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APPENDIX A: PROOFS OF PROPOSITIONS IN THE BODY OF THE PAPER

PROOF PROPOSITION 1: Using the definitions of H, G, and τ, we have the following
recursion:

H(f )(x� t) = G(f )(x� t) +E
[
1{t>τ}H(f )

(
x∗� t − τ)|x] for all x ∈ [x� x̄] and for all t > 0�

Let us begin by defining the following object: D(x� t) ≡ E[1{t>τ}H(f )(x∗� t − τ)|x]. We
first consider case (i) and show that D(x� t) = 0 for all x and all t. This follows since
H(f )(x∗� s) = 0 for all s. This in turn follows because f is antisymmetric; thus, we have
E[f (x(t))|x(τ) = x∗] = 0, which follows immediately by the symmetry of the distribution
g(x� t) and the antisymmetric property of f . It follows that E[1{t≥τ}f (x(t))|x(0) = x] = 0.
Hence, since H = G, this implies that G(t) =H(t) for any p(·� t).

Now we turn to case (ii). We note thatD(x� t) is symmetric in x around x∗ = (x+ x̄)/2.
This follows since the law of motion of x is symmetric so g(x� t) is symmetric around x∗.
This in turn implies that the probability of hitting either barrier at time s, starting with
x(0) = x, is symmetric in x, which directly implies the symmetry of D(x� t). Now we use
that D(x� t) is symmetric and that

H(t� f�p) −G(t� f�p) =
∫ x̄

x

D(x� t)
(
p(x�0) − p̄(x)

)
dx�

Since D(x� t) is symmetric and p(x�0) − p̄(x) is antisymmetric, we have that the right-
hand side is zero so that H(t) =G(t). Q.E.D.

PROOF OF PROPOSITION 2: We analyze the eigenvalue-eigenfunction problem defined
in equation (12) for {λj�γj}, which can be rewritten as

λjγj(x) = σ2

2
γ′′(x) − V (x)γj(x) where V (x) ≡ ξ(x) + 1

2
μ2

σ2 � (A.1)

As a matter of notation, we refer to the bounded domain case when −∞ < x < x̄ <
+∞, and to the unbounded domain case when −∞ = x < x̄= +∞. We use results from
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Section 3 of Chapter 4 of Zettl (2010) for the bounded domain case, and from Section 2.3
of Chapter 2 of Berezinn and Shubin (1991) for the unbounded domain case. Both ref-
erences use a different notation from each other, which also differs from the one we use.
Relative to the notation in Chapter 4 of Zettl (2010), our boundary condition of the o.d.e.
for the eigenvalue-eigenfunction pair in the bounded domain case corresponds to the
“Separated self-adjoint BC,” our σ2 > 0 corresponds to a constant and positive function
p> 0, our function V corresponds to the function q, and the function w can be taken to
be identically 1. The notation in Chapter 2 of Berezinn and Shubin (1991) corresponds
to the case where we divide both sides of equation (A.1) by σ2/2. Equivalently, we can
assume that σ2/2 = 1, in which case our potential V (x) corresponds to v(x) in the nota-
tion of Chapter 2 of Berezinn and Shubin (1991). Relative to notation convention in both
references, our eigenvalues correspond to minus theirs, since the term with the product
of the eigenvalue times the eigenfunction is on the other side of the inequality.

• (E1) The existence of a countably many eigenvalues follows from the spectral the-
orem for compact self-adjoint operators. where in our case the operator on an ar-
bitrary function f is defined as L(f )(x) = σ2

2 f
′′(x) − V (x)f (x) for x ∈ [x� x̄] and

f (x̄) = f (x) = 0.
In particular, for the bounded domain case, it follows from Theorem 4.3.1 in

Zettl (2010). For the unbounded domain case, it follows from Theorem 3.1 part 1
in Berezinn and Shubin (1991).

• (E2) That the eigenvalues are all real follows immediately because the operator L
defined above is Hermitian or self-adjoint. That L is self-adjoint follows by direct
computation, using integration by parts, and the boundary conditions. This is a stan-
dard result for Sturm–Liouville equations.

That the eigenvalues are strictly ordered and that they diverge follows from The-
orem 4.3.1 parts 4 and 6 in in Zettl (2010) in the bounded domain case. That the
eigenvalues are ordered and that they diverge follows from Theorem 3.1 in Berezinn
and Shubin (1991) in the unbounded domain case.

That the eigenvalues are non-repeated, that is, that each eigenvalue is associated
with only one linearly independent eigenfunction, follows from Proposition 3.3 in
Berezinn and Shubin (1991) in the unbounded domain case and from part 6 of The-
orem 4.3.1 in Zettl (2010).

The the eigenvalues are negative follows from σ2 > 0 and V ≥ 0. To see why,
take λjγj = L(γj), multiply it by γj , and integrate it between x and x̄. Integrating
by parts and using the boundary conditions, we obtain λj|γj|2 = −σ2

2

∫ x̄
x
γ′
j(x)2 dx−∫ x̄

x
V (x)γj(x)2 dx < 0 since |γj|= 1.

• (E3) That the eigenfunctions {γj}∞
j=1 form a complete orthonormal base in L2 fol-

lows from Theorem 2.27 in Al-Gwaiz (2008) for the bounded domain case, and from
Theorem 3.1 in Berezinn and Shubin (1991) in the unbounded domain case. Equiva-
lently, for any g ∈L2, we have ‖g−∑∞

j=1〈g�γj〉2γj‖2 = 0, where, for any g�h ∈L2, we
define the standard L2 norm an inner product as 〈g�h〉2 ≡ ∫ x̄

x
g(x)h(x) dx and where

‖g‖2
2 ≡ 〈g�g〉.

Next, we extend the result to show that {ϕj}∞
j=1 form an orthonormal base for L2

w.
Take any f ∈L2

w, or equivalently,

〈f� f 〉 =
∫ x̄

x

(
f (x)

)2
e

2μ
σ2 x dx=

∫ x̄

x

(
f (x)e

μ

σ2 x
)2
dx=

∫ x̄

x

(
g(x)

)2
dx= 〈g�g〉2�
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where we define g(x) ≡ f (x)e
μ

σ2 x, and hence g ∈L2. By the result above, we have

0 =
∫ x̄

x

(
g(x) −

∞∑
j=1

〈g�γj〉2γj(x)

)2

dx

=
∫ x̄

x

(
g(x)w(x)− 1

2 −
∞∑
j=1

〈g�γj〉2γj(x)w(x)− 1
2

)2

w(x) dx

=
∫ x̄

x

(
g(x)e− μ

σ2 x −
∞∑
j=1

〈g�γj〉2γj(x)e− μ

σ2 x

)2

w(x) dx

=
∫ x̄

x

(
f (x) −

∞∑
j=1

〈g�γj〉2ϕj(x)

)2

w(x) dx=
∥∥∥∥∥f −

∞∑
j=1

〈g�γj〉2ϕj

∥∥∥∥∥
2

�

Finally, notice that

〈g�γj〉2 =
∫ x̄

x

g(x)γj(x) dx=
∫ x̄

x

g(x)w(x)− 1
2γj(x)w(x)− 1

2w(x) dx

=
∫ x̄

x

f (x)ϕj(x)w(x) dx= 〈f�ϕj〉�

Thus, we have shown that for any arbitrary f ∈L2
w, we have 0 = ‖f −∑∞

j=1〈f�ϕj〉ϕj‖.
• (E4) That the eigenfunctions can be indexed by the number of zeros follows from

part 6 of Theorem 4.3.1 in Zettl (2010) for the bounded domain case, and from The-
orem 3.5 in Berezinn and Shubin (1991) for the unbounded domain case.

• (E5) The parity of the eigenfunctions follows immediately from the assumption of
symmetry of the problem. Under the symmetry assumption, let us normalize the val-
ues of x∗ = 0 so that x = −x̄ and V (−x) = ξ(−x) = ξ(x) = V (x). In this case, one
can easily check that γj will be of the form γj(x) = cjγj(−x) for some nonzero con-
stant cj solving the o.d.e and the Dirichlet boundary condition. Since there is only one
linearly independent eigenfunction for each eigenvalue, this is the form of the eigen-
functions. It will be symmetric or antisymmetric depending on the sign of cj . Since γj
has exactly j − 1 zeros, then cj > 0 for j = 1�3� � � � and cj < 0 for j = 2�4� � � � .

Q.E.D.

