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NOTATIONAL CONVENTIONS.

Measurable sets. If X is a Polish space, then BX denotes its Borel σ-algebra and X̃
denotes a measurable subset of X , that is, X̃ is an element of BX .

Product sets and measures on product sets. For any two measurable spaces, X and Y ,
and a Borel measure ν on X × Y , νX and νY denote the marginals of ν on X and Y ,
respectively. Given a product spaceX×Y , projY denotes the projection ofX×Y onto Y .

Throughout the Appendix, we define different distributions that arise in the game. Be-
cause we endow product spaces with their product topology and their product Borel σ-
algebra, it is enough to define these new measures on the measurable rectangles and we
follow this strategy throughout.

Transition probabilities and composition. Given two Polish spaces, X and Y , a tran-
sition probability from X to Y is a measurable map κ : X �→ �(Y ). If κ is a transition
probability from X to Y , then we denote by κ(·|x) the measure on Y induced by κ eval-
uated at x. If κ is a transition probability from X to Y and κ′ is a transition probability
from Y to Z, then their composition κ⊗ κ′ is the transition probability from X to Y ×Z
such that (

κ⊗ κ′)(Ỹ × Z̃|x) =
∫
Ỹ

κ′(Z̃|y)κ(dy|x)�

In particular, a measure ν on X can be seen as a transition probability from {∅} to X , so
that ν⊗ κ′ defines a measure on Y ×Z.

Mixing and public randomization. The set �= [0�1] appears frequently; it is endowed
with its Borel σ-algebra. We denote by l the Lebesgue measure on �. The set � is used
in two ways: to define the public randomization device and to define the principal’s mixed
strategies in Lemma D.1. We reserve the notation ω ∈� to indicate a realization of the
public randomization device.

Disintegration. The proof of Theorem 1 makes frequent use of the notion of disin-
tegration Pollard (2002, Appendix F). Let X and Z denote two Polish spaces and let
ν denote a measure on Z. Let f : Z �→ X denote a measurable mapping. The family
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{λx : x ∈ X} is a disintegration of ν according to f if every λx is a probability measure
concentrated on f−1({x}) and for every bounded measurable function h :Z �→R the map
x �→ ∫

Z
hdλx is Borel measurable and

∫
Z
hdν = ∫

X

∫
Z
hdλx d(ν ◦ f−1)(dx).

In the special case when Z =X×Y and f = projX , we say that {λx : x ∈X} is the projX -
disintegration of ν. While technically λx is a measure on X ×Y concentrated on {x}×Y ,
it is usually identified as a measure on Y (cf., Kallenberg, 2017) and we do the same. That
is, we define the projX -disintegration of ν as the map λ :X ×BY �→ [0�1] satisfying:

(i) For every Ỹ ∈ BY , x �→ λx(Ỹ ) is BX -measurable,
(ii) For νX -almost every x ∈X , Ỹ �→ λx(Ỹ ) is a probability measure,

(iii) and for every bounded measurable function h : X × Y �→ R,
∫
X×Y h(x� y)ν(d(x�

y)) = ∫
X

∫
Y
h(x� y)λx(dy)νX (dx),

where νX = ν ◦ proj−1
X . Theorem 1.23 in Kallenberg (2017) ensures that {λx : x ∈X} exists

and is unique νX -almost everywhere.

APPENDIX D: THE MECHANISM-SELECTION GAME

Histories and Strategies. We formally define the histories of the game (and hence the
extensive form) together with the principal and the agent’s strategies.

Let Mi�j denote the set of transition probabilities from Mi to Sj × A, since Mi is
at most countable, Mi�j is Polish. With this notation, MI = ∪i�j∈IMi�j . Recall that to
simplify notation, we follow the convention that when the agent does not participate
the input message is ∅, the output message is ∅, and the allocation is a∗. Thus, when
the principal offers a mechanism in Mi�j , the possible private outcomes are MiSjA∅ ≡
(Mi × Sj ×A) ∪ {(∅�∅� a∗)}, while the public outcomes are SjA∅ ≡ (Sj ×A) ∪ {(∅� a∗)}.
We endow MiSjA∅ and SjA∅ with the disjoint topology and we note that they are Polish
sets under that topology.1

With the above notation, an outcome at the end of period t is an element of ZA =
∪i�j∈I(Mi�j ×MiSjA∅) ×�; the public component of the outcome in period t is an ele-
ment of Z = ∪i�j∈I(Mi�j × SjA∅) ×�. Since I is at most countable, ZA, Z are Polish when
endowed with the disjoint topology. For t ≥ 1, public histories at the beginning of period
t are Ht =�× Zt−1, while private histories are �×Ht

A ≡�×�× Zt−1
A , with the under-

standing that Z0 = Z0
A = {∅} and ∅ denotes the empty history. The information sets of the

principal can be described by a measurable function ζPt :�×Ht
A �→Ht where ζPt is the

projection of �×Ht
A onto �× Zt .

The principal’s behavioral strategy is a collection (σPt)Tt=1 where σPt : Ht �→ �(MI)
is a measurable function. The agent’s behavioral strategy (σAt)Tt=1 is a collection σAt ≡
(πt� rt)Tt=1 such that πt :�×Ht

A × MI �→ �({0�1}) and rt :�×Ht
A × MI �→ �(∪i∈IMi)

are measurable and rt (θ�htA�Mt)(MMt ) = 1.

Induced Distributions and Payoffs. Given the strategy profile σ = (σP�σA) and a node
(θ�htA), we define transition probabilities from �×Ht

A to MI , from �×Ht
A × MI to

1Since Mi × Sj ×A is disjoint from {(∅�∅� a∗)}, the disjoint topology is constructed as follows. Take a subset
B ⊆MiSjA∅ to be open if B ∩ (Mi × Sj ×A) and B ∩ {(∅�∅� a∗)} are open in the respective topologies. This
topology is the finest topology that makes the canonical injections of Mi × Sj ×A and {(∅�∅� a∗)} into MiSjA∅
continuous (cf. Fremlin, 2010, Vol. 2, 214L).
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∪i�j∈IMiSjA∅ and from �×Ht
A ×MI × ∪i�j∈IMiSjA∅ to � as follows:

κ
σP
t

(∪i�j∈IM̃i�j|θ�htA
) =

∑
i�j∈I

σPt
(
M̃i�j|ht

)
�

κ
σA
t

(
M̃iSjA∅|θ�htA�Mt

) = (
1 −πt

(
θ�htA�Mt

))
1
[(∅�∅� a∗) ∈ M̃iSjA∅

]
+πt

(
θ�htA�Mt

)
×

∫
M̃iSjA∅

rt
(
θ�htA�Mt

)⊗ϕMt
(
d(mt� st� at)

)
�

κωt+1

(
�̃|θ�htA�Mt �mt� st� at

) =
∫
�̃

l(dωt+1)�

(D.1)

where ht denotes the projection of (θ�htA) onto �× Zt−1 and the notation presumes that
Mt ∈Mi�j . Note that κσt ≡ κσPt ⊗ κ

σA
t ⊗ κωt+1 defines a transition probability from �×Ht

A

to ZA.
Let μ1 denote the initial distribution on �. The Ionescu–Tulcea extension theorem

(Pollard, 2002) guarantees the existence of a sequence of probability measures Pσt = μ1 ⊗
κω1 ⊗ ⊗t−1

τ=1 κ
σ
τ defined on the product sets (�×Ht

A)T+1
t=1 and a probability measure Pσ on

(�×HT+1
A �B� ⊗BHT+1

A
) such that for each t ≥ 1, the marginal of Pσ on �×Ht

A is Pσt .
Note that Pσ determines a distribution over �×HT+1

A . The principal and the agent’s
payoffs, however, are defined over �×AT . We record for future reference the definition
of the distribution on �×AT induced by Pσ .

DEFINITION D.1: Fix an assessment (σP�σA�μ). The distribution ησ ∈ �(�×AT ) in-
duced by the assessment is defined as follows:

ησ
(
�̃× ÃT

) =
∫
�×HT+1

A

1
[
proj�×AT

(
θ�hT+1

A

) ∈ �̃× ÃT
]
Pσ

(
d
(
θ�hT+1

A

))
�

Thus, the principal’s payoff under assessment (σP�σA�μ), W (σ�μ), is given by∫
�×HT+1

A

W
(
proj�×AT

(
θ�hT+1

A

))
Pσ

(
d
(
θ�hT+1

A

)) =
∫
�×AT

W
(
aT �θ

)
ησ

(
d
(
θ�aT

))
� (D.2)

while the agent’s payoff when her type is θ, U (σ�μ�θ), is given by∫
�×HT+1

A

U
(
proj�×AT

(
θ′�hT+1

A

))
Pσ|θ

(
d
(
θ′�hT+1

A

)) =
∫
�×AT

U
(
aT �θ′)ησθ (d(θ′� aT

))
� (D.3)

where (i) Pσ|θ is the induced probability over �×HT+1
A determined by δθ ⊗κω1 ⊗⊗T

t=1 κ
σ
t ,

where δθ is the Dirac measure on θ, and (ii) ησθ is the proj�-disintegration of ησ .

