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This supplement gives partial robustness results, demonstrates that plug-in estima-
tors based on Lasso are not generally root-n consistent, that model selection biases
plug-in estimators, and gives proofs for large sample results.

APPENDIX B: PARTIAL ROBUSTNESS OF PLUG-IN GMM

PARTIAL ROBUSTNESS REFERS TO IDENTIFYING MOMENTS where E[g(W, 6y, )] =0
for some y # v,. Partial robustness of identifying moments that are affine in y with
E[¢(W,, ay, 6y)] affine in y can be characterized by the FSIF, since double robustness
implies

E[g(W’ 00’ y)] = _E[¢(W’ Y, &o, 00)]
We give two examples of partial robustness results that follow from double robustness.

EXAMPLE B1: For a linear functional 6, = E[m(W, vy,)] of a regression function
Yo(X) = E[Y|X], let b(X) be a p x 1 vector of functions of X and ¥(X) = b(X)'85,
8= (E[b(X)b(X)'])'E[b(X)Y], be the best linear predictor of y,(X) by b(X).

THEOREM B1: If E[b(X)b(X)'] is nonsingular and a(X) = p,b(X) for some p,, then
0o = E[m(W, y)].

PROOF: By orthogonality of the least squares projection and by «(X) being a linear
combination of b(X), it follows that E[a(X){Y — y(X)}] = 0. Then, by the proof of
Theorem 5 in Appendix A,

E[m(W, )] - 6y = —E[ao(X){Y - 7(X)}] =0. QE.D.
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This result generalizes Stoker’s (1986) result that linear regression coefficients equal
average derivatives when the regressors are multivariate Gaussian to any linear functional
m(w, y) and nonlinear b(X). Stoker’s (1986) result can also be extended to instrumental
variables.

EXAMPLE B2: Consider the average derivative 6, = E[dy,(Z)/dz,] where g(w, vy, 6) =
dy(2)/dz; — 0. Let 8 = (E[b(X) p(Z)']) 'E[b(X)Y] be the limit of the linear instrumen-
tal variables estimator with right-hand-side variables p(Z) and the same number of in-
struments b(X), and y(Z) = p(Z)’6 be the linear instrumental variables estimand.

THEOREM B2: If —d1n fy(Z2)/dz, = ¢’ p(Z) for a constant vector ¢, E[p(Z)p(Z)'] is
nonsingular, and E[b(X)|Z] = lp(Z) for a square nonsingular 11, then 6, = E[dy(Z)/dz].

PROOF: For «y(X) = —cTI7'b(X), note that E[ay(X)|Z] = —cTI"'MIp(Z) =
—c'p(Z). Then integration by parts gives

E[gW, 60, 7)] = E[¢ p(Z){¥(Z) — n(2)}]
= —E[E[a(X)|Z]{7(2) — v(2)}]
= E[ao(X){Y = ¥(2)}]
=—cII'E[b(X){Y —¥(Z)}] =0. Q.E.D.

APPENDIX C: COMPARING DEBIASED AND PLUG-IN GMM

To highlight the importance of orthogonal moment functions, we compare the proper-
ties of debiased GMM with a corresponding cross-fit plug-in GMM estimator

6 = argmin 2(6) Y(6).

We show that confidence intervals based on the plug-in GMM estimator are invalid with
first step model selection and plug-in GMM is not root-n consistent with a Lasso first
step. We also show that equation (6.2) of Section 6 must be included among regularity
conditions for plug-in GMM.

We show these model selection and regularization problems of plug-in GMM when the
parameter of interest is 6, = E[m(W, v,)], 7o is the linear, mean-square projection of
an observed variable Y on a set I' of functions of X that is linear and closed in mean-
square, and W is a subvector of W that does not include Y. As noted in Section 5, this
object includes many interesting parameters as special cases. We also will assume that
Yo is a linear combination y,(X) = B(X )'B of a vector I;(X ) of functions of X with each
b;(X) eTI'. Plug-in GMM will have poor properties more generally, but its poor properties
here are particularly compelling because it would be good for any estimator to work well
when 7, is a finite dimensional regression.

There is a general explanation of why standard confidence intervals are asymptotically
incorrect for plug-in GMM if the first step ¥y incorporates model selection. Models that
are selected with probability approaching 1 (w.p.a.1) for a fixed data generating process
must also be selected with w.p.a.1 for any regular, root-x local alternatives, including
those where the model is incorrect. This property follows by the contiguity of regular
local alternatives, where all events that occur w.p.a.1 for the fixed model occur w.p.a.1
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for the local alternative. The selected model being incorrect under a local alternative
typically leads to asymptotic bias of a plug-in estimator, giving a limiting distribution with
nonzero mean. Consequently, the usual asymptotic confidence intervals, which are based
on a zero mean limiting distribution, are invalid. The results of Leeb and Potscher (2005)
can be explained in this way as is the following result for plug-in GMM estimation of

0o = E[m(W, yp)].

THEOREM C1: If, with probability approaching 1 for £ =1, ..., L, ¥,(x) is equal to or-
dinary least squares from regressing Y; on l;(X,) over i ¢ I; (i) l;,- el j=1,...,J,and
yo(x) = b(x)' B; (i) O =: E[b(X)b(X)'] is nonsingular, b(X) is bounded, and E[Y?] < oo;
(iii) m(W,y) is linear in vy, E[m(W,v)*] < C|ly|? and there is bounded ay(X) with
E[m(W, y)] = E[ao(X)y(X)] for all y € T; then for &(x) = b(x)G—E[b(X)ay(X)],

(B — ) = % > L)+ o, (n7?),

W) =m(W, yo) — 0+ a(X)[Y — yo(X)].

