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APPENDIX B: OMITTED PROOFS

B.1. Proof of Lemma 1

WE PROCEED IN THREE STEPS.

STEP 1: Suppose θ∗ ≥ θ. We show that (3) and (4) are satisfied for types θ ∈ [θ�θ∗].

The claim follows immediately from the fact that all types θ ∈ [θ�θ∗] are assigned their
flexible debt levels with no penalty. Thus, given θ ∈ [θ�θ∗], type θ’s welfare cannot be
increased, and (3) and (4) are trivially satisfied.

STEP 2: We show that (3) and (4) are satisfied for types θ ∈ (θ∗� θ∗∗].

Take first the enforcement constraint (4). We can rewrite it for θ ∈ (θ∗� θ∗∗] as
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Differentiating the left-hand side with respect to θ, given θ∗ and the definition of bp(θ),
yields
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)
�

which is weakly decreasing in θ, since bp(θ) is nondecreasing. This means that the left-
hand side of (B.1) is weakly concave. Since (B.1) holds as a strict inequality for θ = θ∗ and
as an equality for θ = θ∗∗ (by (8)), this weak concavity implies that (B.1) holds as a strict
inequality for all θ ∈ (θ∗� θ∗∗). Thus, constraint (4) is satisfied for all θ ∈ (θ∗� θ∗∗].

Take next the truthtelling constraint (3). This constraint is trivially satisfied for all θ ∈
(θ∗� θ∗∗] given θ′ ∈ [θ∗� θ∗∗], since all types θ ∈ [θ∗� θ∗∗] are assigned the same allocation.
We next show that the constraint is also satisfied given θ′ > θ∗∗ and θ′ < θ∗:

Step 2a: We show that (3) is satisfied for all θ ∈ (θ∗� θ∗∗] given θ′ > θ∗∗. Note that
(b(θ′)�P(θ′)) = (bp(θ′)�P(bp(θ′))) for all θ′ > θ∗∗, and by the definition of bp(θ),
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for all θ′ ∈ �. Thus, the fact that the enforcement constraint (4) is satisfied for all θ ∈
(θ∗� θ∗∗] implies that (3) is satisfied for all such types given θ′ > θ∗∗.

Step 2b: We show that (3) is satisfied for all θ ∈ (θ∗� θ∗∗] given θ′ < θ∗. Suppose by
contradiction that this is not the case, that is,
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for some θ ∈ (θ∗� θ∗∗] and θ′ < θ∗. By Step 1, (3) holds for type θ∗ given θ′ < θ∗:
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Combining (B.2) and (B.3) yields(
θ∗ − θ
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which is a contradiction since θ > θ∗ and br(θ′) ≤ br (θ∗). The claim follows.

STEP 3: Suppose θ∗∗ < θ. We show that (3) and (4) are satisfied for types θ ∈ (θ∗∗� θ].

Constraint (4) is satisfied as an equality for all θ ∈ (θ∗∗� θ]. It is immediate that con-
straint (3) is satisfied for all θ ∈ (θ∗∗� θ] given θ′ ∈ (θ∗∗� θ], since all such types are as-
signed their flexible debt level with maximum penalty. Consider next constraint (3) for
θ ∈ (θ∗∗� θ] given θ′ ∈ [θ∗� θ∗∗]. Note that (b(θ′)�P(θ′)) = (br (θ∗)�0) for all θ′ ∈ [θ∗� θ∗∗].
Thus, satisfaction of this constraint is ensured if (B.1) is violated for θ ∈ (θ∗∗� θ]. The lat-
ter is true since, as shown above, the left-hand side of (B.1) is weakly concave and (B.1)
holds as an equality for θ = θ∗∗ and a strict inequality for θ ∈ (θ∗� θ∗∗).

Finally, consider constraint (3) for θ ∈ (θ∗∗� θ] given θ′ < θ∗. Since (3) is satisfied given
θ′ ∈ [θ∗� θ∗∗], satisfaction of this constraint given θ′ < θ∗ is ensured if
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for θ ∈ (θ∗∗� θ]. The latter follows from the same logic as in Step 2b above.

B.2. Proof of Corollary 1

Consider optimal rules with b(θ) ∈ (b�b) for all θ ∈ �. We proceed in four steps.

