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SECTION B contains additional results about the power properties of the tests based on
T2→2 and S∞→1. Section C contains results from Monte Carlo experiments. Section D
contains details about the applications and extensions described in Sections 2.3 and 6.1 of
the main text.

APPENDIX B: ADDITIONAL RESULTS

B.1. Near-Necessity of Rate Conditions

The rate conditions T2→2(F1�F2)/τ→ ∞ and T∞→1(F1�F2)/σ → ∞ are close to neces-
sary.

THEOREM 3: For any sequence of positive real numbers δN → ∞

inf
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The statement of Theorem 3 differs from that of Theorems 1 and 2 in two ways. The
first is that the first rate conditions have been changed from [T2→2(F1�F2)/τ] → ∞ and
[T∞→1(F1�F2)/σ] → ∞ to δN[T2→2(F1�F2)/τ] → ∞ and δN[T∞→1(F1�F2)/σ] → ∞, re-
spectively. That is, the infima are taken over a (slightly) larger class of sequences in H1.
The second difference is the conclusion that the power of the tests no longer tends to one.
In fact, the limiting power of the tests may be no greater than α. To prove the theorem,
the main work is in constructing a sequence of alternatives such that T2→2(F1�F2)/τ→ 0
slower than δ−1

N , and T2→2(D1�D2) and T2→2(Dr
1�D

r
2) converge to the same nondegener-

ate distribution. Intuitively, Theorem 3 states that the tests proposed in Theorems 1 and 2
cannot detect differences between random graph models that are too similar, in the sense
that T2→2(F1�F2) or T∞→1(F1�F2) are too close to 0.
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PROOF OF THEOREM 3: I demonstrate the claim only for the test based on the 2 → 2
norm since the proof of that based on the ∞ → 1 norm is identical. The proof is con-
structive in that, for any sequence δN → ∞, it specifies a specific sequence of distribution
function matrices F1 and F2, depending on δN , such that δNT2→2(F1�F2)/τ→ ∞ or

δN

max
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ϕ∈SN

√√√√∑
i∈[N]

(∑
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(
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)
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The proof has three steps. The first step is to specify F1 and F2. For an arbitrary ε > 0,
define A1−ε = [�(1 − ε)N	] and Aε = [N] \A1−ε. That is, let A1−ε index the first �(1 −
ε)N	 agents in the sample and Aε the last 
εN�. Suppose Fij�1 = Fij�2 for i� j ∈A1−ε with
Fij�1 and Fij�2 uniformly bounded away from 0 and 1, Fij�1 = Fij�2 = 0 for i ∈Aε and j ∈A1−ε
(or i ∈A1−ε and j ∈Aε), and Fij�1 = 1 + Fij�2 for i� j ∈Aε.

The second step is to fix ε= (δNN)−1/2. Since T2→2 is O(Nε) and τ is O(
√
N) by con-

struction from the first step, it follows that T2→2(F1�F2)/τ→ 0, but δNT2→2(F1�F2)/τ→
∞.

The third step is to apply the triangle inequality twice. The first application gives

max
s∈R
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√√√√∑
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The second application gives
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for any r ∈ [R]. Both
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are bounded by Nε by construction, and thus are o(
√
N) by the second step. However,
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/
√
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are bounded away from 0 by the lower bound in Lemma 1. Since they are identically
distributed and nondegenerate by construction, the result follows. Q.E.D.

B.2. Pointwise Consistency for Regular Alternatives

Under certain conditions, the power of the tests from Theorems 1 and 2 tend to one
whenever the difference between F1 and F2 is regular in the sense that there exist two
nontrivially sized subcommunities IN� JN ⊆ [N] such that the probabilities that any agent
in IN links to any agent in JN all either increase or decrease with t. The hypothesis of this
theorem does not specify rate conditions that depend on operator norms, and so may be
easier to interpret and apply in practice. I demonstrate its use with the concrete example
of Section 2.

THEOREM 4: Suppose there exists IN� JN ⊆ [N] with lim infN→∞
|IN |∧|JN |

N
> 0, s ∈ R, and

ρN > 0 such that either for all i ∈ IN and j ∈ JN , (Fij�1(s) −Fij�2(s)) > ρN or for all i ∈ IN and
j ∈ JN , (Fij�1(s)−Fij�2(s)) <−ρN . Then the power of the test from Theorem 1 converges to one
if ρNN/ ln(N) → ∞. The power of the test from Theorem 2 converges to one if ρNN → ∞.

The benefit of Theorem 4 relative to Theorems 1 and 2 is that its hypothesis does not
use rate conditions that depend on operator norms. To illustrate its use, I sketch two sim-
ple testing problems with models based on the concrete example from Section 2. Recall
for this example that Fij�t (s) = 1 −Gij�t (ft (αi�t� αj�t�wij�t)). Suppose, for example, that the
idiosyncratic errors are identically distributed for all agent pairs and networks, the agent-
pair attributes are the same for the two networks, and the community link function has
the form f (αi�t� αj�t�wij) = �(αi�t + αj�t + wijβ) for some unknown vector β and strictly
monotonic function �. Then the hypothesis of Theorem 4 is satisfied if there exists an IN
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with lim infN→∞ IN/N > 0 such that |αi�1 − αi�2| > ρN for all i ∈ IN . That is, under these
conditions, the tests of Theorems 1 and 2 eventually (correctly) reject the null hypothesis
that the two networks have the same collection of agent-specific effects when it is false.

Alternatively, suppose that the idiosyncratic errors are identically distributed, the
agent-specific effects and agent-pair attributes are the same for the two networks, and the
community link function has the form ft (αi�αj�wij) = �t (αi�αj) + wijβ for some func-
tions {�t}t∈[2] and vector β. Then the hypothesis of Theorem 4 is satisfied if �1(αi�αj) and
�2(αi�αj) disagree on IN × JN with lim infN→∞(IN ∧ JN)/N > 0. That is, under these con-
ditions, the tests from Theorems 1 and 2 eventually (correctly) reject the null hypothesis
that the two networks have the same community link function when it is false.

