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S1. LEMMAS FOR THEOREM 1

S1.1. Lemmas for Lemma A.1

IN THIS SECTION, I prove a few auxiliary results for Lemma A.1. Lemma S.1 (Lemma
S.2) shows that any information structure can be decomposed into a continuous-time
(discrete-time) belief process such that the flow reduction of uncertainty is constant.
Lemma S.3 shows that Vdt converges uniformly.

LEMMA S.1: H ∈ C(�(X)) is strictly concave. ∀π ∈ �2(X), let μ = Eπ[ν]. There exists a
probability space (��F�P) and stochastic process 〈μt〉t∈[0�1] such that:

(i) 〈μt〉 is a martingale.
(ii) μ0 = μ, μ1 ∼ π.
(iii) ∀t1� t2 ∈ [0�1] and t1 < t2, E[H(μt1) −H(μt2)|Ft1 ] = (t2 − t1)E[H(μ0) −H(μ1)].

PROOF: The proof takes three steps. Let M = Eπ[(H(μ) −H(ν))].
Step 1. Discretize �(X). Since H(μ) is a continuous function on �(X), by the Heine–

Cantor theorem, H(μ) is uniformly continuous. ∀k ∈ N, let εk = M
2k and δk be the corre-

sponding continuity parameter for εk. Partition �(X) into a set of cubes of size dk ≤ δk.
Now, consider all d1 cubes with nonzero measure under π. Denote them by {Di}i∈I . ∀i ∈

I, let μi = Eπ[ν|ν ∈ Di], πi(ν) = π(ν|ν ∈Di), and qi = π(Di). Let μi(λ) = λμ+ (1−λ)μi.
Then

H
(
μi(λ)

)− λ
∑

qjEπj

[
H(ν)

]− (1 − λ)Eπi

[
H(ν)

]
(S.1)

is a continuous function of λ, equals H(Eπi
[ν]) − Eπi

[H(ν)] ≤ ε1 when λ = 0, and
equals M when λ = 0. Then, by the intermediate value theorem there exists λi such
that equation (S.1)= M

2 . Let q̂i = ∑
i

qi/(1−λi)∑
j
qj/(1−λj)

. Define π̂0(ν) = ∑
q̂iδμi (λi) (ν), π̂i =

(1 − λi)πi(ν) + λ
∑

qjπj(ν). It can be verified that: (i) E
π̂0

[ν] = ∑
q̂iμi(λi) = μ, (ii)

E
π̂i

[ν] = (1−λi)μi +λ
∑

j qjμi = μi(λi), and (iii) H(μi(λi)) −E
π̂i

[H(ν)] = M
2 , ∀i ∈ I∪{0}.

In plain words, in this step, I decompose π into two stages π̂0 and π̂i. π̂0 has a finite sup-
port {μi(λi)}, and in each step, the expected reduction of H is M

2 .
Step 2. Define the continuous time process for t ∈ [0� 1

2 ]. Let the finite support distribu-
tion π̂0 be denoted by

∑
piδνi (μ). Let νi(λ) = λμ+ (1−λ)νi. Then, by the same argument

as in step 1, ∀i, there exists λi(t) ∈ [0�1] such that

H
(
νi
(
λi(t)

))− λi(t)
∑

pjH(νj) − (
1 − λi(t)

)
H(νi) =

Å1
2

− t

ã
M
 (S.2)
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Note that since H is strictly concave, the LHS of equation (S.2) is strictly concave in λi;
hence, λi(t) can be chosen to be strictly decreasing. Define �(t) �{νi(λi(t))}i∈I . It can be
verified that �(t) are disjoint for different t.S.1

Define pi(t) = pi/(1−λi(t))∑
j
pj (1−λj (t))

. Then μ= ∑
pi(t)νi(λi(t)). ∀ 1

2 ≥ t ′ > t ≥ 0, define

p
(
νj
(
λj

(
t ′
))

|νi
(
λi(t)

)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pj

(
t ′
)λi(t) − λi

(
t ′
)

1 − λi

(
t ′
) when j �= i�

pj

(
t ′
)λi(t) − λi

(
t ′
)

1 − λi

(
t ′
) + 1 − λi(t)

1 − λi

(
t ′
) when j = i


Note that the Markov kernel p is well-defined because �(t) are disjoint. It is easy to verify
that (i)

∑
j p(νj(λj(t ′))|νi(λi(t))) = 1, (ii)

∑
j p(νj(λj(t ′))|νi(λi(t)))νj(λj(t ′)) = νi(λi(t)),

(iii) H(νi(λi(t))) −∑
j p(νj(λj(t ′))|νi(λi(t)))H(νj(λj(t ′))) = (t ′ − t)M , and (iv)∑

i

pi(t)p
(
νj
(
λj

(
t ′
))

|νi
(
λi(t)

))
= ∑

i

pi(t)pj

(
t ′
)λi(t) − λi

(
t ′
)

1 − λi

(
t ′
) +pj(t)

1 − λj(t)
1 − λj

(
t ′
)

= pj

(
t ′
)∑i

pi

Å 1
1 − λi(t)

− 1
1 − λi

(
t ′
)ã∑

pi/
(
1 − λi(t)

) +pj

(
t ′
)∑i

pi/
(
1 − λi

(
t ′
))

∑
i

pi/(1 − λi)(t)

= pj

(
t ′
)



Let the joint distribution of a finite collection of μt1� 
 
 
 �μtk for an increasing sequence
{t1� 
 
 
 � tk}∈ [0� 1

2 ] be defined by

Prob(μt1� 
 
 
 �μtk) = p(μt2|μt1)p(μt3|μt2) · · ·p(μtk|μtk−1)
 (S.3)

The joint probability satisfies the condition for the Daniell–Kolmororov theorem if the
Chapman–Kolmogorov equation is satisfied: ∀0 ≤ t < t ′ < t ′′ ≤ 1

2 , ∀i� l,∑
j

p
(
νl
(
λl

(
t ′′
))

|νj
(
λj

(
t ′
)))

p
(
νj
(
λj

(
t ′
))

|νi
(
λi(t)

))
= ∑

j

p
(
νl
(
λl

(
t ′′
))

|νj
(
λj

(
t ′
)))

pj

(
t ′
)λi(t) − λi

(
t ′
)

1 − λi

(
t ′
) +p

(
νl
(
λl

(
t ′′
))

|νi
(
λi

(
t ′
))) 1 − λi(t)

1 − λi

(
t ′
)

= pl

(
t ′′
)λi(t) − λi

(
t ′
)

1 − λi

(
t ′
) +pl

(
t ′′
)λi

(
t ′
)− λi

(
t ′′
)

1 − λi

(
t ′′
) 1 − λi(t)

1 − λi

(
t ′
) + 1l=i

1 − λi(t)
1 − λi

(
t ′′
)

S.1Since the paths νi(λi(t)) are linear in �(X), two paths indexed by i� j intersect only if νi� νj , and μ are
linearly dependent. This implies that when two measures with support (μ�νi) and (μ�νj) have the same mean,
they are ordered by mean preserving spread order, which violates equation (S.2) if they corresponds to the
same t.
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= pl

(
t ′′
)λi(t) − λi

(
t ′′
)

1 − λi

(
t ′′
) + 1l=i

1 − λi(t)
1 − λi

(
t ′′
)

= p
(
νl
(
λl

(
t ′′
))

|νi
(
λi(t)

))



Then there exists a probability space (��F�P) and Markov martingale 〈μt〉 such that
its finite dimensional marginal distributions are given by equation (S.3). In particular,
μ0
5 ∼ π̂0 and

E
[
H(μt) −H(μt+s)|Ft

] = E
[
H(μt) −H(μt+s)|μt

] = s ·M


Step 3. ∀μ in the (finite) support of π̂0, it corresponds to some E
π̂i

[ν]. Since the distri-
bution π̂i satisfy H(μ) − E

π̂i
[H(ν)] = M

2 , we can apply step 2 and construct 〈μt〉|μ 1
2

=μ for

t ∈ [ 1
2 �

3
4 ] such that it is a Markov martingale that satisfies E[H(μt) −H(μt+s)|μt] = s ·M .

By recursively applying step 2, we construct a martingale process 〈μt〉 for t ∈ [0�1) satis-
fying E[H(μt) −H(μt+s)|Ft] = s ·M , ∀t + s < 1. By the martingale convergence theorem,
μt

P−→ π. Therefore, the definition of 〈μt〉 can be extended continuously to [0�1], and the
three properties in Lemma S.1 are satisfied. Q.E.D.

LEMMA S.2: H ∈ C(�X) is strictly concave. ∀π ∈ �2(X), let μ = Eπ[ν]. ∀T ∈ N. There
exists a probability space (“�� “F� P̂) and stochastic process 〈μ̂t〉Tt∈1 such that:

(i) 〈μ̂t〉 is a martingale.
(ii) μ̂0 = μ and μ̂T ∼ π.
(iii) E[H(μ̂t+1 − μ̂t)|“Ft] = 1

T
Eπ[H(μ) −H(ν)].

PROOF: Lemma S.2 is a direct corollary of Lemma S.1. Construct 〈μt〉 according to
Lemma S.1. Then define π(μ̂t+1|μ̂1�


�t) = π(μt+1

T
|μ0� 
 
 
 �μ t

T
). Let “F be the natural fil-

tration of 〈μ̂t〉. All three properties are straightforward. Q.E.D.

LEMMA S.3: Given Assumption 2, let ÙV (μ) = limdt→0 Vdt (μ). Then limdt→0‖Vdt (μ) −ÙV (μ)‖l∞ = 0.

