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APPENDIX A: PROOF OF LEMMA 1

I START BY CHARACTERIZING THE SURPLUS FUNCTION s;(x), which maps the breadth x
of a retailer’s variety into the surplus offered by the retailer to its customers. First, s;(x) is
strictly decreasing in x for all x € [x}, x exp(n)]. To see why this is the case, consider two
retailers with varieties x, and x;, with x, < x;. Let s, denote the optimal surplus offered
by the retailer with x, and let s; denote the optimal surplus offered by the retailer with x;.
Since the retailer with x, prefers s, to s; and the retailer with x; prefers s, to s, it follows
that

e MXI=Fo0) (oo g} > @ ATl (oo _ ), (A1)
e MXI=Fo) (oo _ g} > @ M I=Fil0)) (7o _ g, (A2)

Combining (A.1) and (A.2) yields
T MXFo0) (o _ ) > WX (I=Fio0) (oo yre), (A.3)

which implies that sy > s;. That is, s,(x) is nondecreasing in x. If s, = sy, any retailers
carrying a variety with breadth x € [x, x;] would offer the surplus s,, and hence, there
would be a mass point in the surplus distribution F,(s) at s,. This, however, cannot be an
equilibrium, since a mass point in F,(s) at s, implies that a retailer could attain a strictly
higher profit by offering s, + € rather than by offering s,, for some arbitrarily small but
positive €.

Second, s,(x) is such that s,(x} exp(n)) = 0. To see why this is the case, suppose that the
lowest surplus offered by retailers is some s, > 0. A retailer offering s, only sells to those
b, buyers who are not in contact with any other retailer carrying a variety that they like.
A retailer offering sy enjoys a profit of x~* — s, per unit sold. If the retailer were to offer
a surplus of 0, it would still sell only to those b, buyers who are not in contact with any
other retailer carrying a variety that they like. However, the retailer would enjoy a profit
of x™* > x~* — s, per unit sold. Therefore, the lowest surplus offered by retailers must be
equal to 0. Since retailers carrying a broader variety offer a lower surplus, it follows that
s (x; exp()) = 0.

To complete the characterization of s,(x), I use the optimality condition of the retailer’s
pricing problem and the properties of the surplus distribution. The optimality condition
of the retailer’s problem is

1=AXF' (s/(x)) (x™ = 5:(x)). (A4)

The left-hand side of (A.4) is the retailer’s marginal cost of offering more surplus to its
customers, and it is equal to the retailer’s volume. The right-hand side of (A.4) is the
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retailer’s marginal benefit of offering more surplus to its customers, and it is equal to the
retailer’s increase in volume multiplied by its per-unit profit.
The surplus distribution is such that
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where the expression in (A.5) is obtained from (2.6) and the fact that s,(x) is strictly
decreasing in x. Differentiating (A.5) with respect to x yields
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(A.5)

Fi(s:(x))s;(x) = — (A.6)

Combining (A.4) and (A.6) gives a differential equation for the surplus function

si(x) = —%(x‘“ — 5:(x)). (A7)

The unique solution to the differential equation (A.7) that satisfies the boundary condi-
tion s,(xF exp(n)) =0 is

xjen
5:(x0) = ;/ X% w0 gy (A.8)
X0

The expression in (A.8) describes the surplus function s,(x) for x € [x}, x} exp(n)]. For
any x > x}exp(n), the retailer carries the broadest variety in the market. It is easy to
check that such a retailer finds it optimal to offer a surplus of 0. For x < x}, a retailer
carries the most specialized variety in the market. It is easy to check that such a retailer
finds it optimal to offer a surplus of s,(x¥).

I can now compute the maximized profit R,(x) for a retailer carrying a variety with
breadth x, which is

bAx(x* —s5,(x7)) for x < x%,
R.(x) = b)\,xe’?("’x?)(x‘“ —s,(x)) forxe[x},x}e"], (A9)
bAxe e xa for x > x7e".

For x € [x7, x} exp(mn)], the expression for R,(x) is obtained using the fact that F,(s,(x))
is given by (A.6) and X, is given by (2.3). For x > x* exp(n), the expression for R,(x) is
obtained by noting that the retailer offers to its buyers a surplus of 0, which is the lowest
in the market. For x < x?¥, the expression for R,(x) is obtained by noting that the retailer
offers a surplus of s,(x}), which is the highest in the market.