PROOF OF THEOREM 4: The claim is proven by checking the hypotheses of Theorems
1 and 2. This is done in three steps. The first step is to demonstrate that the assump-
tion that there exists IN� JN ⊆ [N] with lim infN→∞

|IN |∧|JN |
N

> 0 and ρN > 0 such that for
all i ∈ IN� j ∈ JN there exists s such that (Fij�1(s) − Fij�2(s)) > ρN or for all i ∈ IN� j ∈ JN
there exists s such that (Fij�1(s) − Fij�2(s)) < −ρN implies that T2→2(F1�F2) ≥ ρNN and
T∞→1(F1�F2) ≥ ρNN2 eventually (N → ∞). Write δ= lim infN→∞

|IN |∧|JN |
N

> 0. Then

T2→2(F1�F2) = max
s∈R

max
ϕ:‖ϕ‖2=1

(∑
i∈[N]

(∑
j∈[N]

(
Fij�1(s) − Fij�2(s)

)
ϕj

)2)1/2

≥
(∑
i∈IN

(∑
j∈JN

(
Fij�1(s) − Fij�2(s)

)
√∑
j∈JN

1

)2)1/2

≥ ρNNδ2

eventually and

T∞→1(ρNF1�ρNF2) = max
s∈R

max
ϕ:‖ϕ‖∞=1

∑
i∈[N]

∣∣∣∣∑
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∣∣∣∣
= max
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ψ:‖ψ‖∞=1

∑
i∈[N]
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(
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)
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≥ max
s∈R

max
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∣∣∣∣∑
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∑
j∈[N]

(
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)
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∣∣∣∣
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s∈R

∣∣∣∣∑
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∑
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(
Fij�1(s) − Fij�2(s)

)∣∣∣∣ ≥ ρNN2δ2

eventually where the first inequality follows from the fact that for anyN×N dimensional
matrix Xs,

max
ϕ∈{0�1}N

max
ψ∈{0�1}N

∣∣∣∣∑
i∈[N]

∑
j∈[N]

Xij�sϕjψi

∣∣∣∣
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ϕ∈{−1�1}N
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ψ∈{−1�1}N

∣∣∣∣∑
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∑
j∈[N]

Xij�s

(
ϕj + 1

2

)(
ψi + 1

2

)∣∣∣∣
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= max
ϕ∈{−1�1}N

max
ψ∈{−1�1}N

∣∣∣∣∑
i∈[N]

∑
j∈[N]

[Xij�sϕjψi +Xij�s +Xij�sϕj +Xij�sψi]/4
∣∣∣∣

≤ max
ϕ∈{−1�1}N

max
ψ∈{−1�1}N

∑
i∈[N]

∑
j∈[N]

Xij�sϕjψi = max
ϕ:‖ϕ‖∞=1

max
ψ:‖ψ‖∞=1

∑
i∈[N]

∑
j∈[N]

Xij�sϕjψi�

The second step is to observe that the assumption that there exists IN� JN ⊆ [N] with
lim infN→∞

|IN |∧|JN |
N

> 0 and ρN > 0 such that for all i ∈ IN� j ∈ JN there exists s such that
(Fij�1(s) −Fij�2(s)) > ρN or for all i ∈ IN� j ∈ JN there exists s such that (Fij�1(s) −Fij�2(s)) <
−ρN implies that

δ
√
ρNN ≤ τ ≤ √

2
√
ρNN and δ

√
ρNN3 ≤ σ ≤ √

2
√
ρNN3

eventually. Without loss of generality, suppose that (Fij�1(s) − Fij�2(s)) > ρN . The two up-
per bounds then follow from the fact that Fij�t (s) is bounded in [0�1]. The first lower
bound follows from

τ = max
s∈R

max
i∈[N]

√∑
j∈[N]

(
Fij�1(s) + Fij�2(s) − 2Fij�1(s)Fij�2(s)

)

≥ max
s∈R

max
i∈IN

√∑
j∈JN

([
Fij�1(s) − Fij�2(s)

] + 2Fij�2(s)
(
1 − Fij�1(s)

))

and the fact that 2Fij�2(s)(1 − Fij�1(s)) is not negative. Similarly,

σ = max
s∈R

∑
i∈[N]

√∑
j∈[N]

(
Fij�1(s) + Fij�2(s) − 2Fij�1(s)Fij�2(s)

)

≥ max
s∈R

∑
i∈IN

√∑
j∈JN

([
Fij�1(s) − Fij�2(s)

] + 2Fij�2(s)
(
1 − Fij�1(s)

))

implies the second lower bound.
The third step is to observe that steps 1 and 2 imply that

T2→2(F1�F2)/τ ≥ √
ρNNδ

2/
√

2 and T∞→1(F1�F2)/σ ≥ √
ρNNδ

2/
√

2

eventually so that T2→2(F1�F2)/τ→ ∞ and T∞→1(F1�F2)/σ → ∞ so long as ρNN → ∞.
Since

σ/
√

ln(N) ≥ δ
√
ρNN3/ ln(N)

eventually, ρNN → ∞ also implies that σ/
√

ln(N) → ∞ and so the hypothesis of Theo-
rem 2 is satisfied. Since

τ/
√

ln(N) ≥ δ
√
ρNN/ ln(N)�

eventually, strengthening the rate condition to ρNN/ ln(N) → ∞ implies that
τ/

√
ln(N) → ∞ so that the hypothesis of Theorem 1 is also satisfied. This demonstrates

the claim. Q.E.D.
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B.3. Bounds on Power

The arguments underlying the proofs of Theorems 1–2 can be modified to provide
bounds on the power of the two tests. The upper bounds are relevant to the case in which
the effect size is small relative to the reference distribution and the lower bounds are rel-
evant to the case in which the effect size is large relative to the reference distribution. The
upper bounds do not depend on α because the (lower) bounds on the reference distribu-
tion given by Lemmas 1 and 2 used to construct them hold exactly.

The bounds depend on the parameters E[T2→2(D1�D2)], E[T∞→1(D1�D2)], τ, and σ as
defined in Section 4.2.1 of the main text. The properties of these parameters depend on
F1 and F2. I give the bounds associated with two relatively simple examples in Sections
B.3.1 and B.3.2 below.