PROOF: The proof of Lemma S.3 takes three steps:
Step 1. ∀dt > 0, let dtn = dt

2n . Then Vdtn is an increasing sequence. ∀ strategy (〈μ̂t〉� τ̂)
associated with dtn, define μ̃2t = μ̂t . μ̃2t+1 is defined according to Lemma S.2 such that
E[H(μ̃2t+1) −H(μ̃2t)|“Ft] = E[H(μ̃2t+2) −H(μ̃2t+1)|μ̃2t+1] = 1

2E[H(μ̂t+1) −H(μ̂t)|“Ft]. τ̃ =
2τ̂. Clearly, τ̃ is measurable to 〈μ̃t〉’s natural filtration. Then

Vdtn+1 (μ)

≥ E

[
e−ρdtn+1 τ̃F (μ̃

τ̃
) −

τ̃−1∑
t=0

e−ρdtn+1tC

Å
E
[
H(μ̃t+1) −H(μ̃t)|F̃t

]
dtn+1

ã
dtn+1

]

= E

[
e−ρdtnτ̂F (μ̂

τ̂
) −

τ̂−1∑
t=0

e−ρdtn+12t(1 + e−ρdtn+1
)
C

Å
E
[
H(μ̂t+1) −H(μ̂t)|“Ft

]
2dtn+1

ã
dtn+1

]

≥ E

[
e−ρdtnτ̂F (μ̂

τ̂
) −

τ̂−1∑
t=0

e−ρdtntC

Å
E
[
H(μ̂t+1) −H(μ̂t)|“Ft

]
dtn

ã
dtn

]
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The first inequality is from (〈μ̃t� τ̃〉) being an admissible strategy. The second inequality
is from e−ρdtn+1 < 1. Since the inequality holds for all strategies, Vdtn+1 ≥ Vdtn .

Step 2. ∀dt > 0, V2dt ≥ Vdt − ρdt supF . ∀ strategy (〈μ̂t〉� τ̂) associated with dt, define
μ̌t = μ̂t , τ̌ = τ̂ when τ̂ is even, and τ̌ = τ̂ + 1 when τ̂ is odd. Define μ̃t = μ̌2t and τ̃ = 1

2 τ̌.
Then

V2dt (μ) ≥ E

[
e−ρ2dt̃τF (μ̃

τ̃
) −

τ̃−1∑
t=0

e−ρ2dttC

Å
E
[
H(μ̃t+1) −H(μ̃t)|‹Ft

]
2dt

ã
2dt

]

= E

[
e−ρdtτ̌F (μ̌τ̌)

−
τ̌−2∑

t=0�t even

e−ρdttC

Å
E
[
H(μ̌t) −H(μ̌t+1) +H(μ̌t+1) −H(μ̌t+2)|F̌t

]
2dt

ã
2dt

]

≥ E

[
e−ρdtτ̌F (μ̌τ̌) −

τ̌−2∑
t=0�t even

e−ρdtt

Å
C

Å
E
[
H(μ̌t) −H(μ̌t+1)|F̌t

]
dt

ã
dt

+E

ï
C

Å
E
[
H(μ̌t+1) −H(μ̌t+2)|F̌t+1

]
dt

ã
dt

òã]

≥ E

[
e−ρdtτ̌F (μ̌τ̌) −

τ̂−1∑
t=0

e−ρdttC

Å
E
[
H(μ̌t) −H(μ̌t+1)|F̌t

]
dt

ã
dt

]

− (
1 − e−ρdt

)
E

[
τ̂−1∑
t=0

e−ρdttC

Å
E
[
H(μ̌t) −H(μ̌t+1)|F̌t

]
dt

ã
dt

]

≥ E

[
e−ρdt̂τF (μ̂

τ̂
) −

τ̂−1∑
t=0

e−ρdttC

Å
E
[
H(μ̂t) −H(μ̂t+1)|F̂t

]
dt

ã
dt

]

− (
1 − e−ρdt

)
supF


The first inequality is from (〈μ̃t� τ̃〉) being an admissible strategy. The second inequality
is from the convexity of C . The third inequality is from C being nonnegative. The last
inequality is from the fact that it is without loss of optimality to assume that the total
cost associated with strategy (〈μ̂t〉� τ̂) is less than supF . Since the inequality holds for all
strategies, V2dt ≥ Vdt − dt supF . This together with step 1 shows that Vdtn converges and
‖Vdt − limVdtn‖ ≤ 2dt supF .

Step 3. ∀dt� dt ′ > 0, Vdt′ ≤ limVdtn . ∀dt ′ > dt > 0 let N ∈ N satisfy N dt ≤ dt ′ < (N +
1) dt. ∀ strategy (〈μ̂t〉� τ̂) associated with dt ′, define μ̃t(N+1)+n = μ̂t for all n ∈ [0�N] and
τ̃ = (N + 1)τ̂. Then

Vdt (ν) ≥ E

[
e−ρdt̃τF (μ̃

τ̃
) −

τ̃−1∑
t=0

e−ρdttC

Å
E
[
H(μ̃t+1) −H(μ̃t)|‹Ft

]
dt

ã
dt

]
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= E

[
e−ρ(N+1) dt̂τF (μ̂

τ̂
)

−
τ̂∑

t=0

e−ρdt(N+1)t
N∑
n=0

e−ρdtnC

Å(
E
[
H(μ̂t+1) −H(μ̂t)|“Ft

]
(N + 1)

dt

ã
dt

]

≥ E

[
e−ρdt ′̂τe−ρdt̂τF (μ̂

τ̂
) −

τ̂∑
t=0

e−ρdt′tC

Å(
E
[
H(μ̂t+1) −H(μ̂t)|“Ft

]
(N + 1) dt

ã
(N + 1) dt

]

≥ E

[
e−ρdt ′̂τF (μ̂

τ̂
) −

τ̂∑
t=0

e−ρdt′tC

Å(
E
[
H(μ̂t+1) −H(μ̂t)|“Ft

]
dt ′

ã
dt ′

]

−E
[(
e−ρdt ′̂τ − e−ρ(dt′+dt )̂τ)F (μ̂

τ̂
)
]



The first inequality is from (〈μ̃t� τ̃〉) being an admissible strategy. The second inequality
is from e−ρdtn < 1. The last inequality is from the convexity of C. Note that E[(e−ρdt ′̂τ −
e−ρ(dt′+dt )̂τ)F (μ̂

τ̂
)] ≤ ∑∞

τ=0(e−ρdt′τ − e−ρ(dt+τ′)τ) supF ≤ ρdt supF
(1−e−ρ(dt′+dt) )2 . Therefore, limVdtn ≥

Vdt′ . By symmetry, limVdt′n ≥ Vdt ; hence, ∀dt, limVdtn is identical (denoted by ÙV ). Step 2
has already shown that ‖Vdt − ÙV ‖ ≤ 2dt supF . Then Lemma S.3 is proven. Q.E.D.

S1.2. Lemmas for Lemma A.2

LEMMA S.4: X is finite. V �H ∈ C(�X) and H is concave. f : R+ �→ R
+ is continuous,

increasing, and convex. Then ∀μ ∈ �(X)�∃π∗ such that
∣∣supp(π∗)

∣∣ ≤ 2 |X| and solves

sup
π∈�2X�
Eπ [ν]=μ

Eπ

[
V (ν)

]− f
(
H(μ) −Eπ

[
H(ν)

])

 (S.4)

There exists λ ∈ df (H(μ) −Eπ∗[H(ν)]) such that Eπ∗[(V + λH)(ν)] = co(V + λH)(μ).

PROOF: Existence: Define V = {(Eπ[V (ν)]�Eπ[H(μ) − H(ν)])|π ∈ �2(X) & Eπ[ν] =
μ}. V is closed since �2(X) has bounded support and both V and H are continuous.
Therefore, the function v− f (I) defined on V has a maximizer (v∗� I∗).

Lagrangian: Define U ={(v� I) ∈R
2|v−f (I) > v∗ −f (I∗))}. It is easy to verify that both

V and U are convex (by the linearity of the expectation operator, convexity of �2(X), and
convexity of f ). U is open. By the optimality of (v∗� I∗), U ∩V = ∅. Then, by the supporting
hyperplane theorem, there exists λ1�λ2 such that

λ1v+ λ2I ≤ 0� ∀(v�h) ∈ V; (S.5)

λ1v+ λ2I > 0� ∀(v�h) ∈ U 
 (S.6)

Note that (v∗� I∗) ∈ V ∩ Ū . Then equation (S.6) implies(
v∗� I∗) ∈ arg minλ1v + λ2I

s.t. v− f (I) ≥ v∗ − f
(
I∗)
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Since the objective function is linear and the constraint is convex, the Kuhn–Tucker con-
dition (generalized to subgradients) implies that ∃λ ∈ ∂f (I∗) and β ≤ 0 such that λ1 = β,
λ2 = −λβ. Since (λ1�λ2) �= 0, β> 0 and it is wlog to assume that λ1 = 1�λ2 = −λ.

Equation (S.5) implies (v∗� I∗) ∈ arg max(v�I)∈V v − λI. Let (v∗� I∗) = (Eπ∗[V (ν)]�
H(μ) −Eπ∗[H(ν)]). Then

π∗ ∈ arg max
Eπ [ν]=μ

Eπ

[
V (ν)

]− λEπ

[
H(μ) −H(ν)

]



Meanwhile, π∗ solves equation (S.4) since U ∩ V = ∅.
Support size: Now I show that π∗ can be chosen that|supp(π)|≤ 2|X|. V is a convex and

compact set. Since (v∗� I∗) maximizes v−λI on V , it is an exterior point of V . Then by the
Krein–Milman theorem, (v∗� I∗) ∈ conv(ext(V)).S.2 By Caratheodory’s theorem, (v∗� I∗) is
a convex combination of s1� s2 ∈ ext(V): (v∗� I∗) = αs1 + (1 − α)s2.