Belief System, Conditional Distributions, and Payoffs. We now introduce the necessary
notation to define the principal’s beliefs along the game and the principal and the agent’s
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payoffs conditional on the history of the game. The belief system is a collection (μt)t≥1

such that for all t ≥ 1, μt :Ht �→ �(�×Ht
A) is a transition probability.

In a slight abuse of notation, let Pσ|(θ�htA) denote the distribution on � × HT+1
A in-

duced by δ(θ�htA) ⊗ ⊗
τ≥t κ

σ
τ , which exists by the Ionescu–Tulcea theorem. More gener-

ally, suppose that in period t the principal’s beliefs are given by the transition probabil-
ity μt :Ht �→ �(�×Ht

A).2 Let Pσ|μt (ht ) denote the distribution on �×HT+1
A induced by

μt (ht) ⊗ ⊗
τ≥t κ

σ
τ . This induces a conditional distribution over �×AT , which we record

for future reference.

DEFINITION D.2: Fix an assessment (σP�σA�μ). The conditional outcome distribution
ησ|ht ∈ �(� ×HT+1

A ) induced by the assessment is defined as follows: ησ|ht = Pσ|μt (ht ) ◦
proj−1

�×AT .

Then we can write the principal’s payoffs at ht as follows:

W
(
σ�μ|ht

) = Eησ|ht
[
W (·)]

=
∫
�×HtA

EP
σ|(θ�ht

A
)[
W

(
at−1� ·� θ)]μt(d(θ�htA)|ht)

=
∫
�×HtA

∫
MI

EP
σ|(θ�ht

A
�Mt )[

W
(
at−1� ·� θ)]σPt(dMt|ht

)
μt

(
d
(
θ�htA

)
|ht

)
=

∫
MI

W
(
σ�μ|ht�Mt

)
σPt

(
dMt|ht

)
� (D.4)

where W (σ�μ|ht�Mt) is the principal’s payoff at history ht , when he offers mechanism
Mt .

Let Ht+1
A− =Ht

A × ∪i�j(Mi�j ×MiSjA∅), and similarly let Ht+1
− =Ht × ∪i�j(Mi�j × SjA∅).

Conditional on offering Mt ∈ Mi�j at ht , the principal’s beliefs, the mechanism, and the
agent’s strategy induce a distribution over �×Ht+1

A− as follows:

P−
t+1

(
�̃× H̃t

A ×{Mt}× M̃iSjA∅|μt
(
ht
)
�Mt

)
=

∫
�̃×H̃tA

κ
σA
t

(
M̃iSjA∅|θ�htA�Mt

)
μt

(
d
(
θ�htA

)
|ht

)
� (D.5)

Note that P−
t+1 defines a transition probability from �(�×Ht

A) ×MI to �×Ht+1
A− . Fur-

thermore, we can use P−
t+1(·|μt (ht)�Mt) to define a joint distribution overHt+1

− as follows:

νt+1

(
H̃t+1

− |μt
(
ht
)
�Mt

)
=

∫
�×Ht+1

A−
1
[(
θ�ht+1

A−
) ∈ projHt+1− H̃t+1

−
]
P−
t+1

(
d
(
θ�ht+1

A−
)
|μt

(
ht
)
�Mt

)
� (D.6)

2The construction that follows formally yields μt+1 :Ht+1 �→ �(�×Ht+1
A ) as a transition probability, thereby

justifying why we can take μt to be a transition probability as well.
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The notation νt+1 signifies that this is the analogue of the distribution in equation (4) in
Appendix A.

The joint probability P−
t+1 is the one that the principal uses to update his beliefs about

the agent’s type conditional on offering Mt at ht . Formally, let �̃ × H̃t+1
A− ≡ �̃ × H̃t

A ×
{Mt}× M̃iSjA∅. Then

P−
t+1

(
�̃× H̃t+1

A−|μt
(
ht
)
�Mt

)
=

∫
proj

Ht+1−
�̃×H̃t+1

A−
μt+1

(
�̃× H̃t+1

A−|ht+1
−

)
νt+1

(
dht+1

− |μt
(
ht
)
�Mt

)
� (D.7)

where the equality uses that νt+1(·|μt (ht)�Mt) = P−
t+1(μt (ht)�Mt) ◦ proj−1

Ht+1−
. The right-

hand side defines the principal’s updated beliefs conditional on ht+1
− as the disintegration

of P−
t+1 according to projHt+1− . Pollard (2002, Appendix F, Theorem 6) implies that μt+1 is a

measurable function from Ht+1
− to �(�×Ht+1

A− ).
Equations (6) and (7) imply that we can write the principal’s payoff at ht when he offers

mechanism Mt as follows:

W
(
σ�μ|ht�Mt

)
=

∫
�×Ht+1

A−
EP

σ|(θ�ht+1
A−)[

W
(
at−1� at� ·� θ

)]
P−
t+1

(
d
(
θ�ht+1

A−
)
|μt

(
ht
)
�Mt

)
=

∫
Ht+1−

∫
�×Ht+1

A−
EP

σ|(θ�ht+1
A−)[

W
(
at−1� at� ·� θ

)]
×μt+1

(
d
(
θ�ht+1

A−
)
|ht+1

−
)
νt+1

(
dht+1

− |μt
(
ht
)
�Mt

)
� (D.8)

Note that this is the analogue of equation (5) in Appendix A. We can similarly define the
agent’s payoffs at ht when the principal offers Mt as follows:

U
(
σ|θ�htA�Mt

)
=

∫
MiSjA∅

EP
σ|(θ�ht

A
�Mt �mt �st �at )[

U
(
at−1� at� ·� θ

)]
κ
σA
t

(
d(mt� st� at)|θ�htA�Mt

)
� (D.9)

To complete the definition of the principal’s period- t + 1 beliefs as a function of Ht+1,
consider the joint probability on �×Ht+1

A induced by the principal’s belief, the mecha-
nism, the agent’s strategy, and the public randomization device:

Pt+1

(
�̃× H̃t+1

A− × �̃|μt
(
ht
)
�Mt

)
=

∫
�̃×H̃t+1

A−
κωt+1

(
�̃|θ�ht+1

A−
)
P−
t+1

(
d
(
θ�ht+1

A−
)
|μt

(
ht
)
�Mt

)
= P−

t+1

(
�̃× H̃t+1

A−|μt
(
ht
)
�Mt

)
l(�̃)� (D.10)
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Therefore, we have

Pt+1

(
�̃× H̃t+1

A− × �̃|μt
(
ht
)
�Mt

)
= l(�̃)

∫
proj

Ht+1−
�̃×H̃t+1

A−
μt+1

(
�̃× H̃t+1

A−|ht+1
−

)
νt+1

(
dht+1

− |μt
(
ht
)
�Mt

)
�

but also

Pt+1

(
�̃× H̃t+1

A− × �̃|·)
=

∫
proj

Ht+1 (�̃×H̃t+1
A− ×�̃)

μ′
t+1

(
�̃× H̃t+1

A− × �̃|ht+1
)(
Pt+1

(
μt

(
ht
)
�Mt

) ◦ proj−1
Ht+1

)(
dht+1

)
=

∫
(proj

Ht+1−
�̃×H̃t+1

A− )×�̃
μ′
t+1

(
�̃× H̃t+1

A− × �̃|ht+1
)(
Pt+1

(
μt

(
ht
)
�Mt

) ◦ proj−1
Ht+1

)(
dht+1

)
=

∫
proj

Ht+1−
�̃×H̃t+1

A−

∫
�̃

μ′
t+1

(
�̃× H̃t+1

A− × �̃|ht+1
− �ω′)

× l(dω′)(P−
t+1

(
μt

(
ht
)
�Mt

) ◦ proj−1
Ht+1−

)(
dht+1

−
)

=
∫

proj
Ht+1−

�̃×H̃t+1
A−

∫
�̃

μ′
t+1

(
�̃× H̃t+1

A− × �̃|ht+1
− �ω′)l(dω′)νt+1(μt

(
dht+1

− |μt
(
ht
)
�Mt

)
�

where the notation μ′
t+1 signifies that a priori this is not the distribution μt+1. Thus,∫

proj
Ht+1−

�̃×H̃t+1
A−

∫
�̃

[
μ′
t+1

(
�̃× H̃t+1

A− × �̃|ht+1
− �ω′)−

μt+1

(
�̃× H̃t+1

A−|ht+1
−

) ]
l
(
dω′)νt+1

(
dht+1

− |μt
(
ht
)
�Mt

) = 0�

which shows that νt+1(μt (ht)�Mt)-almost surely the principal’s beliefs about the agent’s
private history do not depend on the realization of the public randomization device. Thus,
we can define the principal’s beliefs as a measurable function from Ht+1 to �(�×Ht+1

A ).

Perfect Bayesian Equilibrium.

DEFINITION D.3: An assessment (σP�σA�μ) is sequentially rational if for all t and pub-
lic histories ht :

1. If Mt ∈ suppσPt (ht), W (σ�μ|ht�Mt) ≥W (σ�μ|ht�M′
t) for all M′

t ∈MI ,
2. For all Mt ∈ MI , U (σ|θ�htA�Mt) ≥ U (σP�σ ′

A|θ�htA�Mt) for all θ ∈ �, htA ∈
Ht
A(ht)�σ ′

A.