THEOREM 5: Let (x)2
+ = x21x>0, γ ∈ [0�1/2] be arbitrary, and K = 1�783. The power of

the α-sized test based on T2→2 (given in Theorem 1) is bounded from above by

exp
(

−
(
τ− 4

√
−N

2
ln

(
γ

N3

)
−E[

T2→2(D1�D2)
])2

+
/2

)
+ γ

and bounded from below by

1 − exp
(

−
(
E

[
T2→2(D1�D2)

] −
√

−2 ln
(
α

N

)
− (1 + γ)2τ− 6(1 + γ)√

ln(1 + γ)

√
ln(N)

)2

+
/2

)
�

The power of the α-sized test based on S∞→1 (given in Theorem 2) is bounded from above by

exp
(

−
(
σ − 4

√
−N

5

2
ln

(
γ

N3

)
−KE[

T∞→1(D1�D2)
])2

+
/2

)
+ γ

and bounded from below by

1 − exp
(

−
(
E

[
T∞→1(D1�D2)

] −
(√

−2 ln
(
α

N

)
+ 4σ

)
/K

)2

+
/2

)
�

PROOF OF THEOREM 5: The claim follows the logic of Theorems 1 and 2, and so only a
sketch is provided here. The probability that either test statistic exceeds the 1−α quantile
of its reference distribution is bounded from above following

P
(
T (D1�D2) ≥Q1−α

(
Dr

1�D
r
2

)) = P(
U (D1�D2) ≥ (

Q1−α
(
Dr

1�D
r
2

) −E[
T (D1�D2)

]))
≤ exp

(−(
Q1−α

(
Dr

1�D
r
2

) −E[
T (D1�D2)

])2

+/2
)

and bounded from below following

P
(
T (D1�D2) ≥Q1−α

(
Dr

1�D
r
2

))
= 1 − P(−U (D1�D2) ≥ (

E
[
T (D1�D2)

] −Q1−α
(
Dr

1�D
r
2

)))
≥ 1 − exp

(−(
E

[
T (D1�D2)

] −Q1−α
(
Dr

1�D
r
2

))2

+/2
)
�
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where Q1−α(Dr
1�D

r
2) refers to the (1 − α)-quantile of {T (Dr

1�D
r
2)}r∈[R], U (D1�D2) =

(T (D1�D2) − E[T (D1�D2)]), T may refer to one of T2→2 or T∞→1, (x)2
+ = x21x>0, and

the inequality is due to Talagrand (see Boucheron, Lugosi, and Massart (2013), Theo-
rem 6.10) since T2→2 and T∞→1 are both convex Lipschitz functions.

Applying the bounds from Lemma 1 to the test based on T2→2 gives

P
(
T2→2(D1�D2) ≥Q2→2�1−α

(
Dr

1�D
r
2

))
≤ exp

(−(
Q2→2�1−α

(
Dr

1�D
r
2

) −E[
T2→2(D1�D2)

])2

+/2
)

≤ exp
(−(

τ̂−E[
T2→2(D1�D2)

])2

+/2
)

and

P
(
T2→2(D1�D2) ≥Q2→2�1−α

(
Dr

1�D
r
2

))
≥ 1 − exp

(−(
E

[
T2→2(D1�D2)

] −Q2→2�1−α
(
Dr

1�D
r
2

))2

+/2
)

≥ 1 − exp
(

−
(
E

[
T2→2(D1�D2)

] −
√

−2 ln
(
α

N

)

− (1 + γ)2τ− 6(1 + γ)√
ln(1 + γ)

√
ln(N)

)2

+
/2

)

for any γ ∈ [0�1/2], where Q2→2�1−α(Dr
1�D

r
2) refers to the (1 − α)-quantile of {T2→2(Dr

1�
Dr

2)}r∈[R],

νij(s) = Fij�1(s) + Fij�2(s) − 2Fij�1(s)Fij�2(s)�

τ̂ = max
s∈R

max
i∈[N]

√∑
j∈[N]

(1Dij�1≤s − 1Dij�2≤s)2� and

τ = max
s∈R

max
i∈[N]

√∑
j∈[N]

νij(s)�

Similarly, applying Lemma 2 and the inequalities T∞→1 ≤ S∞→1 ≤ KT∞→1 to the test
based on S∞→1 gives

P
(
S∞→1(D1�D2) ≥Q∞→1�1−α

(
Dr

1�D
r
2

))
≤ exp

(−(
Q∞→1�1−α

(
Dr

1�D
r
2

) −E[
S∞→1(D1�D2)

])2

+/2
)

≤ exp
(−(

σ̂ −KE[
T∞→1(D1�D2)

])2

+/2
)

and

P
(
S∞→1(D1�D2) ≥Q∞→1�1−α

(
Dr

1�D
r
2

))
≥ 1 − exp

(−(
E

[
S∞→1(D1�D2)

] −Q∞→1�1−α
(
Dr

1�D
r
2

))2

+/2
)
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≥ 1 − exp
(

−
(
E

[
S∞→1(D1�D2)

] −
√

−2 ln
(
α

N

)
− 4σ

)2

+
/2

)
�

where Q∞→1�1−α(Dr
1�D

r
2) refers to the (1 − α)-quantile of {S∞→1(Dr

1�D
r
2)}r∈[R], νij(s) =

Fij�1(s) + Fij�2(s) − 2Fij�1(s)Fij�2(s), σ̂ = maxs∈R
∑

i∈[N]

√∑
j∈[N](1Dij�1≤s − 1Dij�2≤s)2, and σ =

maxs∈R
∑

i∈[N]

√∑
j∈[N] νij(s).

The last step of the proof is to replace τ̂ with τ and σ̂ with σ in the upper bounds. To
do this, write for any i ∈ [N], s ∈ R, and t > 0,

P

(√∑
j∈[N]

(1Dij�1≤s − 1Dij�2≤s)2 ≤
√∑
j∈[N]

νij(s) − √
t

)

≤ P
(∑
j∈[N]

(1Dij�1≤s − 1Dij�2≤s)2 ≤
∑
j∈[N]

υij(s) − t
)

≤ exp
(−2t2

N

)
�

where the second inequality is due to Hoeffding (see Boucheron, Lugosi, and Massart
(2013), Theorem 2.8). The union bound implies

P(τ̂ ≤ τ− √
t) ≤N3 exp

(−2t2

N

)

and

P(σ̂ ≤ σ −N√
t) ≤N3 exp

(−2t2

N

)

which when combined with the upper bounds from before give

P
(
T2→2(D1�D2) ≥Q2→2�1−α

(
Dr

1�D
r
2

))
≤ exp

(−(
τ̂−E[

T2→2(D1�D2)
])2

+/2
)

≤ exp
(−(

τ− √
t −E[

T2→2(D1�D2)
])2

+/2
) +N3 exp

(−2t2

N

)

and

P
(
S∞→1(D1�D2) ≥Q∞→1�1−α

(
Dr

1�D
r
2

))
≤ exp

(−(
σ̂ −KE[

T∞→1(D1�D2)
])2

+/2
)

≤ exp
(−(

σ −N√
t −KE[

T∞→1(D1�D2)
])2

+/2
) +N3 exp

(−2t2

N

)

by the law of total probability. The claim follows by choosing t so that γ =N3 exp(−2t2/
N). Q.E.D.