By Straszewicz’s theorem, each extreme point si is the limit of exposed points: si =
limn→∞ sni , {sni } ⊂ exp(V). By the definition of exposed points, ∀i� n, there exists λi�n

1 and
λi�n

2 such that sni is the unique maximizer of λi�n · s for s ∈ V . By Caratheodory’s theorem,
there exists πi�n with support size|X|and maximizes λi�n

1 Eπ[V (ν)]+λi�n
2 Eπ[H(μ) −H(ν)].

Since sni is unique, sni = (Eπi�n
V (ν)�Eπi�n

[H(μ) − H(ν)]). Since {πi�n} have finite support
size |X|, there exists a converging subsequence πi�n → π∗

i (converges in each mass point
and its probability). Then |Supp(π∗

i )|=|X|.
Let π∗ = απ∗

1 + (1 −α)π∗
2 . Then by continuity of the expectation operator, (Eπ∗[V (ν)]�

H(μ) − Eπ∗[H(ν)]) = (v∗� I∗). Supp(π∗) ≤ 2|X|. As I have argued, π∗ solves both equa-
tion (S.4) and the Lagrangian. Note that the Lagrangian has an equivalent convex hull
characterization:

sup
Eπ [ν]=μ

Eπ

[
V (ν) + λH(ν)

] = co(V + λH)(μ)

Q.E.D.

S1.3. Lemmas for Lemma A.3

LEMMA S.5: Given Assumption 2, let ÙV (μ) = limdt→0 Vdt (μ). Then ÙV ∈L.

PROOF: I prove by induction on the dimensionality of μ. When μ = δx, supp(μ) is a
singleton. So Lemma S.5 trivially holds. Now it is sufficient to prove that ÙV is pointwise
Lipschitz at any interior μ.

First, since ÙV is the uniform limit of continuous Vdt ’s, ÙV is continuous. ∀μ ∈ �Xo, sup-
pose for the sake of contradiction that ÙV is not pointwise Lipschitz. Then ∃ μn → μ,∣∣ÛV (μn)−ÛV (μ)

∣∣
‖μn−μ‖ ≥ n. There are two possible cases:

• ÛV (μn)−ÛV (μ)
‖μn−μ‖ ≥ n. Let νn be a point in ∂�X such that μn�μ�νn are three ordered points

on a straight line. Let pn�qn be such that pn + qn = 1, pnμn + qnνn = μ. Pick any I

S.2ext(V) denotes the extreme points of V .
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such that C(I) < ∞. Then

I

ÙV (νn) − ÙV (μ) +
ÙV (μn) − ÙV (μ)

‖μn −μ‖ ‖νn −μ‖

H(μ) −H(νn) − H(μn) −H(μ)
‖μn −μ‖ ‖νn −μ‖

≥ I
ÙV (νn) − ÙV (μ) + n‖νn −μ‖

H(μ) −H(νn) − H(μn) −H(μ)
‖μn −μ‖ ‖νn −μ‖




Since the nominator is bounded, μ being interior implies that ‖νn − μ‖ is strictly
positive in the limit. Take n → ∞ on the RHS, the RHS goes to infinity. Therefore,
there exists N such that ∀n ≥N , RHS is larger than 3ρ supF + 2C(I):

I

ÙV (νn) − ÙV (μ) +
ÙV (μn) − ÙV (μ)

‖μn −μ‖ ‖νn −μ‖

H(μ) −H(νn) − H(μn) −H(μ)
‖μn −μ‖ ‖νn −μ‖

≥ 3ρ supF + 2C(I)

=⇒
(‖μn −μ‖)ÙV (νn) + ‖νn −μ‖ÙV (μn) − (‖μn −μ‖ + ‖νn −μ‖)ÙV (μ)
−‖μn −μ‖H(μn) − ‖νn −μ‖H(μn) + (‖μn −μ‖ + ‖νn −μ‖)H(μ)

≥ 3ρ
I

supF + 2C(I)
I

=⇒ pn
ÙV (μn) + qn

ÙV (νn) − ÙV (μ)
−pnH(μn) − qnH(νn) +H(μ)

≥ 3ρ
I

supF + 2C(I)
I

=⇒ pn
ÙV (μn) + qn

ÙV (νn) − ÙV (μ)
I(μn� νn|μ)

≥ 3ρ
I

supF + 2C(I)
I

=⇒ pn
ÙV (μn) + qn

ÙV (νn) − ÙV (μ) ≥ 3ρ
I

supFI(μn� νn|μ) + 2C(I)
I(μn� νn|μ)

I

=⇒ pn
ÙV (μn) + qn

ÙV (νn) − 2C(I)
I(μn� νn|μ)

I

≥ ÙV (μ)
Å

1 + 2
ρ

I
I(μn� νn|μ)

ã
+ supF

ρ

I
I(μn� νn|μ)

=⇒ pn
ÙV (μn) + qn

ÙV (νn) − 2C(I)
I(μn� νn|μ)

I

≥ ÙV (μ)e
ρ
I
I(μn�νn|μ) + supF

ρ

I
I(μn� νn|μ)


The last inequality comes from ∀x > 0, 1 + 2x > ex. Now we have

e−ρ
I(μn�νn|μ)

I
(
pn

ÙV (μn) + qn
ÙV (νn)

)− 2e−ρ
I(μn�νn|μ)

I C(I)
I(μn� νn|μ)

I

≥ ÙV (μ) + e−ρ
I(μn�νn|μ)

I supF
ρ

I
I(μn� νn|μ)
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Since μn → μ, limn→∞ I(μn� νn|μ) = 0. Then pick N sufficiently large that ∀n ≥N :

e−ρ
I(μn�νn|μ)

I
(
pn

ÙV (μn) + qn
ÙV (νn)

)− I(μn� νn|μ)
I

C(I) ≥ ÙV (μ) + ρI(μn� νn|μ)
2I

supF


From now on, keep n fixed, and pick dt = I(μn�νn|μ)
I

and dtm = dt
2m . m is chosen suffi-

ciently large that
∣∣∣ÙV − Vdtm

∣∣∣eρ
I
I(μn�νn|μ) < ρI(μn�νn|μ)

8c supF , then

e−ρ
I(μn�νn|μ)

I
(
pnVdtm (μn) + qnVdtm (νn)

)− dtC

Å
I(μn� νn|μ)

dt

ã
≥ Vdtm (μ) + ρdt

4
supF


Consider a strategy that divides I(μn� νn|μ) into 2m periods uniformly (based on
Lemma S.2), and follows the optimal strategy of Vdtm at the end of the 2m periods.
The payoff is

e−ρdt
(
pnVdtm (μn) + qnVdtm (νn)

)−
2m−1∑
t=0

e−ρt dtm dtm ·C
Å
I(μn� νn|μ)/2m

dtm

ã

> e−ρdt
(
pnVdtm (μn) + qnVdtm (νn)

)−
2m−1∑
t=0

e−ρdt dtm ·C
Å
I(μn� νn|μ)/2m

dtm

ã

= e−ρdt

Å
pnVdtm (μn) + qnVdtm (νn) − dt ·C

Å
I(μn� νn|μ)

dt

ãã

≥ Vdtm (μ) + ρdt

4
supF


The second line scales all the nonnegative costs with a term larger than 1. Taking m
sufficiently large, the last line is strictly larger than Vdtm (μ), contradiction.

• ÛV (μn)−ÛV (μ)
‖μn−μ‖ ≤ −n. Then pick νn ∈ ∂�X such that μ�μn� νn are three ordered points on

a straight line. Let pn�qn be such that pn + qn = 1, pnμ+ qnνn = μn. Pick any I such
that C(I) <∞. We have

I

ÙV (νn) − ÙV (μn) +
ÙV (μ) − ÙV (μn)

‖μn −μ‖ ‖νn −μn‖

H(μn) −H(νn) − H(μ) −H(μn)
‖μn −μ‖ ‖νn −μn‖

≥ I
ÙV (νn) − ÙV (μn) + n‖νn −μn‖

H(μn) −H(νn) − H(μ) −H(μn)
‖μn −μ‖ ‖νn −μn‖




Take n → ∞ on RHS, we observe that RHS goes to infinity. Therefore, there exists
N such that ∀n ≥N , RHS is larger than 3ρ supF + 2C(I):

=⇒ pn
ÙV (μ) + qn

ÙV (νn) − 2C(I)
I(μ�νn|μn)

I
≥ ÙV (μn) + 3

ρI(μ�νn|μn)
I

supF

≥ eρ
I(μ�νn|μn)

I ÙV (μn) + ρI(μ�νn|μn)
I

supF
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Similar to the last part, N can be chosen sufficiently large that

e−ρ
I(μ�νn|μn)

I
(
pn

ÙV (μ) + qn
ÙV (νn)

)− I(μ�νn|μn)
I

C(I) ≥ ÙV (μn) + ρI(μ�νn|μn)
I

supF


Then pick dt = I(μ�νn|μn)
I

and dtm = dt
2m . m can be chosen sufficiently large that

e−ρdt
(
pnVdtm (μ) + qnVdtm (νn)

)− dtC(I) ≥ Vdtm (μn) + ρdt

2
supF


Consider a similar strategy as before that divides experiment uniformly:

e−ρdt
(
pnVdtm (μ) + qnVdtm (νn)

)−
2m−1∑
t=0

e−ρt dtm dtm ·C
Å
I(μ�νn|μn)/2m

dtm

ã

≥ Vdtm (μn) + ρdt

4
supF


RHS is strictly larger than Vdtm (μn). This experiment dominates the optimal experi-
ment of the dtm problem at μn, contradiction. Q.E.D.