PROOF OF THEOREM 1: The result follows by Proposition 2, the definition of the pro-
jection coefficients 〈ϕj� f 〉 and 〈ϕj� P̂/w〉, and the definition of the response function in
equation (7). In particular, let us start with the definition of IRF G in equation (7) as
an integral of G where G is the conditional expectation given by (7). Thus, fixing f , the
function G when viewed as a function of (x� t) must satisfy the following Kolmogorov
Backward p.d.e. with boundary conditions:

∂tG(f )(x� t) = μ∂xG(f )(x� t) + σ2

2
∂xxG(f )(x� t)

− ξ(x)G(f )(x� t) for all x ∈ [x� x̄]� and t > 0� (A.2)
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0 = G(f )(x̄� t) = G(f )(x� t) = 0� for all t > 0� (A.3)

f (x) = G(f )(x�0) for all x ∈ [x� x̄]� (A.4)

We postulate that this equation has as solution:

G(f )(x� t) =
∞∑
j=1

eλjt〈f�ϕj〉ϕj(x) for all x ∈ [x� x̄] and t ≥ 0� (A.5)

To see that equation (A.5) is the solution, first we check that, for each j, the function
eλjtϕj(x) satisfies the p.d.e. in equation (A.2), and the Dirichlet boundary condition in
equation (A.3). Substituting this guess, and dividing both sides by eλjt , this function solves
the p.d.e. and Dirichlet boundary condition if ϕj satisfies the following o.d.e.:

λjϕj(x) = μ∂xϕ′
j(x) + σ2

2
ϕ′′
j (x) − ξ(x)ϕj(x) for all x ∈ [x� x̄] (A.6)

and ϕj(x̄) = ϕj(x) = 0. Using that ϕj(x) = γj(x)e− μ

σ2 x and that the pair {λj�γj} satisfies
the o.d.e. and Dirichlet boundary condition in equation (12), a direct computation of
the derivatives of ϕj shows that the pair {λj�ϕj} satisfies equation (A.6) and its Dirichlet
boundary condition. Since the p.d.e. in equation (A.2) is linear, any linear combination of
eλjtϕj(x) satisfies it, too. The coefficients in the linear combination in equation (A.5) are
chosen to solve the space boundary condition equation (A.4) at t = 0. This can be done
since, as shown in Proposition 2, the set of eigenfunctions {ϕj}∞

j=1 forms an orthonormal
base of L2

w. Finally, using the definition of the IRFG, we replace G by equation (A.5) and
integrate each of the terms of the infinite sum with respect to P̂ , use the definition of 〈·� ·〉
to reinterpret the integrals, and that P̂ is a CDF with finitely many mass points, to obtain
the desired expression. Q.E.D.

PROOF OF COROLLARY 2: Straightforward differentiation of the density function p̄(x)
gives

p̄′(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−θ
2
[−e−θx − e2θx̄eθx

]
2
[
1 − 2eθx̄ + e2θx̄

] if x ∈ [−x̄�0]�

−θ
2
[
eθx + e2θx̄e−θx]

2
[
1 − 2eθx̄ + e2θx̄

] if x ∈ [0� x̄]�

where θ≡ x̄2ζ/σ2.
The linear projection of p̄′(x) onto ϕj gives the projection coefficients. Let us compute∫ x̄

−x̄ p̄
′(x)ϕj(x) dx = 2

∫ 0
−x̄ p̄

′(x)ϕj(x) dx for j = 2�4�6� � � � . The function p̄′ is antisym-
metric and ϕj is antisymmetric for j even, with respect to x = 0. For j = 1�3�5� � � �, this
integral is zero, since ϕj is symmetric; see equation (13). For j = 2�4� � � � , we thus have

〈
ϕj� p̄

′〉= 2
∫ 0

−x̄
p̄′(x)ϕj(x) dx= θ2[

1 − 2eθx̄ + e2θx̄
]

×
∫ 0

−x̄

[
e−θx + e2θx̄eθx

] 1√
x̄

sin
(

(x+ x̄)
2x̄

jπ

)
dx
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= ex̄θ4θ2x̄√
x̄
[
1 − 2eθx̄ + e2θx̄

]
[
jπ
(
1 − cosh(x̄θ)(−1)j/2

)]
4θ2x̄2 + j2π2

= 8φe
√

2φ

x̄3/2
[
1 − 2e

√
2φ + e2

√
2φ
]
[
jπ
(
1 − cosh(

√
2φ)(−1)j/2

)]
8φ+π2j2

= jπ

4x̄3/2

(−2)(
1 + j2π2

8φ

) 1 − cosh(
√

2φ)(−1)j/2

1 − cosh(
√

2φ)
�

where we used that θx̄=√2φ and that cosh(x) = (1 + ex)/(2ex). Combining it with the
expression for 〈ϕj� f 〉 in equation (16) gives the desired result. Q.E.D.

PROOF OF PROPOSITION 3: Let us define the centered even kth moment for the vari-
able x: Mk(t� δ) ≡ Eδ(x(t) − E(x(t)))k, where k = 2�4� � � � and the subscript δ denotes
that probabilities are those of an impulse response following a marginal shock δ to the
invariant distribution of gaps at zero inflation.

The objective is to show that ∂
∂δ
Mk(t� δ)|δ=0 = 0 for all t, that is, that a marginal shock

δ has no first-order effect on the even centered moments at every t. The proof follows
two steps: first, to show that the impulse response of any even moment is flat at zero, and
second, to show that the impulse response of any centered moment is well approximated,
up to second-order terms, by the impulse response of the corresponding non-centered
moment.

The first step is readily established since a marginal shock triggers an antisymmetric
displaced distribution p̂(x�0) = p̄′(x)δ, whose projection coefficients on all even-indexed
eigenfunctions j = 2�4� � � � are zero (since such eigenfunctions are symmetric). Note next
that even (non-centered) moments k = 2�4� � � � are symmetric by definition, which im-
mediately implies that their projection coefficients on all odd-indexed eigenfunctions
j = 1�3� � � � are zero. It follows that none of the eigenfunctions will have a nonzero co-
efficient. This proves the first step.

To prove the second step write in terms of the non-centered moments

Mk(t� δ) = B0Eδ

(
x(t)k

)+B1Eδ

(
x(t)k−1

)
Eδ

(
x(t)

)+ · · ·
+Bk−1Eδ

(
x(t)

)(
Eδ

(
x(t)

))k−1 +Bk
(
Eδ

(
x(t)

))k
�

where the Bj are the binomial coefficients. Next, let us replace each of the moments with
its first-order expansion in δ, namely let Eδ(x(t)k) = akδ+ o(δ) where ak is moment-k
first derivative. We get

Mk(t� δ) = B0

(
akδ+ o(δ)

)+B1

(
ak−1δ+ o(δ)

)(
a1δ+ o(δ)

)+ · · · +Bk
(
a1δ+ o(δ)

)k
�

It is apparent that the only first-order term in δ is ak, that is, the coefficient of the non-
centered moment. This concludes the proof. Q.E.D.

PROOF OF PROPOSITION 4: The equation for eigenvalue-eigenfunction pair {λj�ϕj} for
the case where ξ is quadratic, that is, when ξ(x) = ξ0 + 1

2ξ2x
2 and where −x = x̄ =

+∞, is, after a change in variables, identical to the one-dimensional time-independent
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Schrodinger equation for the eigenstate �j . This equation is typically written as

− �
2

2m
d2

dx2�j(x) + 1
2
mω2x2�j(x) =Ej�j(x) for x ∈ R� (A.7)

where �j is the jth eigenstate, � is the Planck constant, Ej is the energy of the eigenstate,
ω is the natural frequency, and m is the mass of the particle. As can be seen in Chapter 2,
Section 3 of Griffiths (2015), the solutions for the energy levels and for the eigenstates
are

Ej =
(
j + 1

2

)
�ω and

�j(x) =
(
mω

π�

)1/4 1√
2jj!e

−η2 x2
2 Hj(ηx) for all x and j = 0�1�2� � � � �

(A.8)

where η = (mω
�

)1/2 and where Hj is the physicist jth Hermite’s polynomial. Note that in
equation (A.8), we are following the convention, common in physics, of labeling the state
with the smaller energy as j = 0. Thus, �j corresponds to our ϕj+1, Ej corresponds to our
−λj+1 − ξ0, mω2 corresponds to ξ2, and �

2

m
corresponds to our σ2. So we can set m= 1,

σ = �, and ω= √
ξ2. Q.E.D.

PROOF OF PROPOSITION 5: We first show that ∂
∂μ
Y (t; f�μ�a)|μ=0�a=0 = 0 as in equa-

tion (28) holds. To simplify the notation, we omit a in the expression in this part of the
proof. The proof proceeds in several steps. First, we analyze properties of the decision
rules (optimal thresholds) as a function of μ. Second, we analyze the direct and indirect
(i.e., via the decision rules) implications of μ for the transition probabilities of the state
at a given horizon t. Third, we establish a symmetry property of the impulse p̂(·;δ�μ)
as a function of (μ�δ). Fourth, we use the properties of the transition probabilities and
decision rules to derive an antisymmetric property ofH, viewed as joint function of (δ�μ)
for any fixed t. Fifth, we use this antisymmetric property to obtain a zero cross derivative
of H, which implies the desired result.