What remains is to characterize the parameters E[T2→2(D1�D2)], E[T∞→1(D1�D2)], τ,
and σ . Since these are context specific, I consider two examples in the subsections below.
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The first example is a degree experiment where the treatment increases or decreases the
probability that every pair of agents forms a link by a constant amount. The second ex-
ample is a cluster experiment where the treatment alters agent assignment to cliques or
clusters, but does not alter link probabilities directly.

B.3.1. Example 1: Degree Experiment

The first example is a degree experiment. The treatment increases or decreases the
probability that every pair of agents forms a link by some fixed amount. In this ex-
ample, D1 and D2 are the adjacency matrices corresponding to two unweighted and
undirected networks with no loops. That is, D1 and D2 are symmetric, binary, and hol-
low matrices. The entries within a network are also identically distributed: P(Dij�t =
1) = pt ∈ (0�1). Setting Ft (s) = pt in the above definitions for this example gives that
τ = √

(p1 +p2 − 2p1p2)N and σ = √
(p1 +p2 − 2p1p2)N3. Since the matrix norms T2→2

and T∞→1 are convex, we also have E[T2→2(D1�D2)] ≥ T2→2(E[D1]�E[D2]) =N|p1 −p2|
and E[S∞→1(D1�D2)] ≥E[T∞→1(D1�D2)] ≥ T∞→1(E[D1]�E[D2]) =N2|p1 −p2|.

It follows from Theorem 5 that the power of the test based on T2→2 is bounded from
above by

exp
(−(√

(p1 +p2 − 2p1p2)N −N|p1 −p2| + o(
√
N)

)2

+/2
) + o(1)

and bounded from below by

1 − exp
(−(

N|p1 −p2| − 2
√

(p1 +p2 − 2p1p2)N + o(
√
N)

)2

+/2
)
�

The power of the test based on S∞→1 is bounded from above by

exp
(−(√

(p1 +p2 − 2p1p2)N3 −KN2|p1 −p2| + o(
√
N)

)2

+/2
) + o(1)

and bounded from below by

1 − exp
(−(

N2|p1 −p2| − 4
√

(p1 +p2 − 2p1p2)N3/K + o(
√
N)

)2

+/2
)
�

Intuitively, the upper (lower) bounds decrease (increase) with the expected entrywise dif-
ference betweenD1 andD2 (given by |p1 −p2|) and increase (decrease) with the variance
of the entrywise difference betweenD1 andD2 (given by (p1 +p2 −2p1p2)). The remain-
ing terms are asymptotically negligible.

B.3.2. Example 2: Cluster Experiment

The second example is a cluster experiment where agents belong to one of two groups.
Agents within a group are more (or less) likely to form a link than agents across groups.
In this experiment, the treatment only changes the agent’s group assignments. Unlike the
first example, the expected change in the network has mean zero, and so the power of the
test comes from the operator norms “picking out” the subset of agents that switch from
both being in the same group to being in different groups or switch from being in different
groups to being in the same group.

In this example,D1 andD2 are the adjacency matrices corresponding to two unweighted
and undirected networks with no loops. That is, D1 and D2 are symmetric, binary, and
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hollow matrices. Agents are assigned to one of two groups in each period as denoted by
the variable Zi�t ∈ {1�2}. For any time period, all agents in the same group are linked
the probability p. Agents in different time periods are linked with probability q. That is,
P(Dij�t = 1|Zi�t�Zj�t) = p1Zi�t=Zj�t + q1Zi�t �=Zj�t . I assume that p �= q.

When t = 1, half of the agents are assigned to group one and the other half are assigned
to group two. That is without loss,Zi�1 = 1+1i>N/2. When t = 2, agents switch groups inde-
pendently and randomly with probability π ∈ (0�1). Let ρ= 2π(1 −π) denote the prob-
ability for any agent-pair ij, either i switches groups in time period 2 or j switches groups,
but not both. Then direct calculation of the variances for each of the four possible group
combinations yields τ = √

((p(1 −p) + q(1 − q))(1 − ρ) + 2(p+ q− 2pq)ρ)N and σ =√
((p(1 −p) + q(1 − q))(1 − ρ) + 2(p+ q− 2pq)ρ)N3. Intuitively, (p(1 − p) + q(1 −

q))(1 − ρ) gives the variance of (Dij�1 − Dij�2) when |Zi�1 − Zj�1| = |Zi�2 − Zj�2| (nei-
ther agents switch or both agents switch) and 2(p + q − 2pq)ρ gives the variance of
(Dij�1 − Dij�2) when |Zi�1 − Zj�1| �= |Zi�2 − Zj�2| (either one of the agents switch but not
both). As in the first example, convexity of the matrix norms gives E[T2→2(D1�D2)] ≥
T2→2(E[D1]�E[D2]) =N|p−q|ρ and E[T∞→1(D1�D2)] ≥ T∞→1(E[D1]�E[D2]) =N2|p−
q|ρ.

It follows from Theorem 5 that the power of the test based on T2→2 is bounded from
above by

exp
(−(

2
√((

p(1 −p) + q(1 − q)
)
(1 − ρ) + 2(p+ q− 2pq)ρ

)
N

−N|p− q|ρ+ o(
√
N)

)2

+/2
) + o(1)

and bounded from below by

≥ 1 − exp
(−(

N|p− q|ρ− 2
√((

p(1 −p) + q(1 − q)
)
(1 − ρ) + 2(p+ q− 2pq)ρ

)
N

+ o(
√
N)

)2

+/2
)
�

The power of the test based on S∞→1 is bounded from above by

exp
(−(

2
√((

p(1 −p) + q(1 − q)
)
(1 − ρ) + 2(p+ q− 2pq)ρ

)
N3

−KN2|p− q|ρ+ o(
√
N)

)2

+/2
) + o(1)

and bounded from below by

1 − exp
(−(

N2|p− q|ρ− 4
√((

p(1 −p) + q(1 − q)
)
(1 − ρ) + 2(p+ q− 2pq)ρ

)
N3/K

+ o(
√
N)

)2

+/2
)
�

Intuitively, the bounds increase with the mean of the entrywise difference between the
within and across group linking probabilities (given by |p− q|) and the probability that
one but not both agents switch groups (given by ρ = 2π(1 − π)). It decreases with the
variances of the within and across group links (given by p(1 − p) and q(1 − q)), and the
variance of their difference (given by p+ q− 2pq). The remaining terms are asymptoti-
cally negligible.
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APPENDIX C: SIMULATION EVIDENCE

Section 4.2 in the main text predicts that the test based on S∞→1 is potentially more
powerful than that based on T2→2 for sparse and degree-heterogeneous alternatives. This
subsection provides supporting evidence from two Monte Carlo experiments. It considers
the case of unweighted unipartite networks with no loops (symmetric, binary, and hollow
adjacency matrices) for simplicity. The purpose of this section is not to simulate data that
mimics real-world networks (see instead Section 5 of the main text), but rather to assess
the predictions in a controlled environment.