DEFINITION D.4: The system of beliefs (μt)t≥1 satisfies Bayes’ rule where possible if for
all t, all public histories ht , and mechanisms Mt , it satisfies equation (7) νt+1(μt (ht)�Mt)-
almost surely.

DEFINITION D.5: An assessment (σP�σA�μ) is a perfect Bayesian equilibrium if it is
sequentially rational and satisfies Bayes’ rule where possible.
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D.1. Proof of Theorem 1

D.1.1. Proof of Proposition 3

Fix a PBE assessment (σP�σA�μ) and suppose there exists ht and an agent type θ, such
that σAt (θ�htA) �= σAt (θ�htA) for some htA�h

t

A ∈Ht
A(ht).

We begin by arguing that for each mechanism Mt , it must be the case that U (σ|θ�htA�
Mt) =U (σ|θ�h

t

A�Mt). First, the strategy of (θ�htA) is feasible for (θ�h
t

A) and vice versa.
Second, since htA�h

t

A ∈Ht
A(ht), the allocation through period t − 1, at−1, is the same for

(θ�htA) and (θ�h
t

A), so that at both nodes the agent evaluates continuation payoffs using
the same payoff function, U (at−1� ·� θ). It follows that the agent at (θ�htA) is indifferent
between σAt (θ�htA), σAt (θ�h

t

A), and any randomization over σAt (θ�htA) and σAt (θ�h
t

A).
Moreover, the same reasons imply that the same indifference holds for any public his-

tory hτ that succeeds ht . That is, for any τ ≥ t and hτ that succeeds ht , and any hτA, h
τ

A that
succeed htA and h

t

A, respectively, the agent is indifferent over σAτ(θ�hτA) and σAτ(θ�h
τ

A).
We use this indifference to construct a new strategy for the agent, σ ′

A, and a new PBE
assessment (σP�σ ′

A�μ
′) that implements the same distribution over outcomes, � ×AT

starting from ht .
To define the agent’s new strategy, σ ′

A, we use the following construction to simplify
notation. Given a history ht and a mechanism Mt ∈ Mi�j , we can extend the mechanism
and the agent’s strategy so as to subsume the agent’s participation decision into her re-
porting strategy and the mechanism as follows (see the discussion after the statement
of Theorem 1). Let Mi∅ =Mi ∪ {∅}. Let ϕMt

π :Mi∅ �→ �(SjA∅) be such that for m ∈Mi,
ϕMt
π (·|m) = ϕMt (·|m), whereas ϕMt

π (·|∅) = δa∗ . Finally, let

rπt
(
θ�htA�Mt

)
(M̃i∅)

= (
1 −πt

(
θ�htA�Mt

))
1[∅ ∈ M̃i∅] +πt

(
θ�htA�Mt

)
rt
(
θ�htA�Mt

)
(M̃i∅)�

denote the agent’s extended reporting strategy. By construction, rπ�t is a transition proba-
bility from �×Ht

A ×MI to ∪i∈IMi∅ such that rπ�t (θ�htA�Mt)(MMt
∅ ) = 1.

Fix ht . For each τ ≥ t and each hτ that follows ht , if Mτ ∈Mi�j let

Rτ

(
�̃× M̃i∅|hτ�Mτ

) =
∫
�̃×HτA

rπτ
(
θ�hτA�Mτ

)
(M̃i∅)μτ

(
d
(
θ�hτA

)
|hτ

)
(D.11)

denote the joint probability over �×Mi∅ induced by the principal’s belief at hτ together
with the agent’s (extended) reporting strategy. By construction, Rτ is a transition prob-
ability from Hτ × MI to �× ∪i∈IMi∅. Proposition 7.27 in Bertsekas and Shreve (1978)
implies that a transition probability r ′π�τ(·�hτ�Mτ) : �×Hτ × MI �→ �(Mi∅) exists such
that

Rτ

(
�̃× M̃i∅|hτ�Mτ

) =
∫
�̃

r ′πτ
(
θ�hτ�Mτ

)
(M̃i∅)μτ�

(
dθ|hτ

)
(D.12)

where μτ�(hτ) denotes the marginal on � of μτ(·|hτ). The above construction does
not necessarily define (i) (πτ(θ�hτA�Mτ)� rτ(θ�hτA�Mτ)) for types θ not in the sup-
port of μτ�(·|hτ), (ii) rτ for types in the support of μτ�(·|hτ) that do not partici-
pate in the mechanism. For types not in the support of μτ(hτ), define their strat-
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egy at hτ by choosing an arbitrary (and agent-history independent) randomization
over {(πτ(θ�hτA�Mτ)� rτ(θ�hτA�Mτ))|hτA ∈ Hτ

A(hτ)}. Similarly, for types in the support
of μτ�(·|hτ) that do not participate in the mechanism define their reporting strategy
at hτ by choosing an arbitrary (and agent-history independent) randomization over
{rτ(θ�hτA�Mτ)|hτA ∈Hτ

A(hτ)}.
We now verify that two properties hold. First, that if we were to change the agent’s strat-

egy from ht onwards by r ′π�·, then the principal’s beliefs over � would remain the same.
Second, that the the principal’s “prior” μt (ht) and the strategy profile (σP ,σ ′

A) induce
the same probability over the terminal outcomes (θ�at−1� a≥t) as μt (ht) and the strategy
profile (σP ,σA). It follows that σP continues to be a sequentially rational strategy for the
principal.

To verify the first property, denote by (σP ,σ ′
A,μ′) the assessment in which the agent

follows the aforementioned strategy starting from ht onwards. We inductively show that
for τ ≥ t, if μ′

τ�(·|hτ) = μτ�(·|hτ), then μ′
τ+1�(·|hτ�Mτ� ·) = μτ+1�(·|hτ�Mτ� ·). Since by

construction μ′
t�(·|ht) = μt�(·|ht), this closes the inductive argument.

Fix hτ,Mτ, for some hτ that can be reached from ht under the agent’s strategy σA.3
Associated with the new assessment there is also a new kernel for the agent’s strategy,
κ
σ ′
A
τ , and therefore, a new version of the transition probability defined in equation (5),

which we denote by P−′
τ+1. Evaluating P−′

τ+1 at (μ′
τ(·|hτ)�Mτ), we have

P−′
τ+1

(
�̃×Hτ

A ×{Mτ}× M̃iSjA∅|μ′
τ

(
hτ

)
�Mτ

)
=

∫
�̃×HτA

κ
σ ′
A
τ

(
M̃iSjA∅|θ�hτA�Mτ

)
μ′
τ

(
d
(
θ�hτA

)
|hτ

)
=

∫
�̃

κσ
′
A
(
M̃iSjA∅|θ�hτA�Mτ

)
μ′
τ�

(
dθ|hτ

)
=

∫
�̃

κ
σ ′
A
τ

(
M̃iSjA∅|θ�hτA�Mτ

)
μτ�

(
dθ|hτ

)
=

∫
�̃

∫
projMi∅ M̃iSjA∅

ϕMt
π (projSjA∅M̃iSjA∅|m)r ′πτ

(
dm|θ�hτ�Mτ

)
μτ�

(
dθ|hτ

)
=

∫
�̃×HτA

∫
projMi∅ M̃iSjA∅

ϕMt
π (projSjA∅M̃iSjA∅|m)rπτ

(
dm|θ�hτA�Mτ

)
μτ

(
d
(
θ�hτA

)
|hτ

)
= P−

τ+1

(
�̃×Hτ

A ×{Mτ}× M̃iSjA∅|μτ
(
hτ

)
�Mτ

)
� (D.13)

where the second equality uses that κ
σ ′
A
τ (·|θ�hτA�Mτ) is measurable in the public history,

the third equality uses that the marginal on � of the principal’s beliefs μ′
τ(·|hτ) coincides

with those in the original assessment, μτ(·|hτ), the fourth equality uses the definition of
the new strategy, the fifth equality follows from equations (11) and (12), and the last from
the definition of P−

τ+1 under the old strategy profile. Equation (7) then implies that the
marginal of μ′

τ+1(·|hτ�Mτ� ·) on � coincides with that of μτ+1(·|hτ�Mτ� ·).