STEP 1: We show that an optimal maximally enforced deficit limit solves
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subject to (8)� (B.4)

where Q(θ) = 1 for θ < θ and, by convention, the last integral equals zero if θ∗∗ ≥ θ.
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By the arguments in the text, social welfare can be written as
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which in turn can be rewritten as
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where Q(θ) = 1 for θ < θ. Hence, social welfare under a maximally enforced deficit limit
can be represented as

lim
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Since the first term in (B.5) is independent of the choice of θ∗ > 0 and θ∗∗ > θ∗, and since
the constant 1

β
multiplies all other terms, the objective in (B.4) is equivalent to (B.5).

STEP 2: Consider the following relaxed program:
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We show that any solution to this program yields strictly higher social welfare than any
solution to program (B.4) with θ∗∗ < θ.

Take any solution {θ∗� θ∗∗} to program (B.4) with θ∗∗ < θ. To prove the claim, it suffices
to show that social welfare strictly increases if we change the allocation of types θ ∈ [θ∗∗� θ]
from (b(θ)�P(θ)) = (bp(θ)�P(bp(θ))) to (b(θ)�P(θ)) = (br (θ∗)�0). To prove this, note
first that by Step 1 in the proof of Proposition 2, the solution {θ∗� θ∗∗} to program (B.4) has
θ∗∗ ≥ θ̂. Hence, by Assumption 1, Q(θ) < 0 for all θ ∈ [θ∗∗� θ]. Given the representation
in (B.4), the claim then follows if br (θ∗) < bp(θ) for all θ ∈ [θ∗∗� θ]. We show next that
this inequality holds. Given the solution {θ∗� θ∗∗}, the following conditions hold for all
θ ∈ [θ∗∗� θ]:
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Combining these two inequalities yields(
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which implies bp(θ) > br (θ∗) for all θ ∈ [θ∗∗� θ].
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STEP 3: We show that the solution to the relaxed program in Step 2 is θ∗ = θe, where
θe ∈ [0� θ) is uniquely defined by (11). Moreover, if θ∗ = θe satisfies constraint (8) for
some θ∗∗ ≥ θ, then these values correspond to the unique solution to program (B.4).

To prove the first claim, consider the first-order condition of the relaxed program in
Step 2:

dbr
(
θ∗)

dθ∗ U ′(ω+ br
(
θ∗))∫ θ

θ∗
Q(θ) dθ = 0�

Since dbr (θ∗)
dθ∗ > 0 and U ′(ω + br(θ∗)) > 0, this condition requires that the integral be

equal to 0. Hence, by the definition in (11), we obtain θ∗ = θe. Note that this value is
uniquely defined since, by Assumption 1,

∫ θ

θ∗ Q(θ) dθ = 0 requires θ∗ < θ̂ and Q(θ∗) > 0,

and hence
∫ θ

θ∗ Q(θ) dθ is strictly decreasing in θ∗. Since
∫ θ

θ∗ Q(θ) dθ is strictly positive for
θ∗ = ε and strictly negative for θ∗ = θ − ε for sufficiently small ε > 0,30 it follows that a
unique interior θe ∈ (0� θ) exists and is the unique optimum.

To prove the second claim, note that if constraint (8) holds under θ∗ = θe and some
θ∗∗ ≥ θ, then such a deficit limit {θe�θ

∗∗} is feasible in program (B.4). Moreover, since this
deficit limit yields the same social welfare as the relaxed program, it follows from Step 2
and the above claim that it yields strictly higher social welfare than any other feasible
deficit limit and is thus the unique solution to program (B.4).

STEP 4: We show that if (12) holds, then the solution to (B.4) has θ∗ = θe and θ∗∗ ≥ θ.

The claim follows from Step 3 and the fact that if (12) holds, then constraint (8) is
satisfied under θ∗ = θe and some θ∗∗ ≥ θ.

B.3. Proof of Proposition 4

For any given threshold θ′, denote by ρ(θ′) the type exceeding θ′ at which (8) holds:
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Note that given θ′, ρ(θ′) > θ′ is uniquely defined. This follows from the same logic as in
Step 2 in the proof of Lemma 1. We prove this proposition in five steps.

STEP 1: We show that dρ(θ′)
dθ′ > 0.