(1) We write the boundaries of the inaction range and the optimal return point as func-
tions of μ. They satisfy

x∗(μ) = −x∗(−μ)� x̄(μ) = −x(−μ) and x(μ) = −x̄(−μ)�

This can be shown using a guess and verify strategy together with the corresponding guess
of the value function v(x�μ) = v(−x�−μ).

(2) We define Pt (y|x;μ) to be the transition function for the state starting at x(0) = x
to x(t) = y , where the state evolves as follows. For 0< s < t, then dx(s) = μds+σdW (s)
as long as x(s) ∈ (x(μ)� x̄(μ)) and the free adjustment opportunity has not arrived at time
s. On the other hand, if x(s) hits either x̄(μ) or x(μ), or the free adjustment opportunity
arrives, then x+(s) = x∗(μ), that is, the firm is reinjected at the optimal return point.
Using the properties of the decision rules and the symmetry of the innovations in BM, we
have

Pt (y|x;μ) = Pt (−y|− x;−μ)�
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To see why, write y = x∗(μ) + �y and x = x∗(μ) + �x, so that for (y ′�x′) given by y ′ =
−y and likewise x′ = −x, we have Pt (y|x;μ) = Pt (y ′|x′ − μ). But y ′ = x∗(−μ) − �y =
−x∗(μ) −�y = −y and likewise x′ = −x′, establishing the required result.

(3) Recall that p̂(·;δ�μ) = p̄(x+ δ;μ) − p̄(x;μ). Using the properties of the decision
rules and of the Kolmogorov forward equation for the steady-state density p̄, we get that
p̄(x�μ) = p̄(−x�−μ) is symmetric, which can be proved by a guess and verified strategy.

(4) Using Pt , we can write the impulse response as

H
(
t; f� p̂(·� δ�μ)�μ

)= ∫ ∫ f (y)Pt(y|x;μ)p̂(x�μ�δ) dy dx�

Recall that we define Y (r; f�μ) = ∂
∂δ
H(t; f� p̂(·� δ�μ)�μ)|δ=0 and thus

∂

∂μ
Y (r; f�μ) = ∂2

∂δ∂μ
H
(
t; f� p̂(·� δ�μ)�μ

)∣∣∣∣
δ=0�μ=0

�

We will show below that

H
(
t; f� p̂(·� δ�μ)�μ

)= −H(t; f� p̂(·�−δ�−μ)�−μ) (A.9)

for all μ�δ. Using this, we have

∂2

∂μ∂δ
H
(
t; f� p̂(·� δ�μ)�μ

)= − ∂2

∂μ∂δ
H
(
t; f� p̂(·�−δ�−μ)�−μ)�

which, evaluated at (μ�δ) = (0�0), gives

∂2

∂μ∂δ
H
(
t; f� p̂(·�0�0)�0

)= − ∂2

∂μ∂δ
H
(
t; f� p̂(·�0�0)�0

)
�

so the cross derivative has to be zero, establishing the desired results.
To finish the proof, we show equation (A.9) holds. We have

H
(
t; f� p̂(·� δ�μ)�μ

)
=
∫ ∫

f (y)Pt (y|x;μ)p̂(x�μ�δ) dy dx

= −
∫ ∫

f (−y)Pt (y|x;μ)p̂(x�μ�δ) dy dx

= −
∫ ∫

f (−y)Pt (−y|− x;−μ)p̂(x�μ�δ) dy dx

= −
∫ ∫

f (−y)Pt (−y|− x;−μ)
[
p̄(x+ δ�μ) − p̄(x�μ)

]
dy dx

= −
∫ ∫

f (−y)Pt (−y|− x;−μ)
[
p̄(−x− δ�−μ) − p̄(−x�−μ)

]
dy dx

= −
∫ ∫

f (−y)Pt (−y|− x;−μ)p̂(−x�−μ�−δ) dy dx
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= −
∫ ∫

f
(
y ′)Pt(y ′|x′;−μ)p̂(x′�−μ�−δ)dy ′ dx′

= −H(t; f� p̂(·�−δ�−μ)�−μ)�
where we use the definition of H, that f is antisymmetric, that Pt is symmetric (as shown
above), the definition of p̂, the symmetry of p̄ (as shown above), the definition of p̂ again,
a change of variables of integration, and again the definition ofH. This finishes the proof.

The proof that ∂
∂a
Y (t; f�μ�a)|μ=0�a=0 = 0 is almost identical to the previous one, step by

step replacing μ by a. Q.E.D.

APPENDIX B: GENERALIZED RANDOM FIXED-COST MODEL

In this appendix, we write down the problem that the firm solves, which gives rise to
the decision rule described by threshold x̄, a function ξ : [−x̄� x̄] → R, and the volatility
σ2. Recall that the Calvo-plus model supplements the traditional Calvo model with the
possibility that the firm can change its price by paying a fixed menu cost at any time. The
generalization allows the firm to draw a fixed menu cost ψ from a distribution with CDF
W at random times—arriving at a Poisson rate κ > 0. The menu costs drawn by the firm
can be zero or strictly positive. If the cost is zero, the firm changes its price to the ideal
one (i.e., it “closes its price gap”), just like in Calvo. If the firm draws a strictly positive
cost, it will either ignore it or change its price depending on the value of the “price gap”
relative to the realization of the fixed cost. In particular, the optimal decision rule will be
characterized by a threshold rule that gives the maximum adjustment cost that the firm
is willing to pay for adjustment. For all fixed costs smaller than the threshold the firm
changes its price, while for larger costs it keeps the price unchanged.

We also allow the firm to have a price change at any time by paying a large fixed cost,
which we denote by �> 0 and refer to as the “deterministic fixed cost.” We let x̄ be the
threshold so that if |x|≥ x̄, the firm will pay the deterministic fixed cost � and adjust its
price. If �= ∞, then the firm has no such alternative. We can write the value function of
the firm, v(x), as

rv(x) = min
{
Bx2 + σ2

2
v′′(x) + κ

∫ �

0
min

{
ψ+ min

x′ v
(
x′)− v(x)�0

}
dW (ψ)�

r
(
�+ min

x′ v
(
x′))}�

If �= ∞, then x̄= ∞, and thus there is no second branch in the Bellman equation. The
term minx′ v(x′) is the value right after adjustment, and given the symmetry of the return
function, x∗ = 0 or v(0) = minx′ v(x′). Thus, we can simply write that for all x,

rv(x) = min
{
Bx2 + σ2

2
v′′(x) + κ

∫ �

0
min

{
ψ+ v(0) − v(x)�0

}
dW (ψ)� r

(
�+ v(0)

)}
�

It is easy to verify that v is increasing in |x|. We also have the following smooth pasting
and optimal return point conditions:

v′(−x̄) = v′(x̄) = v′(0) = 0� (B.1)

We are now ready to define the generalized hazard function corresponding to this
model, ξ : (−x̄� x̄) → R+, which gives the probability (per unit of time) that a firm with
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x ∈ (−x̄� x̄) will change its price. Note that, conditional on changing its price, the price
change is −x, that is, it closes the price gap. The function ξ is defined by the optimal
decision rule, by the Poisson arrival rate κ > 0 and by the distribution of fixed cost W as
follows:

ξ(x) = κW (v(x) − v(0)
)

for all x ∈ (−x̄� x̄)� (B.2)

The function ξ is symmetric around x = 0 and weakly increasing in |x|, inheriting these
properties from v(x). It is continuous at x if W is continuous at ψ = v(x) − v(0), and
bounded above by κ. While the function ξ is not defined at x = ±x̄, we abuse notation
and let ξ(x̄) = limx→x̄ ξ(x) = κW (�) = κ.

In Alvarez, Lippi, and Oskolkov (2020), we showed that for every function ξ :
(−x̄� x̄) → R+ that is piecewise continuous, positive, symmetric around x= 0, increasing
in |x|, and bounded above, there is a distribution of cost with CDF W that rationalizes it.