3While we change the agent’s strategy at all histories, which succeed (ht , Mt), Bayes’ rule where possible
ties the beliefs at ht and the beliefs at hτ only at those histories hτ that are on the path of the (agent’s) strategy.
This is why when we check that the principal’s beliefs over � have not changed we do so along the path of the
agent’s strategy profile starting at ht .
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To verify the second property, let κσ ′
τ ≡ κσPτ ⊗ κσ ′

A
τ ⊗ κωτ+1. The Ionescu–Tulcea theorem

guarantees the existence of a sequence of probability measures Qσ ′
τ = μt (ht) ⊗ δat−1 ⊗∏τ−1

n=t κ
σ ′
n defined on the product sets (� × Ht

A × At−1 × ∏τ−1
n=t ZA)Tτ=t and a probability

measure Qσ ′ on �×Ht
A ×At−1 × ∏T

τ=t ZA such that for all τ ≥ t, Qσ ′
τ coincides with the

marginal ofQσ ′ on �×Ht
A×At−1 ×∏τ−1

n=t ZA. Analogously, one can defineQσ ,Qσ
τ for the

original assessment. Note that Qσ is the distribution under which the principal’s payoffs
are computed at ht , that is, Qσ = Pσ|μt (ht ) (see equation (4)).4

Lemma 10.4 in Bertsekas and Shreve (1978) implies that along the path of play starting
from ht and for each τ ≥ t the principal’s updated beliefs at hτ+1, μτ+1(hτ+1), correspond
to the distribution Qσ

τ+1 conditional on the principal’s information set, hτ+1. That is,

Qσ
τ+1

({(
θ�hτ+1

A

) ∈ �̃× H̃τ+1
A : hτ+1

A ∈
⋃

hτ+1∈H̃τ+1

Hτ+1
A

(
hτ+1

)})

=
∫
H̃τ+1

μτ+1

(
�̃× H̃τ+1

A |hτ+1
)
Qσ
τ+1

(
d
(
θ�hτ+1

A

))
� (D.14)

and similarly for Qσ ′
τ+1 and μ′

τ+1.
The definition of Qσ ′

τ+1 together with equation equation (14) imply that for τ ≥ t we
have

Qσ ′
τ+1

({(
θ�hτ+1

A

) : θ ∈ �̃�hτ+1
A ∈

⋃
hτ∈H̃τ

H̃τ
A

(
ht
)× Z̃A

})

=
∫
�̃×∪hτ∈H̃τ H̃τA(hτ)

κσ
′
τ

(
Z̃A|θ�hτA

)
Qσ ′
τ

(
d
(
θ�hτA

))
=

∫
H̃τ

∫
�̃×H̃τA(hτ)

κσ
′
τ

(
Z̃A|θ�hτA

)
μ′
τ

(
d
(
θ�hτA

)
|hτ

)
Qσ ′
τ

(
d
(
θ�hτA

))
� (D.15)

where the second equality uses equation (14). Evaluating equation (15) at H̃τ
A(hτ) =

Hτ
A(hτ) (i.e., taking the marginal over the agent-histories, hτA), and applying Fubini’s the-

orem, we have

Qσ ′
τ+1

({(
θ�hτ+1

A

) : θ ∈ �̃�hτ+1
A ∈

⋃
hτ∈H̃τ

Hτ
A

(
ht
)× Z̃A

})

=
∫
H̃τ

∫
�̃×HτA(hτ)

κσ
′
τ

(
Z̃A|θ�hτA

)
μ′
τ

(
d
(
θ�hτA

)
|hτ

)
Qσ ′
τ

(
d
(
θ�hτA

))
=

∫
H̃τ

∫
�̃×HτA(hτ)

κστ
(
Z̃A|θ�hτA

)
μτ

(
d
(
θ�hτA

)
|hτ

)
Qσ ′
τ

(
d
(
θ�hτA

))
� (D.16)

4We introduce the Qσ notation to define the collection (Qσ
τ )τ≥t and avoid confusing it with Pστ defined on

page 3.
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where the second equality uses equations (11) and (12), as we did in equation (13).5 Equa-
tion (16) implies that if we could change Qσ ′

τ for Qσ
τ , then we would conclude that

Qσ ′
τ+1

({(
θ�hτ+1

A

) : θ ∈ �̃�hτ+1
A ∈

⋃
hτ∈H̃τ

Hτ
A

(
ht
)× Z̃A

})

=Qσ
τ+1

({(
θ�hτ+1

A

) : θ ∈ �̃�hτ+1
A ∈

⋃
hτ∈H̃τ

Hτ
A

(
ht
)× Z̃A

})
�

which inductively implies that we can perform the change since for τ = t we have
Qσ
t = Qσ ′

t = μt (ht). This implies that for each finite τ Qσ ′
τ+1 and Qσ

τ+1 generate the same
distribution over �×Aτ+1, and hence so do Qσ ′ and Qσ . Thus, the distribution over out-
comes from ht onwards is unchanged.

These two steps also imply that (σP�σ ′
A�μ

′) is a PBE assessment.

D.1.2. Proof of Proposition 4

PROOF OF PROPOSITION 4: Let (σP�σA�μ) be as in the statement of Proposition 4.
Let ht be a public history and let Mt denote the mechanism that the principal offers at ht
under σPt . Let �+ denote the support of the principal’s beliefs at ht , μt (ht).

We begin by performing some auxiliary changes to the distribution Pt+1(μt (ht)�Mt)
defined in equation (10). First, we extend it to the product set �×Ht

A × {Mt} ×MMt ∪
{∅} × SMt ∪ {∅} ×A×�, so as to be able to invoke disintegration results in Kallenberg
(2017), which are stated for product spaces.6 Second, in a slight abuse of notation, we
denote by Pt+1(μt (ht)�Mt) the marginal overHt

A×MMt ∪{∅} of Pt+1(μt (ht)�Mt). That is,
in what follows, Pt+1(μt (ht)�Mt) is a distribution over �× SMt ∪{∅}×A×�. The reason
is that the agent’s strategy is measurable with respect to the public history.

The first step of the proof is to use the distribution Pt+1(μt (ht)�Mt) over period-
t allocations and continuation histories to define a measure over period-t alloca-
tions, continuation beliefs, and potentially continuation equilibria. To this end, de-

5To verify the second equality, note the following. Letting Z̃A = ∪i�j (M̃ij × M̃iSjA∅) × �̃,∫
�̃×HτA (hτ)

κσ
′
τ

(
Z̃A|θ�hτA

)
μ′
τ

(
d
(
θ�hτA

)
|hτ

)
=

∫
�̃×HτA (hτ)

∑
i�j∈I

(∫
M̃ij

∫
�̃

κ
σ ′
A
τ

(
M̃iSjA∅|θ�htA�Mτ

)
l(dωτ+1)σPτ

(
dMτ|hτ

))
μ′
τ

(
d
(
θ�hτA

)
|hτ

)
=

∑
i�j∈I

∫
M̃i�j

∫
�̃×HτA (hτ )

∫
�̃

κ
σ ′
A
τ

(
M̃iSjA∅|θ�hτA�Mτ

)
l(dωτ+1)μ′

τ

(
d
(
θ�hτA

)
|hτ

)
σPτ(dMτ)

=
∑
i�j∈I

∫
M̃i�j

∫
�̃×HτA (hτ )

∫
�̃

κσAτ
(
M̃iSjA∅|θ�hτA�Mτ

)
l(dωτ+1)μτ

(
d
(
θ�hτA

)
|hτ

)
σPτ(dMτ)�

where the first equality follows by definition, the second from Fubini’s theorem, and the third from equations
(11) and (12) once we verify that the beliefs in the new assessment have the same marginal over� as the beliefs
in the old assessment.

6Formally, for any set B= �̃× H̃t
A ×{Mt}× M̃ × S̃× Ã× �̃ ∈�×Ht

A ×MMt ∪{∅}× SMt ∪{∅}×A×�,

Pt+1
(
B|μt

(
ht
)
�Mt

) =
∫
�×Ht+1

A

1
[(
θ�ht+1

A

) ∈ B]Pt+1
(
d
(
θ�ht+1

A

)
|μt

(
ht
)
�Mt

)
�
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fine the measurable map T that maps tuples formed by period-t output messages
and allocations together with period-t + 1 realizations of the public randomization de-
vice, (st� at�ωt+1) ∈ SMtA∅ × �, to a belief-allocation-public randomization device tu-
ple, (μt+1(·|ht� z(st �at ) (Mt)�ωt+1)� at�ω′(st�ωt+1)), where ω′ : SMt ∪ {∅} × � �→ [0�1] is a
measurable bijection, which exists by Kuratowski’s theorem (see Srivastava, 2008) and
z(st �at ) (Mt) is shorthand notation for (Mt � st� at). Second, define the measure P′ over
�×�(�) ×A×� as follows:

P′(�̃× Ũ × Ã× �̃′) = Pt+1

(
�̃× T−1

(
Ũ × Ã× �̃′)|μt(ht)�Mt

)
� (D.17)

By definition, we have that the principal’s payoff is the same under P′ and Pt+1(μt (ht)�
Mt): ∫

�

∫
MMt SMt A∅

∫
�

EP
σ|(θ�ht �z(st �at ) (Mt )�ωt+1)[

W
(
at−1� at� ·� θ

)]
× Pt+1

(
d
(
θ�ht+1

)
|μt

(
ht
)
�Mt

)
=

∫
�

∫
�(�)×A×�′

EP
σ|(θ�ht �Mt �T−1(μ�at �ω′))[

W
(
at−1� at� ·� θ

)]
× P′(d(θ�μ�at�ω′))� (D.18)

Similarly, whenever θ is in the support of μt (ht), the agent’s payoff remains the same
under the distribution P′ conditional on θ. To see this, let {λθ : θ ∈ �} denote the proj�-
disintegration of P′. Noting that P′

� = μt (ht), Theorem 1.23 in Kallenberg (2017) implies
that λθ(·) = (κσAt (θ�ht�Mt) ⊗ κωt+1) ◦ T−1 μt (ht)-almost surely. Thus, we have that∫

MMt SMt A∅

∫
�

EP
σ|(θ�ht �z(st �at ) (Mt )�ωt+1)[

U
(
at−1� at� ·� θ

)]
× (
κ
σA
t ⊗ κωt+1

)(
d(mt� st� at�ωt+1)|θ�ht�Mt

)
=

∫
�(�)×A×�′

EP
σ|(θ�ht �Mt �T−1(μ�at �ω′))[

U
(
at−1� at� ·� θ

)]
λθ

(
d
(
μ�at�ω

′))� (D.19)

Note that equations (18) and (19) correspond to equations (9) and (12) in the main Ap-
pendix.