C.1. The Sparse Experiment

Sparsity is a common feature of social and economic networks. For example, in many
social surveys it is common for agents to report only a handful of connections. To ex-
amine the impact of network sparsity on the power of the two tests, I consider two
Erdős–Renyi graph models. In these models, the adjacency matrices are {0�1}-valued
with P(Dij�t = 1) = 1 − Fij�1(0) = 8

N
and 1 − Fij�2(0) = 5

N
for every i� j ∈ [N]. Agents in

the first network have approximately 60% more links than agents in the second network,
violating H0. Applying the two tests to data simulated from the models with N = 50/100
and R = 10�000 yields an average p-value for the test based on the 2 → 2 norm of ap-
proximately 0�070/0�020 and an average p-value for the test based on the ∞ → 1 norm of
approximately 0�049/0�013. The test based on the ∞ → 1 norm is more powerful, but not
dramatically so.

C.2. The Degree Heterogeneous Experiment

Degree heterogeneity is another common feature of social and economic networks.
For example, in many production and collaboration networks it is common for a small
number of agents to have an order of magnitude more links than the median agent. To
examine the impact of degree heterogeneity on the power of the two tests, I consider two
second-order stochastic block models. In these models, P(Dij�t = 1) = 1 − Fij�t (0), with
F1j�1(0) = F1j�2(0) = 0�5 for all j ∈ [N] and 1 − Fij�1(0) = 0�02 and 1 − Fij�2(0) = 0�08 for
any i� j ∈ [N] \ [1]. Agents in the first network have approximately 400% percent more
links than in the second network, violating H0. However, the high degree agent, agent
1, has approximately the same number of links. Applying the two tests to data simulated
from the models with N = 50/100 and R= 10�000 yields an average p-value for the test
based on the 2 → 2 norm of approximately 0�521/0�204 and an average p-value for the test
based on the ∞ → 1 norm of approximately 0�001/0�000. The test based on the ∞ → 1
norm is much more powerful.

APPENDIX D: DETAILS ABOUT THE APPLICATIONS AND EXTENSIONS

D.1. Application 1: A Test of Link Stationarity

Goyal, Van Der Leij, and Moraga-González (2006) observe coauthorships between
economists over time and argue that the profession has become more interconnected
in response to new research technologies such as the internet. The framework of Sec-
tion 2 can be used to evaluate whether the changes in network structure are statistically
significant. Let Dij�t describe the existence of a coauthorship between economists i and j
in time period t. Suppose that the researcher observes the coauthorship data for M time
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periods. Then H0 : F1 = F2 = · · · = FM is the hypothesis of link stationarity that the differ-
ences between coauthorships over time can be explained by M draws from the same link
formation model.

One can extend the randomization test of Section 3 to this testing problem by inde-
pendently permuting all of the M links associated with each agent pair. For the choice of
test statistic, I recommend the maximum or average difference over all

(
M

2

)
pairs of net-

works using the semidefinite approximation to the ∞ → 1-norm: maxt�t′∈[M] S∞→1(Dt�Dt′)
or

∑
t�t′∈[M] S∞→1(Dt�Dt′). The test proposed in the hypothesis of Theorem 2 corresponds

to the case of M = 2. Theorem 2 applies to the case of M > 2 mutatis mutandis.
Failure to reject H0 using the network data D1�D2� � � � �DM suggests that the observed

changes in network interconnectedness are not statistically significant. The first example
in Section 5 demonstrates this application to testing link stationarity.

D.2. Application 2: A Test for Link Heterogeneity

Banerjee, Chandrasekhar, Duflo, and Jackson (2013) collect data on a dozen social
and economic ties between villagers in Karnataka, India. Jackson, Rogers, and Zenou
(2017) suggest that this data on multiple types of connections between villagers “encode
richer information than simply identifying whether two people are close or not.” The
framework of Section 2 can be used to evaluate this hypothesis. Let Dij�1 denote whether
agents i and j have one type of connection (they report being friends) and Dij�2 denote
whether agents i and j have another type of connection (they report having borrowed
or lent money to one another). Then H0 : F1 = F2 is the hypothesis of link homogeneity
that the differences between the networks can be explained by draws from the same link
formation model. Failure to reject H0 using the network data D1 and D2 suggests that
the observed differences between the friendship and lending networks are not statistically
significant. The second example in Section 5 demonstrates this application to testing link
homogeneity.

D.3. Application 3: A Test of No Treatment Effects

Rose (2004) analyzes yearly aggregate international trade data and argues that par-
ticipation in trade agreements such as the World Trade Organization (WTO) does not
significantly alter the level of trade between countries. The framework of Section 2 can
be used to evaluate this hypothesis. Let Dij�t describe the logarithm of the total value of
trade between countries i and j in year t, andXij�t be an indicator for whether country i or
country j are members of the WTO in year t. Let N denote the number of countries and
M denote the number of time periods. A nonparametric version of Rose (2004)’s gravity
model of trade is

Dij�t = αi�t + αj�t +βij + γij�tXij�t + εij�t�
where αi�t and αj�t are country-specific determinants of trade that may vary over time
such as GDP or population, βij are country-pair-specific determinants of trade that do
not vary over time such as physical distance, and εij�t is an independent and identically
distributed idiosyncratic error. The null hypothesis of no treatment effects is H0 : γij�t =
0 for all i� j ∈ [N] and t ∈ [M]. Rose (2004) also allows for two observed country-pair
determinants of trade that vary over time: indicators for whether the two countries share
the same currency or one is a colony of the other. One can restrict the randomization to
be conditional on the value of these binary variables.
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The hypothesis H0 can be tested using the framework of Section 2 by taking triple
differences so that([