PROOF: Let 6, = > i, m(Wi, %¢)/ne, M, = D i, m(W,, b)/n,,and M = E[ag(X)b(X)]
and note that by (i) and (ii), M'B = 6, and with probability approaching 1 (w.p.a.1),
6, = M,B, for each ¢. By (ii) and (iii), M, = M + O,(n"'/?). Tt also follows in a stan-
dard way that B, = B + Q" > i, b(X)e:/(n — ny) + 0,(n"2) = B + O,(n"'?) for
& =Y, — vy(X;). Then w.p.a.1, for m, = Zidl m(W;, vo)/ ne,

éz=Mé,éz

1 Zl;(Xi)e,- +o0,(n'?)

=S

_1 n Z a(X)ei+o0,(n'?),

gl

=m,+ ]\2,Q71

=, +

where the last equality follows by &(X) = M /Qv*115(X ). The conclusion then follows by
0= Zle(ng /n)6, and Lemma 1 of Newey and Robins (2017). Q.E.D.

By &(x) = b(x) G E[b(X)ay(X)], it follows that the influence function of 8 is differ-
ent than the unique influence function of Er[m(W, y(F))] when «y(X) is not linear in
b(X). Then there will be directions of departure of y(F) from v, that make /7(6 — 6,)

be asymptotically biased; see van der Vaart (1991). The following result displays such di-
rections:

COROLLARY C2: If the conditions of Theorem C1 are satisfied and the distribution of Y
conditional on (W, X) has a pdf fy(y|w, x) such that there is C > 0 with

E[/{sup{[dfo(y+a|W,X)/da]z/fo(y+a|W,X)}}dy} < 00,

la|=<C
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then for &> = E[{ay(X) — &(X)¥’], any u, and Wi, ..., W, iid. with CDF F, having con-
ditional pdf fo(y — n~"?pufao(x) — &(x)}w, x) for Y; given (W, X;) = (W, x) and CDF
Fy(w, x) for (W;, X;), we have

V(0= 6,) =5 N(-pa, V),
where 0, = Er [m(W , proj r,(Y|I'))] is the parameter of interest for F,,.

PROOF: For F, the CDF defined in Corollary C2,

EnlY1X)= EY1X)+ (2 ) oo - 62)].

Since the distribution under F, of (W, X) is the same as under F, and &(X) and a,(X)
are elements of I', it follows by iterated projections that

Yn(X) := proj, (Y|T)(X)
= proj,,, (Er,[Y]X]IT)(X)
= projy, (Er,[Y]X]|T) (X)

— proj, (E[Y|X]IT) (X) + (%) [0 (X) — &(X)]

=00 + (L ) a0 - a00)].

Note also that by &(X) €I and iterated projections,

011 = EFn [m(W7 'Yn)]
= E[m(Wa Vn)]
ZE[aO(X)yn(X)]

=0 (4 ) Elan0) [ea(X) = ()|

o+ ()

-0+ ()7
Er[{W)] = E[a(X){v.(X) — v0(X)}]

— (%)E[&(X){aO(X) —&(x)}]=0.

By hypothesis (iv), the conditions of Proposition 1 of Bickel, Klaassen, Ritov, and Wellner
(1993) are satisfied for the parametric model fy(y — 8[@(x) — a(x)]|x, z) with parame-
ter 6. Then by Proposition 3 of Bickel et al. (1993), the sequence of distributions where
Wi, ..., W, are i.i.d. with CDF F, are contiguous to the sequence where W, ..., W, are



LOCALLY ROBUST SEMIPARAMETRIC ESTIMATION 5

i.i.d. with CDF F,. Therefore, the conclusion of Theorem C1 holds under F, and
V(6 — 6,) = /n(6 — 6)) +/n(6 — 6,)

- % > L) + 0,(1) —

1 " —2_‘1) _ 5‘2
—ﬁg{f(w)—EFn[f(W)]}—MU N(=pa’, V). OED.

Intuitively, model selection for ¥(x) gives a good estimator of y,(X), but the variables
selected for estimating y,(X) may not include all the variables on which «((X) depends,
leading to a(X) # ay(X) and hence to asymptotic bias. One way to avoid the model se-
lection problem for plug-in GMM is to limit selection to models that can approximate
any unknown function. For example, Newey (1994) did this for series estimation by re-
quiring that selection is made only among models that can approximate any function in
large samples. Forcing a flexible approximation in this way is not very feasible in high
dimensional settings and is not needed for debiased GMM, where model selection can
be applied separately to estimation of « and of y and standard confidence intervals are
correct.

Many machine learners employ regularization to obtain estimators of functions that
approximately balance bias and standard deviation. For nonparametric estimation or ma-
chine learning with large sets of predictors, the standard deviation of the predictor will
shrink slower than 1/4/n, and hence so will the bias. This bias may pass through to plug
in GMM and result in  not being root-n consistent. This bias problem is clearly present
for Lasso where penalization leads to bias for 6 of size /In(p)/n. With bias of that size,

J/n times the bias will be of order ,/In(p), which goes to infinity, so that plug-in GMM
is not root-n consistent, as we show in the next result. Debiased GMM has the small bias
property discussed in Section 2 and so will be root-n consistent under sufficient regularity
conditions, with bias being second order (size In(p)/n for Lasso), permitting debiased
GMM to be root-n consistent (by /nIn(p)/n —> 0 for Lasso).

THEOREM C3: If conditions (i)-(iii) of Theorem C1 are satisfied, c = E[ag(X )l;(X )] x
G 'e #0foré=(sgn(B1),...,sgn(By));wp.a.ll(B,;=0)=1(B; =0)forall j; p — o0;

r—> 0, then
(@ - 6,) = %; D)+ areto,(1),  [Va(8 — 60)| = oo.