B.1. Example: Quadratic Hazard Model

We let S(t) be the survival function for the case of a quadratic function ξ(x) = ξ0 +
ξ2x

2/2, with x̄ = −x = ∞, and let h(t) be the corresponding hazard rate as function of
the duration of the price spell. We have the following:

PROPOSITION 6: The survival function S(t) and the hazard rate h(t) are

S(t) =
∞∑
n=0

(−1)n
√

2/π
�

(
1
2

+ n
)

n! eλ2nt for all t ≥ 0� (B.3)

h(t) = −
∞∑
n=0

λ2nHn(t) for all t > 0 where (B.4)

Hn(t) ≡
(−1)n

�

(
1
2

+ n
)

n! eλ2nt

∞∑
m=0

(−1)m
�

(
1
2

+m
)

m! eλ2mt

for all n= 0�1�2� � � � � (B.5)

Moreover, let S0(t) be the survival function for ξ0 = 0, so using the identity for competing risk
durations, we have S(t) = e−ξ0tS0(t). For the case of ξ0 = 0, we have

S0(t) =
√

sech
(
t
√
σ2ξ2

)
� (B.6)

N =
√
σ2ξ2

4
√

2/π�
(

5
4

)2 and λj = −N
(
j − 1

2

)
4
√

2/π�
(

5
4

)2

� (B.7)

The expression for S(t) follows directly from the general expression of the survival
function in Theorem 1 using f (x) = 1 and a degenerate initial condition concentrated at
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x= 0, and the expressions for the eigenvalues and eigenfunction for the quadratic case in
Proposition 4. The expression for h(t) follows from differentiating S(t). The expression
for S0 can be verified by comparing the series expansion of S(t) when ξ0 = 0. Alternatively,
one can use the Laplace transform of the square of the integral of a standard Brownian
W—see Example 1 on page 11 in Kac (1949)—and any constant u gives

E
[
e−u ∫ t0 (W (s))2 ds

]=√sech(t
√

2u)� (B.8)

and setting u= σ2ξ2/2, we obtain equation (B.6). The expression forN in the case of ξ0 =
0 uses that the expected duration of price spells, or its reciprocal, the expected number of
price changes for the case satisfy

1
N

=
∫ ∞

0
S(t) dt =

∫ ∞

0

√
sech

(√
σ2ξ2t

)
dt = 4

√
2

πσ2ξ2
�

(
5
4

)2

�

Using this expression in the general expression of the eigenvalues, we eliminate eta to
obtain the desired expression.

B.2. Example: Absolute Value Generalized Hazard Function

In this appendix, we characterize the odd (antisymmetric) eigenvalues and eigenfunc-
tions for the absolute value ξ(x) =A|x|. The eigenfunctions are given by displaced Airy
functions and the eigenvalues are the zeros of the Airy functions Ai(·). We give formulas
and numerical implementations for the eigenvalues λk in equation (B.10), the antisym-
metric eigenfunctions ϕj(·) in equation (B.11), the invariant distribution p̄(·) in equa-
tion (B.12), the expected number of price changes N in equation (B.13), and the projec-
tions 〈ϕj(·)�−x〉 in equation (B.14) and 〈ϕj(·)� p̄′(·)〉 in equation (B.15).

Let us start with the equation we wish to solve:

[Ax+ λk]ϕk(x) = σ2

2
ϕ′′
k(x) for x≥ 0�ϕk(x) = −ϕk(−x) and k= 2�4�6� � � � �

First, let z = bx for some b > or x= z/b and define ϕ̃k(z) = ϕk(z/b) so that ϕ̃′′
k(z) =

ϕ′′
k(z)/b2 or ϕ′′

k(z) = b2ϕ̃′′
k(z) and thus

ϕ̃k(z)
[
z
A

b
+ λk

]
= σ2

2
b2ϕ̃′′

k(z) or ϕ̃k(z)
[
z

A

b3σ2/2
+ λk

b2σ2/2

]
= ϕ̃′′

k(z)�

Set b:

b≡
(

2A
σ2

)1/3

thus ϕ̃k(z)[z+ λ̃k] = ϕ̃′′
k(z) where λ̃k ≡ λk

(
σ2/2
A

)2/3

σ2/2
�

The Airy function Ai(z) solves Ai(z)z =Ai′′(z) and has Ai(z) → 0 as z→ +∞. More-
over, it has infinitely many negative zeros, denoted by 0> a1 > a2 > · · · . Thus, the solution
for ϕ̃2k+1 is

ϕ̃2k+2(z) =Ai(z+ ak) for all z > 0 and λ̃2k+2 = ak+1 for k= 0�1� � � � �
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While there are no closed expressions for the zeros of the Airy functions, there are ex-
cellent approximations, which can be used to find numerically exact values of them. For
instance,

ak = −1
4
(
m2 + 20

)1/3 + Ēk 457

(m3
(
m2 + 40

)1/6 � where m= (12k− 3)π for k= 1�2� � � � �

where Ēk is an approximation error that is less than 1 in absolute value. See Theorem 10
in Krasikov (2014). Thus, our analytical approximation to the odd eigenvalues is

λ2k+2 = ak+1
σ2/2(
σ2/2
A

)2/3 for k= 0�1�2� � � � (B.9)

≈ −1
4
([

12(k+ 1) − 3π
]2 + 20

)1/3 σ2/2(
σ2/2
A

)2/3 (B.10)

and the antisymmetric eigenfunctions are

ϕ2k+2(x) = βAi
(
ak+1 +

(
2A
σ2

)1/3

x

)
for x≥ 0 for k= 0�1�2� � � � �

where β is a normalizing constant. We will need to normalize the eigenfunctions by
2
∫ ∞

0 ϕk(x)2 dx= 1. For this, we note that for any c,∫ ∞

c

[
Ai(z)

]2
dz = −c[Ai(c)]2 + [Ai′(c)]2�

Thus,

1 = 2
∫ ∞

0
ϕ2k+2(x)2 dx= 2β2

∫ ∞

0
Ai(ak+1 + bx)2 dx

= 2β2

b

∫ ∞

0
Ai(ak+1 + bx)2 dbx

= 2β2 1
b

∫ ∞

0
Ai(ak+1 + z)2 dz = 2β2

b

∫ ∞

ak+1

Ai(s)2 ds

= 2β2

b

[−ak+1

[
Ai(ak+1)

]2 + [Ai′(ak+1)
]2]

= 2β2

b

[
Ai′(ak+1)

]2
�

Thus, the normalized eigenfunctions are given by

ϕ2k+1(x) =

√(
2A
σ2

)1/3

√
2
∣∣Ai′(ak+1)

∣∣Ai
(
ak+1 +

(
2A
σ2

)1/3

x

)
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for x≥ 0 for k= 0�1�2� � � � � (B.11)

Likewise, for the invariant distribution p̄, satisfying p̄(x)Ax = σ2/2p̄(x) for x > 0.
We define again z = bx and p̃(z) = p̄(z/b) so that p̃(z)Az/b= σ2/2p̃(z)b2, and setting
again b= (2A/σ2)1/3, we get p̃(z)z = p̃′′(z), which is solved by the Airy function. Thus,

p̄(x) =Ai((2A/σ2
)1/3
x
)
/α with α= 2

∫ ∞

0
Ai
((

2A/σ2
)1/3
x
)
dx�

We can use that∫ ∞

0
Ai(z) dz = 1/3 and thus α= 2

b

∫ ∞

0
Ai(bx) dbx= 2

3b

to obtain

p̄(x) = 3
(
2A/σ2

)1/3

2
Ai
((

2A/σ2
)1/3
x
)

for x≥ 0� (B.12)

Note that N = −σ2p̄′(0) and thus

N = −σ2p̄′(x)|x=0 = −σ2 3
(
2A/σ2

)2/3

2
Ai′
((

2A/σ2
)1/3
x
)∣∣∣∣
x=0

;

using that Ai′(0) = −1/(31/3�(1/3)), we have N = −σ2 3(2A/σ2)2/3

2 Ai′(0); using that
Ai′(0) = 1/(31/3�(1/3)), we have

N = σ2

2

(
2A
σ2

)2/3 3
31/3�(1/3)

� (B.13)

Let ϕ2k+2 be an antisymmetric eigenfunction. Then the projections for the IRF are

〈ϕ2k+2�−x〉 = −
√
b

b2
√

2
∣∣Ai′(ak+1)

∣∣2
∫ ∞

0
zAi(ak+1 + z) dz� (B.14)

〈
ϕ2k+2� p̄

′〉=
√
b√

2
∣∣Ai′(ak+1)

∣∣2b3
2

∫ ∞

0
Ai′(z)Ai(ak+1 + z) dz� (B.15)

Note that the product 〈ϕ2k+2�−x〉〈ϕ2k+2� p̄
′〉 is independent of b.

APPENDIX C: MONETARY PROPAGATION WITH VOLATILITY SHOCKS

This section discusses the effect that changes to the volatility of shocks exert on the
propagation of monetary shocks. The issue matters to, for example, the effectiveness of
monetary policy in recessions versus boom, when the state of the economy is assumed to
feature, respectively, high versus low volatility of shocks as in Vavra (2014). Our method
provides a sharp analytic answer to this question.