LEMMA S.6: ∀f (x) differentiable on (a�b). ∀x� y ∈ (a�b),

1
2

inf
z∈(x�y)

D2f (z� y)
∣∣y − x

∣∣2 ≤ f (y) − f (x) − f ′(x)(y − x) ≤ 1
2

sup
z∈(x�y)

D2f (z� y)
∣∣y − x

∣∣2



PROOF:
• First inequality: let D = infz∈(x�y) D

2f (z� y). Suppose by contradiction the statement is
not true, then there exists ε > 0 such that D−ε

2

∣∣y − x
∣∣2
> f (y) − f (x) − f ′(x)(y − x).

Let h(w) = f (w) − f (x) − f ′(x)(w − x) − D−ε

2 (w − x)2. Then h(x) = 0, h′(x) = 0
and h(y) < 0. Now consider maxz h(z) − h(y)

y−x
(z − x). By continuity of h, maximizer

z∗ exists in [x� y]. FOC implies h′(z∗) = h(y)
y−x

so z∗ �= x. The objective function is 0 at
both x� y so z∗ �= y . Then optimality of z∗ implies ∀dz sufficiently small:

h
(
z∗ + dz

)− h(y)
y − x

(
z∗ + dz − x

) ≤ h
(
z∗)− h(y)

y − x

(
z∗ − x

)
=⇒ f

(
z∗ + dz

)− f
(
z∗)− f ′(x) dz − D− ε

2
(
2z∗ − 2x+ dz

)
dz

≤ dz
(
f ′(z∗)− f ′(x) − (D− ε)

(
z∗ − x

))
=⇒ f

(
z∗ + dz

)− f
(
z∗)− f ′(z∗)dz

dz2 ≤ D− ε

2

=⇒ D2f
(
z∗� y

)
<D


This contradiction shows that the first inequality holds.
• Second inequality: let D̄= supz∈(x�y) D

2(z� y). Suppose by contradiction the statement

is not true, then there exists ε > 0 such that D̄+ε
2

∣∣y − x
∣∣2
< f (y) −f (x) −f ′(x)(y−z).
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Let h(w) = f (w) − f (x) − f ′(x)(w − x) − D̄+ε
2 (w − x)2. Then h(x) = 0�h′(x) = 0

and h(y) > 0. Now consider minz h(z) − h(y)
y−x

(z − x). By continuity of h, minimizer
z∗ exists in [x� y]. FOC implies h′(z∗) = h(y)

y−z
so z∗ �= x. Then optimality of z∗ implies

∀dz sufficiently small:

h
(
z∗ + dz

)− h(y)
y − x

(
z∗ + dz − x

) ≥ h
(
z∗)− h(y)

y − x

(
z∗ − x

)
=⇒ f

(
z∗ + dz

)− f
(
z∗)− f ′(x) dz − D̄+ ε

2
(
2z∗ − 2x+ dz

)
dz

≥ dz
(
f ′(z∗)− f ′(x) − (D̄+ ε)

(
z∗ − x

))
=⇒ f

(
z∗ + dz

)− f
(
z∗)− f ′(z∗)dz

dz2 ≥ D̄+ ε

2

=⇒ D2f
(
z∗� y

)
> D̄


This contradiction shows that the second inequality holds. Q.E.D.

S2. OMITTED PROOFS AND LEMMAS FOR THEOREM 2

Section S2.1 proves a technical lemma Lemma S.7 that verifies equation (31). Sec-
tion S2.2 verifies that V (μ) defined by equation (33) in the proof of Theorem 2 is a C1

function.

S2.1. Lemmas for Theorem 2

LEMMA S.7: Suppose Vm solves equation (44) on [μ0�μm) and satisfies

Vm(μ0) ≥ sup
ν≥μ0�I

I

ρ

Fm′ (ν) − Vm(μ0) − V ′
m(μ0)(ν −μ0)

J(μ0� ν)
− C(I)

ρ

for m′ >m. Then ∀μ ∈ [μ0�μm):

Vm(μ) ≥ max
ν≥μ�I

I

ρ

Fm′ (ν) − Vm(μ) − V ′
m(μ)(ν −μ)

J(μ�ν)
− C(I)

ρ



Lemma S.7 shows that the constructed value function in Lemma B.3 satisfies equation
(31): Suppose that at μ̂k, all Fk′ with k′ ≥ k are suboptimal given Vk, then applying Lemma
S.7 to Vk−1 implies that for μ ≥ μ̂k, all Fk′ with k′ ≥ k are suboptimal. Moreover, μ̂k−1 is
chosen that Fk−1 is suboptimal given Vk−1. Therefore, by induction on k, ∀k, when μ≥ μ̂k,
Fk′ with k′ ≥ k is suboptimal.

PROOF: Let (ν0� I0) be the optimal policy at μ0. The optimality condition implies⎧⎪⎪⎨⎪⎪⎩
C ′(I0) = Fm(ν0) − Vm(μ0) − V ′

m(μ0)(ν0 −μ0)
J(μ0� ν0)

�

C ′(I0) = F ′
m − V ′

m(μ0)
H ′(μ0) −H ′(ν0)



(S.7)
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Therefore, ∀ν ≥ ν0,

Fm′ (ν) − Fm(ν0) − F ′
m(ν − ν0)

J(ν0� ν)

=
[
Fm′ (ν) − Vm(μ0) − V ′

m(μ0)(ν −μ0)
]

−
[
Fm(ν0) − Vm(μ0) − V ′

m(μ0)(ν0) −μ0

]
−
[(

V ′
m(ν0) − V ′

m(μ0)
)

(ν − ν0)
]

J(μ0� ν) − J(μ0� ν0) −
[(

H ′(μ0) −H ′(ν0)
)

(ν − ν0)
]

≤ C ′(I0)
 (S.8)

The inequality is from the fact that the ratio of the first terms is less than C ′(I0) (the as-
sumption of the lemma) and the ratios of the rest of the terms are C ′(I0) (equation (S.7)).
Now, let (ν� I) be the optimal policy at μ. Similarly, the optimality condition implies⎧⎪⎪⎪⎨⎪⎪⎪⎩

C ′(I) = Fm(ν) − Vm(μ) − V ′
m(μ)(ν −μ)

J(μ�ν)
≥ Fm

(
ν′)− Vm(μ) − V ′

m(μ)
(
ν′ −μ

)
J
(
μ�ν′) �

C ′(I) = F ′
m − V ′

m(μ)
H ′(μ) −H ′(ν)




(S.9)

Since μ≥ μ0, C ′(I) ≥ C ′(I0). ∀ν′ > ν0,

Fm′
(
ν′)− Vm(μ) − V ′

m(μ)
(
ν′ −μ

)
J
(
μ�ν′)

=
[
Fm′

(
ν′)− Fm(ν0) − F ′

m

(
ν′ − ν0

)]
+
[
Fm(ν0) − Vm(μ) − F ′

m(ν0 −μ)
]

+
[(

F ′
m − V ′

m(μ)
)(

ν′ − ν0
)]

J
(
ν0� ν

′)+ J(μ�ν0) +
[(

H′(μ) −H′(ν0)
)(

ν′ − ν0
)]

≤
[
Fm′

(
ν′)− Fm(ν0) − F ′

m

(
ν′ − ν0

)]
+
[
Fm(ν0) − Vm(μ) − F ′

m(ν0 −μ)
]

+
[(

F ′
m − V ′

m(μ)
)(

ν′ − ν0
)]

J
(
ν0� ν

′)+ J(μ�ν0) +
[(

H′(μ) −H′(ν)
)(

ν′ − ν0
)]

≤ C ′(I)


The first inequality is from H being concave. The second inequality is from the ratio of
the first terms being less than C ′(I0) (equation (S.8)), the ration of the second terms being
less than C ′(I), and the ratio of the third terms being C ′(I) (equation (S.9)). Note that
for ν < ν0, Fm′ (ν) ≤ Fm(ν) so the inequality holds automatically. Therefore, Lemma S.7 is
proved. Q.E.D.

S2.2. Proof of Smoothness

PROOF: I prove by showing that on [μ∗∗�1], V (μ) is piecewise defined as Vμ� for μ� ∈ �.
I first show three auxiliary results.

LEMMA S.8: ∀μ
k
≥ μ∗∗, there exists μ� ∈� such that Vμ� (μ

k
) > F (μ

k
).

Lemma S.8 shows that V > F wherever F has a kink.

PROOF: ∀k such that μ
k−1

> μ∗∗, limμ→μ
k
U (μ) = ∞. So U (μ) > F (μ) in a left neigh-

borhood of μ
k
. Let μ� = inf{μ ≥ μ∗∗|∀μ′ ∈ (μ�μ

k
)� U (μ′) >F (μ′)}. Then μ� exists since
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the set is nonempty. Then consider Vμ� (μ). I claim that Vμ� (μ) > F (μ), ∀μ ∈ (μ��μ
k
).