Implicit differentiation of (B.6), taking into account the definition of br (θ′), yields
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30To see that
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which approaches βE[θ] > 0 as ε goes to 0.
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Note that since dbr (θ′)
dθ′ > 0 and ρ(θ′) > θ′, the numerator in (B.7) is strictly positive. More-

over, by the arguments in Step 2 of the proof of Corollary 1, we have bp(ρ(θ′)) > br (θ′),
which implies that the denominator is also strictly positive. Thus, we obtain dρ(θ′)

dθ′ > 0.

STEP 2: We show that if θc ≤ θe, then condition (14) holds and the optimal maximally
enforced deficit limit is unique and has θ∗ = θe and θ∗∗ ≥ θ.

As noted in the text, if θc ≤ θe, Assumption 1 guarantees that
∫ θ

θc
Q(θ) dθ ≥∫ θ

θe
Q(θ) dθ = 0, so condition (14) is satisfied. The claim then follows from Corollary 1.

STEP 3: We show that if θc > θe, then θ∗ ≤ θc .

Assume θc > θe. Suppose by contradiction that an optimal maximally enforced deficit
limit features θ∗ > θc , which implies θ∗∗ ≥ θ. Consider a perturbation that reduces θ∗ by
ε > 0 arbitrarily small. Since in the original rule the enforcement constraint of all types
θ ∈ � is slack, this perturbation is incentive feasible. The change in social welfare, using
the representation in (B.4), is

−
∫ θ

θ∗

dbr
(
θ∗)

dθ∗ U ′(ω+ br
(
θ∗))Q(θ) dθ. (B.8)

Assumption 1 together with (11) imply θe < θ̂. It then follows from θ∗ > θc > θe and
Assumption 1 that

∫ θ

θ∗ Q(θ) dθ < 0, and thus, since dbr (θ∗)
dθ∗ > 0, (B.8) is strictly positive.

Hence, the perturbation strictly increases social welfare, implying that θ∗ > θc cannot
hold.

STEP 4: We show that if θc > θe and condition (14) holds, then the optimal maximally
enforced deficit limit is unique and has θ∗ = θc and θ∗∗ = θ.

Assume that θc > θe and condition (14) holds. By Step 3, an optimal maximally en-
forced deficit limit has θ∗ ≤ θc . Suppose by contradiction that θ∗ < θc , which implies
θ∗∗ = ρ(θ∗) < θ for ρ(·) as defined in (B.6). Consider a perturbation that changes θ∗ by
some ε≷ 0 for |ε| arbitrarily small, where θ∗∗ = ρ(θ∗) is also changed to preserve (B.6).
This perturbation is incentive feasible. Using the representation in (B.4), for this pertur-
bation to not increase social welfare for any arbitrarily small ε≷ 0, we must have∫ ρ(θ∗)

θ∗
U ′(ω+ br
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θ∗))dbr
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θ∗)

dθ∗ Q(θ) dθ
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Using (B.7) to substitute for dρ(θ∗)
dθ∗ and simplifying terms, we can rewrite this condition as∫ ρ(θ∗)

θ∗

(
Q(θ) −Q

(
ρ
(
θ∗)))dθ = 0. (B.9)

Given Assumption 1, (B.9) requires θ∗ < θ̂ < ρ(θ∗) with

Q
(
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θ∗))� (B.10)
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Now note that the derivative of the left-hand side of (B.9) with respect to θ∗ is equal to

−(
Q
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θ∗) −Q
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ρ
(
θ∗))) −

∫ ρ(θ∗)

θ∗
Q′(ρ(

θ∗)))
dρ

(
θ∗)

dθ∗ dθ� (B.11)

By (B.10), the first term is strictly negative. Moreover, since ρ(θ∗) > θ̂, Assumption 1 im-
plies Q′(ρ(θ∗))) > 0. Given dρ(θ′)

dθ′ > 0 (as established in Step 1), it then follows that the
second term in (B.11) is also strictly negative. Hence, the derivative of the left-hand side
of (B.9) with respect to θ∗ is strictly negative. However, using the contradiction assump-
tion that θ∗ < θc , condition (B.9) then requires that the left-hand side of (14) be strictly
negative, contradicting the assumption that condition (14) holds. Therefore, there exists
a perturbation that changes θ∗ by some ε ≷ 0 which strictly increases social welfare, im-
plying that the unique optimal maximally enforced deficit limit has θ∗ = θc and θ∗∗ = θ.

STEP 5: We show that if θc > θe and condition (14) does not hold, then the optimal
maximally enforced deficit limit is unique and has θ∗ ∈ (θe�θc) and θ∗∗ < θ.