PROOF: Consider the Lasso least squares estimator

Ar . 2 ’ 2 . Ar y I Ar

By =argmin—— 3 [Vi—b(X)B] +2r 3 1B}, %(x) =b(x)'B;.
AT j=1

Note that y,(x) = y;(x) w.p.a.1. Define B =B+ rQ~'é. Then ,é; =B+ rQ;lé and by

standard arguments and r — 0,

> {BX)Y: — b(X) B+ ré} + 0, (n™"2)

igr,

o

n—n
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o 1
n—ny

=p + o) Z[;(X,)[Yz - Vo(Xi)] + ”Q_l(QzQ_l - I)é + 017(”_1/2)

i¢ly

ZE(Xi)[Yi — (X)) +0,(n7"7?).

igly

1

n—ny

=p +0"

It then follows similarly to the proof of Theorem C1 that

0, = M, B,
=M, +M (B, —B)+ (M, - M) (B, - B)
— l o015 A1 1 T(Y o —1/2
=m, + n gm(Wl,er e)+MQ - %b(X,)s, +0,(n"""?)
=m,+r(M—M)Q'é+rMQ "¢+ Y a(Xi)ei+o0,(n'?).
o g

The conclusion then follows by r(M — M)Q~'é = o,(n""/%), which follows by r — 0.
O.E.D.

The hypothesis of this result that l(ﬁlj =0) =1(B, =0) w.p.a.1 is known to hold, for
Yo(X) specified here, when all coefficients from regressing each b;(X;) on I;(X ;) are small
enough in absolute value; see Zhao and Yu (2006).

Here we see that the Lasso plug-in estimator is not root-n consistent when y,(X) is a
linear combination of a finite number of elements of I'. In general, plug-in GMM will not
be root-n consistent with a Lasso first step, though it is beyond the scope of this paper to
show this. More generally, plug-in GMM will also have large bias for first step machine
learners other than Lasso, for example, as found for random forests in a Monte Carlo
example in Chernozhukov et al. (2018).

It is helpful to compare the key asymptotic property of debiased GMM in equation
(6.1) with a corresponding key property of plug-in GMM,

1 n
8(60) = ZZ’J!(W,-, Yo, @, 60) + 0, (n”'?). (C.1)

i=1

When equation (C.1) is not satisfied, plug-in GMM can have invalid confidence in-
tervals or not be root-n consistent as discussed in connection with equation (4.5).
Lemma 8 shows that the corresponding property for debiased GMM is satisfied under
general and simple regularity conditions. In contrast, equation (C.1) requires that ¢ :=
Zj:, >ier, @Wi, %1, a0, 00) /n = 0,(n~"/?), which is more complicated than Lemma 8 and
specific to the first step.

THEOREM C4: If equation (4.5) is satisfied for &, = oy and 6, = 6, then equation (C.1)
is satisfied if and only if ¢ = 0,(n""7?).
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PROOF: Let nfb =Y (W, o, 20, 09)/n and ¢ = Zle Zid[ o (W, i, ag, 6p)/ 1.
Note that

8(00) — =13 N w9, a0, 00)/n— |t — b =0,(n"7) - &,

(=1 iel,

This result shows that equation (6.2) is an important regularity condition for plug-in
GMM, as discussed in Section 6.

APPENDIX D: CONVERGENCE RATES FOR LASSO MINIMUM DISTANCE
In this appendix, we summarize regularity conditions and convergence rates for a Lasso
minimum distance estimator of ay(X) = argmin, E[w(X){w(X) v, (X) — a(X)}¥],
using a dictionary (b;(X), b»(X),...) with elements in a mean square closed set I', a
subvector b(X) = (b1(X), ..., b,(X))’, an estimator Qof Q= E[w(X)b(X)b(X)'], and
an estimator M of M = E[v,,(X)b(X)], where w(X) > 0 is bounded and bounded away

from zero. The conditions and results here make use of results given in Chernozhukov,
Newey, and Singh (2020). For a matrix A = [a;] let | 4| = max;;|a;|, let | 4], = ZM la;l,

and for a measurable function a(X) of X let |a| = /E[a(X)?]. We consider an estimator
of ay(x) given by

p
a(x)=b(x)'p, ﬁ:argm}n{—ZM’p+p'Qp+2rZ|pj|}.
j=1

ASSUMPTION D1: There is C > 0 such that (i) max,;-, |b;(X)| < C and w(X) > 1/C;
(ii) for every n, there is a p x 1 vector p, such that |p,|; < C and ||ay — b'p,||* = O(e,) .

ASSUMPTION D2: (i) |Q — Qls = O,(&,), (ii) [M — M|, = 0,(&,); (iii) &, = o(r).
LEMMA D1: If Assumptions D1 and D2 are satisfied, then || — oy || = O, (/7).

PROOF: Assumptions D1 and D2 imply Assumptions 1-3 of Chernozhukov, Newey,
and Singh (2020, CNS). The conclusion then follows by Theorem 1 of CNS. Q.E.D.

This result gives a convergence rate for &, of /r. We can speed up this convergence
rate under a stronger approximate sparsity condition and a sparse eigenvalue condition.

ASSUMPTION D3: There exist C > 1, ¢ > 0 such that for all s with 5 < C(&*)~"/0+29 there
is p with 5 nonzero elements such that ||y — b'p|| < C(5)7%.

For any p = (p1, ..., pp), let T ={1,..., p}, J, be the subset of J with p; # 0, and
J; be the complement of 7, in J and let p; = argmin,{[lay — b'p|? + 2&,|p|i} be the
population Lasso coefficients for penalty 2¢,. The next condition is a sparse eigenvalue
condition for the population matrix Q.
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ASSUMPTION D4: Q is nonsingular and has largest eigenvalue uniformly bounded in n.
Also there is k > 3 such that for p = p,,

. 508
inf
3020, Y je 7 191k Ljeg,, 191 Z 3]2_

JeTpy,

> 0.

LEMMA D2: If Assumptions D1-D4 are satisfied, then
& — aoll = O, (&) 7).

PROOF: Assumptions D1-D4 imply Assumptions 1-5 of CNS, so the conclusion follows
by Theorem 3 of CNS. Q.E.D.

