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APPENDIX B: OMITTED PROOFS
B.1. Proof of Lemma 1
WE PROCEED IN THREE STEPS.

STEP 1: Suppose 6* > 6. We show that (3) and (4) are satisfied for types 6 € [8, 6*].

The claim follows immediately from the fact that all types 6 € [6, 6*] are assigned their
flexible debt levels with no penalty. Thus, given 6 € [0, 6%], type 6’s welfare cannot be
increased, and (3) and (4) are trivially satisfied.

STEP 2: We show that (3) and (4) are satisfied for types 6 € (6%, 6*].

Take first the enforcement constraint (4). We can rewrite it for 6 € (6*, 6*] as
OU (o + b7 (67)) + B8V (b7 (6) — 60U (w + b7 (0)) — BS(V (b7 (0)) — P(b"(8))) = 0. (B.1)

Differentiating the left-hand side with respect to 6, given 6* and the definition of b7(0),
yields

U(w+b'(6%)) — U(w + b"(6)),

which is weakly decreasing in 6, since b”(0) is nondecreasing. This means that the left-
hand side of (B.1) is weakly concave. Since (B.1) holds as a strict inequality for 6 = 6* and
as an equality for 6 = 6** (by (8)), this weak concavity implies that (B.1) holds as a strict
inequality for all 6 € (6%, 6**). Thus, constraint (4) is satisfied for all 6 € (6*, 6**].

Take next the truthtelling constraint (3). This constraint is trivially satisfied for all 6 €
(6%, 6] given @ € [6*, 6**], since all types 6 € [6*, 6] are assigned the same allocation.
We next show that the constraint is also satisfied given 6’ > 6™ and 6’ < 6*:

Step 2a: We show that (3) is satisfied for all 6 € (6%, 6**] given ¢ > 6**. Note that
(b(6), P(0)) = (b”(8), P(b?(#))) for all & > 6**, and by the definition of b”(6),

0U (o + b7 (0)) + BS(V (b (6)) — P(b*(9)))
> 0U (@ +b7(0)) + B3(V (b7(6')) — P(b7(6)))
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for all 6 € ©. Thus, the fact that the enforcement constraint (4) is satisfied for all 6 €
(6*, 6] implies that (3) is satisfied for all such types given 6" > 6**.

Step 2b: We show that (3) is satisfied for all 6 € (6*, 6**] given 6 < 6*. Suppose by
contradiction that this is not the case, that is,

O0(U(w+b(67) —U(w+b(0))) < B8V (b'(8)) —V(b'(6))) (B2)
for some 6 € (6*, 6] and 6’ < 6*. By Step 1, (3) holds for type 6* given 6’ < 6*:
07 (U(w +'(67) = Ulw +6/(¢))) z B3V (b7(0)) =V (¥'(67))).  (B3)
Combining (B.2) and (B.3) yields
(0" = 0)(U(w +6'(6)) = Uw +(6))) > 0,
which is a contradiction since 6 > 6* and b"(6') < b"(6*). The claim follows.

STEP 3: Suppose 8 < 6. We show that (3) and (4) are satisfied for types 6 € (6**, 6].

Constraint (4) is satisfied as an equality for all 6 € (6**, 0]. It is immediate that con-
straint (3) is satisfied for all 6 € (6**, 6] given 8 € (6", 6], since all such types are as-
signed their flexible debt level with maximum penalty. Consider next constraint (3) for
0 € (6*, 0] given @' € [6*, 6**]. Note that (b(89'), P(6')) = (b'(6*),0) for all ' € [6*, 6*].
Thus, satisfaction of this constraint is ensured if (B.1) is violated for 6 € (6**, ]. The lat-
ter is true since, as shown above, the left-hand side of (B.1) is weakly concave and (B.1)
holds as an equality for § = 6** and a strict inequality for 6 € (6%, 6**).