Assume that θc > θe and condition (14) is violated. By Step 3, an optimal maximally
enforced deficit limit has θ∗ ≤ θc . We begin by showing that θ∗ = θc cannot be optimal.
Suppose by contradiction that an optimal maximally enforced deficit limit sets θ∗ = θc

and thus θ∗∗ = ρ(θc) = θ. Consider a perturbation that reduces θ∗ by ε > 0 arbitrarily
small, where θ∗∗ = ρ(θ∗) is also changed to preserve (B.6). This perturbation is incentive
feasible. Using the representation in (B.4), for this perturbation to not increase social
welfare for any arbitrarily small ε > 0, we must have

−
∫ ρ(θ∗)

θ∗
U ′(ω+ br

(
θ∗))dbr

(
θ∗)

dθ∗ Q(θ) dθ

− dρ
(
θ∗)

dθ∗
[
U

(
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θ∗)))]Q(

ρ
(
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By analogous logic as in Step 4 above, we can rewrite this condition as

∫ θ

θc

(
Q(θ) −Q(θ)

)
dθ ≥ 0,

where we have taken into account that θ∗ = θc and θ∗∗ = ρ(θc) = θ. However, this inequal-
ity contradicts the assumption that condition (14) does not hold. Therefore, the perturba-
tion strictly increases social welfare, implying that any optimal maximally enforced deficit
limit has θ∗ < θc and θ∗∗ = ρ(θ∗) < θ.

We next show that the optimal values of θ∗ and θ∗∗ = ρ(θ∗) are unique with θ∗ > θe. By
analogous logic as in Step 4 above, the optimal value of θ∗ must satisfy (B.9). As shown
in Step 4, the left-hand side of (B.9) is strictly decreasing in θ∗. This has two implications.
First, it implies that there is a unique value of θ∗ and associated θ∗∗ = ρ(θ∗) which solve
(B.9). Second, given (11), Assumption 1, and the fact that the left-hand side of (B.9) is
strictly decreasing in ρ(θ∗), it implies that if θ∗ ≤ θe, then the left-hand side of (B.9) must
be strictly positive, a contradiction. Therefore, the unique value of θ∗ that solves (B.9)
must satisfy θ∗ > θe.
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B.4. Proof of Proposition 5

Let θL�θH ∈ � and � > 0 be defined as in Definition 2. We prove the proposition by
proving the following three claims.

CLAIM 1: Suppose Assumption 1 is strictly violated. If a maximally enforced deficit limit
{θ∗� θ∗∗} is a solution to (6) for given functions V (b), P(b), then θ∗ ≤ θL and θ∗∗ ≥ θH .

PROOF: Suppose Assumption 1 is strictly violated. Suppose by contradiction that a
maximally enforced deficit limit with θ∗ > θL is a solution to (6). Then analogously to
Step 2 (Case 2) in the proof of Proposition 1, consider a perturbation that drills a hole
in the borrowing schedule in the range [θL�θL + ε] for arbitrarily small ε > 0 satisfying
θL + ε < min{θ∗� θL + �}. This perturbation is incentive feasible. Moreover, since Q(θ)
is strictly increasing in this range, the arguments in Step 2 in the proof of Proposition 1
imply that this perturbation strictly increases social welfare, yielding a contradiction.

Next, suppose by contradiction that a maximally enforced deficit limit with θ∗∗ < θH

is a solution to (6). Then consider types θ ∈ [θH − ε�θH] for arbitrarily small ε > 0
satisfying θH − ε > max{θ∗∗� θH − �}. For each such type θ, we have (b(θ)�P(θ)) =
(bp(θ)�P(bp(θ))) and Q′(θ) < 0. Thus, this is the same situation as in Step 1 in the proof
of Proposition 2. Analogously to that step, we can show that there is an incentive feasible
perturbation that strictly increases social welfare, yielding a contradiction. Q.E.D.

CLAIM 2: Suppose Assumption 1 is strictly violated. For any function V (b), there exists a
function P(b) such that no solution to (6) is a maximally enforced deficit limit.