The convergence rate here is faster than that of Lemma D1 when £ > 1/2 and r is not
too much larger than &,. For Theorem 12, it is useful to have a uniform convergence rate
for Lasso minimum distance.

LEMMA D3: If Assumptions D1 - D4 are satisfied, £ > 1/2, r = O(In(n)e,), and there
exists C > 0 such that p < Cn®, then thereis C > 0 and a px1vector p such that for o, (x) =
b(x)'p we have |p|; < C, sup,|a,(x)| < C, and

b

16— pli + sup|a(x) — a,(x)| + lla, — aoll = O, (e Vin(n)).

PROOF: We make use the results of Appendix C.1 of CNS. Choose p here to equal
the p, defined immediately preceding Lemma C2 of CNS. Then the first two conclusions
follow by Lemma C2 of CNS and the elements of b(x) uniformly bounded which give
|, (x)] < C|pl;. By the last three lines on page 44 in the proof of Theorem 3 of CNS we
have

15— pli = 0 (£;705*V),

so that by r = O(In(n)z,), |p — pli = O,(ex 7 Vin(n)) = 0,(e7*Pin(n)). Simi-
larly, by the triangle inequality, sup, |&(x) — a,(x)| < C|p — pli = Op(sﬁzgfl)/(zgﬂ)ln(n)).
It also follows by Lemma C4 of CNS that the third inequality holds, so that the conclusion

follows by the triangle inequality.
Q.E.D.

APPENDIX E: PROOFS OF THEOREMS 9-12

Theorem 9 will follow from Lemma 8 and two useful lemmas. Let ¥ := E[¢(W, vy, o,
00) (W, vo, g, 6y)'].

LEMMA E1: If Assumptions 1 and 4 are satisfied, then 2,

PROOF: Define the remainders ﬁl ti» Iém, I%M, and AZ(W,-) as in the proof of Lemma 8.
Also, define Ry = g(W;, v, é@) — g(W;, ¥, 60). By Assumption 4,

E[IRw W] -2 0.
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It similarly follows from Assumption 1 and [ ||A[(w) 1> Fo(dw) 25 0 that for i e I,,

E[IRwl’ V] -0, k=1,2,3,  E[JAm)[ W] 0.
Then it follows that for l,[/,‘ = l//(VV,, Yo, Xp, 00),
1 7 2 c Cn5 . 2 2 c A 2 c 4
E| = i = willPIW; | = == D E[IRwlPPV] + E[[Aw) [ V] ) = 0.
iely k=1
Therefore, 3, |l Wi — Wil2/n -0 by the conditional Markov inequality. It follows by

the triangle inequality that for ¥ := "7 ¢,4//n,

L
A 1 . .
- <> p > (i — ill + 20l e — ill)
=1

iely

L
<0,(1) +ZZJ %an - w,-||2J %Zutpinz
=1

iely iely
=0,()(1+0,(1)) = 0.

We also have ¥ —> ¥ by Khintchine’s law of large numbers, so the conclusion follows by
the triangle inequality. QE.D.

LEMMA E2: If Assumption 5 is satisfied and 6 —> 0, then 33(8)/360 — G.

PROOF: Let G, = n;" > it 98Wis 4, 0)/90 and G, = n;' Y., 9g(Wi, e, 0,) /6. By
(ii) and cross-fitting,

1 2 4 2 c
E[n_[ Zd(Wi, W)‘Wz] :E[d(Wi, W)|Wz] =G,

el

with probability approaching 1. Then by the conditional Markov inequality, > ., d(W;,
¥¢) = O,(1). Then by conditions (i) and (ii) and the triangle inequality, with probability
approaching 1,

1Ge— Gell <"y d(Ws, 9118 — 6] = 0, (1)0,(1) > 0.

iEIg

Then G, — G, - 0 follows by the conditional Markov inequality. For G, =
n' Y s, 38 (Wi, o, 00) /39, it follows similarly from condition (jii) that G, -G, 5.

By Khintchine’s law of large numbers, G, 5 G, so the conclusion follows by the triangle
inequality. Q.E.D.

PROOF OF THEOREM 9: Follows in a standard way from Lemmas 8, E1, and
E2. Q.E.D.
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PROOF OF THEOREM 10: Let g(w,vy,6) = m(w,y) — 6 and é(w,v,a,0) =
a(x)A(w, y). Assumption 1 is satisfied by conditions (ii) and (iii). Also, by (i),
[ é(x)A(w, y0) Fo(dw) = 0 with probability approaching 1, so Assumption 3 is satisfied
by conditions (i) and (v). Also, note that A,(w) = [&,(x) — ao(x)][A(w, ¥¢) — A(w, yo)]- If

condition (iv)(a) is satisfied, then
/ Ay (w)2Fy(dw) = / [a(x) — a0 (x) ] [Aw, 72) — A(w, v0) ] Fo(dw) = 0,

and by iterated expectations and the Cauchy—Schwarz inequality,

/[&l(x) — ao(x)] [/\(w, V) — AM(w, 70)]F0(dw)‘

i [ A dw)| = vi
_Jn

/[&g(x) — ay(x)][A(x, ¥e) — A(x, y0) |Fo(dx)

< Vilé — aoll|A(3:) — A(w)| - 0,

so that Assumptions 2(i) and 4 are satisfied, giving the conclusion. If condition (iv)(b) is
satisfied, then by the Cauchy—Schwarz and conditional Markov inequalities,

1 N
N > 1Acw)|

iGI[

=i ) - a0<Xf>]2)m<% S IAGH 70 = A%, W "

iely iely
=Vn0, (I — aol) O, ([A(F:) = A(w) ) = 0,(D),
so Assumption 2(ii) is satisfied, giving all the conditions of Lemma 8. Also, it is straight-
forward to show that ||a&, — ay]| -2, 0and by the conditional Markov inequality,

/ A (w)*Fo(dw) < (M* + C) | A(32) — (o) ;|2 250,

so Assumption 4 is also satisfied. The conclusion then follows from Lemmas 8 and E1.
Q.E.D.