(Dij�t −Di1�t) − (D2j�t −D21�t)
] − [

(Dij�t′ −Di1�t′) − (D2j�t′ −D21�t′)
])

= ([
(γij�tXij�t − γi1�tXi1�t) − (γ2j�tX2j�t − γ21�tX21�t)

]
− [

(γij�t′Xij�t′ − γi1�t′Xi1�t′) − (γ2j�t′X2j�t′ − γ21�t′X21�t′)
])

+ ([
(εij�t − εi1�t) − (ε2j�t − ε21�t)

] − [
(εij�t′ − εi1�t′) − (ε2j�t′ − ε21�t′)

])
for every t� t ′ ∈ [M] and i� j�∈ [N]. That is,H0 implies thatGij�t =Gij�t′ for every t� t ′ ∈ [M]
and i� j�∈ [N] where Gij�t refers to the marginal distribution of [(Dij�t −Di1�t) − (D2j�t −
D21�t)]. This implication can be tested using the framework of Sections 3 and 4, applied to
the differenced data [(Dij�t −Di1�t) − (D2j�t −D21�t)] instead of Dij�t . Failure to reject H0

using this data suggests that the observed differences in trade over time can be explained
by the gravity model of trade with no treatment effects in that any differences in trade for
country pairs across years with and without participation in the WTO are not statistically
significant.

To be sure, the Rose (2004) model of trade does not treat participation in the WTO
as endogenous or allow agent-specific parameters to be multilateral terms coming from
general equilibrium. Such complications may require alternative testing procedures.

D.4. Application 4: A Test for Endogenous Link Formation

Goldsmith-Pinkham and Imbens (2013) consider a joint model of student GPA and
link formation in a high-school social network.1 They hypothesize that a determinant of
GPA also drives variation in network links, and propose a one-sample parametric test for
such endogenous link formation. The framework of Section 2 can be used to specify a
nonparametric two-sample test.

LetDij�t denote whether students i and j report a friendship in school year t and ηi�t de-
scribe the social characteristic of agent i in time period t thought to drive link formation.
For example, ηi�t might be a measure of agent i’s participation in an extracurricular ac-
tivity or membership in a social clique. In the setting of Goldsmith-Pinkham and Imbens
(2013), ηi�t is the residual from a linear-in-means model of network peer effects. Network
endogeneity may then refer to the idea that the distribution of Dij�t varies with the so-
cial proximity of the agents in the social characteristics space as measured by |ηi�t −ηj�t|.
Define

D†
ij�1 =Dij�11|ηi�1−ηj�1|>|ηi�2−ηj�2| +Dij�21|ηi�1−ηj�1|<|ηi�2−ηj�2| and

D†
ij�2 =Dij�21|ηi�1−ηj�1|>|ηi�2−ηj�2| +Dij�11|ηi�1−ηj�1|<|ηi�2−ηj�2|�

In words, D†
ij�1 is an indicator for whether agents i and j are linked when they are (rela-

tively) farther apart in the social characteristics space andD†
ij�2 is an indicator for whether

agents i and j are linked when they are (relatively) closer in the social characteristics
space. Let Fij�t refer to the marginal distribution of D†

ij�t , conditional on the collection of
social characteristics η1 and η2.

1See also Hsieh and Lee (2014), Johnsson and Moon (2021), Arduini, Patacchini, and Rainone (2015),
Auerbach (2019).
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Then H0 : F1 = F2 is the hypothesis of exogenous link formation that the differences
in friendship links across school years are unrelated to student proximity in the social
characteristic space. Failure to reject H0 using the network and social characteristic data
suggests that any relationship between the students’ social proximity and the formation of
network links is not statistically significant.

D.5. Application 5: A Test for Network Externalities

Pelican and Graham (2020) consider a model of link formation in which the propensity
for agents to form a link may depend on the existence of other links in the network. They
propose a one-sample parametric test for such network externalities. The framework of
Section 2 can be used to specify a nonparametric two-sample test.

I illustrate the application with the following nonparametric version of a model moti-
vated by Bloch and Jackson (2007) (see Graham (2015), Section 2)

Dij�t = 1

{
αij + γij

N∑
k=1

Dik�tDjk�t − εij�t ≥ 0

}
�

where εij�t is independent, identically distributed, and mean-zero. The parameters αij and
γij do not vary with t. In this model, agents with many friends in common are more likely
to become friends, and the agents first draw {εij�t}i �=j and then choose links so that the link
formation rule is satisfied for every ij-pair. The use of

∑N

k=1Dik�tDjk�t on the right-hand
side is arbitrary and can be replaced by any network statistic.

The hypothesis of no network externalities corresponds to H0 : γij = 0 for all i� j ∈ [N].
Under this hypothesis, D1 and D2 are drawn from the same random graph model (in
the sense of Section 2.1), and so the randomization test proposed in Section 3 controls
size in finite samples. Notice that under the null hypothesis of no network externalities,
the joint distribution of network links does not have multiple or no equilibria and so this
complication that makes estimation of γij difficult does not impact the validity of the
proposed test procedure.

When αij and γij are thought to also vary across the two networks, the researcher might
instead test the more general hypothesisH0 : αij�1 = αij�2 and γij�1 = γij�2 = 0 for every i� j ∈
[N]. Failure to reject H0 using the network data D1 and D2 suggests that the distribution
of network links can be explained by draws from a model without network externalities
and so any network externalities are not statistically significant.

D.6. Application 6: A Test of Link Reciprocity

Calvó-Armengol, Patacchini, and Zenou (2009) specify a model of network peer effects
in which any nomination of a friendship from one agent to another indicates a social tie
between agents. The framework of Section 2 can be used to detect potential asymmetries
in link nominations. LetDij�1 =Dji�1 be an indicator for whether i nominates j andDij�2 =
Dji�2 be an indicator for whether j nominates i when surveyed.2

To illustrate the application, suppose that, in contrast to the null hypothesis of nomina-
tion symmetry, high out-degree agents (agents who make many nominations) are thought
to nominate differently than low out-degree agents (agents who make few nominations).

2I thank Vincent Boucher for suggesting the example.