PROOF: Suppose Assumption 1 is strictly violated. Given V (b), define P(b) = P for
P > 0. By Claim 1, if a maximally enforced deficit limit {θ∗� θ∗∗} solves (6), then θ∗ ≤ θL

and θ∗∗ ≥ θH . Consider the indifference condition (8) which defines, for any given θ∗, a
unique value of θ∗∗ > θ∗. This condition shows that given V (b) and P(b) = P , the value
of (θ∗∗ − θ∗) is continuous in P and approaches 0 as P goes to 0. Hence, if we take P > 0
small enough, then θ∗ ≤ θL < θH ≤ θ∗∗ cannot hold. The claim follows. Q.E.D.

CLAIM 3: Suppose Assumption 1 is weakly violated. For any function V (b), there exists a
function P(b) such that not every solution to (6) is a maximally enforced deficit limit.

PROOF: Suppose Assumption 1 is weakly violated and a maximally enforced deficit
limit {θ∗� θ∗∗} is a solution to (6). Then {θ∗� θ∗∗} satisfy condition (8) and analogous ar-
guments as in the proof of Claim 2 above imply that, given V (b), there exists a function
P(b) such that θ∗ ≤ θL < θH ≤ θ∗∗ cannot hold. This means that given such functions, any
maximally enforced deficit limit {θ∗� θ∗∗} solving (6) must have either θ∗ > θL or θ∗∗ < θH

(or both). Suppose first that θ∗ > θL. Then consider a perturbation as in the proof of
Claim 1 above which drills a hole in the borrowing schedule in the range [θL�θL + ε] for
arbitrarily small ε > 0 satisfying θL + ε < min{θ∗� θL + �}. The same arguments as in the
proof of Claim 1, given Q′(θ) ≥ 0 for θ ∈ [θL�θL + ε], imply that this perturbation weakly
increases social welfare. The resulting allocation is therefore a solution to (6), and it is
not a maximally enforced deficit limit.

Suppose next that θ∗∗ < θH . Then as in the proof of Claim 1 above, consider types
θ ∈ [θH − ε�θH] for arbitrarily small ε > 0 satisfying θH − ε > max{θ∗∗� θH −�}. For each
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such type θ, we have (b(θ)�P(θ)) = (bp(θ)�P(bp(θ))) and Q′(θ) ≤ 0. Thus, we can per-
turb the allocation of these types as in Step 1 in the proof of Proposition 2 and weakly
increase social welfare. The resulting allocation is therefore a solution to (6), and it is not
a maximally enforced deficit limit. Q.E.D.

B.5. Proof of Proposition 6

We prove each part of the proposition in order.
Part 1. Suppose the enforcement constraint binds under P(b). Then for k = 0, we have

θU
(
ω+ br (θe)

) +βδV
(
br (θe)

)
< θU

(
ω+ bp(θ)

) +βδ
(
V

(
bp(θ)

) − P
(
bp(θ)

) − k
)
. (B.12)

Observe that there exists a finite value k′ > 0 such that the right-hand side of (B.12) equals
the left-hand side under k = k′. If k ∈ [0�k′), the inequality in (B.12) is preserved and the
enforcement constraint continues to bind under P(b)+k. If instead k ≥ k′, this inequality
no longer holds and the enforcement constraint does not bind under P(b) + k.

Part 2. Suppose the enforcement constraint binds and on-path penalties are optimal
under P(b). By analogous arguments as in the proof of Part 1 above, there exists a finite
k′′′ > 0 such that the enforcement constraint under P(b) +k binds if k ∈ [0�k′′′) and does
not bind if k≥ k′′′. To complete the proof, take k ∈ [0�k′′′) and define θc(k) as the solution
to

θU
(
ω+ br

(
θc(k)

)) +βδV
(
br

(
θc(k)

))
= θU

(
ω+ bp(θ)

) +βδ
(
V

(
bp(θ)

) − P
(
bp(θ)

) − k
)
. (B.13)

The value of θc(k) corresponds to the value of θc defined in (13) as a function of the
additional penalty k ∈ [0�k′′′). We show that θc(k) is strictly decreasing. Implicit differen-
tiation of (B.13) yields

dθc(k)
dk

= − βδ(
θ− θc(k)

)dbr
(
θc(k)

)
dθ

U ′(ω+ br
(
θc(k)

)) < 0� (B.14)

where we have used the fact that θc(k)U ′(ω+ br (θc(k))) = −βδV ′(br (θc(k))). Since on-
path penalties are optimal under k= 0, Proposition 4 implies∫ θ