Finally, consider constraint (3) for 6 € (6, 6] given ' < 6*. Since (3) is satisfied given
0’ € [6*, 6], satisfaction of this constraint given 6’ < 6* is ensured if

0(U(w+b'(67) - U(w+5'(0))) = B(V (b(6) = V(67 (67)))
for 0 € (6, 6]. The latter follows from the same logic as in Step 2b above.
B.2. Proof of Corollary 1
Consider optimal rules with b(8) € (b, b) for all 6 € ®. We proceed in four steps.

STEP 1: We show that an optimal maximally enforced deficit limit solves

0%, g**

max{/a* U(w + b(6))0(8) d6 + /9 U(w + b (67))Q(6) do

+ /ee U(w+ b”(G))Q(G)dG}

sk

subject to (8), (B.4)

where Q(6) = 1 for 6 < § and, by convention, the last integral equals zero if 6** > 6.
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By the arguments in the text, social welfare can be written as

%QU(w +b(8)) +8(V(b(8)) — P(0)) + % /9 U(w+b(6))Q(6)d0,

which in turn can be rewritten as

1 17
lim 00 (w0 +b(9)) +3(V (b(8)) = P(8)) + 5 / U(w +b(6))0(6) db,
L4 0

where Q(0) =1 for 6 < 6. Hence, social welfare under a maximally enforced deficit limit
can be represented as

lim 20U (0 +5(6)) +5((+(¢) - P(©)
1 6* r 1 9** r k
+ E/O U(w + b (6))0(6) d6 + Efe* U(w + b (6))0(6) d6

0
+ J—
B 9

Since the first term in (B.5) is independent of the choice of 6* > 0 and 6** > 6*, and since
the constant é multiplies all other terms, the objective in (B.4) is equivalent to (B.5).

U(w +b(0))Q(6) do. (B.5)

STEP 2: Consider the following relaxed program:

0

¢

mogx{/oe* U(w +b'(6))Q(0) d6 + /9 U(w +b7(67))Q(6) de}.

We show that any solution to this program yields strictly higher social welfare than any
solution to program (B.4) with 6* < 6.

Take any solution {6*, §**} to program (B.4) with 6" < 6. To prove the claim, it suffices
to show that social welfare strictly increases if we change the allocation of types 6 € [6**, 6]
from (b(6), P(0)) = (b?(0), P(b?(6))) to (b(6), P(8)) = (b'(6*), 0). To prove this, note
first that by Step 1 in the proof of Proposition 2, the solution {6*, 6**} to program (B.4) has
6 > 6. Hence, by Assumption 1, Q(6) < 0 for all 6 € [6**, 0]. Given the representation
in (B.4), the claim then follows if b (6*) < b?(6) for all 0 € [6™*, 6]. We show next that
this inequality holds. Given the solution {6*, 6**}, the following conditions hold for all
00, 0]:

OU (w +b7(67)) + B8V (b7 (67)) < 0U (w + b7(6)) + BS(V (b7 (0)) — P(b"(6)))
and
0°U (0 + b (6)) + BV (b (67)) = 0°U (w0 +b7(0)) + BS(V (b7 (9)) — P(67(0))-
Combining these two inequalities yields
(60— 6")U(w+b"(8)) > (6 — 6)U(w +b"(6%)),

which implies 57 (0) > b’ (6*) for all 6 € [6*, 6].
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STEP 3: We show that the solution to the relaxed program in Step 2 is 6* = 6., where
6. € [0, 0) is uniquely defined by (11). Moreover, if 6* = 6, satisfies constraint (8) for
some 6** > 6, then these values correspond to the unique solution to program (B.4).