The following result is useful for showing that Assumption 3 is satisfied for Example 2.
LEMMA E3: If Assumption 6 is satisfied, then for Example 2, |1Z(y, ag, 60)] < Clly —yoll*
PROOF: Recall \(W,y(X))=¢—1(Y <y(X))and U =Y — y,(X), and let A(X) =
v(X) — vo(X). By equation (2.9), E[ao(X)A(W, vo(X))] = 0. It follows by the definition
of ay(X) and the orthogonality for a projection that for any b € T,
E[v,,(X)b(X) — f(0]1X)ao(X)b(X)]
= E[f(01X){f (01X) ™ v (X) — ao(X) }b(X) ] =0.
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Assumption 6 and Taylor expansion with LaGrange remainder give

E[A(Y, (X)) = A(Y. %(X))[X] = —E[1(U < AQD)) = 1(U < 0)|X]
A(X)

= Fu|X) du

0

= —f(OIX)A(X) — [of (8(X)|X)/ou]A(X)?,
for 6(X) between A(X) and 0. Therefore, by A(X) in I and 6, = E[v,,(X) yo(X)],
(7, @0, 60)| = | E[vn (X)AX) + ao(X){A(W, y(X)) = A(W, yo(X)) }]]
= | E[va(X)A(X) — f (01X ) o (X)A(X)]
+E[{of (8(X)|X)/ou}A(X)?]|
= [E[{af (8(X)|X)/du}A(X)?]|
< ClAI>=Clly = 7l Q.E.D.
The following result gives a convergence rate for the Q. of Example 2. Let ¢, =

VIn(p)/(hn) + h* +n=%.

LEMMA E4: If Assumption 7 is satisfied and there is C such that |b;(X)| < C for all j then
for Q= E[f(0]X)b(X)b(X),

|Ql _Q|oo=0p(8n)7 |M( _M|oo=0p(8n)~

PROOF: Consider

A 11 (Y —9(X, ,
Qe i= ny Z EK<#>b(Xi)b(Xi) .

iely

For notational convenience, we drop the £ and ¢’ subscripts and replace . 1, With -

while retaining independence of ¥ from the data being averaged over. Let K, (u) =
h™'K(u/h), f(u|lx) denote the conditional pdf of U =Y — yO(X ) given X = x, and

A(X) Y0(X) — y(X). Note by two change of variables v = (u + A)/ h,and v=u/h,

[E[KL(Y = 9(X))1X] - E[K,(U)|X]|

= / Ki(u—A(X)) f(u|X)du — / K (u) f(u|X) du

< [IK@IIf(ho-+ BCOLY) — (k]| do = CAC0).
Also, note that by a mean value expansion for small enough #,

d* f(OIX)

f(hv|X) = Z vk ¥ + h’R(v, X),

k=0
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< Ch>.

E[K,(U)]X] — £(O1X)| = \ [ K@i - roix)as

Note also that conditional on 7, by the conditional Markov inequality and [ |A(x) [Fo(x) <
19—yl = O,(n~*),we have Y1 |A(X;)|/n = O,(n"%). Therefore, by |b(X;)|- < C,we
have

Y OB (ELK(Y: = (X)) IX] - FO1X0)

]

12
<C- S IAX) |+ Ch =0, (n + 1),

Note also that by a change of variable v = (U + A(X))/ h,
|b;(X)by (X)K,(Y - 3(X)))| < Ch ™,
E[b;(X)*by(X)’Ki(Y = 9(X))'] = CE[Ki(U +A(X))]
< ChlE[ / K (v)2f(hv— A(X)|X)]
<Ch™.

It then follows by Lemma 19.32 of van der Vaart (1998) and a standard argument that

:0p< ln;fp))

Then, by the triangle inequality, |Q — YL b(X)b(X) f(01X,)/nle = O,(e,). In addi-
tion, it follows by a standard application of Hoeffding’s inequality that

= op( lnip)) =0,(&n),

(o)

‘Q _ %Zb(x,.)b(x,-)’E[Kh(K — ¥(X)1Xi]

% D b(X)b(X)fOIX) ~Q

50 |0 — Ol = O,(&,) follows by the triangle inequality. The first conclusion follows by
another application of the triangle inequality. The second conclusion follows by Assump-
tion 7(vi) and another application of Hoeffding’s inequality since /In(p)/n < &, for n
large enough. Q.E.D.

The next result gives convergence rates for the &, of Example 2, using the conditions of
Appendix D.

LEMMA ES5: If Assumptions 7 and D1 are satisfied then ||&, — o = O, (/7). If Assump-
tion D3 and D4 are also satisfied, then for the sparse approximation rate ¢ > 1/2 from As-
sumption D3, we have ||, — o = O, (r**/(+29).
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PROOF: By Lemma E4 and Assumption 7 (iv), Assumption D2 is satisfied for M =
E[f(0|X)f(0]X) v, (X)b(X)] and Q corresponding to the probability measure having
expectation E[A] = E[f(0|X)A]/E[f(0|X)]. Noting that [|a|> < CE[f(0|X)a(W)?] the
conclusion then follows by Lemmas D1 and D2. Q.E.D.

PROOF OF THEOREM 11: We proceed by showing that each of the conditions of The-
orem 10 is satisfied for A(W, y(X)) = ¢ — 1(Y < y(X)), yo(X) = argmin,r E[v(Y —
v(X))] from Section 3.1, and «, given before Theorem 11. It follows similarly to the
proof of Lemma E3 that for any b € I, the first-order condition

0= %E[v(y — yo(X) — th(X))] = —E[A(W, %(X))b(X)]

is satisfied. Also, &,(X) is a linear combination of elements of I, so condition (i) of Theo-
rem 10 is satisfied with 3 =I". Condition (ii) of Theorem 10 holds by hypothesis (ii), (vi),
and A(W, y(X)) bounded. Condition (iii) of Theorem 10 is satisfied by hypothesis (ii),

/D@w%)—uwnmf%um05/1WAsWAﬂ—vdeﬂwwEMM)
<c / 19(x) = 30(x) | Fo(dx)

< C|19e — ol = 0,

and Lemma ES5. To see that condition (iv)(a) of Theorem 10 is satisfied, note that by
A(w, y(x)) bounded,

/ [&(x) — ao(x) ' [A(w, 32) — A(w, y0) ] Fo(dw) < C / [& (x) — a(x)]*Fy(dw) > 0.