θc (0)

(
Q(θ) −Q(θ)

)
dθ < 0. (B.15)

By the definition of k′′′, the value of θc(k) approaches θe from above as k approaches
k′′′. Given the definition of θe in (11) and the fact that Q(θ) < 0, it follows that∫ θ

θc (k′′′)

(
Q(θ) −Q(θ)

)
dθ > 0. (B.16)

Equations (B.15) and (B.16) imply that there exists k′′ ∈ (0�k′′′) satisfying∫ θ

θc (k′′)

(
Q(θ) −Q(θ)

)
dθ = 0. (B.17)
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Note that k′′ is unique: the derivative of the left-hand side of (B.17) with respect to k is

−dθc

(
k′′)

dk

(
Q

(
θc

(
k′′)) −Q(θ)

)
> 0�

where the inequality follows from the fact that dθc (k′′)
dk

< 0 (by (B.14)) and Q(θc(k′′)) >

Q(θ) (by (B.17) and Assumption 1). Therefore, we obtain
∫ θ

θc (k) (Q(θ) − Q(θ)) dθ < 0 if

k ∈ [0�k′′) and
∫ θ

θc (k) (Q(θ) −Q(θ)) dθ > 0 if k ∈ (k′′�k′′′). By Proposition 4, it follows that
on-path penalties are optimal if k ∈ [0�k′′) and suboptimal if k ∈ [k′′�k′′′).

B.6. Proof of Proposition 7

We prove each part of the proposition in order.
Part 1. There are two cases to consider.
Case 1: Suppose that on-path penalties are suboptimal. By Proposition 4, the optimal

rule sets θ∗ = θc(k) for θc(k) defined in (B.13) in the proof of Proposition 6. Since θc(k)
is strictly decreasing in k by (B.14), it follows that θ∗ strictly decreases (increases) when
P(b) is shifted to P(b) + k for k> 0 (k< 0).

Case 2: Suppose that on-path penalties are optimal. We prove the result for the case of
a positive penalty shift. The proof of the negative-shift case is analogous and thus omitted.

Given a penalty shift k, define ρk(θ) as the unique solution to

ρk(θ)U
(
ω+ br (θ)

) +βδV
(
br (θ)

)
= ρk(θ)U

(
ω+ bp

(
ρk(θ)

)) +βδ
(
V

(
bp

(
ρk(θ)

)) − P
(
bp

(
ρk(θ)

)) − k
)
�

Observe that ρk(θ) corresponds to the value of θ∗∗ that satisfies the indifference condition
(8) given θ = θ∗ and the penalty shift k, and for k = 0 it corresponds to ρ(θ∗) defined
in the proof of Proposition 4. It follows from Step 1 in that proof that ρk(θ) is strictly
increasing in θ. Moreover, by implicit differentiation,

dρk(θ)
dk

= − βδ

U
(
ω+ br (θ)

) −U
(
ω+ bp

(
ρk(θ)

)) > 0�

where we have used the fact that bp(ρk(θ)) > br (θ), as implied by the arguments in Step 2
of the proof of Corollary 1.

Consider the optimal deficit limit {θ∗� θ∗∗} under P(b) and denote by {θ∗k� θ∗∗k} the
optimal deficit limit under P(b) + k. Since the enforcement constraint binds, we have
θ∗∗ = ρ(θ∗) and θ∗∗k = ρk(θ∗k). By Step 4 in the proof of Proposition 4, the following
first-order conditions uniquely define θ∗ and θ∗k:∫ ρ(θ∗)

θ∗

(
Q(θ) −Q

(
ρ
(
θ∗)))dθ = 0, (B.18)

∫ ρk(θ∗k)

θ∗k

(
Q(θ) −Q

(
ρk

(
θ∗k)))dθ = 0. (B.19)

By Assumption 1, these conditions require that θ∗ < θ̂ < ρ(θ∗) and θ∗k < θ̂ < ρk(θ∗k) and
that Q(θ∗) >Q(ρ(θ∗)) and Q(θ∗k) >Q(ρk(θ∗k)).
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Suppose by contradiction that θ∗ ≤ θ∗k for some k > 0. Then, given Assumption 1,
conditions (B.18) and (B.19), and the fact that ρk(θ) is strictly increasing in θ and k, we
must have