Suppose not, then by the intermediate value theorem, there exists μ′ such that Vμ� (μ′) ≤
F (μ) and V ′

μ� (μ′) ≤ F (μ). However, this implies Vμ� (μ′) = maxν≥μ�I
I
ρ

F (ν)−Vμ� (μ′)−V ′
μ� (ν−μ′)

J(μ′�ν) −
C(I) ≥ U (μ′) > F (μ′), contradiction. Now, suppose Vμ� (μ

k
) = F (μ

k
), by the construc-

tion of Vμ� , limμ→μ
k
− V ′

μ� (μ) = F ′−(μ
k
). Then

F (ν)−Vμ� (μ)−V ′
μ� (ν−μ)

J(μ�ν) → �F ′(μ
k

)(ν−μ
k

)

J(μ
k
�ν) when μ →

μ
k
, and J(μ

k
� ν) = O((ν −μ

k
)2). Therefore, limμ→μ

k
Vμ� (μ) = ∞, contradiction. Q.E.D.

LEMMA S.9: ∀μ0 ≤ μ1 ∈ �, let Ii = {μ|Vμi
(μ) > F (μ)}. I1 ∩ I0 �= ∅ =⇒ I1 ⊂ I0 and

Vμ0 ≥ Vμ1 .

Lemma S.9 shows that any two Vμ0 and Vμ1 do not cross when they are above F .

PROOF: The only possible violation of Lemma S.9 is that ∃μ′ ∈ I0
⋂
I1 such that

Vμ1 (μ′) > Vμ0 (μ′). Since at μ1, Vμ0 (μ1) > Vμ1 (μ1) = F (μ1), by intermediate value theo-
rem, there exists ξ ∈ (μ1�μ

′) such that Vμ1 (ξ) > Vμ0 (ξ) and V ′(μ1)(ξ) > V ′(μ0)(ξ). Since
ξ ∈ I1, there exists ν� I solving equation (31) for Vμ1 (ξ):

Vμ0 (ξ) ≥ I

ρ

F (ν) − Vμ0 (ξ) − V ′
μ0

(ξ)(ν − ξ)
J(ξ� ν)

−C(I)

>
I

ρ

F (ν) − Vμ1 (ξ) − V ′
μ1

(ξ)(ν − ξ)
J(ξ� ν)

−C(I)

= Vμ1 (ξ) > Vμ0 (ξ);
contradiction. Q.E.D.

LEMMA S.10: ∃� such that ∀μ� ∈ �, on {μ|Vμ� (μ) > F (μ)}, V ′
μ� (μ) has Lipschitz pa-

rameter �.

PROOF: I first argue that {μ|V (μ) > F (μ)} is bounded away from 1. ∀μ in the set,
there exists μ� such that Vμ� (μ) > F (μ). By the construction of Vμ� , let ν(μ) be the opti-
mal posterior, μ< ν(μ) < ν(μ�). The FOC of ν at μ� implies F ′(ν(μ�))−F ′(μ�)

H′(μ�)−H′(ν(μ�)) = C ′(I(μ�)).
Since F is piecewise linear and C ′(I(μ�)) > 0, μ� is bounded above by the last kink
of F . Since ρF (μ�) = C ′(I(μ�)) − C(I(μ�)), C ′(I(μ�)) is bounded above. Then, since
limμ→1|H ′(μ)|= ∞, ν(μ�) is bounded away from 1; hence μ is bounded away from 1. In
each smooth region of ν, by the envelope theorem,

V ′
μ� (μ) = − I

ρ

ν −μ

J(μ�ν)
(
V ′′
μ� (μ) +C ′(I)H ′′(μ)

)
> 0

=⇒ V ′′
μ� (μ) +C ′(I)H ′′(μ) < 0


C ′(I) is bounded since C(I) is bounded by supF . Assumption 3 implies that −H ′′(μ) is
bounded. Therefore, there exists � such that V ′′

μ� (μ) ≤ �. On the other hand,

−V ′′
μ� (μ) ≤ρ

I

J(μ�ν)
ν −μ

V ′
μ� (μ)
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The RHS is bounded since μ is bounded, and V ′ is uniformly bounded by the analysis
of ODE equation (50) in Lemma B.4. Therefore, � can be chosen that |V ′′

μ� (μ)| ≤ �.
Since the discrete points of ν is finite, V ′

μ0
is an integral of V ′′

μ0
; hence, V ′

μ0
has Lipschitz

parameter �. Q.E.D.

Now, I return to the proof of smoothness.
• Step 1: By Lemma S.10, {Vμ�} is a family of totally bounded and equicontinuous func-

tions. Therefore, V (μ) = supμ�∈� Vμ� (μ) is continuous and {μ ≥ μ∗∗|V (μ) > F (μ)}
can be written as

⋃
Im where Im are disjoint open intervals.

• Step 2: ∀Im, pick an arbitrary μ ∈ Im. Let �(μ) = {μ� ∈ �|Vμ� (μ) > F (μ)}. Lemma
S.9 implies that the regions {μ′|Vμ� (μ′) > F (μ′)} are nested open intervals for μ� ∈
�(μ). Define ‹V (μ′) = supμ�∈�(μ) Vμ� (μ′). Then Ĩ = {μ′|‹V (μ′) > F (μ′)} is an open
interval containing μ. ∀μ′ ∈ Ĩ, V (μ′) = ‹V (μ′), because otherwise there exists μ� such
that Vμ� (μ′) > ‹V (μ′) > F (μ′). Lemma S.9 implies that μ� ∈ �(μ) and contradicts
the definition of ‹V . Since ‹V = V on Ĩ and ‹V is continuous (by Lemma S.10), Ĩ = Im.
Therefore, V (μ′) = ‹V (μ′) on Im.

• Step 3: Let μm = inf Im. I claim that μm ∈ �(μ) and V (μ′) = Vμm (μ′) on Im. Suppose
not, ∃ a decreasing sequence {μk}⊂�(μ) such that μm = limμk. By Lemma S.9, Vμk

is an increasing sequence and limVμk
= V on Im. Since {V ′

μk
} are equicontinuous and

totally bounded on Im (Lemma S.10), a subsequence converges uniformly. As a re-
sult, V is differentiable on Im and V ′ = limV ′

μk
. ∀μ′ ∈ Im, let (νk� Ik) be the optimizer

of Vμk
. Then since V ′

μk
(μ′) and Vμk

(μ′) converges to V ′(μ′) and V (μ′), respectively,
the limit point of (νk� Ik) is an optimizer of V . As a result, V (μ) solves equation (31)
on I. Since the solution to equation (31) is unique (Lemma B.4), V (μ) = Vμm (μ) on
Im.

To sum up, V is defined in the region [μ∗�1] as

V (μ) =
⎧⎪⎨⎪⎩
Vμ∗ (μ) if μ ∈ [

μ∗�μ∗∗]�
Vμm (μ) if μ ∈ Im�

F (μ) otherwise


Now, I prove V (μ) ∈ C1[μ∗�1]. Define

Vn(μ) =
⎧⎨⎩Vμm (μ) if μ ∈ ⋃

m≤n

Im�

F (μ) otherwise


Then Vn(μ) → V (μ). By Lemma S.8, we can without loss assume that the first n Im’s
cover all μ

m
’s. Fix n, ∀μ, ∀l ≥ n, if μ ∈ ⋃

m≤n Im or μ /∈ ∪Im, then V ′
n (μ) = V ′

l (μ), else if
μ ∈ ⋃

m>n Im, then
∣∣V ′

n (μ) − F ′(μ)
∣∣ = 0 and

∣∣V ′
l (μ) − F ′(μ)

∣∣ is bounded by � supm≥n |Im|
(Lemma S.10). Therefore, V ′

n (μ) is a Cauchy sequence. Since each V ′
n is continuous, V ′ is

continuous, V is a C1 function, and V ′ = F ′ when V = F . Q.E.D.
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S3. PROOFS IN SECTION 5

S3.1. Proof of Theorem 3

PROOF: Sufficiency: suppose f is UPS, let H be the potential function defining it. Then

1
E[τ̂]

E

[
τ̂∑

t=1

E
[
H(μ̂t−1) −H(μ̂t|“Ft−1)

]] = 1
E[τ̂]

E

[
E

[
τ̂∑

t=1

(
H(μ̂t−1) −H(μ̂t)

)
|F̂

τ̂

]]

= 1
E[τ̂]

E
[
H(μ̂0) −H(μ̂

τ̂
)
]

is a function of (μ̂
τ̂
�E[τ̂]).

Necessity: ∀π ∈ �2(X) and T ∈ [1�∞), define 〈μ̂t〉� τ̂ as follows: μ̂0 = Eπ[ν], μ̂1 ∼ π and
μ̂t ≡ μ̂1 for t ≥ 1. Define prob(τ̂ = t) = (1 − 1

T
)t 1

T
for t ≥ 1 (independent to 〈μ̂t〉). Then

E[τ̂] = T and μ̂
τ̂
∼ π. Equation (9) implies that g(π�T ) · T is constant for all T ; hence, it

is wlog to define g(π�T ) = k(π) 1
T

, where k(π) satisfies the following identity:

E

[
τ̂∑

t=1

f (μ̂t|“Ft−1)

]
= k(μ̂

τ̂
)


Define π̄μ as the fully revealing information structure with prior μ and H(μ) = k(π̄μ).
Now, ∀π ∈ �2(X), define 〈μ̂t〉, τ̂ as follows: μ̂1 ∼ π, μ̂2|μ̂1 ∼ π̄

μ̂1
, τ̂ ≡ 2. Therefore, equa-

tion (9) implies that

f (π) +Eπ

[
f (π̄ν)

] = k(π̄μ0 )

=⇒ f (π) = H(μ0) −Eπ

[
H(ν)

]



f (π) ≥ 0 for all π ∈ �2(X) implies that H is a concave function. Q.E.D.