Also, similarly to the proof of Lemma E3,

30 -3l = [| Y ey du [ oo F(ulx) duTFowx)

< f Cl3(x) — yo(x)[*Fo(dx)
=Cly - vnl*

Then condition (iv)(a) of Theorem 10 follows by Lemma ES5 and either hypothesis (iv)
or (v). Finally, condition (v) of Theorem 10 is satisfied by Lemma E3 and hypothesis
(iif). Q.E.D.

Next, we give results useful in the proof of Theorem 12. We first give a result on uni-
form convergence of the Lasso estimator of the value function difference vy, described
in Section 3. This result may be useful more generally for dynamic structural models to
provide a machine learner of expected value function differences.
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LEMMA EG6: If Assumption 8 is satisfied, then there is ,(x) such that sup_|y,,(x)| < C
and for vy (X,) = E[H (y10(X,11))|X.], ¢ > 0, and each ¢,

sup| 92 (x) = Y2u ()| + 1720 — Y20l = O, (n~ W~ DICEAHD Iy (),
%3¢ — va0l = O, (™ "),
1920 = y2oll = O, (n~1?/C8 Vn(n)), £=1,...,L.

PROOF: Let O, = E[b(X)b(X) vio(X)]. Let

Mzz ZZZ qub(th)H Ylo(Xl z+l))

(n a m) U4 iel, 1=1

and W denote all observations not in /,. It follows by Assumption 8 and the Cauchy-
Schwarz inequalities that

[ZZW(XM) m(X,,H)MWf} / [$100(x) = y10(0) [ Fu(dx)

iely t=1
< 1¥1ee — Yol
=0,(n"").

Then, by H (p) having bounded derivative on [, 1 — ], Assumption 8, and the conditional
Markov inequality,

|M2z - Mze loo < Z ZZ|’Y1[W(XI i+1) — Yio( X, z+1)| = ( 7d1)~ (E.1)
( ) v el =1
4
For M, = E[Y,b(X,)H (y10(X,41))], it follows by a standard maximal inequality that
My, — M| = O,(y/In(p)/n). Then, by the triangle inequality, we have |[M,, — M|, =
O,(n™"). The first conclusion then follows by Lemma D3.
For the second conclusion, let

Yo = Z Z Z YiiH (v10(Xi01))-

Pu(” —n)T i, o

It follows similarly to equation (E.1) that |93, — ¥3,| = O,(n~). Also, by standard ar-
guments, |3, — yx| = 0,(1/v/n) =0, (n="), so the second conclusion follows by the
triangle inequality.

The third conclusion follows from Lemma D2. Q.E.D.

The following lemma gives a convergence rate for the preliminary plug-in 6,.

LEMMA E7: If Assumption 8 and the hypotheses of Theorem 12 are satisfied, then

é[ =6, + 0p (n—d1[(2§1—1)/(2§1+1)])‘
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PROOF: Follows from Lemma E6 by standard arguments for quasi maximum likelihood
with 9,(x) and ¥; plugged-in. Q.E.D.

LEMMA ES8: If Assumption 8 and the hypotheses of Theorem 12 are satisfied, then

- dil@61-1)/ 261+ 1)]262/[26+1] [ln(n)]2 + n /@65t ln(n) + n—dl)’

e hlCa =D/ (),

||&1z —ayll =Op
||&2z — ayl| =0p

nd (2§1*1)/(2§1+1) ,

n’dl).

oz, — azoll = Op

HH(')A’M) - H(Vlo) H = Op

PROOF: Let v,,(x) be as in the conclusion of Lemma E6 and define a,(x) =
a(x, 6y, Yan, v30) and ay,(x) to be the same as in equation (7.7) in the paper with a,(x)
replacing a,(x). Note that a(x) and a,(x) are bounded by Lemma E6 and D(x) bounded
and H (7y1(x)) is bounded by y;o(x) € (&,1 — &). By Assumption 8, Lemma E6, and the
fixed trimming, with A(a) > 0 and twice continuous differentiability of A(a),

sup| o (X, y2) — o (X, y2)| < Csupla(x) — a,(x)|

= C (118 = 6l + sup| 320 (x) = ¥2u (¥)]| + 195 = v
— Op (n—dl (251—1)/(261-*-1)[”(”)) .

Similarly, [laa. — o is the same order in probability, so the second conclusion follows
by the triangle inequality. The third conclusion follows in a standard way.

Let {10 (x) denote Lasso with regressors b(X; ), dependent variable equal to the kth
element &y Of Qapiy = (X4, Yai), and penalization r, for i ¢ I,. This estimator has

A

1 T
M =—— O it Xi >
[/ (n — nl)T ;;azz kb( ,t+1)
. 1 d
O = T 2 2 bXin)b(Xi)

igl, 1=1

and r, replacing r;. By Lemma E6, Lemma E7, the Markov and Cauchy-Schwartz in-
equalities, uniform boundedness of the elements of b(x), and Bernstein’s inequality, for
M = Elayi (Xiss Yair)D(Xi141)]s

|Me - Me|oo = CSUP|&2ek(X, ¥2) — (X, Y2)| = Op(n_dl(zgl_l)/(zflﬂ) ln(n)),

- _ C r
My — My|oo < 5 |a2nk(Xi ,Yzi)—azok(Xi ,Yzi)|
(n—n[)T ;; t t t t

= 0, (n~4Ca-DICaD (),

IM; — M| = O,(y/In(p)/n),
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1 T
M, .= m ZZaan(Xit: YZit)b(XiJJrl)’

igl, t=1

1 T
M, = m Zzazok(Xin YZiI)b(XlEH-l)

i¢l, t=1

Then by the triangle inequality and another application of Bernstein’s inequality,
M, — M|y, = O, (n~1C6=D/C&+D In(n)).