To prove the first claim, consider the first-order condition of the relaxed program in
Step 2:

db’(6%)

de”
Since db;gf*) >0 and U'(w + b"(6*)) > 0, this condition requires that the integral be
equal to 0. Hence, by the definition in (11), we obtain 0* = 0,. Note that this value is
uniquely defined since, by Assumption 1, |, ;i Q(6)d0o =0 requires 6* < 6 and Q(6%) >0,
and hence |, ; 0(0) d# is strictly decreasing in 6*. Since |, e‘i Q(6) d# is strictly positive for

0* = & and strictly negative for §* = 6 — & for sufficiently small & > 0,% it follows that a
unique interior 6, € (0, 0) exists and is the unique optimum.

To prove the second claim, note that if constraint (8) holds under 6* = 6, and some
6 > 6, then such a deficit limit {6,, 6**} is feasible in program (B.4). Moreover, since this
deficit limit yields the same social welfare as the relaxed program, it follows from Step 2
and the above claim that it yields strictly higher social welfare than any other feasible
deficit limit and is thus the unique solution to program (B.4).

U+ () “owdo=o.

STEP 4: We show that if (12) holds, then the solution to (B.4) has §* = 6, and 6** > 6.
The claim follows from Step 3 and the fact that if (12) holds, then constraint (8) is

satisfied under 6* = 6, and some 6** > 6.

B.3. Proof of Proposition 4
For any given threshold €', denote by p(8') the type exceeding ¢ at which (8) holds:
p(0)U(w+b"(0)) + B8V (b (6))
= p(8)U (0 + 57(p(0))) + B5(V (67 (6(0) - PO (6())).  (BS)

Note that given ', p(0") > €' is uniquely defined. This follows from the same logic as in
Step 2 in the proof of Lemma 1. We prove this proposition in five steps.

STEP 1: We show that d’;(e, > 0.

Implicit differentiation of (B.6), taking into account the definition of b"(6'), yields

dp(0) (p(6) - 0)U/(w+br(0/))db6;ge/)

a0 Ulw+b"(p(¢))) — U(w +(¢))

(B.7)

¥To see that ’ Q(6) d6 > 0 for ¢ sufficiently small, note that using integration by parts yields

| ewao—-(-F@)e+ [ r@0a0- [ @0 -pas.
which approaches BE[6] > 0 as ¢ goes to 0.
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Note that since db;é,@/) > 0 and p(6') > ', the numerator in (B.7) is strictly positive. More-
over, by the arguments in Step 2 of the proof of Corollary 1, we have b”(p(6')) > b'(¢'),

which implies that the denominator is also strictly positive. Thus, we obtain d’:l(;/) > 0.

STEP 2: We show that if 6. < 6,, then condition (14) holds and the optimal maximally
enforced deficit limit is unique and has 6* = 6, and 6** > 0.

As noted in the text, if 6. < 6., Assumption 1 guarantees that | Z 0(6)do >
/. 9(1 Q(6)d6 =0, so condition (14) is satisfied. The claim then follows from Corollary 1.

STEP 3: We show that if 6. > 6,, then 6* < 6..

Assume 6. > 6,. Suppose by contradiction that an optimal maximally enforced deficit
limit features 6* > 6,, which implies 6** > 6. Consider a perturbation that reduces 6* by
& > 0 arbitrarily small. Since in the original rule the enforcement constraint of all types
0 € O is slack, this perturbation is incentive feasible. The change in social welfare, using
the representation in (B.4), is

‘f dbc;gf*) U'(w +(67))Q(6) de. (B.5)

Assumption 1 together with (11) imply 6, < . 1t then follows from ¢* > 6. > 6, and

Assumption 1 that [, 9(1 0(6)d6 < 0, and thus, since ‘”’;éf*) > 0, (B.8) is strictly positive.

Hence, the perturbation strictly increases social welfare, implying that 6* > 6, cannot
hold.

STEP 4: We show that if 6. > 6, and condition (14) holds, then the optimal maximally
enforced deficit limit is unique and has 6* = 6, and 6™ = 6.