The second step verifies two properties of P′: (i) the principal’s beliefs over � coincide
with μ whenever μ is the output message and (ii) conditional on μ, the allocation and
the selection of continuation equilibria (as indexed by ω′) are independent of the agent’s
type θ. To verify (i), note that equation (7) implies that P′ satisfies the following:

P′(�̃× Ũ × Ã× �̃′)
=

∫
T−1(Ũ×Ã×�̃′)

μt+1

(
�̃|ht� z(st �at ) (Mt)�ωt+1

)
× l(dωt+1)νt+1

(
d
(
ht� z(st �at ) (Mt)

)
|μt

(
ht
)
�Mt

)
=

∫
T−1(Ũ×Ã×�̃′)

T�(�) (st� at�ωt+1)(�̃)l(dωt+1)νt+1

(
d
(
ht� z(st �at ) (Mt)

)
|μt

(
ht
)
�Mt

)
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=
∫
Ũ×Ã×�̃′

μ(�̃)
((
νt+1

(
μt

(
ht
)
�Mt

)⊗ κωt+1

) ◦ T−1
)(
d
(
μ�at�ω

′))
=

∫
Ũ×Ã×�̃′

μ(�̃)P′
�(�)×A×�′

(
d
(
μ�at�ω

′))� (D.20)

where the first equality follows from equation (7), T�(�) in the third term denotes the
first coordinate of T , the third equality follows from the change in integration variables,
and the last from the definition of P′. Equation (20) implies that when the principal “ob-
serves (μ�at�ω′),” the principal’s beliefs update to μ. Formally, consider the proj�(�)×A×�-
disintegration of P′. Then

P′(�̃× Ũ × Ã× �̃′) =
∫
Ũ×Ã×�̃′

λ(μ�at �ω′) (�̃)P′
�(�)×A×�′

(
d
(
μ�at�ω

′))� (D.21)

Equations (20) and (21) together with Theorem 1.23 in Kallenberg (2017) implies that
λ(μ�at �ω′) (·) = μ(·)-P′

�(�)×A×�′ almost surely.
To verify (ii) and complete the assertion that conditional on μ, the principal’s beliefs

update to μ, consider the proj�(�)-disintegration of P′, {λμ : μ ∈ �(�)}. Formally,

P′(�̃× Ũ × Ã× �̃′) =
∫
Ũ

λμ
(
�̃× Ã× �̃′)P′

�(�) (dμ)

=
∫
Ũ×Ã×�̃′

μ(�̃)P′
�(�)×A×�′

(
d
(
μ�at�ω

′))
=

∫
Ũ×A×�′

μ(�̃)1
[
(at�ω) ∈ Ã× �̃′]P′

�(�)×A×�′
(
d
(
μ�at�ω

′))
=

∫
Ũ

∫
A×�′

μ(�̃)λ′
μ

(
d
(
at�ω

′))P′
�(�)(dμ)

=
∫
Ũ

μ(�̃)
∫
Ã×�̃′

λ′
μ

(
d
(
at�ω

′))P′
�(�) (dμ)

=
∫
Ũ

μ(�̃)λ′
μ

(
Ã× �̃′)P′

�(�) (dμ)� (D.22)

where the first equality follows from the definition of disintegration, the second equality
follows from equation (20), the third is a rewriting of the integral, the fourth uses the
proj�(�)-disintegration of P′

�(�)×A×�′ , {λ′
μ : μ ∈ �(�)}, and the fifth the property that “con-

ditional on μ,” μ(�̃) is constant. It follows from this that �⊥ (A��′)|�(�).
The third step uses the above properties to construct a canonical mechanism, initially

defined for those types in the support of μt (ht), which we then extend to all types. With
this in mind, consider again the proj�-disintegration of P′, {λθ : θ ∈ �}. Theorem 1.25
in Kallenberg (2017) implies that three transition probabilities, β : � �→ �(�(�)), α :
� × �(�) �→ �(A), and γ : � × �(�) × A �→ �(�′), exist such that λθ = β ⊗ α ⊗ γ.
Furthermore, Equation (D.22) and Theorem 1.27 in Kallenberg (2017) together imply
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that α and γ do not depend on the agent’s type.7 Thus, we can write

P′(�̃× Ũ × Ã× �̃′) =
∫
�̃

λθ
(
Ũ × Ã× �̃′)μt(dθ|ht)

=
∫
�̃

∫
Ũ

∫
Ã

γ
(
�̃′|θ�μ�at

)
α(dat|θ�μ)β(dμ|θ)μt

(
dθ|ht

)
=

∫
�̃

∫
Ũ

∫
Ã

γ
(
�̃′|μ�at

)
α(dat|μ)β(dμ|θ)μt

(
dθ|ht

)
� (D.23)

We now define the canonical mechanism ϕMC
t . For θ ∈�+, define ϕMC

t (·|θ) = β⊗ α. For
θ /∈�+, let R∗(θ) denote the set of solutions to

max
r∈�(�+)

∫
�+

[∫
�(�)×A×�′

EP
σ|(θ�ht �Mt �T−1(μ�at �ω′))[

U
(
at−1� at� ·� θ

)]
× γ(dω′|μ�at

)
α(dat|μ)β

(
dμ|θ′)]r(dθ′)� (D.24)

The objective function in equation (24) corresponds to the payoff from reporting (possibly
at random) a type in �+ and then conditional on (μ�at�ω′), play proceeding as in the
original strategy profile. The objective is continuous in r8 and �(�+) is compact since �+

is compact (Theorem 15.11 in Aliprantis and Border, 2006). Then the maximization is
well-defined. Theorem 18.19 in Aliprantis and Border (2006) implies that a measurable
selector r∗(θ) ∈R∗(θ) exists. Use this to define ϕMC

t for θ /∈�+ as follows:

ϕMC
t (Ũ × Ã|θ) =

∫
�+
ϕMC

t
(
Ũ × Ã|θ′)r∗(θ)

(
dθ′)�

which is measurable by composition of measurable functions. Note that this defines ϕMC
t

as a transition probability from � to �(�) ×A.9 Let MC
t = (���(�)�ϕMC

t ).
Continuation strategies are modified so that when the outcome of the mecha-

nism is (μ�at), we draw ω′ ∈ [0�1] according to γ(μ�at) and play proceeds as it
did after (ht� z(st �at ) (Mt)�ωt+1) where T−1(μ�at�ω′) = (st� at�ωt+1).10 That is, (σP�σA�

7To facilitate checking the application of Theorem 1.27 in Kallenberg (2017) to our setting, we now use his
notation. For any sets Y , X , and Z, and joint measure ν on Y ×X ×Z, let λYX|Z denote the (νZ�projY×X)−
disintegration of ν. Then equation (22) shows that λ�A[0�1]|�(�) = λ�|�(�)λA[0�1]|�(�) , P�(�) -almost everywhere.
By Theorem 1.25 in Kallenberg (2017), λ�A[0�1]|�(�) = λ�|�(�) ⊗ λA[0�1]|�|�(�) , which means that λA[0�1]|�|�(�) =
λA[0�1]|�(�) P�(�) -almost everywhere. Theorem 1.27 in Kallenberg (2017) shows that λA[0�1]|�(�)|� = λA[0�1]|�|�(�)

P��(�) -almost everywhere. Together with the observation that λ�(�)A[0�1]|� = λ�(�)|�λA[0�1]|�(�)|� , completes the
claim.

8The term in brackets is bounded above by the payoff the agent of type θ obtains in equilibrium. Serfozo
(1982, Theorem 3.5) then implies continuity of the objective in r.

9To see this, fix a measurable subset C of �(�(�) ×A×�) and let B denote a measurable subset of [0�1].
Then the set {θ ∈� : ϕMC

t (C|θ) ∈ B} = {θ ∈�+ : ϕMC
t (C|θ) ∈ B} ∪{θ ∈� \�+ : ϕMC

t (C|θ) ∈ B}. Each set is in
B� by construction and, therefore, their union is in B�.