TESTING FOR DIFFERENCES IN STOCHASTIC STRUCTURE 15

This choice of network statistic is arbitrary: any other network statistic can be used as a
substitute for out-degrees to construct the test. Let Ni = ∑

j Dij�1 describe the out-degree
of agent i. Define

D†
ij�1 =Dij�11Ni>Nj +Dij�21Ni<Nj and

D†
ij�2 =Dij�11Ni<Nj +Dij�21Ni>Nj �

In words, D†
ij�1 is an indicator for whether i nominates j when i makes more nominations

than j or j nominates i when j makes more nominations than i. D†
ij�2 is an indicator for

whether i nominates j when i makes less nominations than j or j nominates i when j
makes less nominations than i. Let Fij�t refer to the marginal distribution of D†

ij�t . In con-
trast to the testing problem in Application 4, the distribution of Fij�t is not conditional
on Ni and Nj . That is, when constructing the randomization test for this application, the
number of nominations are to be recomputed with each simulation.

Then H0 : F1 = F2 is the hypothesis of link reciprocity that the differences in nomina-
tions between pairs of agents are explained by draws from the same link formation model.
Failure to reject H0 using the data D1 and D2 suggests that any asymmetry in linking be-
havior (e.g., associated with the agent out-degrees) is not statistically significant.

D.7. Extension 1: A Completely Randomized Experiment

Banerjee, Chandrasekhar, Duflo, and Jackson (2018) collect data on social connec-
tions between villagers in 75 villages before and after a microfinance agency offers loans
to villagers in 43 of the villages. They find that villages in which the microfinance agency
entered were associated with relatively lower densities and argue that access to micro-
finance disincentivized the formation of some types of connections in the network. The
framework of Section 2 can be extended to test the hypothesis that the changes in the
network structure for the treatment villages are statistically significant.

Let Dij�t�v describe whether villagers i and j in village v report a social connection in
time period t,Xv be a binary indicator for whether village v was assigned to the treatment
group, Nv represent the number of agents in village v, V1 be the number of treatment
villages, V0 be the number of control villages, and V = V1 + V0 be the total number of
villages. Following Banerjee et al. (2018), each villager is assigned to exactly one village,
each village is assigned to one of two treatment statuses, villagers do not form social con-
nections across villages, and there are two time periods. Time period t = 1 is the before
period in which no treatment has been assigned to either the treatment or control vil-
lages. Time period t = 2 is the after period in which treatment has been assigned to the
treatment (Xv = 1) but not the control (Xv = 0) villages.

To illustrate the extension, I suppose that the microfinance agency selected V1 vil-
lages uniformly at random from the collection of V villages for treatment. This treat-
ment assignment mechanism corresponds to a “completely randomized experiment” in
the terminology of Imbens and Rubin (2015). Different treatment assignment mecha-
nisms require different inference strategies. The hypothesis to be tested is the null of
H0 :Dij�t�v(0) =Dij�t�v(1) for every i� j ∈ [Nv], v ∈ [V ], and t ∈ [2] (see Imbens and Rubin
(2015), Chapter 5), where Dij�t�v(τ) is the potential outcome (network) associated with
treatment (τ= 1) or no treatment (τ= 0).

For this problem, a test statistic is any real-valued function of the collection village
adjacency matrices

T
(
{Dt�v}t∈[T ]�v∈[V ]:Xv=1�{Dt�v}t∈[T ]�v∈[V ]:Xv=0

)
�
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Since the villages may all be defined on communities of different sizes, it is assumed
that the test statistic is well-defined on matrices of arbitrary dimension. Test statistics
based on the usual network statistics such as density, clustering, eigenvector centrality, etc.
satisfy this property. For the reasons outlined in the main text of the paper, I recommend
choosing T to be the average squared difference between the entrywise differences of
the two adjacency matrices as measured by the semidefinite approximation to the ∞ → 1
norm between the treatment and control groups. That is,

T
(
{Dt�v}t∈[T ]�v∈{[V ]:Xv=1}�{Dt�v}t∈[T ]�v∈{[V ]:Xv=0}

)
=

∑
v∈{[V ]:Xv=1}�v′∈{[V ]:Xv′ =0}

(
S∞→1(D1�v�D2�v) − S∞→1(D1�v′�D2�v′)

)2
�

An appealing feature of this test statistic is that it has a difference-in-differences-like
structure in that it measures the difference in the change in the network for the treated
villages relative to the change in the control villages. The use of average squared loss
here to compare treatment and control villages is arbitrary. I propose the use of the S∞→1

statistic to measure changes within a village over time.
One way to construct a critical value for this test is to generate a reference distribution

by re-randomizing the treatment assignment Xv (see Imbens and Rubin (2015), Chap-
ter 5). That is, let X :={x ∈{0�1}V : ‖x‖1 = V1} describe the set of possible counterfactual
treatment assignments (the set of all subsets of [V ] of size V1) and let {Xr}r∈[R] be R inde-
pendent and uniformly distributed draws from X . Then the idea is to use{

T
(
{Dt�v}t∈[T ]�v∈[V ]:Xrv=1�{Dt�v}t∈[T ]�v∈[V ]:Xrv=0

)}
r∈[R]

as a reference distribution for testing H0. The construction of the test based on this ref-
erence distribution follows exactly Section 3 in the main text. The test controls size by
construction. I suspect that it is straightforward to derive power properties of the test
based on the ∞ → 1 norm suggested above using the arguments of Theorems 2, 3, and 5,
but leave this to future work.

D.8. Extension 2: A One-Sample Test of Independence

Fafchamps and Gubert (2007) study link formation in a risk-sharing network and argue
that the surveyed network connections are unrelated to the respondents’ occupations.
The framework of Section 2 can be extended to test that the network links and the agent
occupations are unrelated in the following sense. Let Dij describe whether agents i and j
report a network connection, Xi describe the occupation of agent i, and N be the num-
ber of agents in the community. Then the hypothesis to be tested is that {Dij}i�j∈[N] and
{(Xi�Xj)}i�j∈[N] have mutually independent entries.

