∑∞

j=1 ρ(2j) <∞. Then Assumptions 1–3 are satisfied with κp = vp = o(p−1/2).

PROOF: Berk (1974) established that the minimum eigenvalue of the limiting autoco-
variance matrix M is bounded away from zero; see its equation (2.7), and the deviation
bound for its sample autocovariance is o(p−1/2) in its Lemma 3. As for 
, note that for
some c > 0, which is an a.s. lower bound of E(ε2

t|Ft−1), and any |a| = 1,

a′
a=E(
a′xt

)2
ε2
t =E(

a′xt
)2
E

(
ε2
t|Ft−1

) ≥ cE(
a′xt

)2
�

to conclude that the minimum eigenvalue of 
 is also bounded away from zero.
Lemma 3.4 of Peligrad (1982) yields E|

∑n

t (z
2
t − Ez2

t )|≤ n∑
i ρ(2i)Ez4

t for a ρ-mixing
sequence zt . Since zt = σtyt−j for j = 1� � � � �p in the current case and (σt� yt−1) is ρ-
mixing, the bound may be set as n

∑
i ρ(0 ∨ (2i − p))Ez4

t ≤ n(
∑

i ρ(2i) + logp)Eσ4
t y

4
t−j

for any j ≤ p Then ‖
̄(γ) −
(γ)‖ = Op(n−1p2 logp). The rest of the proof is given in
Lemma SL.B.1. Q.E.D.

The same comments as in E1 apply for Assumptions 4 and 5.
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E3: Sieve Regression

Let Z ⊆ R
k denote the support of zt in E3. The following proposition provides some

more primitive conditions for E3 as given by Chen and Christensen (2015) and the dgp in
our Monte Carlo simulation satisfies them with a bounded support by construction and
geometric mixing rate due to Meyn and Tweedie (1993) as discussed above.

PROPOSITION B.2: Suppose that the following hold: (1) The sequence {zt} is strictly sta-
tionary and β-mixing with β-mixing coefficient β(·). Let q= q(n) be a sequence of integers
satisfying β(q)n/q → 0 as n → ∞ and q ≤ n/2; (2) Z is compact and rectangular, and
supz∈Z ‖xnt (z)‖ = O(ϑp); (3) The xt are tensor-products of power series, univariate poly-
nomial spline, trigonometric polynomial wavelet, or orthogonal polynomial bases. Then As-
sumptions 1–3 are met with κp =ϑp

√
q(logp)/n and vp = min{p3/n�ϑ2

pp/n}.

PROOF: We prove that Assumption 3 is met for the partial sum only, with the result for
the full sum following from Corollary 4.2 of Chen and Christensen (2015). By Assump-
tion 3, we can normalize the xt so that E(xtx′

t) = Ip without loss of generality. The result
then follows by Corollary SC.A.1 by taking �t�n = n−1(xtx′

t − Ip), which implies that the
terms in Theorem ST.A.1 have bounds: Rn ≤ n−1(Cϑ2

p + 1) and s2
n ≤ n−2(Cϑ2

p + 1). The
second claim follows similarly. The rest of the proof is given in Lemma SL.B.1. Q.E.D.

The permissible mixing decay rate depends on the dimension p of xt : larger p requires
faster mixing decay. Both exponential and geometric decays are allowed. See the discus-
sions of Assumption 4 and Remark 2.3 in Chen and Christensen (2015) for more detailed
discussion in relation to the sieve basis functions. The sequence q depends on the mixing
decay rate. For instance, if β(q) decays at an exponential rate, q can be set as logn. If
all elements of xt (·) are bounded, then ϑp = p1/2. Under suitable conditions, it can be
shown that ϑp = p for power series or orthogonal polynomials and ϑp = p1/2 for univari-
ate polynomial splines, trigonometric polynomials, or wavelets; see Newey (1997), Chen
and Christensen (2015).

The same comments as in E1 apply for Assumptions 4 and 5.
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