10At the risk of introducing more notation, one could use the probability integral transform and make the
distribution on [0�1] be the uniform distribution. Now, the probability integral transform requires that the dis-
tribution be continuous. This can always be guaranteed by applying the result in Lehmann (2012), which shows
that for any (real-valued) random variable X , one can always construct an information-equivalent random
variable X∗, the distribution of which is continuous.
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μ)|(ht �z(μ�at ) (MC
t )�ω′) = (σP�σA�μ)|(ht �Mt �T−1(μ�at �ω′)) . Instead, conditional on not participating

in the mechanism, MC
t , set (σP�σA�μ)|(ht �z(∅�a∗) (MC

t )�ωt+1) = (σP�σA�μ)|(ht �Mt �z(∅�a∗) (Mt )�ωt+1) .
Modify the agent’s strategy so that when the principal offers MC

t and the agent partici-
pates, then the agent truthfully reports her type. Modify the agent’s participation strategy
as follows. For types in �+, the agent participates with probability 1. For types not in
�+, set πt (θ�ht�MC

t ) = 1 only if the value of the problem in equation (24) is larger than
the utility the agent obtains by not participating. It follows that the new strategy profile
remains a PBE. Q.E.D.

D.2. Pure Strategies for the Principal Are Without Loss of Generality

LEMMA D.1: For every PBE assessment (σP�σA�μ) of the mechanism-selection gameGI ,
an outcome-equivalent PBE assessment (σ ′

P�σ
′
A�μ

′) ofGI exists such that the principal plays
a pure strategy.

PROOF: Let (σP�σA�μ) denote a PBE assessment of the GI . The proof proceeds as
follows: We construct a sequence of assessments ((σnP�σ

n
A�μ

n))n∈N0 such that for n =
0,(σnP�σ

n
A�μ

n) = (σP�σA�μ), and for n ≥ 1, (σnP�σ
n
A�μ

n) ≡ (σnPt�σ
n
At�μ

n
t )
T
t=1 is such that

for t ≤ n− 1, (σnPt�σ
n
At�μ

n
t ) = (σn−1

Pt �σ
n−1
At �μ

n−1
t ). Furthermore, in σn the principal’s strat-

egy is pure through period n. The assessment (σ ′
P�σ

′
A�μ

′) in the statement of Lemma D.1
is then obtained as (σ ′

P�σ
′
A�μ

′) = limn→∞(σnP�σ
n
A�μ

n). The proof uses the representation
of behavioral strategies in Aumann (1964, Lemma F). Given a public history ht , recall
ht− denotes ht up to, but not including the realization of the public randomization device.
Then the principal’s behavioral strategy at ht = (ht−�ωt) can be represented as a mea-
surable function σPt (ht−�ωt� ·) : [0�1] �→ MI , where [0�1] is endowed with the Lebesgue
measure, l.

Fix t ≥ 1, and suppose we have defined (σnP�σ
n
A�μ

n) for n ≤ t − 1. We now define
it for t. By Kuratowski’s theorem, a bijection b : [0�1] �→ [0�1]2 exists such that b and
b−1 are measurable. For any measurable Ỹ in [0�1], define Lb(Ỹ ) = ∫ 1

0

∫ 1
0 1[(ω�x) ∈

b(Ỹ )]l(dx)l(dω). Define (σtP�σ
t
A�μ

t) as follows. For n ≤ t − 1, (σtPn�σ
t
An�μ

t
n) coincide

with (σt−1
Pn �σ

t−1
An �μ

t−1
n ). For n = t, endow the public randomization device with the mea-

sure Lb and let σtPt (h
t
−�ωt�x) = σt−1

Pt (ht−� b(ωt)), for all x ∈ X .11 That is, at ht−, when
the public randomization device coincides with ωt , the principal plays with probability 1
the mechanism that he would have played under (σt−1

P �σt−1
A �μt−1) when the public ran-

domization device equals b1(ωt) and the principal’s randomization device equals b2(ωt).
Similarly, let σtAt (h

t
−�ωt�Mt) = σt−1

At (ht−� b1(ωt)�Mt). That is, at ht−, when the public ran-
domization device coincides with ωt and the principal plays Mt , the agent follows the
strategy that she would have followed under (σt−1

P �σt−1
A �μt−1) when the public random-

ization device equals b1(ωt) and the principal plays Mt . For n≥ t + 1, let σtPn(ht−�ωt� ·) =
σt−1
Pn (ht−� b1(ωt)� ·) and σtAn(h

t
−�ωt� ·) = σt−1

An (ht−� b1(ωt)� ·). Because (σP�σA�μ) is a PBE
assessment, it follows immediately that (σnP�σ

n
A�μ

n) is an outcome-equivalent PBE as-
sessment for all n ≥ 1. Furthermore, the principal plays a pure strategy in each period
under limn→∞(σnP�σ

n
A�μ

n). This concludes the proof. Q.E.D.

11As in footnote 10, one can redefine the strategies so that the public randomization device has the uniform
distribution.
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APPENDIX E: CONTINUUM TYPE SPACES

E.1. The Agent-Extensive Form

In this section, we introduce the notation to formally define the extensive form game
�(μt�at−1� (ϕτ)τ≥t) for some t ≥ 1, (μt�at−1) ∈ �(�) ×At−1 and a dynamic mechanism
given at−1, (ϕτ)τ≥t as in Definition 3. As it will become clear, the notation is essentially
the same as in Appendix D except that we no longer condition on the mechanism chosen
by the principal.

Histories and agent strategies. As in the mechanism-selection game, we subsume the
participation decision into the input–output message notation and let MSA∅ denote the
set M × S ×A ∪ {(∅�∅� a∗)}. Thus, an outcome in period τ ≥ t is an element of MSA∅.
In a slight abuse of notation, we let ZA =MSA∅ ×� and Z = SA∅ ×�. Then, for τ ≥ t,
agent histories are given by �×{at−1}×Hτ

At =�×{at−1}× Zτ−tA and public histories are
Hτ
t ={at−1}× Zτ−t .12

The agent’s behavioral strategy is a collection σA ≡ (πτ� rτ)Tτ=t such that πτ :�×Hτ
At �→

�({0�1}) and rτ :�×Hτ
At �→ �(M) are transition probabilities.

Induced distributions and payoffs. Given a dynamic mechanism (ϕτ)τ≥t , an agent-
strategy σA, and a node (θ�at−1�hτA), we define transition probabilities from �×{at−1}×
Hτ
At to MSA∅ and from �×{at−1}×Hτ

At ×MSA∅ to � as follows:

κσAτ
(
M̃SA∅|θ�at−1�hτAt

) = (
1 −πτ

(
θ�hτAt

))
1
[(∅�∅� a∗) ∈ M̃SA∅

]
+πτ

(
θ�hτAt

)∫
M̃SA∅

rτ
(
θ�hτAt

)⊗ϕτ
(
hτt

)(
d(mτ� sτ� aτ)

)
�

κωτ+1

(
�̃|θ�at−1�hτAt�mτ� sτ� aτ

) =
∫
�̃

l(dωτ+1)�

where hτt denotes the projection of (θ�at−1�hτAt) onto (SA∅ ×�)τ−t . Note that κστ ≡ κσAτ ⊗
κωτ+1 defines a transition probability from �×{at−1}×Hτ

At to ZA.
Recall that μt × δat−1 denotes the initial distribution on � × At−1. Like in the

mechanism-selection game, the Ionescu–Tulcea extension theorem (Pollard (2002)) guar-
antees the existence of a sequence of probability measures Pσt�τ = μt ⊗ δat−1 ⊗ ⊗τ−1

s=t κ
σ
s

defined on the product sets (� × At−1 × Hτ
At)

T
τ=t and a probability measure Pσt on

(� ×At−1 ×HT
At�B� ⊗ BAt−1 ⊗ ⊗T

τ=t BZA) such that for each τ ≥ t, the marginal of Pσt
on �×Hτ

At is Pσt�τ.
13

Given Pσt , we can define the outcome distribution induced by Pσt , η(ϕτ)τ≥t �σA as in Defi-
nition D.1, and hence, the principal and the agent’s payoffs as in equations (2) and (3).

Belief system, conditional distributions, and payoffs. The belief system is a collection
(μτ)τ≥t such that for all τ ≥ t, μτ : Hτ

t �→ �(� × Hτ
At) is a transition probability. Fix a

history hτt . Using the belief system at hτt together with the kernels, we can define a condi-
tional outcome distribution ησ|hτt as in Definition D.2.