S3.2. Proof of Proposition 1

PROOF: Let h(·) be defined by C ′( 1
ρ

(h(x)C ′(h(x)) − C(h(x)))) = x. Let � = h(supF)
h(infF) .

Suppose (p> 0� ν) is the optimal policy at μ. Then the optimality condition implies

h
(
V (μ)

) = V (ν) − V (μ) − V ′(μ)(ν −μ)
J(μ�ν)

=

∫ ν

μ

∫ η

μ

V ′′(ξ) dξdη

J(μ�ν)

≤

∫ ν

μ

∫ η

μ

h
(
V (ξ)

) · J ′′
νν(ξ�ξ) dξdη

J(μ�ν)

=⇒ J(μ�ν) ≤ �

∫ ν

μ

∫ η

μ

g′′(1)(
ξ − ξ2)2 dξdη
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Note that 1
(ξ−ξ2)2 is the second derivative of H∗(ξ) = (2ξ− 1) log( ξ

1−ξ
). Therefore,

J(μ�ν) ≤ � · g′′(1)
(
H∗(ν) −H∗(μ) −H∗′

(μ)(ν −μ)
)

=⇒ g

Å
ν

1 − ν

1 −μ

μ

ã
≤ �g′′(1)

(
H∗(ν) −H∗(μ) −H∗′

(μ)(ν −μ)
)



The second inequality is from ν
μ

+ 1−ν
1−μ

≥ min{ 1
μ
� 1

1−μ} ≥ 1. The contraposition proves
Proposition 1. Q.E.D.

S3.3. Proof of Proposition 2

PROOF: ∀μ ∈E, let I = p · ν−μ

μ(1−μ) the optimality condition is

ρV (μ) = sup
I�ν

Iμ(1 −μ)
V (ν) − V (μ) − V ′(μ)(ν −μ)

|ν −μ| −C(I)


Suppose for contradiction that the optimal ν is interior and ν > μ, then the FOC for ν is(
V ′(ν) − V ′(μ)

)
(ν −μ) − (

V (ν) − V (μ) − V ′(μ)(ν −μ)
) = 0

⇐⇒ V ′(ν) = V (ν) − V (μ)
ν −μ

=

∫ ν

μ

V ′(ξ) dξ

ν −μ
≤ V ′(ν)


The inequality is by V begin convex. Equality holds only if V ′(ξ) ≡ V ′(ν) for ξ ∈ [μ�ν],
which is impossible because this implies V (ν) − V (μ) − V ′(μ)(ν − μ) = 0. The strict
inequality leads to a contradiction. A symmetric argument rules out the ν < μ case as
well. Therefore, ν ∈{0�1}⊂ EC . Q.E.D.

REMARK 1: Restricting attention to convex value functions when the cost is prior in-
dependent is justified by the following fact: The DM can always choose a prior inde-
pendent strategy (specifying the history-dependent choices of experiments and actions),
which yields an expected utility function that is linear in the prior belief. The optimal
value is then the upper envelope of all these linear functions, and hence is convex.

S3.4. Proof of Theorem 4

PROOF: Suppose μ ∈ D and ρV (μ) = maxσ 1
2σ

2V ′′(μ) − C(κ(μ�σ)). Assumption 4
states that κ(μ�σ) = 1

2σ
2J ′′

νν(μ�μ). Then the optimality condition implies V ′′(μ) = C ′( 1
2 ×

σ2J ′′
νν(μ�μ))J ′′

νν(μ�μ) for optimal σ =⇒ 1
2σ (μ)2 = C ′−1( V ′′(μ)

J′′
νν (μ�μ) ) 1

J′′
νν (μ�μ) =⇒ ρV (μ) =

V ′′(μ)
J′′
νν (μ�μ) ·C ′−1( V ′′(μ)

J′′
νν (μ�μ) ) −C(C ′−1( V ′′(μ)

J′′
νν (μ�μ) )). In other words, h(ρV (μ)) = V ′′(μ)

J′′
νν (μ�μ) .

Since Gaussian learning is optimal at μ, this suggests that supν
V (ν)−V (μ)−V ′(μ)(ν−μ)

J(μ�ν) is lo-
cally maximized at ν → μ. Therefore, the FOC

V ′(ν) − V ′(μ)
J(μ�ν)

− J ′
ν(μ�ν)

J(μ�ν)2

(
V (ν) − V (μ) − V ′(μ)(ν −μ)

)
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must be nonnegative when ν → μ− and nonpositive when ν → μ+. Consider the limit of
the FOC when ν → μ. The L’Hospital’s rule implies

lim
ν→μ

FOC =
lim
ν→μ

Å
V ′′(ν) − J ′′

νν(μ�ν)
V (ν) − V (μ) − V ′(μ)(ν −μ)

J(μ�ν)
− J ′

ν(μ�ν) · FOC
ã

lim
ν→μ

J ′
ν(μ�ν)

= 1
2

Å
V ′′(ν) − J ′′

νν(μ�ν)
V (ν) − V (μ) − V ′(μ)(ν −μ)

J(μ�ν)

ã
lim
ν→μ

J ′
ν(μ�ν)

= 1
2

lim
ν→μ

Å
V (3)(ν) − J (3)

ννν(μ�ν)
V (ν) − V (μ)(ν −μ)

J(μ�ν)
− J ′′

νν(μ�μ) · FOC
ã

lim
ν→μ

J ′′
νν(μ�μ)

= 1
3

V (3)(μ) − J (3)
ννν(μ�μ)

V ′′(μ)
J ′′
νν(μ�μ)

J ′′
νν(μ�μ)

= 0
 (S.10)

Now consider h(ρV (μ)) − V ′′(μ)
J′′
νν (μ�μ) . By assumption, it is nonnegative and achieves 0 at μ.

Thus, it is locally minimized at μ, which implies FOC:

d
dμ

Å
h
(
ρV (μ)

)− V ′′(μ)
J ′′
νν(μ�μ)

ã
= 0

=⇒ dh
(
ρV (μ)

)
dμ

− V (3)(μ)
J ′′
νν(μ�μ)

+ V ′′(μ)
J ′′
νν(μ�μ)2

(
J (3)
ννν(μ�μ) + J (3)

ννμ(μ�μ)
) = 0

=⇒ dh
(
ρV (μ)

)
dμ

+ h
(
ρV (μ)

)J (3)
ννμ(μ�μ)
J ′′
νν(μ�μ)2

=
V (3)(μ) − J (3)

ννν(μ�μ)
V ′′(μ)

J ′′
νν(μ�μ)

J ′′
νν(μ�μ)

= 0
 (S.11)

The last equality is implied by equation (S.10). Now suppose for the purpose of contradic-
tion that there exists μn → μ such that h(ρV (μ0)) = V ′′(μn)

J′′
νν (μn�μn) . This implies that equation

(S.11) holds for each μn:

d
dμ

Ådh
(
ρV (μ)

)
dμ

J ′′
νν(μ�μ) + h

(
ρV (μ)

)
J (3)
ννμ(μ�μ)

ã
= 0

=⇒ d2h
(
ρV (μ)

)
dμ2 J ′′

νν(μ�μ) + dh
(
ρV (μ)

)
dμ

(
2J (3)

ννμ(μ�μ) + J (3)
ννν(μ�μ)

)
+ h

(
ρV (μ)

)(
J (4)
νννμ(μ�μ) + J (4)

ννμμ(μ�μ)
) = 0
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=⇒ (
ρh′(ρV (μ)

)
V ′′(μ) + ρ2h′′(ρV (μ)

)
V ′(μ)2)J ′′

νν(μ�μ)

− h
(
ρV (μ)

)J (3)
ννμ(μ�μ)
J ′′
νν(μ�μ)2

(
2J (3)

ννμ(μ�μ) + J (3)
ννν(μ�μ)

)
+ h

(
ρV (μ)

)(
J (4)
νννμ(μ�μ) + J (4)

ννμμ(μ�μ)
) = 0

=⇒ ρh′(ρV (μ)
)
J ′′
νν(μ�μ)2 − h′′(ρV (μ)

)
h
(
ρV (μ)

)
h′(ρV (μ)

)2

J (3)
ννμ(μ�μ)2

J ′′
νν(μ�μ)2

− J (3)
ννμ(μ�μ)
J ′′
νν(μ�μ)

(
2J (3)

ννμ(μ�μ) + J (3)
ννν(μ�μ)

)
+ (

J (4)
νννμ(μ�μ) + J (4)

ννμμ(μ�μ)
) = 0
 (S.12)

By assumption, μ ∈ D. Since V (μ) ∈ [infF� supF], equation (S.12) cannot hold at μ. So
K ={μ ∈ D|ρV (μ) = maxσ 1

2σ
2V ′′(μ) −C(κ(μ�σ))} contains no limiting point. Take any

compact subset M of D, M ∩K is finite, and hence of zero measure. ∀ sequence of com-
pact subset Mn satisfying

⋃
Mn =D,S.3 K’s measure m(K) ≤ ∑

m(Mn ∩K) = 0. Q.E.D.