Assume that 6, > 60, and condition (14) holds. By Step 3, an optimal maximally en-
forced deficit limit has 6* < 6.. Suppose by contradiction that 6* < 6., which implies
0" = p(0*) < 6 for p(-) as defined in (B.6). Consider a perturbation that changes 6* by
some ¢ 2 0 for |g| arbitrarily small, where 6™ = p(60*) is also changed to preserve (B.6).
This perturbation is incentive feasible. Using the representation in (B.4), for this pertur-
bation to not increase social welfare for any arbitrarily small ¢ 2 0, we must have

[ vt o) oy a0
dp(@*)

T

(U(w+0/(67)) = U(w +0"(p(67)))) Q(p(67)) = 0.

Using (B.7) to substitute for d’;(g) and simplifying terms, we can rewrite this condition as

p(6%)
/0 (0(6) — Q(p(6°))) d0 =0. (B.9)

Given Assumption 1, (B.9) requires 6* < 0 < p(6*) with
0(5") = 0(p(0"). (B.10)
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Now note that the derivative of the left-hand side of (B.9) with respect to 6* is equal to

—(0(6*) — Q(p(67))) — fp(e*) Q/(p(e*)))d’;(;*) de. (B.11)

o*

By (B.10), the first term is strictly negative. Moreover, since p(6*) > 6, Assumption 1 im-

plies Q'(p(6*))) > 0. Given %f,/) > 0 (as established in Step 1), it then follows that the
second term in (B.11) is also strictly negative. Hence, the derivative of the left-hand side
of (B.9) with respect to 6* is strictly negative. However, using the contradiction assump-
tion that 6* < 6., condition (B.9) then requires that the left-hand side of (14) be strictly
negative, contradicting the assumption that condition (14) holds. Therefore, there exists
a perturbation that changes 6* by some ¢ 2 0 which strictly increases social welfare, im-
plying that the unique optimal maximally enforced deficit limit has 6* = 6. and 6** = 6.

STEP 5: We show that if 6, > 6, and condition (14) does not hold, then the optimal
maximally enforced deficit limit is unique and has 6* € (0., 6.) and 6** < 6.

Assume that 6. > 6, and condition (14) is violated. By Step 3, an optimal maximally
enforced deficit limit has 6* < .. We begin by showing that 6* = 6. cannot be optimal.
Suppose by contradiction that an optimal maximally enforced deficit limit sets 6* = 6,
and thus 6" = p(6.) = 6. Consider a perturbation that reduces 6* by & > 0 arbitrarily
small, where 0™ = p(6*) is also changed to preserve (B.6). This perturbation is incentive
feasible. Using the representation in (B.4), for this perturbation to not increase social
welfare for any arbitrarily small ¢ > 0, we must have

p(o") db’(6*
—/9* U'(w+b'(67)) dg* )Q(e)de

dp(@*)
do*

[U(w+5(6)) — Ulw+ b (p(6))]Q(p () <0.

By analogous logic as in Step 4 above, we can rewrite this condition as

/9 (Q(6) - 0(8)) d6 > 0,

where we have taken into account that 6* = 6, and 6** = p(6,) = 6. However, this inequal-
ity contradicts the assumption that condition (14) does not hold. Therefore, the perturba-
tion strictly increases social welfare, implying that any optimal maximally enforced deficit
limit has * < 6. and 6 = p(6*) < 6.

We next show that the optimal values of #* and 6** = p(6*) are unique with 6* > 6,. By
analogous logic as in Step 4 above, the optimal value of 6* must satisty (B.9). As shown
in Step 4, the left-hand side of (B.9) is strictly decreasing in 6*. This has two implications.
First, it implies that there is a unique value of 6* and associated 6™ = p(6*) which solve
(B.9). Second, given (11), Assumption 1, and the fact that the left-hand side of (B.9) is
strictly decreasing in p(6*), it implies that if 6* < 6., then the left-hand side of (B.9) must
be strictly positive, a contradiction. Therefore, the unique value of 6* that solves (B.9)
must satisfy 6* > 6,.
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B.4. Proof of Proposition 5

Let 6", 0" € ® and A > 0 be defined as in Definition 2. We prove the proposition by
proving the following three claims.