Then by Lemma D2,

~ _ _ 2
11 — Lol = 0p(n di[(26, 1)/(251+1)]2§2/[2§2+1][ln(n)] )

It follows similarly that for £,,(x) denoting Lasso with regressors b(X;,.;) and dependent
variable Y;;,

1820 — Laoll = O, (n~ /60D In(n)).

Also note that H,(y1,(x)) and H,(yi0(x)) are bounded by the fixed trimming, which
together with || y1, — yioll = O,(n~) also gives ||H,(1.) — H,(v10)ll = O,(n~"). Then,
by the triangle inequality and boundedness of {jo(x) and {(x),

e — ol = || ($1e + @) Hy($10) — (G10 + as0820)H p (v10) I
< || [(Zu — L) + 513(22@ - §20)]Hp(5’1z)||
+ || (&0 + &3z§20)[Hp(’§’w) - Hp(%o)] ” + ” (3¢ — az0) $20H p(7v10) ||

_ OP (n—dl[(2§171)/(2§1+1)]2§2/[2§2+1] [ln(n)]2 + n8/26a+ 1n(n)) + Op (nfdl)_

The first conclusion follows by the triangle inequality. The last conclusion follows similarly
to [|H , (1) — Hp(yi0)ll = O, (n~ ). Q.E.D.

PROOF OF THEOREM 12: We proceed by verifying Assumptions 1-4 in Section 6 and
the conditions of Theorem 9 for y = (v, 2, ¥3)- Assumption 1 follows by Lemmas E6
and E7 and by a(x), Y2, H(y10(X})), v20(X}), a10(X}), a0 ( X+, Yar), @30(X;) all bounded,
similarly to the proof of Lemma ES.

To show Assumption 2(ii), note that

Av(w) = A (w) + A (w) + A (w),
Baa(w) = = 70 D) — o] Fuele) — v,

t=1

T

Bea(w) = 7 Y[l ) — s 32)]

t=1

X [H (F1e(x:)) = Y2e(x0) — H (v10(x)) + v20(x1)],
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. 1 . . . .
Ap(w) = T Z(Olsz - aso)th{H(’)’l (xz+1)) — Y- H(Yl(xm)) + 3’30}-
t=1
Then by the first conclusion of Lemma E8 and conditions (iv), (v), and (vi),

Jn / |Au (w) || Fo(dw)
=< «/E”CAW — ayoll | ¥1e = Yol
— Op (ﬁ{n—d1[(2§1—1)/(2§1+1)]2§2/[2§2+1] [ln(n)]2 + 6/ + ln(n) + n-h }n—dl)
=0,(1).

Next, by the second conclusion of Lemma E8 and condition (vii),

i [ V) o) = Vil — el HG) ~ 7~ o) + 72
= 0, (V/n[n1CE-D/CED ()] p= 4260/ CED In(n))
= Op(l)'

Next, by the third conclusion of Lemma ES8, condition (v), and 2¢,/(2¢; + 1) < 1, we have

«/ﬁ/ “Aw(w) HFo(dw) < V/nllés, — axl| ||H(’)A’u) — Y3 — H(v10) + 730 ”
=0, (\/ﬁ[n*dl (261-1)/26+1) ln(n)]n*dl)
=0,(1).

Assumption 2(ii) then follows by the triangle and conditional Markov inequality.
Next, Assumption 3(i) follows by the form of ¢, ¢,, and ¢; given in Section 3 and

E[th - ')’lo(Xz)lXt] =0,
E[Ya{H (yn(Xi11)) = v (XD} X] =0,
E[YM{H(%O(XHO) - 730}] =0.

We now proceed to verify that Assumption 3(iv) is satisfied. For ease of exposition, we
suppress the ¢ subscript. Let a(x) = a(x, 60y, 2, ¥3) and 7 (x) = mw(a(x, 6o, ¥2, ¥3)). Then

v, a0, 00) =T+ T+ Tr+ Ty,

T= / D) () [y — Aa(x,)) ) Fo(dw),
73 = [ )l = ()] Fa(dw),

T =g [ )ﬁt[H()A’u(xm)) - 5’3]Fo(dw),
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T, = / a20(xt’ Y2t)[H(‘§’1(xt+1)) - ’;’2(xz)]Fo(dw)-

Note that

T=Ti+T,+R +R,

T, = —6/D(xl)w(x[)Aa(a(xl))[i/z(xt) — y20(x:) |Fo(dw),

T,= A(ys — vx0),

A=5 / D(x)m(x)Au(a(x,)) Foldw),

R, = —/D(x,)%(xl)Aaa (a(x.))|a(x,) — a(x,)|2F0(dw),

Ry=— f D(x)[7(x) — w(x)|Aa(a(x,))[a(x,) — a(x,)]|Fo(dw).
Also,

IRl < C (1192 — Yol + 193 — y30l?) = O, (n~*18/4 D) = o (n77),
IR Il < C (11920 = Yaoll® + 193¢ — ¥30) = 0, (n7 ),
so that
T=T+T+ 0,(n"'7?).
Next, note that by the definition of a(x, y»),

T, — / oo (51 ) [32061) — v () | Fo(dw).