θ∗ ≤ θ∗k < θ̂ < ρ
(
θ∗)< ρk

(
θ∗k) (B.20)

and

Q
(
θ∗) ≥Q

(
θ∗k)>Q

(
ρk

(
θ∗k)) >Q

(
ρ
(
θ∗)). (B.21)

Note that by the arguments in Step 4 in the proof of Proposition 4, the function

∫ θH

θL

(
Q(θ) −Q

(
θH

))
dθ

is strictly decreasing in θL and in θH for any θL and θH satisfying Q(θL) > Q(θH) and
θH > θ̂. However, combined with conditions (B.20) and (B.21), this implies

∫ ρ(θ∗)

θ∗

(
Q(θ) −Q

(
ρ
(
θ∗)))dθ ≥

∫ ρ(θ∗)

θ∗k

(
Q(θ) −Q

(
ρ
(
θ∗)))dθ

>

∫ ρk(θ∗k)

θ∗k

(
Q(θ) −Q

(
ρk

(
θ∗k)))dθ�

which cannot hold simultaneously with equations (B.18) and (B.19). Therefore, it follows
that θ∗ > θ∗k for all k> 0.

Part 2. We prove the result for the case of a positive penalty shift. The proof of the
negative-shift case is analogous and thus omitted.

Suppose by contradiction that θ∗∗ = ρ(θ∗) ≥ θ∗∗k = ρk(θ∗k) for some k > 0. Since θ∗k <
θ∗ by Part 1, it follows by analogous reasoning as in the proof of Part 1 that

∫ ρ(θ∗)

θ∗

(
Q(θ) −Q

(
ρ
(
θ∗)))dθ <

∫ ρ(θ∗)

θ∗k

(
Q(θ) −Q

(
ρ
(
θ∗)))dθ

≤
∫ ρk(θ∗k)

θ∗k

(
Q(θ) −Q

(
ρk

(
θ∗k)))dθ.

However, this cannot hold simultaneously with equations (B.18) and (B.19). Therefore, it
follows that θ∗∗ < θ∗∗k for all k > 0.

B.7. Proof of Proposition 8

We prove each part of the proposition in order.
Part 1. Suppose that on-path penalties are suboptimal under f (θ). By Proposition 4, the

following condition holds: ∫ θ

θc

(
Q(θ) −Q(θ)

)
dθ ≥ 0. (B.22)

Consider a Q-decreasing perturbation that yields f̃ (θ) over �̃=�. Observe that the value
of θc defined in (13) does not vary with the perturbation since θ = θ̃. Suppose by contra-
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diction that on-path penalties are optimal under f̃ (θ). By Proposition 4, this implies∫ θ

θc

(
Q̃(θ) − Q̃(θ)

)
dθ < 0. (B.23)

Combining (B.22) and (B.23) yields∫ θ

θc

(
Q̃(θ) −Q(θ)

)
dθ >

∫ θ

θc

(
Q̃(θ) −Q(θ)

)
dθ. (B.24)

However, since the perturbation is Q-decreasing and support-preserving, it necessarily
admits

Q̃(θ) −Q(θ) < Q̃(θ) −Q(θ)

for all θ ≤ θ. For θ ∈ [θ�θ], this inequality follows by the definition of Q-decreasing. For
θ < θ, the inequality follows from the fact that Q̃(θ) = Q(θ) = 1 for all θ < θ and Q(θ) ≥
Q̃(θ), where the latter follows from the fact that f̃ (θ) ≥ f (θ) in a support-preserving
Q-decreasing perturbation.31 Hence, we obtain that (B.24) cannot hold, which yields a
contradiction and proves that on-path penalties are suboptimal under f̃ (θ).

Part 2. Suppose that on-path penalties are optimal under f (θ). By Proposition 4, the
following condition holds: ∫ θ

θc

(
Q(θ) −Q(θ)

)
dθ < 0.

Consider a Q-increasing perturbation that yields f̃ (θ) over �̃=�. Suppose by contradic-
tion that on-path penalties are suboptimal under f̃ (θ). By Proposition 4, this implies∫ θ

θc

(
Q̃(θ) − Q̃(θ)

)
dθ ≥ 0.

Analogous arguments as in the proof of Part 1 imply that these two inequalities cannot
simultaneously hold under a support-preserving, Q-increasing perturbation. We thus ob-
tain a contradiction, which proves that on-path penalties are optimal under f̃ (θ).