CLAIM 1: Suppose Assumption 1 is strictly violated. If a maximally enforced deficit limit
{0*, 0"} is a solution to (6) for given functions V (b), P(b), then 6* < 0* and 0™ > 0".

PROOF: Suppose Assumption 1 is strictly violated. Suppose by contradiction that a
maximally enforced deficit limit with 8* > 6% is a solution to (6). Then analogously to
Step 2 (Case 2) in the proof of Proposition 1, consider a perturbation that drills a hole
in the borrowing schedule in the range [0", 8~ + &] for arbitrarily small & > 0 satisfying
0" + & < min{6*, 6" + A}. This perturbation is incentive feasible. Moreover, since Q(6)
is strictly increasing in this range, the arguments in Step 2 in the proof of Proposition 1
imply that this perturbation strictly increases social welfare, yielding a contradiction.

Next, suppose by contradiction that a maximally enforced deficit limit with 6 < 6"
is a solution to (6). Then consider types 0 € [0 — &, 6"] for arbitrarily small & > 0
satisfying 6 — & > max{6**, 07 — A}. For each such type 6, we have (b(6), P(0)) =
(b?(6), P(b?(0))) and Q'(0) < 0. Thus, this is the same situation as in Step 1 in the proof
of Proposition 2. Analogously to that step, we can show that there is an incentive feasible
perturbation that strictly increases social welfare, yielding a contradiction. Q.E.D.

CLAIM 2: Suppose Assumption 1 is strictly violated. For any function V (), there exists a
function P(b) such that no solution to (6) is a maximally enforced deficit limit.

PROOF: Suppose Assumption 1 is strictly violated. Given V' (b), define P(b) = P for
P > 0. By Claim 1, if a maximally enforced deficit limit {6*, 6**} solves (6), then 6* < 6"
and 0" > 6. Consider the indifference condition (8) which defines, for any given 6*, a
unique value of §** > ¢*. This condition shows that given V' (b) and P(b) = P, the value
of (6** — 6*) is continuous in P and approaches 0 as P goes to 0. Hence, if we take P > 0
small enough, then 6* < 6% < 6% < 6* cannot hold. The claim follows. Q.E.D.

CLAIM 3: Suppose Assumption 1 is weakly violated. For any function V' (b), there exists a
function P(b) such that not every solution to (6) is a maximally enforced deficit limit.

PROOF: Suppose Assumption 1 is weakly violated and a maximally enforced deficit
limit {6*, 6} is a solution to (6). Then {6*, 6™} satisfy condition (8) and analogous ar-
guments as in the proof of Claim 2 above imply that, given I (b), there exists a function
P(b) such that * < " < 6 < 6** cannot hold. This means that given such functions, any
maximally enforced deficit limit {6*, 6**} solving (6) must have either 6* > 6* or 6** < 67
(or both). Suppose first that 6* > 6~. Then consider a perturbation as in the proof of
Claim 1 above which drills a hole in the borrowing schedule in the range [6*, 8- + ] for
arbitrarily small & > 0 satisfying 0* + & < min{#*, - + A}. The same arguments as in the
proof of Claim 1, given Q'(6) > 0 for 0 € [6*, 6~ + ¢], imply that this perturbation weakly
increases social welfare. The resulting allocation is therefore a solution to (6), and it is
not a maximally enforced deficit limit.

Suppose next that 6™ < 6. Then as in the proof of Claim 1 above, consider types
0 € [0 — &, 6] for arbitrarily small & > 0 satisfying 6”7 — & > max{6**, 0 — A}. For each
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such type 6, we have (b(0), P(0)) = (b?(0), P(b*(0))) and Q'(0) < 0. Thus, we can per-
turb the allocation of these types as in Step 1 in the proof of Proposition 2 and weakly
increase social welfare. The resulting allocation is therefore a solution to (6), and it is not
a maximally enforced deficit limit. Q.E.D.