12We are adding at−1 so as to define all outcome distributions of the game as distributions over �(�×AT ).
13Note that the distribution Pσt corresponds to the distribution Pσ in Appendix D: it is the distribution over

the terminal nodes starting from the root of the extensive-form game.
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Furthermore, the belief at hτt , μτ(h
τ
t ), together with the agent’s strategy induce a distri-

bution over �×Hτ
At ×MSA∅ ≡Hτ+1

At− as follows:

P−
t�τ+1

(
�̃× H̃τ

At × M̃SA∅|μτ
(
hτt

)) =
∫
�̃×H̃τA

κσAτ
(
M̃SA∅|θ�hτAt

)
μτ

(
d
(
θ�hτAt

)
|hτt

)
� (E.1)

This is the distribution that the principal uses to update his beliefs about the agent’s type
at history hτt . Formally,∫

�̃×˜
Hτ+1
At−

1
[
projHτ+1

t−

(
θ�hτ+1

At−
) ∈ H̃τ+1

t−
]
P−
t�τ+1

(
d
(
θ�hτ+1

At−
)
|μτ

(
hτt

))
=

∫
˜
Hτ+1
t−
μτ+1

(
�̃× H̃τ+1

At−|hτ+1
t−

)
νt�τ+1

(
dhτ+1

t− |μτ
(
hτt

))
� (E.2)

where again we are defining νt�τ+1(μτ(hτt )) = P−
t�τ+1(μτ(hτt )) ◦ proj−1

Hτ+1
t−

. This allows us to

obtain the analogues of equations (8) and (9) in this setting:

W
(
σ�μ|hτt

) =
∫
Hτ+1
t−

∫
�×Hτ+1

At−
EP

σ|(θ�hτ+1
At−)

t
[
W

(
aτ� ·� θ)]

×μτ+1

(
d
(
θ�hτ+1

At−
)
|hτ+1

t−
)
νt�τ+1

(
dhτ+1

t− |μτ
(
hτt

))
�

U
(
σ|θ�hτAt

) =
∫
MSA∅

EP
σ|(θ�hτ+1

At−)[
U
(
aτ� ·� θ)]κσAτ (

d(mτ� sτ� aτ)|θ�hτAt
)

Finally, as in Appendix D we define the joint probability over �×Hτ+1
A given μτ(hτ):

Pt�τ+1

(
�̃× H̃τ+1

At− × �̃|μτ
(
hτt

)) =
∫
�̃

κωτ+1

(
�̃|θ�hτ+1

At−
)
P−
t�τ+1

(
d
(
θ�hτ+1

At−
)
|μτ

(
hτt

))
� (E.3)

and we recall that we can define Bayes’ rule also on the basis of Pτ+1. Namely,

Pt�τ+1

(
�̃× H̃τ+1

At− × �̃|μτ
(
hτt

))
=

∫
proj

Hτ+1
t

�̃×˜
Hτ+1
At−×�̃

μτ+1

(
�̃× H̃τ+1

At− × �̃|hτ+1
t− �ω

)(
Pt�τ+1

(
μτ

(
hτt

)) ◦ proj−1
Hτ+1
t

)(
dhτ+1

t

)
=

∫
proj

Hτ+1−
�̃×˜

Hτ+1
At−

∫
�̃

μτ+1

(
�̃× H̃τ+1

At−|hτ+1
t− �ω

)
l(dω)νt�τ+1

(
dhτ+1

t− |μτ
(
hτt

))
� (E.4)

Agent PBE. An agent-PBE of �(μt�at−1� (ϕτ)τ≥t) is an assessment (σA,μ) such that:
1. σA is sequentially rational (cf., part (ii) of Definition D.3),
2. μ satisfies Bayes’ rule where possible. That is for all τ ≥ t, μτ+1 satisfies equation

(26) νt�τ+1(μτ(hτt ))-almost surely.

E.2. Canonical PBE-Feasible Outcomes

We define the correspondence OC of canonical PBE-feasible outcomes (Defini-
tion E.3). Denote by M���(�) the set {ϕ :� �→ �(�(�) ×A) : ϕ is measurable}. Through-
out Section E.2, all mechanisms belong to M���(�).
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To define the correspondence OC , we first define canonical dynamic mechanisms,
canonical agent-PBE, and the set of outcomes the principal anticipates upon a deviation.

DEFINITION E.1—Canonical dynamic mechanisms: For t ≥ 1 and at−1 ∈ At−1, a dy-
namic mechanism given at−1, (ϕCτ )τ≥t is canonical if for all τ ≥ t and (sτ−t � aτ−t �ωτ−t) ∈
(�(�)A∅ ×�)τ−t , ϕCτ (sτ−t � aτ−t �ωτ−t) is a canonical mechanism.

Fix t ≥ 1, a tuple (μt�at−1) ∈ �(�) ×At−1, and a canonical dynamic mechanism given
at−1, (ϕCτ )τ≥t , and we can define a canonical agent-assessment of �(μt�at−1� (ϕCτ )τ≥t) sim-
ilar to Definition 2 in the main text, by just eliminating item 1.

Finally, we define the set of outcomes the principal expects he will face if in some period
t ≥ 1, when his belief is μt , and the allocation through period t − 1 is at−1, he deviates to
ϕ′
t :� �→ �(�(�) ×A), DOC (μt�at−1�ϕ′

t), as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

η′ ∈ �(�×AT
) : η′ = η(ϕ′

τ)τ≥t �σ ′
A where

(
ϕ′
τ

)
τ≥t =

(
ϕ′
t �
(
ϕ′
τ

)
τ≥t+1

)
and

(i)
(
ϕ′
τ

)
τ≥t is a dynamic mechanism given at−1

(ii)
(
σ ′
A�μ

′) is an agent-PBE of �
(
μt�a

t−1�
(
ϕ′
τ

)
τ≥t

)
(iii)

(∀(μ′� a′�ω′) ∈ �(�)A∅ ×�)
η(ϕ′

τ)τ≥t �σ ′
A|μ′�a′�ω′ ∈OC

(
μt+1

(
μ′� a′�ω′)� at−1� a′)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
� (E.5)

Using equation (29), we can extend the definition of sequential rationality.

DEFINITION E.2—Sequential rationality: Fix t ≥ 1, (μt�at−1), a canonical dynamic
mechanism given at−1, (ϕCτ )τ≥t , and an agent-PBE (σA�μ) of �(μt�at−1� (ϕCτ )τ≥t). (ϕCτ )τ≥t
is sequentially rational given (σA�μ) if the following hold:

1. For all ϕ′
t : � �→ �(�(�) × A), a distribution η′ ∈ DOC (·�ϕ′

t) exists such that the
principal prefers η(ϕτ)τ≥t �σA to η′;

2. For all ht+1
t = (μ′� a′�ω′) ∈ �(�)A∅ ×�, η(ϕτ)τ≥t �σA|ht+1

t ∈OC (μt+1(ht+1)� at−1� a′).

DEFINITION E.3—Canonical PBE-feasible outcomes: Fix t ≥ 1, (μt�at−1) ∈ �(�) ×
At−1. The distribution η ∈ �(�×AT ) is a canonical PBE-feasible outcome at (μt ,at−1) if
a canonical dynamic mechanism given at−1, (ϕCτ )τ≥t , and a canonical agent-PBE (σA�μ)
of �(μt�at−1� (ϕCτ )τ≥t) exist such that:

1. η is the outcome distribution induced by (σA�μ) in �(μt�at−1� (ϕCτ )τ≥t), and
2. (ϕCτ )τ≥t is sequentially rational given (σA�μ).

OC (μt�at−1) denotes the set of canonical PBE-feasible outcomes at (μt�at−1).

REMARK E.1: Note that equation (29) requires neither that the continuation dynamic
mechanism is canonical nor that the agent-PBE is canonical from t + 1 onwards. Adding
these requirements would lead to the same definition, at the cost of more complicated no-
tation. The reason is that requirement (iii) in equation (29) implies that the continuation
distributions must be induced by some canonical agent-PBE of some canonical dynamic
mechanism.

E.3. Preliminary Steps and Results for the Proof of Theorem 2

Proving Theorem 2 requires we show that for all t ≥ 1, and tuples (μt�at−1) ∈ �(�) ×
At−1, we have that O∗

I(μt�at−1) = OC (μt�at−1). There are two challenges relative to the
proof of Theorem 1. First, outcome distributions in O∗

I(μt�at−1) are defined relative to
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O∗
I(μt+1� a

t−1� at), so that to show that O∗
I(μt�at−1) =OC (μt�at−1). We also need to know

how O∗
I(μt+1� a

t−1� at) relates to OC (μt+1� a
t−1� at). Second, the proof of Theorem 1 used

the behavioral strategies of the principal and the agent and proceeded forwards, modi-
fying at each step the assessment in period t while leaving the continuation assessment
unchanged. Instead, O∗

I and OC are defined relative to the principal and the agent’s “full
strategy” from period t onwards.

To overcome these difficulties, we proceed as follows. To deal with the first, we use
a trick from dynamic games and define two operators, T and T C , which describe the
set of (canonical) PBE-feasible outcomes relative to some set of feasible continuation
distributions, and whose fixed points correspond to the correspondences O∗

I and OC . This
allows us to fix the set of continuation outcome distributions for both solution concepts
making it easier to show that they implement the same set of outcome distributions. To
deal with the second challenge, we show below that the set M���(�) is in bijection with
the set of mechanisms with input and output messages I ={(M�S)}. This implies we can
always translate a dynamic mechanism (ϕτ)τ≥t with input and output messages (M�S)
and an agent-PBE of �(μt�at−1� (ϕτ)τ≥t) to a dynamic mechanism (ϕ′

τ)τ≥t with input and
output messages (���(�)) and an agent-PBE of �(μt�at−1� (ϕ′

τ)τ≥t).