Therefore,
Tl +T,= TZ? Tz = / a(x, th)[H(/)\/l(xt-H)) - Yzo(xt)]Fo(dw)-

Note that by yy(x) = E[H (y10(X.11))|X: = x, Y, = 1] and subtracting and adding the
expression [ axy(x,, Yo ) H (vi0(x.11)) Fo(dw), we obtain

T, = /aZO(xt’ J’2t)[H(’)A’1 (xt+1)) - H(‘)’w(xt+1))]F0(dw)
+ / oo (s o) [H (y10(is1)) — a0 ()] Fo(dw)

- / oo (51 o) [H (31 (x110)) — H (yro(ress)) [ Fo(dw).
Expanding then gives

T,= T2+R3,
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Tz = / (x4, y2t)Hp (’)’10(xt+1)) [’;’1 (Xe41) — ’}’10(xt+1)]F0(dw),

R; = / azo(xt, YZt)pr (7_’1 (xt+1)) [')A’l (xH—l) - '}’lo(xt+1)]2F0(dw)’

where y;(x) is between ¥, (x,) and y;o(x,). It follows similarly to previous arguments that
R3]l < Clly1 — yol> = 0, (n"*) = 0,(n""?), so that T, = T> + 0,(n"'/?). Also,

T,= / Co(x) H p (vi0(x)) [#1(x0) = v10(x) [ Fo(dw),

§1o(x) = E[azo(Xta YZt)lXt+1 = x]-

Note that
0110()6) = [glo(x) + a30§20(x)]Hp(’)’10(x)), gzo(x) = E[Yltht+1 = x].

Then by [ {io(x)H,(Vi0(x:))[y2 — Vi0(x)[Fo(dw) = 0, we have
Tz +Ti=a3 f gZO(xt)Hp(VIO(xt))[th - (x,)]FO(dw)

— ax f Lo () H,y (y10000)) [710(x) — 1 ()] Foldw).

Next, note that by iterated expectations and a3y = A/P;,

T = ap / }’1z[H('§’1z(xt+1)) - ’93]F0(dw) = 0130/ gZO(xt)H(i/l(xt))FO(dw) — Ays.
Note also that
Ays = AE[erH(Ylo(sz)]/Pl = 0130/ §zo(x,)H(}/10(xl))Fo(dw).

Then, by an expansion,
T, + T = as / Loo(x)H (31(x,)) Fo(dw) — Ay
= [ Gale)[H (1) ~ H(yax) Fo(dw)
= [ Gale)[H (1) = H(ax) Fo(dw)

= 6V30/ gZO(xt)Hp(yl(](xt))['?1(-xt) - Vlo(xt)]Fo(dw) + Ry
= —(T,+ T\) + Ry,

Ry,= 0130/ fzo(xt)pr(% (xz)) [’)A’l (x:) — 710(xt)]2F0(dw),
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where ¥;(x) is between ¥, (x,) and vy;o(x,). It follows similarly to previous arguments that
IRsl < Cll%1 — ywll> = 0,(n7*") = 0,(n"'"?). Therefore,

T+ Ts=—(L+ Ti) +0,(n'?).
Summarizing, it follows from what has been shown that
bV, 0,00) =T+ T+ T, + T

=T+ T+ Ti+ T+ Ts+o0,(n'?)
=T+ L+ Ti+Ts+0,(n"?)
=T+ L+ T+ Ts+o0,(n"?)
=(L+T)+ (T + T) + o0, (n'7?)
=(L+T) - (L+T)+ 0,(n"'7?)

—0,(n™?),

giving Assumption 3(iv).
Next, note that by the fixed trimming, H (¥;(x)) and ¥, (x) are uniformly bounded. Also,
by Lemma E6, ¥,(x) and ¥; are uniformly bounded with probability approaching 1, so

||A/(w) || =< C(”&w(x) — ayo(x) “ + ||&2z(x) — a(x) || + llas, — a30||).

The second condition of Assumption 4 then follows by Lemma ES8. The first condition
of Assumption 4 also follows in a straightforward manner from uniform boundedness of
¥2(x) and y; with probability approaching 1.

Finally, Assumption 5 follows in a straightforward manner from the same boundedness
properties, so the conclusion follows by Theorem 9. Q.E.D.

APPENDIX F: CONSISTENCY OF DEBIASED GMM
THEOREM A3: If (i) Y -5 Y positive definite; (ii) E[g(W, v0, 6)] =0 if and only if 6 =
6v; (iii) © is compact; (iv) [ llg(w, 7, 0) — g(w, 0, )| Fo(dw) —> 0 and E[Ig(W, yo,
0] < oo forall 6 € O; (v) thereis C > 0 and d(W, ) such that for ||y — vy | small enough
and all 6, € © and

ls(W,v,0) —g(W,v,0)| <dW,y)I16—061"  E[dW,y)]<C,

(vi) Assumption 1(ii) and (iii) are satisfied, [ ||A@(w)||F0(dw) 50, and E[| (W, vy, o,
60)|1] < oo.

_ PROOF: It follows from (iv) that g(6) —> g(8) := E[g(W, vo, 0)] for all § € ©. Let
¢ =1, &(Wi, vo, ap, 0)/n. In the notation in Lemma 8, it follows that ¢ (W, y,, &,
0,) — & (W, vo, g, 0) = Royi + Rayi + Ag(Wi). Then by E[¢ (W, vo, a9, 69)] = 0, condition
(vi), the conditional Markov inequality, Khintchine’s law of large numbers, and the trian-
gle inequality, ¢ = ¢ — ¢ + ¢ —> 0. Therefore, W (0) = 5(0) + é 2> g(0) forall 6 € O©.
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Next, by (v), it follows that with probability approaching 1, |3(6) — 8(6)| < M||6 — 6]/
for M =31 > 1, d(Wi, ¥0)/n. Also, M = O, (1) by the conditional Markov inequality.

Then by Corollary 2.2 of Newey (1991), we have sup,_g, || 121(0) - g0l —25 0. In addition,
condition (v) implies that g(6) is continuous on 0. The conclusion then follows similarly
to the proof of Theorem 2.6 of Newey and McFadden (1994). Q.E.D.
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