B.5. Proof of Proposition 6

We prove each part of the proposition in order. B
Part 1. Suppose the enforcement constraint binds under P(b). Then for k£ =0, we have

0U (o +b'(8.)) + B8V (b'(6.))
< 6U(w+b7(0)) + B5(V (b7 (6)) — P(b"(6)) — k). (B.12)

Observe that there exists a finite value k" > 0 such that the right-hand side of (B.12) equals
the left-hand side under k = k'. If k € [0, k'), the inequality in (B.12) is preserved and the
enforcement constraint continues to bind under P(b) + k. If instead k > k, this inequality
no longer holds and the enforcement constraint does not bind under P(b) + k.

Part 2. Suppose the enforcement constraint binds and on-path penalties are optimal
under P(b). By analogous arguments as in the proof of Part 1 above, there exists a finite
k" > 0 such that the enforcement constraint under P(b) + k binds if k& € [0, k") and does
not bind if k£ > k”. To complete the proof, take k € [0, k) and define 6, (k) as the solution
to

0U (o +b"(0:(k))) + B8V (b’ (6.(k)))
= 0U(w + b7(0)) + B3(V (b7(6)) — P (b7 (0)) — k). (B.13)
The value of 6.(k) corresponds to the value of 6. defined in (13) as a function of the
additional penalty k € [0, k”"). We show that 6. (k) is strictly decreasing. Implicit differen-
tiation of (B.13) yields
8
db.(k) =— P <0, (B.14)

dk - b (0.(k
- (Mk))%U’(w b (0.(K)))

where we have used the fact that 6. (k)U'(w + b"(0.(k))) = —B6V'(b"(6.(k))). Since on-
path penalties are optimal under k& = 0, Proposition 4 implies

[
/ (0(6) — Q(6)) do < 0. (B.15)
6c(0)

By the definition of k", the value of 6.(k) approaches 6, from above as k approaches
k". Given the definition of 6, in (11) and the fact that Q(9) < 0, it follows that

0
f (0(6) — 0(8)) d6 > 0. (B.16)
0c (k")

Equations (B.15) and (B.16) imply that there exists k” € (0, k’) satisfying

/0 (Q(0) — 0(6))do =0. (B.17)

(k")
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Note that k” is unique: the derivative of the left-hand side of (B.17) with respect to k is

do.(k") , _
- dk (Q(ef(k )) - Q(@)) >0,

where the inequality follows from the fact that % <0 (b_y (B.14)) and Q(6.(k")) >
Q(0) (by (B.17) and Assumption 1). Therefore, we obtain | Gi(k)(Q(O) —0(0))do <0 if

k €0, k") and fZ(k)(Q(G) —0(0))do > 0if k € (k”, k). By Proposition 4, it follows that
on-path penalties are optimal if k£ € [0, k") and suboptimal if k € [k”, k).

B.6. Proof of Proposition 7

We prove each part of the proposition in order.

Part 1. There are two cases to consider.

Case 1: Suppose that on-path penalties are suboptimal. By Proposition 4, the optimal
rule sets 6* = 6.(k) for 6.(k) defined in (B.13) in the proof of Proposition 6. Since 6.(k)
is strictly decreasing in k& by (B.14), it follows that 6* strictly decreases (increases) when
P(b) is shifted to P(b) + k for k > 0 (k <0).

Case 2: Suppose that on-path penalties are optimal. We prove the result for the case of
a positive penalty shift. The proof of the negative-shift case is analogous and thus omitted.

Given a penalty shift k, define p*(6) as the unique solution to

PO (0 + 1 (6)) + BV (' (9))
= p"(O)U(w + b7 (p*(0))) + BS(V (b7 (p"(9))) — P(b7(p"(9))) — k).