Proof of Corollary 1

PROOF: When C(I) = Iα, h(x) is defined by h(x)( h(x)
α

)
1

α−1 − ( h(x)
α

)
α

α−1 = x =⇒ h(x) =
( x

α
1

1−α −α
α

1−α

)
α−1
α . Since h(x) is a power function, h′′(x)h(x)

h′(x)2 is a constant (that depends only

on α). ρh′(ρx) = ρ
α−1
α · x− 1

α · α−1
α

· (α
1

1−α −α
α

1−α )
1−α
α . Therefore, J ′′

νν(μ�μ) is bounded away
from 0 since J ′′

νν(μ�μ) > 0 and is continuous on compact set [0�1], x− 1
α is bounded below

by supF− 1
α > 0. All other terms in L(μ�x) are bounded since J ∈ C4[0�1]. Therefore, for

ρ large enough, L(x�μ) > 0 and E = D. The rest follows from Theorem 4. Q.E.D.

Proof of Corollary 2

PROOF: Note that J ′′
νν(μ�μ) = κ(μ�σ)

σ2 is fixed, and hence is bounded away from 0, inde-
pendent of the choice of J. When ε → 0, all other terms except the first positive term in
L(μ�x) converges to 0. Therefore, for ε sufficiently small, L(μ�x) > 0 and E = D. The
rest follows from Theorem 4. Q.E.D.

S3.5. Proof of Theorem 5

PROOF: Consider the discrete time problem:

Vdt (μ) = sup
〈̂μt 〉∈M̂�̂τ

E

[
e−ρdt ·̂τF (μ̂

τ̂
) −

τ̂−1∑
t=0

e−ρdt·tλE
[
H(μ̂t) −H(μ̂t+1)|“Ft

]]

 (S.13)

Equation (S.13) is defined analogously to equation (12), as the discretization of equa-
tion (11). Then the value in equation (11) is bounded above by limdt→0 Vdt . Take any fea-

S.3Since J ∈ C (4) , D is open; hence, such sequence {Mn} exists.
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sible strategy (〈μ̂t〉� τ̂) of equation (S.13):

E

[
e−ρdt ·̂τF (μ̂

τ̂
) −

τ̂−1∑
t=0

e−ρdt·tλE
[
H(μ̂t) −H(μ̂t+1)|“Ft

]]

= Prob(τ̂ = 0)E
[
F (μ̂0) − λ

(
H(μ̂1) −H(μ̂0)

)]
+ Prob(τ̂ ≥ 1)E

[
e−ρdt ·̂τF (μ̂

τ̂
) − λE

[
H(μ̂t) −H(μ̂t+1)|“Ft

]
|̂τ ≥ 1

]

 (S.14)

If equation (S.14) is negative, then stopping at t = 0 is a strict improvement. Therefore, I
assume wlog all subsequent continuation payoffs are nonnegative. As a result,

E

[
e−ρdt ·̂τF (μ̂

τ̂
) −

τ̂−1∑
t=0

e−ρdt·tλE
[
H(μ̂t) −H(μ̂t+1)|“Ft

]]

≤ Prob(τ̂ = 0)E
[
F (μ̂0) − λ

(
H(μ̂1) −H(μ̂0)

)]
+ eρdt · Prob(τ̂ ≥ 1)E

[
e−ρdt ·̂τF (μ̂

τ̂
) −

τ̂∑
t=1

λe−ρdt·t
E
[
H(μ̂t) −H(μ̂t+1)|“Ft

]
|̂τ ≥ 1

]

= Prob(τ̂ ≤ 1)E
[
F (μ̂

τ̂
) − λ

(
H(μ̂2) −H(μ̂0)

)]
+ eρdt · Prob(τ̂ ≥ 2)E

[
e−ρdt ·̂τF (μ̂

τ̂
) −

τ̂∑
t=2

λe−ρdt·t
E
[
H(μ̂t) −H(μ̂t+1)|“Ft

]
|̂τ ≥ 2

]





= lim
T→∞

(
Prob(τ̂ ≤ T )E

[
F (μ̂

τ̂
) − λ

(
H(μ̂T ) −H(μ̂0)

)]

+ eTρdt · Prob(τ̂ ≥ T )E

[
e−ρdt ·̂τF (μ̂

τ̂
) −

τ̂∑
t=T

λe−ρdt·t
E
[
H(μ̂t) −H(μ̂t+1)|“Ft

]
|̂τ ≥ T

])

= E
[
F (μ̂

τ̂
) − λ

(
H(μ̂

τ̂
) −H(μ̂0)

)]
≤ sup

Eπ [ν]=μ̂0

Eπ

[
F (ν) − λ

(
H(μ) −H(ν)

)]



Clearly, the uniform upper bound sup
Eπ [ν]=μ̂0

Eπ[F (ν) −λ(H(μ) −H(ν))] does not de-
pend on dt. Thus,

V (μ) ≤ sup
π∈�2(X)

Eπ

[
F (ν) − λ

(
H(μ) −H(ν)

)]

 (S.15)

On the other hand, take any π ∈ �2(X) and p > 0. Let Jt be a Poisson counting process
with parameter p. Define a compound Poisson process: μt = μ if Jt = 0; μt ∼ π if Jt = 1.
Let τ = {t|Jt = 1}. Then the expected payoff from strategy (〈μt〉� τ) can be solved by the
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following HJB:

ρ“V (μ) = p
(
Eπ

[
F (ν)

]− V (μ)
)− λ

(
p
(
Eπ

[
H(μ) −H(ν)

]))
=⇒ “V (μ) = p

ρ+p

(
Eπ

[
F (ν) − λ

(
H(μ) −H(ν)

)])



Since V (μ) ≥ “V (μ) regardless of π and p,

V (μ) ≥ sup
π∈�2(X)

Eπ

[
F (ν) − λ

(
H(μ) −H(ν)

)]

 (S.16)

Combine equations (S.15) and (S.16), equation (11) is proved. Q.E.D.

S3.6. Proof of Theorem 6

PROOF: ∀μ ∈E, it is WLOG to assume Supp(μ) = X since states with zero prior prob-
ability are irrelevant. Let (p(μ)� ν(μ)�σ (μ)) denote the optimal policy solving equation
(3).

Step 1. Derive optimality condition. Suppose σ (μ) = 0 and let I(μ) = −p(μ) ×
(H(ν(μ)) −H(μ) − ∇H(μ)(ν(μ) −μ)). Equation (3) implies

ρV (μ) = I(μ)
V
(
ν(μ)

)− V (μ) − ∇V (μ)
(
ν(μ) −μ

)
H(μ) −H

(
ν(μ)

)+ ∇H(μ)
(
ν(μ) −μ

) −C
(
I(μ)

)
= sup

I�ν

I
V (ν) − V (μ) − ∇V (μ)(ν −μ)
H(μ) −H(ν) + ∇H(μ)(ν −μ)

−C(I)
 (S.17)

By assumption, C(I) is strictly convex. I(μ) is the unique solution to C ′(I(μ)) =
V (ν(μ))−V (μ)−∇V (μ)(ν(μ)−μ)
H(μ)−H(ν(μ))+∇H(μ)(ν(μ)−μ) ; hence, ρV (μ) = I(μ)C ′(I(μ)) −C(I(μ)). Note that the function
f (x) = 1

ρ
(xC ′(x) −C(x)) is a C1 and strictly increasing mapping from R

+ to R
+. Thus, it

has a C1 and strictly increasing inverse. Let h(x) = f−1(C ′−1(x)). Then h(x) is a C1 and
strictly increasing function and

h
(
V (μ)

) = V
(
ν(μ)

)− V (μ) − ∇V (μ)
(
ν(μ) −μ

)
H(μ) −H

(
ν(μ)

)+ ∇H(μ)
(
ν(μ) −μ

)
= sup

ν

V (ν) − V (μ) − ∇V (μ)(ν −μ)
H(μ) −H(ν) + ∇H(μ)(ν −μ)


 (S.18)

The optimality condition implies®
G
(
ν′)−G(μ) − ∇G(μ)

(
ν′ −μ

) ≤ 0�
G
(
ν(μ)

)−G(μ) − ∇G(μ)
(
ν(μ) −μ

) = 0�
(S.19)

where G(ν) = V (ν)+h(V (μ))H(ν). Equations (S.18) and (S.19) completely characterize
the solution of the HJB.

Suppose σ (μ) �= 0, it suggests that using Gaussian signal is optimal; hence,

ρV (μ) = sup
σ

1
2
σT HessV (μ)σ −C

Å
−1

2
σT HessH(μ)σ

ã
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Same analysis as in the previous case (omitted) implies the optimality condition:

h
(
V (μ)

) = −σ (μ)T HessV (μ)σ (μ)
σ (μ)T HessH(μ)σ (μ)

= sup
σ

−σT HessV (μ)σ
σT HessH(μ)σ


 (S.20)

Step 2. Prove V (ν(μ)) > V (μ) when σ (μ) = 0. Suppose for the purpose of contradic-
tion that V (ν(μ)) ≤ V (μ). Consider V (μα) = V (αν(μ) + (1 − α)μ) for α ∈ [0�1]. Since
�(X) is convex, μα ∈ �(X). By equation (S.19), G(μα) ≤G(μ) + ∇G(μ)(μα −μ). For α
sufficiently small, μα ∈ E. Now define G1 = V + λ1H for λ1 < h(V (μ)). Then, since H is
strictly concave, G1 is strictly more convex than G; hence,®

G1(μα) −G1(μ) − ∇G1(μ)(μα −μ) < 0;
G1(μα) −G1

(
ν(μ)

)− ∇G1
(
ν(μ)

)(
μα − ν(μ)

)
< 0

=⇒ G1(μα) + ∇G1(μα)(μ−μα) <G1(μ)

or G1(μα) + ∇G1(μα)
(
ν(μ) −μα

)
<G1

(
ν(μ)