APPENDIX B: PROOF OF LEMMA 2

Equation (2.13) implies that a firm’s marginal benefit from designing a more specialized
variety of the product is equal to the marginal cost from designing a more specialized
variety when the firm chooses x} and all other firms choose x?. If, in addition, the firm’s
marginal cost is lower than the marginal benefit for all x, > x; and the firm’s marginal
cost exceeds the marginal benefit for all x, < x¥, then equation (2.13) also implies that x*
maximizes the firm’s profit given that all other firms choose x;.
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Let u(x,) denote the derivative with respect to —x, of the first term on the right-hand
side of (2.11). Let v(x,) denotes the derivative with respect to —x, of the second term
on the right-hand side of (2.11). That is, let u(x,) denote the firm’s marginal benefit
from designing a more specialized variety of the product and let »(x,) denote the firm’s
marginal cost from designing a more specialized variety of the product. Using (2.10), it is
easy to show that u(x,) is such that

w(x) = p(x;) — bmﬁ(xf‘“ —x;%), forx, >xj, (B.1)
n
A

w(x) < p(x}) + bm;’(xt‘“ —x;7%), forx, <xi. (B.2)

The breadth x¥ maximizes the firm’s profit (2.11) as long as the firm’s marginal cost
v(x,) is smaller than the lower bound on the marginal benefit on right-hand side of (B.1)
for x, > x7, and the marginal cost v(x,) is greater the upper bound on the marginal benefit
on the right-hand side of (B.2) for x, < x}. There are many cost functions g such that v(x,)
has these properties. For example, a cost function g such that

—q' (/i) = —q (xi/xi) + qo[ (x/x,) P = (5 /x) 7, (B.3)

where B and g, are parameters such that

)\ * *—a
B>a and q,> Ko Lot (B.4)
n W
APPENDIX C: PROPERTIES OF THE FUNCTION ¥
The function W¥(¢) is defined as
en
V(p) = ? [1 — 9/ Z_”‘(%(Z") dz — eﬁ(””e*“‘“”] (C.1)
n nJ1

I am going to establish some properties of W(¢). In particular, I am going to establish
that ¥'(¢) > 0, ¥(0) is equal to 0, ¥'(0) = [1 — e~ V7]/n, and V(o) = a.
The derivative of ¥(¢) with respect to ¢ is

1 en .
V(p)=— [1 — % -/1 7% 7D gy e 1)e_(a—l)n}

n
1 e . el ;
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1 "
_|_ é[_(en — 1)(3*%(6 1)6_(0‘_1)71]. (C2)
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After collecting terms, I can rewrite (C.2) as

V() = l[1 _¢ [ z“<2 - f(z - 1)>e—%<z—1> dz]
n mn Ji n

— le‘%’(”‘l)e’(“’l)” <1 — é(e" - 1)) (C.3)
n n
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Using the fact that % is small, and hence, exp(n) is close to 1, I can approximate z™*
with 1 — a(z — 1) inside the integral of (C.3). That is,

/e Za<2 - E(Z — 1))@‘%(2—1) dz
1 n
A /e [1 —a(z— 1)](2 — %(z — 1)>e‘§(21) dz

:/1€n (2_ %(2—1)>e‘$<zl> dz—a/len(z—l)(Z— %(z—1)>ei’<zl>dz. (C.4)

The solution of the first integral in the third line of (C.4) is

/len (2 _ %(z - 1)>e?<“> dz= # {1 - eﬁ(""”<1 - %(6" - 1))]- (€3)

The solution of the second integral in the third line of (C.4) is

—a / Cz—1) (2 - 1)>e??<“> dz=—ac 7" (1. (C6)
1 n

Substituting (C.5) and (C.6) into (C.4) yields

V() ~ %[e‘ﬁ(enl) (1 _ i(e”’ _ 1))(1 _ e—(a—l)n) + af(%((;nil)(en _ 1)2]

n n
1 _i(en_1)|:< ¢ > —(a—1) ¢ 2:|
=—e 1——(e"=1)J(1—e N+a—(e"—-1
. Yer-1))a-et ) ralie -
1 — & (en-1) —(a—1) ¢ —(a—1
= e 1—e T+ (e —1)(ae" +e T —a—1)|, (C.7)
n n

where the last line in (C.7) is strictly positive because ae” + e~ “"D" > « + 1. Hence,
V() > 0.
For ¢ — 0, ¥'(¢) takes the value

1
V(0)=—[1—e @] (C.8)
Yl
For ¢ — oo, ¥(¢) is such that

el
1— ?/ 7% 7D fy o 5@ p=(a=D)n
1

_ 1 n
¥(oo)= Jin, n/¢

(C.9)
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Both the numerator and the denominator converge to 0. Applying de 'Hopital’s rule
yields