For concreteness, we illustrate the problem by using the pure menu cost model (with-
out Calvo adjustment, i.e., ζ = 0 so that φ = � = 0), whose output response to a small
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monetary shock was given in equation (18). We conduct a comparative static exercise to
analyze how the propagation is affected by an innovation of the “volatility shocks,” namely
a permanent change in the common value of the idiosyncratic volatility σ .1

We start with a steady state for the model with idiosyncratic volatility σ . We charac-
terize the effect of a small monetary shock, δ > 0, which occurs s ≥ 0 periods after a
change in idiosyncratic volatility from σ to σ̃ , so that σ̃ = (1 + dσ

σ
)σ . In particular, we

let Y (t; s�dσ/σ)δ denote the output’s IRF t ≥ 0 periods after an unexpected monetary
shock of size δ starting with a cross-sectional distribution that has evolved s periods since
the change in σ .2

While we characterize Y for all t > 0 and s ≥ 0, two interesting cases are worthwhile to
mention separately: the short-run and the long-run effect of volatility. The short-run ef-
fect, defined as Y (t;0� dσ/σ) or s= 0, consists of considering a simultaneous permanent
change of both σ (to σ̃) and δ > 0. After the shock, the forward looking firm’s decision
rule adjusts immediately to the new volatility σ̃ , while the initial distribution of price gaps
corresponds to the stationary distribution obtained under the old decision rule. The long-
run effect, denoted by Y (t;∞� dσ/σ) or s→ ∞, is equivalent to computing the effect of
a monetary shock δ for a new steady state with volatility σ̃ . We refer to this as the long-
run effect since it is the effect of an unanticipated monetary shock once the distribution of
price gaps has achieved its new invariant distribution. In this case, the firm’s decision rule
corresponds to the new volatility σ̃ and the economy is described by the new invariant
distribution of price gaps.

The general case characterizes an IRF whose coefficients are indexed by the parameter
0< s <∞. The key feature of this case is that the monetary shock δ occurs s periods after
the volatility shock, thus displacing a cross-section distribution of price gaps that is in a
transition towards the new invariant distribution. Our analytic method allows us to exactly
compute the evolution of this distribution and hence the effect of a monetary shock.

The next proposition uses the notation introduced above, where Y (t;0�0) denotes the
impulse before any change in volatility occurs, which we use as a benchmark. Also, the
difference Y (t; s� dσ

σ
) −Y (t;∞� dσ

σ
) is the correction to the long-run effect of a volatility

shock dσ/σ due to a finite duration s.

PROPOSITION 7: Let Y (t; s� dσ
σ

) denote the time-t value of the output marginal impulse
response that occurs s periods after a volatility increase from σ to σ̃ = (1 + dσ

σ
)σ . The long-

run effect (s→ ∞) of the volatility shock dσ
σ

on the impulse response of output to a monetary
shock is

Y

(
t;∞�

dσ

σ

)
= Y

(
t

(
1 + dσ

σ

)
;0�0

)
for all t ≥ 0� (C.1)

The short-run effect (s→ 0) of the volatility shock dσ
σ

on the impulse response of output to a
monetary shock is

Y

(
t;0�

dσ

σ

)
=
(

1 + dσ

σ

)
Y

(
t

(
1 + dσ

σ

)
;0�0

)
for all t ≥ 0� (C.2)

1For simplicity and clarity of the results, we consider here once and for all shocks to volatility. It is simple to
modify the setup to consider a two-state Markov switching volatility process and to solve the associated firm’s
decision rules.

2We will keep using the notation of Y as the output’s IRF per unit of monetary shock, and then omit the δ
in the expressions below.
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FIGURE S1.—Short-run and long-run IRF versus IRF before volatility increases. Note: N = 1 (one price
adjustment per unit of time, on average) and dσ/σ = 0�1.

The deviation from the long-run response as a function of s is given by

Y

(
t; s� dσ

σ

)
−Y

(
t;∞�

dσ

σ

)
=

∞∑
k=1

eλ2ktb2k[f ]b2k

[
p̂′(·� s)]

for all t� s ≥ 0� (C.3)

where p̂′(·� s) is the initial condition (i.e., a displaced cross section) at the time of the monetary
shock, s periods after the change in volatility, whose projection coefficients are given by

b2k

[
p̂′(·� s)]= dσ

σ

1

x̄
3
2

∞∑
j=1�3�5����

eλjs
(

2
4(−1)

j+3
2 − jπ

(jπ)2

)(
4kj(

4k2 − j2
)
)

)
�

k= 1�2�3� � � � � (C.4)

and where b2k[f ] = 2x̄3/2/(kπ) as in equation (16).

A few comments are in order.
(i) Figure S1 illustrates the difference between the short-run and long-run effect of

an increase in volatility on the output’s response to a monetary shock. The left panel
compares the IRF with no change in volatility, Y (t;0�0), to the one where the volatility
increase has occurred s→ ∞ periods ago, that is, Y (t;∞� dσ/σ) the long-run effect. The
right panel compares the IRF with no change in volatility, Y (t;0�0), to the one where the
volatility increase has occurred at the same time as the monetary shock s = 0 periods ago,
that is, Y (t;0� dσ/σ) the short-run effect.

(ii) For this proposition, we use the form of the decision rules for the threshold x̄,
which, as the discount rate goes to zero, is x̄ = (6ψ

B
σ2)

1
4 where ψ is the fixed cost—as

fraction of the frictionless profit and B is the curvature of the profit function around the
frictionless profit. This implies that the elasticity of x̄ to σ is 1/2. This elasticity is the
so-called “option value” effect on the optimal decision rules.

(iii) The rescaling of time inY (t(1+ dσ
σ

);0�0) in the expressions for the long- and short-
run effect of volatility reflects the change in the eigenvalues, which depend on the value
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FIGURE S2.—The propagation of monetary shocks as s grows. Note: N = 1 (one price adjustment per unit
of time, on average) and dσ/σ = 0�1.

of N , the implied average number of price changes per unit of time, as λj = −N(πj)2/8
(see (21) for ζ = 0). Recall that N = (σ/x̄)2, and hence all the eigenvalues change pro-
portionally with σ .

(iv) For the case of the impact effect and in which σ̃ > σ , the invariant distribution
just before the monetary shock is narrower than the range of inaction that corresponds
to the new wider barriers. This explains the extra multiplicative term level (1 + dσ

σ
) in the

impact effect in equation (C.2): since firms have price gaps that are discretely away from
the inaction bands, then prices react more slowly, generating the extra effect on output.
The logic for the case where σ̃ < σ is similar.

(v) In equation (C.3), we use only the even terms for the projections, that is, the index
for the projection b2k[·] runs on 2k because f is antisymmetric. For these coefficients,
as was the case without volatility shocks, the eigenvalues that control the effect of the
horizon t in the IRF are the even ones, that is, λ2�λ4� � � � , starting with the leading one
λ2.

(vi) The expressions in equation (C.3) and equation (C.4) show that what governs the
difference between the long-run and the short-run volatility effects are the odd eigenval-
ues, that is, λ1�λ3� � � � , since these are the only elements where s affects the expressions.
In particular, λ1 is the dominant eigenvalue.

(vii) We note that the expression for the correction term in equation (C.3) involves no
parameter for the model with the exception of N , which enters only in the eigenvalues
λj = −N(jπ)2/8. This gives a meaning to the units of t and s, which are measured rel-
ative to the (new) steady-state duration of price changes 1/N . This remark is needed to
interpret the time units in the horizontal axes of both panels of Figure S2.

(vii) To illustrate the general case of 0< s <∞ in Figure S2, we display two plots. First,
the left panel of Figure S2 plots equation (C.3), evaluated at four values of s. It is apparent
that as s becomes bigger, monetary policy becomes less effective and gradually converges
to the long-run value. This can be seen by comparing the correction for any given t across
the four values of s. Second, the right panel plots the cumulated IRF of a monetary shock
s periods after the volatility shock, relative to the cumulative IRF of a monetary shock
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when there is no volatility shock. In particular, we plot

C(s�dσ/σ) ≡

∫ ∞

0
Y (t� s� dσ/σ) dt∫ ∞

0
Y (t�0�0) dt

− 1�

We use the cumulated IRF to obtain a simple one-dimensional summary of this effect
across all times t. Notice the following properties of C: for all s, we have C(s�dσ/σ) =
(dσ/σ)C(s�1), since it is based on a derivative, and for extreme values of s, we have
C(∞� dσ/σ) = −dσ/σ , and C(0� dσ/σ) = 0. From Figure S2, it is clear that the transition
to the higher volatility occurs very fast; a cumulative effect of C half as large as half of the
one in s→ ∞ will occur when s1/2 ≈ 0�05/N , a half-life indicated by a vertical bar in the
right panel. More precisely, s1/2 is defined as C(s1/2� dσ/σ) = −(1/2)(dσ/σ). This effect
is much faster than the half-life corresponding to the dominant eigenvalue λ1 = −Nπ2/8,
which is given by t1/2 ≡ −8 log(0�5)/(Nπ2) ≈ 0�56/N , and it is indicated by another ver-
tical bar in the right panel. The ratio of the two times is very large: t1/2/s1/2 ≈ 12, and it
is independent of any parameter of the model.3 From this comparison, we conclude that
for this particular model, using exclusively the dominant eigenvalue λ1 to approximate
the time it takes for the distribution to converge after the change in volatility will be mis-
leading. Summarizing, in the Golosov–Lucas model, the short-run effect of the volatility
change is only relevant when the monetary shock occurs almost immediately after the
volatility change.