Observe that p*(6) corresponds to the value of 6** that satisfies the indifference condition
(8) given 6 = 6* and the penalty shift £, and for k = 0 it corresponds to p(6*) defined
in the proof of Proposition 4. It follows from Step 1 in that proof that p*(6) is strictly
increasing in 6. Moreover, by implicit differentiation,

dp“(6) Bé 0

dk— U(w+b(0) - U(w+ b (o"(0)))

where we have used the fact that b”(p*(0)) > b"(8), as implied by the arguments in Step 2
of the proof of Corollary 1. B
Consider the optimal deficit limit {6*, #**} under P(b) and denote by {6, 6**} the

optimal deficit limit under P(b) + k. Since the enforcement constraint binds, we have
0 = p(6*) and 0% = p*(6**). By Step 4 in the proof of Proposition 4, the following
first-order conditions uniquely define 6* and 6**:

p(6%)
fg (00~ 0(p(0)) do =0, (B.18)

Pk ()
fg (0(6) — Q(p* (6%))) d6 = . (B.19)

¢

By Assumption 1, these conditions require that 8* < 8 < p(6*) and 6* < 6 < p*(6*) and
that 0(6°) > Q(p(6")) and Q(6) > O(p* (6°)).
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Suppose by contradiction that 6* < 6" for some k > 0. Then, given Assumption 1,
conditions (B.18) and (B.19), and the fact that p*(0) is strictly increasing in 6 and k, we
must have

0" < 0% <0< p(67) < p*(6%) (B.20)
and

0(67) = Q(67) > Q(p*(6")) > Q(p(9"))- (B.21)
Note that by the arguments in Step 4 in the proof of Proposition 4, the function
oH
[, (e®-o(m)as
is strictly decreasing in 6" and in 6" for any 6" and 6" satisfying Q(6") > Q(6") and
6" > 6. However, combined with conditions (B.20) and (B.21), this implies

p(6%)

-/ep(e*)(Q(e) - Q(p(@*))) do > /k (Q(g) _ Q(p(@*))) do

* 0%

Pk (6%%)
- [ o) -0 (e*)as,

&

which cannot hold simultaneously with equations (B.18) and (B.19). Therefore, it follows
that 6* > 6** for all k > 0.

Part 2. We prove the result for the case of a positive penalty shift. The proof of the
negative-shift case is analogous and thus omitted.

Suppose by contradiction that 6** = p(6*) > 6** = p*(6**) for some k > 0. Since 0* <
6* by Part 1, it follows by analogous reasoning as in the proof of Part 1 that

p(6%)

/Hp(e*)(Q(G) - Q(P(Q*))) do < / (Q(g) _ Q(p(@*))) do

% gk

k(o)
<[, @ -0 ) ae.

<k

However, this cannot hold simultaneously with equations (B.18) and (B.19). Therefore, it
follows that 6** < ** for all k > 0.

B.7. Proof of Proposition 8

We prove each part of the proposition in order.
Part 1. Suppose that on-path penalties are suboptimal under f(6). By Proposition 4, the
following condition holds:

fg (Q(6) — Q(6)) do = 0. (B.22)

Consider a Q-decreasing perturbation that yields f (6) over 0=0. Observe that the value
of 6, defined in (13) does not vary with the perturbation since 6 = 6. Suppose by contra-
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diction that on-path penalties are optimal under f~ (0). By Proposition 4, this implies

fo | (0(6) — 0(6)) d6 < 0. (B.23)

Combining (B.22) and (B.23) yields

/e | (0(6) — 0(6)) do > /o | (O(6) — 0(6)) db. (B.24)

However, since the perturbation is Q-decreasing and support-preserving, it necessarily
admits

0(9) - 0(9) < 0(6) — 0(6)
for all # < 6. For 0 € [0, 6], this inequality follows by the definition of Q-decreasing. For

0 < 0, the inequality follows from the fact that Q(é)) 0(0) =1forall < 6 and O(6) >

Q(B) where the latter follows from the fact that f (0) f(6) in a support-preserving
Q-decreasing perturbation.’® Hence, we obtain that (B.24) cannot hold, which yields a

contradiction and proves that on-path penalties are suboptimal under f(6).
Part 2. Suppose that on-path penalties are optimal under f(6). By Proposition 4, the
following condition holds:

fe. (0(6) — 0(6)) d6 < 0.