2 en
W (o0) = lim (iz |:/ z“(l - é(z - 1))6_%(2_1) dz — e_%)(en_l)e(“l)”}
1 n

d—00 n

<t (£) e )1 e afer )

$—00 n
+ lim a|:1 - eﬁ(“n1)<1 + f(e” — 1))]
d—>00 n
—a (C.10)

APPENDIX D: PROPERTIES OF THE FUNCTION I'

I now want to establish some properties of the function I'(¢), which is defined as

el
rg) =2 / e 56 gz (D.1)
nJi
Note that I can write (D.1) as
1 Axt [ a _—
F(Ax*) = — al / (zx*) e 1 g7
X n J
1 A .
= ﬂ—/ x%e 1) dx, (D.2)
x n X*

where the first line in (D.2) is obtained by defining x* as A/ ¢, and the second line in (D.2)
is obtained by changing the variable of integration from z to x = zx*.
Multiplying the left- and the right-hand side of (D.2) by x*~* yields

AR .
C(Ax*)x* ¢ = —/ x e ) g, (D.3)
M Jxx

Differentiating the left- and the right-hand side of (D.3) with respect to x* yields

F/(/\x*)x*’“)\ — alﬂ()\x*)x*’“”1

A £ T —A eyt _yx*) x—a A e —a =2 (x—x*)
== (e"x) e e — x4 — X %e dx
n N Jx*
x*el —a " "
= —x*’“ﬁ |:1 - A‘/‘ (%) e D dx — e_%(en_l)e"(“”]. (D.4)
n n Jx X

Multiplying both sides of (D.4) by x*/x*~* yields

I"(Ax*)Ax* — ol (Ax")
* x*e —a )
_ M [1 A / (i) e D dx — e-%@”—l)eﬂ(““] (D.5)

n U] x
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Using the fact that Ax* = ¢*, I can rewrite (D.5) as

F/((f))(b — al“(cb) = —— [1 — —/ z % n(z Ddz— i,s(”])e—n(a—l):|_ (D6)

Since the right-hand side of (D.6) is equal to —W(¢), it follows that

V(p) =al'(¢) —I"(4)¢. (D.7)
Dividing both sides of (D.7) by I'(¢), yields
V(¢) _al(¢) -1"()d _ T'($)d
) B ) B Y -

Let €(¢) denote the elasticity of I'(¢) with respect to ¢. That is,

< —af1 _ f _ -2
I'(6) _ ‘/1‘ z (1 77(2 1)>e dz
I'(¢) / b (o)
z % dz

en
Q/ z’“(z—l)e_%(z_l) dz
nJi

e ¢
/ 7% D gz
1

Let n(¢) the numerator of the fraction in the second line of (D.9), that is,

€(¢) =

(D.9)

n(¢) = k4 /e 7 %(z— 1)e’%(z’l) dz
n Ji

gf “ _ _ _ *%(2*1)
77/1 (1-a(z—1))(z—1)e dz

il (e 3) 3

- a(%)z(e" - 1)2) + % - Za], (D.10)

where the second line is obtained by approximating z=* with 1 — a(z — 1). Let d(¢) the
denominator of the fraction in the second line of (D.9), that is,

d(q’)):/ e 1t gz
1

’«%/ (1-a(z— 1))e’%(z’]) dz
1

= (d>/1n)2 [ei?w"l) <a - % + a%(e"” -~ 1)) + % — a], (D.11)
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where the second line is obtained by approximating z=* with 1 — a(z — 1). From the above
expressions, it follows that lim,_, ., n(¢)/d(¢) = 1. From the above expressions and de
I'Hopital’s rule, it follows that lim,_.,n(¢)/d(¢) = 0. Hence, €(0) =1 and e(oc0) = 0 and

Y(¢)/I'(p) is equal to & — 1 for ¢ =0 and equal to « for ¢ = oo.
The derivative of €(¢) with respect to ¢ has the opposite sign as

e =[[ wre-n(i-Le-p)erenad[ [T e tena]
+ %[/jn z%(z— 1)6_%(2_1) dz:| |:/le" z7%(z— l)e—%(z‘l) dz:|. (D.12)

A linear approximation of z7*(z —1)(1 — (z — 1)¢/n), z7* and z7*(z — 1) around z =1
yields

&)= [/1 (z—1)e 1D dz:| [/1 (1—a(z—1))e ¢ dzj|

+ %[/1 (z—1)e 7D dzi| [/1 (z—1)e 7D dzi|. (D.13)

Since €'(¢) > 0, it follows that the derivative of e(¢) with respect to ¢ is strictly negative.
In turn, this implies that the ratio W(¢)/I'(¢) is strictly increasing in ¢.
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