C.1. Proofs for Uncertainty Shocks

PROOF OF PROPOSITION 7: First, we consider case (i), that is, the long-run effect of
a volatility shock dσ

σ
, so that σ̃ = (1 + dσ

σ
)σ on the impulse response of output to a

monetary shock. We note that the expression for Y (t) for the Golosov–Lucas model
does not feature x̄, which is a function of σ (see equation (18)). Indeed, the only place
where σ enters in the expression for Y (t) is in the eigenvalues (the parameter N(jπ)2/8
in equation (18)). Since N = σ2/x̄2 and x̄ = (6ψ

B
σ2)

1
4 , then d log x̄ = 1/2d logσ and

d logN = 2(d log x̄ − d logσ), hence d logN = d logσ . Substituting this into the eigen-
value, λj = −Ñ(jπ)2/8 = −(1 + dσ

σ
)N(jπ)2/8 where N is the average number of price

changes before the volatility shock. Using the expression for the impulse response in terms
of the post-shock objects, we have

Y

(
t;∞�

dσ

σ

)
=

∞∑
j=1

〈ϕj� f 〉
〈
ϕj� p̄

′〉e−(1+ dσ
σ )N (jπ)2

8 t = Y
(
t

(
1 + dσ

σ

)
;0�0

)
�

and we obtain the desired result.
Now we consider the short-run effect, that is, the impact effect of a volatility shock

dσ
σ

, so that σ̃ = (1 + dσ
σ

)σ on the impulse response of output to a monetary shock. As
in the previous case, the eigenvalues can be written as functions of the shock and the
old value of the expected number of price changes. Also as the previous case, we have

3The vertical distance on the correction between s = 0 and s→ ∞ plotted on the right panel is dσ/σ , which
is 0.1 for this example. For other values, the vertical axis scales proportionally.
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f (x) = −x. The difference is on the initial distribution p(x�0). The initial condition is
given by p(x�0) = p̄(x+ δ; x̄(σ)) where we write x̄(σ) to indicate that the distribution
depends on σ . Indeed, since we are using the expression for Y (t�0� dσ

σ
) in terms of the

value of x̄ that corresponds to the post-shock value of σ , we need to consider the effect on
x̄ of a decrease of σ in the proportion dσ/σ . To do this, we take a second-order expansion
of p(x�0) = p̄(x+ δ; x̄(σ)) with respect to δ and σ evaluated at δ= 0 and dσ = 0:

p(x;0) ≡ p̄(x+ δ; x̄(σ)
)

= p̄(x) + ∂

∂δ
p̄
(
x+ δ; x̄(σ)

)∣∣∣∣
δ=0

δ− ∂

∂x̄
p̄
(
x+ δ; x̄(σ)

)∣∣∣∣
δ=0

∂x̄(σ)
∂σ

dσ

+ 1
2
∂2

∂δ2 p̄
(
x+ δ; x̄(σ)

)∣∣∣∣
δ=0

δ2

+ 1
2
∂2

∂x̄2 p̄
(
x+ δ; x̄(σ)

)∣∣∣∣
δ=0

(
∂x̄(σ)
∂σ

)2

dσ2

+ 1
2
∂

∂x̄
p̄
(
x+ δ; x̄(σ)

)∣∣∣∣
δ=0

∂2x̄(σ)
∂σ2 dσ2

− ∂2

∂x̄∂δ
p̄
(
x+ δ; x̄(σ)

)∣∣∣∣
δ=0

∂x̄(σ)
∂σ

dσδ+ o(∥∥(δ�dσ)
∥∥2)

for x ∈ [x� x̄] and x �= 0. Recall that the invariant distribution for this model is the trian-
gular density p̄(x) = 1/x̄−|x|/x̄2 for x ∈ (−x̄� x̄). Using this functional form, we have

∂

∂δ
p̄(δ+ x; x̄) =

⎧⎪⎨
⎪⎩

+ 1
x̄2 if x ∈ [−x̄�0)�

− 1
x̄2 if x ∈ (0� x̄]�

∂

∂x̄
p̄(δ+ x; x̄)

∣∣∣∣
δ=0

=

⎧⎪⎨
⎪⎩

− x

x̄2

2
x̄

if x ∈ [−x̄�0)�

+ x

x̄2

2
x̄

if x ∈ (0� x̄]�

∂2

∂δ∂x̄
p̄(x+ δ; x̄) =

⎧⎪⎨
⎪⎩

− 1
x̄2

2
x̄

if x ∈ [−x̄�0)�

+ 1
x̄2

2
x̄

if x ∈ (0� x̄]�

∂2

∂x̄2 p̄(δ+ x; x̄) =

⎧⎪⎨
⎪⎩

+ x

x̄2

6
x̄2 if x ∈ [−x̄�0)�

− x

x̄2

6
x̄2 if x ∈ (0� x̄]�

Notice that the first-order derivatives with respect to δ as well as the cross-partial deriva-
tive are antisymmetric functions of x around x= 0, while the derivatives with respect to
x̄ are symmetric functions of x. Finally, we have ∂2

∂δ2 p̄(x+ δ; x̄) = 0.
Now we use the expansion and compute the impulse response coefficients βj ≡

〈ϕj� f 〉〈ϕj�p(·�0)〉. The first-order term for dσ is zero because f is antisymmetric (so that
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〈ϕj� f 〉 = 0 for j = 2�4�6� � � �) and the first derivative with respect to x̄ is symmetric (so
that 〈ϕj�p(·�0)〉 = 0 for j = 1�3�5� � � �), hence the βj = 0 for j = 1�2�3�4� � � �. Likewise,
the second-order terms for dσ2 are zero since f is antisymmetric and the first and second
derivative with respect to x̄ are symmetric. The second-order term δ2 is zero because the
second derivative with respect to δ is zero. This leaves us with two nonzero terms: the
first-order term on δ, which is the term for the IRF with respect to a monetary shock, and
the second-order term corresponding to the cross-derivative. For the cross-partial term,
we note that, using that x̄ has elasticity 1/2 with respect to σ , we can write

− ∂2

∂δ∂x̄
p̄(x+ δ; x̄)

∂x̄(σ)
∂σ

dσδ

= − ∂2

∂δ∂x̄
p̄(x+ δ; x̄)x̄(σ)

[
∂x̄(σ)
∂σ

σ

x̄(σ)

]
dσ

σ
δ

= − 2
x̄(σ)

∂

∂δ
p̄(δ+ x; x̄)x̄(σ)

1
2
dσ

σ
δ= − ∂

∂δ
p̄(δ+ x; x̄)

dσ

σ
δ�

Thus, we have that each βj term is given by the sum of the (nonzero) terms correspond-
ing to the first-order term on δ and the second-order term corresponding to the cross-
derivative:

〈ϕj� f 〉
〈
ϕj� p̄

′(·)〉δ+ 〈ϕj� f 〉
〈
ϕj� p̄

′(·)〉δdσ
σ

= 〈ϕj� f 〉
〈
ϕj� p̄

′(·)〉δ(1 + dσ

σ

)
�

This gives the projection coefficients for the short-run impact that appear in equa-
tion (C.2) in the proposition. In particular, it shows that the coefficients for the short
run are equal to the ones for the long run multiplied by the factor (1 + dσ/σ).

Finally, we consider the case of a monetary shock that occurs s periods after the volatil-
ity shock. We proceed in three steps.

Step 1: Find Initial Signed Measure p̂(x�p). For a small σ shock, the signed measure
p̂(x�0) right after the uncertainty shock is given by

p̂(x�0) ≡ p̄(x; x̄(σ)
)− p̄(x; x̄(σ̃)

)= p̄(x; x̄(σ)
)− p̄(x; x̄(σ + dσ)

)
�

which is by the difference between the original invariant distribution and the new long-
run distribution. We now take an expansion around the original invariant distribution and
write

p̂(x�0) = p̄(x; x̄(σ)
)− p̄(x; x̄(σ)

)− p̄x̄(x; x̄(σ)
)
x̄′ dσ + o(dσ)�

where p̄x̄ is the derivative of the density function with respect to x̄. For the pure menu
cost model, we have p̄(x� x̄) = 1/x̄− (1/x̄2)|x| for x ∈ (x̄� x̄), so we have

p̄x̄(x� x̄) = 1
x̄2

(
−1 + 2|x|

x̄

)
and

∂

∂σ
x̄(σ) = 1

2
x̄

σ
�

where we use that x̄(σ) = (6ψ/Bσ2)1/4. Replacing into the expression for p̂, we have

p̂(x�0) = −p̄x̄
(
x; x̄(σ)