B.8. Proof of Proposition 9

Denote by {̃θ∗� θ̃∗∗} the optimal deficit limit under f̃ (θ). Observe that given the binding
enforcement constraint, θ̃∗∗ = ρ(θ̃∗) for ρ(·) defined in Step 1 of the proof of Proposi-
tion 4. We prove each part of the proposition in order.

Part 1. Suppose that on-path penalties are suboptimal. By Proposition 4, the optimal
deficit limits under f (θ) and f̃ (θ) set θ∗ = θc and θ̃∗ = θ̃c , respectively, where θ̃c = θc if
θ = θ̃ (since θc and θ̃c are defined by (13)). To complete the proof, it is thus sufficient to
prove that θ̃c strictly increases in θ̃. Note that θ̃ = ρ(θ̃c), where ρ(·) (defined in Step 1 of
the proof of Proposition 4) is strictly increasing. It thus follows that θ̃c = ρ−1 (̃θ) is strictly
increasing in θ̃.

31See footnote 25.



12 M. HALAC AND P. YARED

Part 2. We prove the result for the case of a Q-increasing perturbation. The proof for
the case of a Q-decreasing perturbation is analogous and thus omitted.

Suppose that on-path penalties are optimal. By Step 4 in the proof of Proposition 4, the
following two first-order conditions uniquely define θ∗ and θ̃∗:∫ ρ(θ∗)

θ∗

(
Q(θ) −Q

(
ρ
(
θ∗)))dθ = 0, (B.25)

∫ ρ(θ̃∗)

θ̃∗

(
Q̃(θ) − Q̃

(
ρ
(
θ̃∗)))dθ = 0. (B.26)

By Assumption 1, these conditions require that θ∗ < θ̂ < ρ(θ∗) and θ̃∗ < ˜̂θ < ρ(θ̃∗),
where ˜̂θ corresponds to the analog of θ̂ under the perturbed distribution. Moreover, we
must have that Q(θ∗) >Q(ρ(θ∗)) and Q̃(θ̃∗) > Q̃(ρ(θ̃∗)).

Suppose that f̃ (θ) is the result of a Q-increasing perturbation satisfying the conditions
in the proposition. Suppose by contradiction that θ̃∗ ≥ θ∗. It then follows that

θ∗ ≤ θ̃∗ < ˜̂θ < ρ
(
θ̃∗) and θ̂ < ρ

(
θ∗) ≤ ρ

(
θ̃∗) (B.27)

and

Q̃
(
θ∗) ≥ Q̃

(
θ̃∗)> Q̃

(
ρ
(
θ̃∗)), (B.28)

where we observe that Q̃(θ) is well defined at all θ ≤ θ̃ and thus at θ∗ and ρ(θ∗). Since the
perturbation is Q-increasing, we can show that∫ ρ(θ∗)

θ∗

(
Q(θ) −Q

(
ρ
(
θ∗)))dθ >

∫ ρ(θ∗)

θ∗

(
Q̃(θ) − Q̃

(
ρ
(
θ∗)))dθ� (B.29)

The inequality follows from the fact that Q̃(θ) − Q(θ) < Q̃(ρ(θ∗)) − Q(ρ(θ∗)) for all
θ ∈ (max{θ� θ̃}�ρ(θ∗)) with θ∗ ≥ max{θ� θ̃}. Moreover, by arguments analogous to those
in the proof of Part 1 of Proposition 7, and appealing to (B.27) and (B.28), we obtain

∫ ρ(θ∗)

θ∗

(
Q̃(θ) − Q̃

(
ρ
(
θ∗)))dθ ≥

∫ ρ(θ̃∗)

θ∗

(
Q̃(θ) − Q̃

(
ρ
(
θ̃∗)))dθ

≥
∫ ρ(θ̃∗)

θ̃∗

(
Q̃(θ) − Q̃

(
ρ
(
θ̃∗)))dθ� (B.30)

However, combining (B.29) and (B.30) yields

∫ ρ(θ∗)

θ∗

(
Q(θ) −Q

(
ρ
(
θ∗)))dθ >

∫ ρ(θ̃∗)

θ̃∗

(
Q̃(θ) − Q̃

(
ρ
(
θ̃∗)))dθ�

which cannot hold simultaneously with equations (B.25) and (B.26). Therefore, it follows
that θ̃∗ < θ∗.
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