Let T (D�X) be a real-valued test statistic defined on the matrix of network connec-
tions and vector of occupation assignments. For this testing problem, I suggest a ran-
domization test based on rerandomizing the occupation assignments. Let � be the set
of permutations on [N] and {πr}r∈[R] be a collection of independent and uniformly dis-
tributed draws from �. In words, πri refers to another agent in the community that is ran-
domly assigned to agent i and Xr

i :=Xπri
refers to the occupation associated with agent

πri . Then under the null hypothesis, T (D�X) and T (D�Xr) have the same distribution
and so {T (D�Xr)}r∈[R] can be used as a reference distribution to test the null hypothesis,
exactly as in Section 3 of the main text.
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For the reasons outlined in the main text of the paper, I recommend choosing T to be
the semidefinite approximation to the ∞ → 1 norm of the Hadamard (entrywise) product
of the matrices D and W :={1Xi=Xj}i�j∈[N]. That is,

S∞(D ·W�0) = 1
2

max
s∈R

max
X∈X2N

〈[
0N×N D ·W
D ·W 0N×N

]
�X

〉
�

where · refers to the Hadamard product and 0N×N is an N ×N matrix of 0s. The intuition
behind this test statistic is that if agents with similar occupations are more likely to form a
link, then one would expectD ·W to be larger (in the sense that its matrix norm is bigger)
than D ·W r , where W r := {1Xri =Xrj}i�j∈[N] is the matrix of occupations assigned at random.
The test controls size by construction. A study of its power properties is left to future
work.

D.9. Extension 3: A One-Sample Specification Test

Jackson and Rogers (2007) argue that real-world social networks are connected in ways
that are poorly approximated by, for example, an Erdős–Renyi model of link formation.
The framework of Section 2 can be extended to test whether some observed network
data can be explained by a particular parametric model of link formation. Let Dij be
the observed networks links described by the (true) unknown model Fij�1. Let Fij�2 be the
distribution of links associated with a model chosen by the researcher. Then H0 : Fij�1 =
Fij�2 is the hypothesis that the distribution of links given by the model that generated the
data and those given by the model chosen by the researcher are the same. The network
formation model F2 does not need to have a closed-form representation (it only needs to
be simulatable).

To extend the framework of Section 2 to this testing problem, I propose converting
it to two-sample problem by first drawing network data D′ from F2. Let T (D�D′) be
an arbitrary real-valued test statistic as described in Section 3 evaluated on D and D′.
Then I propose constructing a reference distribution for T (D�D′) by drawing additional
simulations from F2. That is, I suggest independently drawing 2R collections of networks
from F2, collecting them into two groups {Dr}r∈[R] and {D′r}r∈[R], and using {T (Dr�D′r)}r∈[R]

as a reference distribution for T (D�D′). As motivated in the main text, I propose using
S∞→1(D�D′) for the choice of test statistic. The test controls size by construction. I leave
a study of the power properties to future work.

In many cases, the network formation model F2 chosen by the researcher may depend
on unknown parameters. For example, the researcher may hypothesize that D is drawn
from an Erdős–Renyi model with some unknown value of link probability θ ∈ [0�1]. One
way to test this hypothesis is to test each parameter individually (or each parameter in a
representative subcollection) and reject the null hypothesis only if the test rejects at every
value. This test controls size by construction, but may have low power. Another way to
test this hypothesis is to estimate the parameters of the model underH0 by some method,
and use the estimated value of the parameters to specify F2 in the above test. I suspect
that under certain conditions such a test will control size asymptotically, but leave this to
future work.

APPENDIX E: INDEPENDENCE ASSUMPTION

Section 2 assumes that for every ij-pair, the two random variables Dij�1 and Dij�2 are
independently drawn from Fij�1 and Fij�2, respectively. This assumption can be omitted
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without loss in two key settings. First, the independence condition is unnecessary if Dij�1

and Dij�2 are {0�1}-valued (i.e., D1 and D2 represent unweighted networks). Second, the
independence condition is unnecessary if the test statistic can be written as a functional of
�(·) = 1{D1 ≤ ·}− 1{D2 ≤ ·}. This second setting includes the class of test statistics based
on operator norms proposed in Section 4.1.

To see why, note that the validity of the randomization test outlined in Section 3 follows
so long as T (D1�D2) and T (Dr

1�D
r
2) have the same distribution under the null hypothesis.

Since {Dij�1�Dij�2}i>j∈[N] are independent across agent pairs, validity follows if {Dij�1�Dij�2}
and {Dr

ij�1�D
r
ij�2} are equal in distribution under the null hypothesis. That is, Dij�1 and Dij�2

are exchangeable: (Dij�1�Dij�2) =d (Dij�2�Dij�1). Exchangeability is generally weaker than
the assumption that Dij�1 and Dij�2 are both independent and identically distributed and
stronger than the assumption that Dij�1 and Dij�2 are just identically distributed. However,
in the special case that Dij�1 and Dij�2 are {0�1}-valued, the assumption that Dij�1 and Dij�2

are just identically distributed is equivalent to the assumptionDij�1 andDij�2 are exchange-
able. And so in the special case that Dij�1 and Dij�2 are {0�1}-valued, the assumption that
Dij�1 and Dij�2 are independent can be omitted without loss.

By the same logic, the independence assumption is also unnecessary if the test statistic
only depends on D1 and D2 through the functional �(·) = 1{D1 ≤ ·} − 1{D2 ≤ ·}. This is
because for any s ∈R the variable 1{Dij�1 ≤ s} is also {0�1}-valued, and so the null hypoth-
esis that Dij�1 and Dij�2 are identically distributed implies that 1{Dij�1 ≤ s} and 1{Dij�2 ≤ s}
are exchangeable. And so the tests based on the operator norms from Section 4 are valid
in finite samples even if Dij�1 and Dij�2 are real-valued and not independent, because they
only depend on Dij�1 and Dij�2 through the collection of {0�1}-valued random variables
1{Dij�2 ≤ ·} and 1{Dij�2 ≤ ·}.

In addition, none of the results about the power properties of the two tests based on
operator norms (i.e., Theorems 1–5B) require the condition that Dij�1 and Dij�2 are inde-
pendent. These results rely on the concentration of 1{Dt ≤ s}− Ft for t ∈ [2], which only
requires independence of {Dij�1�Dij�2}i>j∈[N] across agent pairs. See, in particular, Lemmas
1 and 2 in Appendix A of the main text.

A place where the assumption that Dij�1 and Dij�2 are independent is used is in the Sec-
tion 3 claim that a generic test statistic T (D1�D2) produces a test that is valid in finite
samples. This includes the tests based on the network statistics (e.g., agent degree, eigen-
vector centrality, clustering, etc.), which are still valid when independence is weakened to
exchangeability under the null hypothesis but potentially invalid with just the assumption
that Dij�1 and Dij�2 are identically distributed un the null hypothesis.
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