)
x̄′ dσ + o(dσ) = 1

x̄

( |x|
x̄

− 1
2

)
dσ

σ
+ o(dσ) for x ∈ (−x̄� x̄)�



ANALYTIC THEORY OF A MONETARY SHOCK 19

Step 2: Find Signed Measure After s Periods p̂(x� s). The function p̂(x� s) describes the
evolution of this signed measure s periods after the uncertainty shock. We use our char-
acterization of the density of transition function

∑
j exp(λjs)φj(xs)φ(x0) between time

t = 0 and t = s with eigenfunctions ϕj and eigenvalues λj with x̄(σ̃) andN = σ̃2/x̄(σ̃)2 to
construct the evolution of p̂(x� s). We represent the signed measure (deviation from the
invariant distribution) as follows:

p̂(x� s) = dσ

σ

∑
j=1�3�5����

eλjsϕj(x)
〈
ϕj� p̂(·�0)

〉
� (C.5)

where the projection coefficients 〈ϕj� p̂〉 = 0 for j = 2�4�6� � � � since the function p̂(x�0) is
a symmetric function while the even-indexed ϕj functions are antisymmetric. The nonzero
coefficients are

〈
ϕj� p̂(·�0)

〉= ∫ x̄

−x̄
ϕj(x)p̂(x�0) dx= 2

∫ x̄

0

1
x̄

(
x

x̄
− 1

2

)
ϕj(x) dx for j = 1�3�5� � � � �

Direct calculation gives

〈
ϕj� p̂(·�0)

〉= 2
x̄1/2

4(−1)
j+3

2 − jπ
(jπ)2 for j = 1�3�5� � � � � (C.6)

Step 3: Find Excess Impulse Response Y (t; s� dσ
σ

) −Y (t;∞� dσ
σ

). The cross-section dis-
tribution right after the monetary shock is

p(x+ δ� s; σ̃) = p̄(x+ δ; σ̃) + p̂(x+ δ�τ)�

The first term is the invariant distribution (under the new variance σ̃) which will settle in
the long run; the second term is the deviation between the current cross-section distribu-
tion and the invariant, discussed above. Then

p(x+ δ� s; σ̃) − p̄(x; σ̃) ≈ δ(p̄′(x; σ̃) + p̂′(x� s)
)
�

We let Y (t;∞� dσ
σ

) =∑∞
k=1 e

λ2ktb2k[f ]b2k[p̄′(·; σ̃)] be the long-run output response to a
monetary shock, after the initial uncertainty shock has settled down (i.e., for s → ∞).
Our main proposition implies that impulse response to a monetary shock s periods after
the uncertainty shock is

Y

(
t; s� dσ

σ

)
=

∞∑
k=1

eλ2ktb2k[f ]b2k

[
p̂′(·� s)]+Y(t;∞�

dσ

σ

)
� (C.7)

Note that the above summation only uses even-indexed eigenfunctions since the function
of interest for the output f (x) = −x is antisymmetric; we know that all b2k+1[f ] = 0 for
k= 1�2�3� � � �..

Now we turn to the computation of b2k[p̂′(·� τ)], given by b2k[p̂′(·� τ)] ≡ ∫ x̄−x̄ ϕ2k(x) ×
p̂′(x� s) dx. Note that from equation (2) we can write p̂′(·� τ) as

p̂′(x� s) = dσ

σ

∑
j=1�3�5����

eλjsϕ′
j(x)

〈
ϕj� p̂(·�0)

〉
�
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Using equation (C.5) and the form of the eigenfunctions:

b2k

[
p̂′(·� s)]= ∫ x̄

−x̄
ϕ2k(x)p̂′(x� s) dx

= dσ

σ

∑
j=1�3�5����

eλjs
〈
ϕj� p̂(·�0)

〉
b2k

[
ϕ′
j

]
� k= 1�2�3� � � � �

Direct computation for k= 1�2�3� � � � and j = 1�3�5� � � � gives

b2k

[
ϕ′
j

]≡ ∫ x̄

−x̄
ϕ2k(x)ϕ′

j(x) dx

= jπ

2x̄

∫ x̄

−x̄
sin
(
kπ

(
x+ x̄
x̄

))
cos
(
jπ

(
x+ x̄

2x̄

))
dx= 4kj

x̄
(
4k2 − j2

)
)

and hence

b2k

[
p̂′(·� s)]= dσ

σ

1
x̄3/2

∞∑
j=1�3�5����

eλjs
(

2
4(−1)

j+3
2 − jπ

(jπ)2

)(
4kj(

4k2 − j2
)
)

)
�

k= 1�2�3� � � � � Q.E.D.

APPENDIX D: ADDITIONAL RESULTS ON THE CALVO-PLUS MODEL

Next, we discuss whether it is possible to approximate the impulse response function
in a parsimonious way, a question that is naturally related to the shape of the impulse
response. A natural candidate would be to analyze the impulse response associated to the
leading eigenvalue as defined in Section 4.2, namely the largest eigenvalue associated with
nonzero projection coefficient bj in equation (14), for a case in which the IRF is close to
exponential. We analyze this question by focusing on a small monetary shock that causes a
marginal displacement of the invariant distribution. We assume a symmetric problem and
present results for the baseline Calvo-plus model as well as for a model with price-plans.

The next proposition gives a characterization of the ratio between the true area under
the output impulse response and the approximate one, computed using only the leading
eigenvalue:

PROPOSITION 8: Consider the marginal impulse response for output, so that f (x) = −x
and p̂= δp̄′. Define the ratio of the approximate cumulative impulse response based on the
leading eigenvalue relative to the area under the impulse response as

m2(φ) = β2(φ)/λ2(φ)
∞∑
j=1

βj(φ)/λj(φ)

= 2

[
1 + cosh(

√
2φ)

]
[
cosh(

√
2φ) − 1 −φ][1 + π2

2φ

]2 �

We note that m2(0) = 16
π4 6 ≈ 0�98, m′

2(φ) > 0, and m2(φ) → 2 as φ→ ∞.

Proposition 8 shows that the leading eigenvalue provides an accurate approximation of
the total cumulative IRF for most variants of the Calvo-plus model. At values of �≈ 0�7,
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FIGURE S3.—Calvo-plus model.

the approximate function is close to 95% of the true effect. Figure S3 shows that accuracy
degenerates as the model converges towards a pure Calvo model �→ 1.

We can also use the expression for the coefficients of the impulse response to show that
the slope of Y at t = 0 is minus infinity. This is intuitive since, after the shock, there are
firms that are just on the boundary of the inaction region where they will increase prices,
but there are no firms at the boundary at which they want to decrease prices.

PROPOSITION 9: The derivative of the IRF with respect to t at t = 0 is given by

∂

∂t
Y (t)

∣∣∣∣
t=0

= −∞ for 0 ≤φ<∞�

Note that when φ→ ∞, so we get the pure Calvo model, then the impulse response
becomes Y (t) = exp (−Nt), and thus Y ′(0) is finite.

D.1. Proofs

PROOF OF PROPOSITION 8: Rewriting the expression for m2:

m2(φ) = β2(φ)/λ2(φ)
∞∑
j=1

βj(φ)/λj(φ)

= β2(φ)/λ2(φ)
Kurt(φ)/(6N)
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=

[
1 + cosh(

√
2φ)

cosh(
√

2φ) − 1

][
8(2φ)

4(2φ) + 4π2

]

N�(
√

2φ)
[

1 + π2

2φ

]

× N
(
exp(

√
2φ) + exp(−√2φ) − 2

)2
(
exp(

√
2φ) + exp(−√2φ)

)(
exp(

√
2φ) + exp(−√2φ) − 2 − 2φ

)
= 2

[
1 + cosh(

√
2φ)

]
[
cosh(

√
2φ) − 1 −φ][1 + π2

2φ

]2 �

where the first line follows from the definition, and the first equality from the sufficient
statistic result in Alvarez, Le Bihan, and Lippi (2016). The second line uses the expression
for β2, λ2 derived above, as well as the expression for the kurtosis derived in Alvarez, Le
Bihan, and Lippi (2016). The third line uses the expression for �. The remaining lines are
simplifications. Q.E.D.

PROOF OF PROPOSITION 9: First use Proposition 2 to write

∂

∂t
Y (t)

∣∣∣∣
t=0

= lim
M→∞

M∑
j=1

βj(φ)λj(φ) = lim
M→∞

M∑
i=0

[β2+4iλ2+4i +β4+4iλ4+4i]�

Using the coefficients for βj in Proposition 2 and the expression for the eigenvalues in
equation (21), we write

∂

∂t
Y (t)

∣∣∣∣
t=0

= −N�(φ) lim
M→∞

M∑
i=0

2
([

1 + cosh(
√

2φ)

cosh(
√

2φ) − 1

]
− 1
)

= −2N�(φ) lim
M→∞

M

([
1 + cosh(

√
2φ)

cosh(
√

2φ) − 1

]
− 1
)
�

which diverges towards minus infinity for any 0 ≤φ<∞. Q.E.D.