E.3.1. The Operators T and T C

Feasible continuation distributions. Throughout this section, we consider correspon-
dences ψ : ∪T

t=1(�(�) ×At−1) ⇒ �(�×AT ), which describe the sets from which we draw
continuation distributions. Each ψ satisfies the following feasibility condition:

(∀t ≥ 1)(∀(μt�at−1
) ∈ �(�) ×At−1

)
η ∈ψ(μt�at−1

)
⇒

{
suppη⊆ {(

θ� ãT
) : ãt−1 = at−1

}
�

η� = μt� (F)

We denote the set of all such correspondences by �.
T and T C : We now define two operators, T �T C :� �→�. The first operator T takes a

correspondence ψ in � and determines for each t ≥ 1 and each (μt�at−1) ∈ �(�) ×At−1,
the set of outcome distributions that are feasible when the principal selects mechanisms
with message sets (M�S) and continuation distributions must be drawn from ψ. With this
in mind, define the set DM�S

ψ (μt�at−1�ϕ′
t) as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

η′ ∈ �(�×AT
) : η′ = η(ϕ′

τ)τ≥t �σ ′
A where

(
ϕ′
τ

)
τ≥t =

(
ϕ′
t �
(
ϕ′
τ

)
τ≥t+1

)
and

(i)
(
ϕ′
τ

)
τ≥t is a dynamic mechanism given at−1

(ii)
(
σ ′
A�μ

′) is an agent-PBE of �
(
μt�a

t−1�
(
ϕ′
τ

)
τ≥t

)
(iii)

(∀(s′� a′�ω′) ∈ SA∅ ×�)
η(ϕ′

τ)τ≥t �σ ′
A|s′�a′�ω′ ∈ψ(μt+1

(
s′� a′�ω′)� at−1� a′)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
� (E.6)

This definition coincides with that in the main text except that in item (iii) we require
that the continuation outcome distribution is an element of ψ(·). The superscript in DM�S

ψ

allows us to keep track of the message sets used by the dynamic mechanisms. We now
extend the definition of sequential rationality (Definition 4) to account for the correspon-
dence ψ.
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DEFINITION E.4—Sequential rationality: Fix t ≥ 1, (μt�at−1), a dynamic mechanism
(ϕτ)τ≥t given at−1, and an agent-PBE (σA�μ) of �(μt�at−1� (ϕτ)τ≥t). (ϕτ)τ≥t is sequentially
rational given (σA�μ) and ψ if the following hold:

1. For all ϕ′
t :M �→ �(S×A), a distribution η′ ∈ DM�S

ψ (·�ϕ′
t) exists such that the princi-

pal prefers η(ϕτ)τ≥t �σA to η′, and
2. For all ht+1

t = (s′� a′�ω′) ∈ SA∅ ×�, η(ϕτ)τ≥t �σA|ht+1
t ∈ψ(μt+1(ht+1

t )� at−1� a′).

DEFINITION E.5—T : The outcome distribution η ∈ �(� × AT ) is PBE-feasible at
(μt ,at−1) given ψ if a dynamic mechanism given at−1, (ϕτ)τ≥t , and an agent-PBE of
�(μt�at−1� (ϕτ)τ≥t), (σA�μ), exist such that:

1. η is the outcome distribution induced by (σA�μ) on �(μt�at−1� (ϕτ)τ≥t), and
2. (ϕτ)τ≥t is sequentially rational given (σA�μ) and ψ.

For each t ≥ 1 and (μt�at−1) ∈ �(�) ×At−1, define T (ψ)(μt�at−1) to be the set of PBE-
feasible outcomes at (μt ,at−1) given ψ.

Thus, T takes in a correspondence ψ and produces an alternative correspondence
T (ψ) ∈ �. Note that O∗

I is a fixed point of T and we take it to be the largest (in set
inclusion order) fixed point of T .

The operator T C performs a similar operation in terms of canonical mechanisms and
canonical agent-PBE.

DEFINITION E.6—T C : The outcome distribution η ∈ �(� × AT ) is canonical PBE-
feasible at (μt ,at−1) given ψ if a canonical dynamic mechanism (ϕCτ )τ≥t and a canonical
agent-PBE of �(μt�at−1� (ϕCτ )τ≥t), (σA�μ), exist such that the following hold:

1. η is the outcome distribution induced by (σA�μ) on �(μt�at−1� (ϕCτ )τ≥t),
2. (ϕCτ )τ≥t is sequentially rational given (σA�μ) and ψ (using D���(�)

ψ ).
For each t ≥ 1 and (μt�at−1) ∈ �(�) ×At−1, we define T C (ψ)(μt�at−1) to be the set of
canonical PBE-feasible outcomes at (μt ,at−1) given ψ.

E.3.2. Bijection Between M���(�) and Mi�j

PROPOSITION E.1—Bijection: Fix I and i� j ∈ I . Then a bijection exists between Mi�j

and M���(�) .

PROOF: Fix i� j ∈ I . By Kuratowski’s theorem, two measurable bijections exist, t, b,
where t :Mi �→ � and b : Sj �→ �(�). For each ϕ ∈ Mi�j , define ϕ′(ϕ) ∈ M���(�) as fol-
lows: for all m ∈Mi, ϕ′(ϕ)(b(S̃) × Ã|t(m)) = ϕ(S̃ × Ã|m). We now verify that ϕ′(·) is an
injection. Let ϕ1, ϕ2 be such that ϕ′(ϕ1) = ϕ′(ϕ2). Because b is a bijection, for all S̃ ∈ Sj
there exists a unique Ũ ∈ �(�) such that S̃ = b−1(Ũ). Similarly, because t is a bijection,
for all m ∈Mi, there exists a unique θ such that m= t−1(θ). Then we have

ϕ1(S̃× Ã|m) = ϕ1

(
b−1(Ũ) × Ã|t−1(m)

) = ϕ2

(
b−1(Ũ) × Ã|t−1(m)

) = ϕ2(S̃× Ã|m)�

where the second equality follows from the assumption that ϕ′(ϕ1) = ϕ′(ϕ2). This implies
that ϕ1 ≡ ϕ2. One can similarly construct an injection from M���(�) to Mi�j . Theorem
1.2 in Aliprantis and Border (2006) then implies that a bijection exists between these
sets. Q.E.D.
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E.4. Proof of Theorem 2

The proof of Theorem 2 follows from Proposition E.2.

PROPOSITION E.2: For all ψ ∈�, T (ψ) = T C (ψ).

PROOF OF PROPOSITION E.2: Fix ψ ∈�, t ≥ 1, and (μt�at−1) ∈ �(�) ×At−1. We show
that (i) T (ψ) ⊆ T C (ψ) and (ii) T C (ψ) ⊆ T (ψ).

To show that (i) holds, let η ∈ T (ψ) and let (ϕτ)τ≥t , (σA�μ) denote the dynamic mech-
anism and the agent-PBE of �(μt�at−1� (ϕτ)τ≥t) that induce η. That η ∈ T C (ψ)(μt�at)
follows from the following observations.

First, following the same steps as in the proof of Proposition 4 in Section D.1, one
can construct a dynamic canonical mechanism (ϕCτ )τ≥t and a canonical agent-PBE of
�(μt�at� (ϕCτ )τ≥t) that implement η, thus satisfying item (1) in Definition E.6. Further-
more, because all continuation distributions over outcomes are preserved, item (2) in
Definition E.6 also holds.

Second, let � denote the bijection between M���(�) and MM�S , which exists by Propo-
sition E.1. Thus, for every deviation to a mechanism ϕ′

t in M���(�), we can find an
equivalent �(ϕ′

t) ∈ MM�S and η′ ∈ DM�S
ψ (μ1� a

t−1��(ϕ′
t)) that deters the deviation to

�(ϕ′
t) and by successive application of Proposition E.1 can be shown to belong in

D
���(�)
ψ (μt�at−1�ϕ′

t). It follows that T (ψ)(μt�at−1) ⊆ T C (ψ)(μt�at−1).
The proof that T C (ψ)(μt�at−1) ⊆ T (ψ)(μt�at−1) follows immediately from Proposi-

tion E.1, so we omit it. Q.E.D.
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dian Journal of Statistics, Series A, 380–402. [13]
SRIVASTAVA, SASHI MOHAN (2008): A Course on Borel Sets, Vol. 180. Springer Science & Business Media. [11]

Co-editor Alessandro Lizzeri handled this manuscript.

Manuscript received 20 November, 2018; final version accepted 27 January, 2022; available online 23 February,
2022.

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%282022%2990%3A4%2B%3C1%3ASTMDWL%3E2.0.CO%3B2-A

	Notational Conventions
	Measurable sets
	Product sets and measures on product sets
	Transition probabilities and composition
	Mixing and public randomization
	Disintegration
	Appendix D: The Mechanism-Selection Game
	Histories and Strategies
	Induced Distributions and Payoffs
	Belief System, Conditional Distributions, and Payoffs
	Perfect Bayesian Equilibrium
	Proof of Theorem 1
	Proof of Proposition 3
	Proof of Proposition 4

	Pure Strategies for the Principal Are Without Loss of Generality

	Appendix E: Continuum Type Spaces
	The Agent-Extensive Form
	Histories and agent strategies
	Induced distributions and payoffs
	Belief system, conditional distributions, and payoffs
	Agent PBE

	Canonical PBE-Feasible Outcomes
	Preliminary Steps and Results for the Proof of Theorem 2
	The Operators T and TC
	Feasible continuation distributions

	Bijection Between MTheta,Delta(Theta) and Mi,j

	Proof of Theorem 2

	References