)
=⇒ λ1 < sup

ν

V (ν) − V (μα) − ∇V (μα)(ν −μα)
H(μα) −H(ν) + ∇H(μα)(ν −μα)




The second set of inequalities are from the fact that (∇G1(μ) − ∇G1(μα))(μα − μ) and
(∇G1(μ)−∇G1(μα))(ν(μ)−μα) are of opposite signs. This suggests that λ1 <h(V (μα)).
Since λ1 <h(V (μ)) can be chosen arbitrarily, V (μα) ≥ V (μ), and this implies

dV (μα)
dα

∣∣∣∣
α=0

≥ 0

⇐⇒ ∇V (μ)
(
ν(μ) −μ

) ≥ 0

=⇒ V
(
ν(μ)

)− V (μ) − ∇V (μ)
(
ν(μ) −μ

) ≤ 0


This implies ρV (μ) ≤ 0, contradiction. Therefore, we conclude that V (ν(μ)) > V (μ).
Step 3. Prove V (ν(μ)) = F (ν(μ)) when σ (μ) = 0. Suppose V (ν(μ)) > F (ν(μ)). Define

G= V + h(V (μ))H and G1 = V + h(V (ν(μ)))H. Then ∀ν ∈ �(X):

G(ν) ≤G
(
ν(μ)

)+ ∇G
(
ν(μ)

)(
ν − ν(μ)

)
=⇒ G1(ν) = G(ν) + (

h
(
V
(
ν(μ)

))− h
(
V (μ)

))
H(ν)

≤ G
(
ν(μ)

)+ ∇G
(
ν(μ)

)(
ν − ν(μ)

)+ (
h
(
V
(
ν(μ)

))− h
(
V (μ)

))
H(ν)

<G
(
ν(μ)

)+ ∇G
(
ν(μ)

)(
ν − ν(μ)

)
+ (

h
(
V
(
ν(μ)

))− h
(
V (μ)

))(
H
(
ν(μ)

)+ ∇H
(
ν(μ)

)(
ν − ν(μ)

))
= G1

(
ν(μ)

)+ ∇G1
(
ν(μ)

)(
ν − ν(μ)

)



The second inequality is by replacing G(ν) using the first inequality. The third inequality
is from the strict concavity of H. The strict inequality G1(ν) <G1(ν(μ))+∇G1(ν(μ))(ν−
ν(μ)) ∀ν implies that equation (S.19) has no solution. On the other hand, G(ν) ≤
G(ν(μ)) + ∇G(ν(μ))(ν − ν(μ)) ∀ν implies that HessG(ν(μ)) is negative semidefinite,
and hence HessG1(ν(μ)) is negative definite =⇒ h(V (ν(μ))) > supσ − σT HessV (ν(μ))σ

σT HessH(ν(μ))σ .
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Hence, equation (S.20) has no solution either. This suggests that V (ν(μ)) could not pos-
sibly satisfy equation (3), contradiction. Therefore, V (ν(μ)) = F (ν(μ)).

Step 4. Let K = {μ ∈ E|h(V (μ)) = supσ − σT HessV (μ)σ
σT HessH(μ)σ}. Prove that K is nowhere dense.

Suppose for the purpose of contradiction that ∃ nondegenerate close ball O in the interior
of K. Let μ∗ be the center of O. Since V is quasiconvex, the sublevel set {μ|V (μ) ≤ V (μ∗)}
is convex. By the supporting hyperplane theorem, there exists a linear function Aμ + b
such that ®

Aμ∗ + b= 0;
Aμ+ b < 0 =⇒ V (μ) > V

(
μ∗)


Define set Q = {μ|μ ∈ O&Aμ+ b ≤ 0}, Q = {μ|μ ∈ O&Aμ+ b = 0}, and ∂Q̄ = {μ|∂Q \
Q}. Now we are ready to draw a contradiction. Let L(μ) = V (μ) + h(V (μ∗))H(μ), then
L(μ) satisfies (i) L(μ∗) = 0, (ii) L(μ) ≤ 0, ∀μ ∈ �(X), and (iii) ∇L(μ∗) = 0. This implies
that ∀μ ∈ Q \ μ∗, L(μ) < 0.S.4 Since L is continuous, δ� supμ∈∂Q̄ L(μ) < 0. There exists
ε > 0 sufficiently small that: ε(Aμ+ b) ≥ δ when μ ∈Q. Therefore,

ε(Aμ+ b) ≥ L(μ) ∀μ ∈Q ∪ ∂Q̄
 (S.21)

Now consider μα = μ∗ − αA. Aμα + b = −α|A|< 0 so μα is in the interior of Q for α
sufficiently small:

d
dα

(
L(μα) − ε(Aμα + b)

) ∣∣∣∣
α=0

= ∇L
(
μ∗) ·A+ ε|A|> 0


Therefore, for α sufficiently small, L(μα) > ε(Aμα + b). By continuity of L, there exists
b′ > b such that L(μ) ≤ ε(Aμ+b′), and equality holds at some μ′. Since b′ > b, equation
(S.21) implies that μ′ is in the interior of Q. Therefore, HessL(μ′) is negative semidefi-
nite. Since by construction V (μ′) > V (μ∗), HessV (μ′) +h(V (μ′)) HessH(μ′) is negative
definite. This contradicts the fact that μ′ ∈ K. Therefore, property (i) is proved.

Step 5. Prove the policy function (ν(μ)� I(μ)) exists and ν(μ) ∈ EC (property (v)).
∀μ ∈ E \ K, the proof is done according to step 3. Now consider μ ∈ K. Since K is
nowhere dense, there exists μn ∈ E \K such that μn → μ. By step 3, ν(μn) ∈ EC so ν(μn)
are bounded away from μ. Since EC is bounded and closed, there exists converging sub-
sequence of ν(μn). Without loss of generality, we assume ν(μn) → ν ∈ EC . Since V is
continuous, V �C ∈ C2(E) and h ∈C1(R+):

h
(
V (μ)

) = lim
n→∞h

(
V (μn)

) = lim
n→∞

V
(
ν(μn) − V (μn) − ∇V (μn)

(
ν(μn) −μn

))
H(μn) −H

(
ν(μn)

)+ ∇H(μn)
(
ν(μn) −μn

)
= V (ν) − V (μ) − ∇V (μ)(ν −μ)

H(μ) −H(ν) + ∇H(μ)(ν −μ)



Let ν(μ) = ν and I(μ) = f−1(V (μ)), then (ν(μ)� I(μ)) solves equation (3). Since f−1 is
C1, I(μ) ∈ C1(E). Moreover, since f−1 is an increasing function, I(μ) increases in V (μ)
(property (iv)).

S.4If L(μ) = 0, then it is a local maximizer of L; hence, HessL(μ) is negative semidefnitie. If V (μ) > V (μ∗),
then HessV (μ) +h(V (μ)) HessH(μ) is negative definite. If V (μ) = V (μ∗), then μ ∈Q and by quasiconvexity
of V , V (αμ+ (1 −α)μ∗) is constant for α ∈ [0�1]. This implies L(αμ+ (1 −α)μ∗) being strictly concave in α,
and hence is strictly negative at μ. Both lead to contradiction.
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Step 6. Prove properties (ii) and (iii). On E \K, by the envelope theorem,

Dν(μ)−μh
(
V (μ)

) = (
ν(μ) −μ

)T · ∂

∂μ

F
(
ν(μ)

)− V (μ) − ∇V (μ)
(
ν(μ) −μ

)
H(μ) −H

(
ν(μ)

)+ ∇H(μ)
(
ν(μ) −μ

)
=⇒ Dν(μ)−μV (μ) = 1

h′(V (μ)
) · (ν(μ) −μ

)T
×

Å
− HessV (μ) + h

(
V (μ)

)
HessH(μ)

H(μ) −H
(
ν(μ)

)+ ∇H(μ)
(
ν(μ) −μ

)(ν(μ) −μ
)ã

> 0


This proves property (ii). On E \K, equation (S.19) implies

∇F
(
ν(μ)

)− ∇V (μ) + h
(
V (μ)

)(∇H
(
ν(μ)

)− ∇H(μ)
) = 0

=⇒ −HessV (μ) · α+ h′(V (μ)
)(∇V (μ) · α)(∇H

(
ν(μ)

)− ∇H(μ)
)

+ h(V (μ)
(
HessH

(
ν(μ)

) ·Dαν(μ) − HessH(μ) · α) = 0

=⇒ HessH
(
ν(μ)

) ·Dαν(μ)

= HessH(μ) · α+ HessV (μ) · α
h
(
V (μ)

)
+ h′(V (μ)

)
h
(
V (μ)

) ∇V (μ) · α(∇H(μ) − ∇H
(
ν(μ)

))



Let α= ν(μ) −μ and replace Dν(μ)−μV (μ):(
ν(μ) −μ

)T · HessH
(
ν(μ)

) ·Dν(μ)−μν(μ)

= −h′(V (μ)
)

h
(
V (μ)

) (H(μ) −H
(
ν(μ)

)+ ∇H(μ)
(
ν(μ) −μ

))
Dν(μ)−μV (μ)

+ h′(V (μ)
)

h
(
V (μ)

)Dν(μ)−μV (μ)
(∇H(μ) − ∇H

(
ν(μ)

)) · (ν(μ) −μ
)

= h′(V (μ)
)

h
(
V (μ)

)Dν(μ)−μ

(
H
(
ν(μ)

)−H(μ) + ∇H
(
ν(μ)

)(
μ− ν(μ)

))
> 0


This proves property (iii). Q.E.D.
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