APPENDIX E: THE IMPULSE RESPONSE IN TIME-DEPENDENT MODELS

Suppose that the probability of a price change is time-dependent, described by a sur-
vival function S(t) giving the probability that a new price survives for at least t periods
after reset. A famous example is S(t) = e−ζt giving rise to the constant hazard rate of the
Calvo model, but many others are of course embedded in the frame. The key assumption
is that S(t) does not depend on the state of the firm problem, for example, its price gap x.

Suppose a model where the firm has a price gap x (log points deviation from the static
profit maximizing profit) and is minimizing the following quadratic cost function:

v(x) = E

∫ ∞

0
e−ρt(S(t)

(
x(t)

)2 + (1 − S(t)
)
v
(
x∗))dt where x(0) = x�
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where ρ is the time discount and v(x∗) is the value of the minimized value function. Let
the law of motion of the price gap be given by the diffusion dx= −μdt + σdW , where μ
is the inflation rate and W is a standard BM.

It is immediate to use the law of motion to solve for expectations and rewrite the value
function as

v(x) =
∫ ∞

0
e−ρt(S(t)

(
(x−μt)2 + σ2t

)+ (1 − S(t)
)
v
(
x∗))dt�

The first-order condition for the optimal reset state x∗ conditional on the firm receiv-
ing an adjustment opportunity is v′(x∗) = 0 = ∫ ∞

0 e−ρtS(t)(x∗ − μt) dt, which gives the
optimality condition for the reset price

x∗ = μ

∫ ∞

0
e−ρtS(t)tdt∫ ∞

0
e−ρtS(t) dt

= μα̂� (E.1)

where α̂ is a constant summarizing the optimal degree of inflation front-loading. For
instance, in the case of Calvo pricing where S(t) = e−ζt , the optimality condition gives
α̂= 1

ζ+ρ so that, for example, the firm is front-loading into the price the inflation that will
be recorded over the expected duration of the price spell (equal to 1/ζ). The important
property of equation (E.1) is that the optimal reset point x∗ is proportional to the inflation
rate, namely x∗ = μα̂.

E.1. Impulse Response

The fact that the adjustment probability does not depend on the state of the firm makes
the characterization of the impulse response extremely simple. Let us consider an aggre-
gate shock δ reducing all price gaps by the same amount. Let f (x� t�δ) be the cross-
sectional distribution of the price gaps, t periods after an aggregate shock of size δ.

The first and second (non-centered) moments t periods after the shock can be written
as

M̃1(t�μ�δ) ≡
∫ ∞

−∞
xf (x� t�δ) dx� M̃2(t�μ�δ) ≡

∫ ∞

−∞
x2f (x� t�δ) dx�

Let N ≡ 1∫∞
0 S(t) dt be the average number of price changes (the reciprocal of the ex-

pected duration) and define the density of prices with duration larger than t as A(τ) ≡
S(τ)∫∞

0 S(t) dt =NS(τ). Let n(x�m�u) denote the density of a normal distribution with meanm
and variance u. It is easy to see that

f (x� t�δ) =
∫ t

0
A(τ)n

(
x�μ(α̂− τ)� τσ2

)
dτ

+
∫ ∞

t

A(τ)n
(
x�μ(α̂− τ) − δ)� τσ2) dτ� (E.2)

where the first integral takes into account all firms that have adjusted the price after
t periods (using the survival function), while the second integral takes into account all
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other firms that have not yet adjusted their price. This explains the different mean and
variance of the two groups: all firms reset their price gap at α̂μ, which then changes at
rate −μdt due to inflation. The group of firms that have not adjusted since the shock has
a lower mean by −δ due to the shock. The variance for both groups increases linearly in
time, as implied by the random walk nature of the idiosyncratic shocks.

Let us now use equation (E.2) to compute the non-centered moments M̃1 and M̃2, and
then compute the centered moment M2 ≡ M̃2 − M̃2

1 to analyze the impulse response of
various moments following a monetary shock δ.

Using the above definitions, we have

M̃2(t�μ�δ) =
∫ ∞

−∞

(∫ t

0
A(τ)x2n

(
x�μ(α̂− τ)� τσ2

)
dτ

+
∫ ∞

t

A(τ)x2n
(
x�μ(α̂− τ) − δ�τσ2

)
dτ

)
dx;

exchanging the time and state integrals, we have

M̃2(t�μ�δ) =
∫ t

0
A(τ)

(∫ ∞

−∞
x2n
(
x�μ(α̂− τ)� τσ2

)
dx

)
dτ

+
∫ ∞

t

A(τ)
(∫ ∞

−∞
x2n
(
x�μ(α̂− τ) − δ�τσ2

)
dx

)
dτ�

The state integrals are solved using that n is normal density. Collecting terms gives

M̃2(t�μ�δ) = (σ2 − 2μ2α̂
)∫ ∞

0
A(τ)τ dτ+μ2α̂2 +μ2

∫ ∞

0
A(τ)τ2 dτ

+ (δ2 − 2δμα̂
)∫ ∞

t

A(τ) dτ+ 2δμ
∫ ∞

t

A(τ)τ dτ� (E.3)

where we use
∫ ∞

0 A(τ) dτ = 1 and the expressions in the first line give the steady-state
value of the second (non-centered) moment.

This equation can be used to compute the steady-state moments of this economy (as
t → ∞), or a parameterization without inflation (μ= 0). Following a similar logic, we get
the first moment

M̃1(t�μ�δ) =
∫ t

0
A(τ)

(∫ ∞

∞
xn
(
x�μ(α̂− τ)� τσ2

)
dx

)
dτ

+
∫ ∞

t

A(τ)
(∫ ∞

∞
xn
(
x�μ(α̂− τ) − δ�τσ2

)
dx

)
dτ�

which gives

M̃1(t�μ�δ) = −μ
∫ ∞

0
A(τ)τ dτ+μα̂− δ

∫ ∞

t

A(τ) dτ� (E.4)

From this expression, we recover the steady-state mean

M̃1(∞�μ�0) = μ
(
α̂−

∫ ∞

0
A(τ)τ dτ

)
� (E.5)



ANALYTIC THEORY OF A MONETARY SHOCK 25

Define the impulse response (in deviation from the steady state)

H1(t�μ�δ) ≡ M̃1(t�μ�δ) − M̃1(∞�μ�0)� (E.6)

so we have H1(t�μ�δ) = −δ ∫ ∞
t
A(τ) dτ, which shows that the impulse response is linear

in the shock size (as common for time-dependent models) and that inflation only affects
the steady-state average level of x, through equation (E.5), but not the shape of the im-
pulse response (as is intuitive since the survival function is unchanged).

Using the expressions above, it is immediate to compute the expression for the second
centered moment of x as

M2(t�μ�δ) = M̃2(t�μ�δ) − (M̃1(t�μ�δ)
)2;

we have

M2(t�μ�δ) = (σ2 − 2μ2α̂
)∫ ∞

0
A(τ)τ dτ+μ2

∫ ∞

0
A(τ)τ2 dτ

+ δ2

∫ ∞

t

A(τ) dτ+ 2δμ
∫ ∞

t

A(τ)τ dτ
(

1 −
∫ ∞

0
A(τ)τ dτ

)

−μ2

(∫ ∞

0
A(τ)τ dτ

)2

− δ2

(∫ ∞

t

A(τ) dτ
)2

� (E.7)

The steady-state value of the centered second moment then is

M2(∞�μ�0) = (σ2 − 2μ2α̂
)∫ ∞

0
A(τ)τ dτ

+μ2

∫ ∞

0
A(τ)τ2 dτ−μ2

(∫ ∞

0
A(τ)τ dτ

)2

� (E.8)

It appears that inflation does have an effect on the steady-state dispersion of price
gaps that is proportional to μ2. This means that the derivative of dispersion around zero
inflation is zero, so that a small inflation only has second-order effects on the steady-state
dispersion of price gaps, namely

∂

∂μ
M2(∞�μ�0)

= 2μ
(

−2α̂
∫ ∞

0
A(τ)τ dτ+

∫ ∞

0
A(τ)τ2 dτ−

(∫ ∞

0
A(τ)τ dτ

)2)
� (E.9)

which is zero when evaluated at μ= 0.
Let us conclude by inspecting the response of the second moment after a shock δ:

H2(t�μ�δ) ≡M2(t�μ�δ) −M2(∞�μ�0); (E.10)

we have

H2(t�μ�δ) = δ2

∫ ∞

t

A(τ) dτ
(

1 −
∫ ∞

t

A(τ) dτ
)
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+ 2δμ
∫ ∞

t

A(τ)τ dτ
(

1 −
∫ ∞

0
A(τ)τ dτ

)
� (E.11)

which shows that the impulse response is made of the second-order terms δ2 and δμ.
This shows that for a small inflation and for a small shock, the impulse response does not
feature a first-order term in δ.
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