Consider a Q-increasing perturbation that yields f}@) over © = 0. Suppose by contradic-
tion that on-path penalties are suboptimal under f(6). By Proposition 4, this implies

[ (@ -3@)ao=o

Oc

Analogous arguments as in the proof of Part 1 imply that these two inequalities cannot
simultaneously hold under a support-preserving, Q-increasing perturbation. We thus ob-
tain a contradiction, which proves that on-path penalties are optimal under f(6).

B.8. Proof of Proposition 9

Denote by {6, 6**} the ~optimal deficit limit under f (0) Observe that given the binding
enforcement constraint, 6** = p(8*) for p(-) defined in Step 1 of the proof of Proposi-
tion 4. We prove each part of the proposition in order.

Fart 1. Suppose that on-path penalties are suboptimal. By Proposition 4, the optimal

deficit limits under f (0) and f (0) set 6" = 6. and 6* = 6., respectively, where 6, = 6, if
6=10 (since 6. and 6, are defined by (13)). To complete the proof, it is thus sufficient to
prove that . strictly increases in 6. Note that 6 = p(8.), where p(-) (defined in Step 1 of
the proof of Proposition 4) is strictly increasing. It thus follows that 6, = p~'(0) is strictly
increasing in 6.

31See footnote 25.
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Part 2. We prove the result for the case of a O-increasing perturbation. The proof for
the case of a O-decreasing perturbation is analogous and thus omitted.

Suppose that on-path penalties are optimal. By Step 4 in the proof of Proposition 4, the
following two first-order conditions uniquely define 6* and 6*:

p(6%)

/m (Q(6) — 0(p(67))) d6 =0, (B.25)
p(%) -

/ (O(6) — O(p(7))) 6 = 0. (B.26)

By Assumption 1, these conditions require that 6* < 8 < p(6) and 6* < 6 < p(6"),
where 6 corresponds to the analog of § under the perturbed distribution. Moreover, we
must have that Q(6*) > Q(p(6*)) and O(6) > O(p(6")).

Suppose that f (0) is the result of a Q-increasing perturbation satisfying the conditions
in the proposition. Suppose by contradiction that 6* > 6*. It then follows that

0" < 6" < < p(g*) and 0 < p(6%) < p(g*) (B.27)
and
0(6) = 0(6) > O(p(8")). (B.28)

where we observe that Q(6) is well defined at all § < 6 and thus at 6 and p(6*). Since the
perturbation is Q-increasing, we can show that

p(6%)

[ ew-cwwmar- [ @o-Gewna o)

£ 0*

The inequality follows from the fact that Q(@) —0(0) < Q(p(@*)) — Q(p(6)) for all
6 € (max{#, 6}, p(6*)) with 6* > max{6, 6}. Moreover, by arguments analogous to those
in the proof of Part 1 of Proposition 7, and appealing to (B.27) and (B.28), we obtain

p(*) - o) o
/;* (Q(O) — Q(p(e*))) do > /0* (Q(g) _ Q(p(o*))) 46

p(6*) -
3/5 (0(6) — O(p(67))) do. (B.30)

S

However, combining (B.29) and (B.30) yields

/ep(eﬂ(Q(e)_Q(p(e*)))d0>/

* o

p(6%)

~

(O(0) - O(p(6))) 6,
which cannot hold simultaneously with equations (B.25) and (B.26). Therefore, it follows
that 6* < 6*.
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