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APPENDIX A: ADDITIONAL DISCUSSIONS AND RESULTS

A.1. Equivalence Between the Two-Dimensional Value Model and the Pareto Weight Model

IN THIS APPENDIX, we establish an equivalence between (i) our “two-dimensional” model,
in which the designer maximizes total value (VAL) over feasible mechanisms according
to Definition 3 and (ii) a “one-dimensional” model in which agents only report their rates
of substitution r and the designer maximizes weighted surplus (with Pareto weights λj)
according to (VAL’). While we only need one direction of the equivalence to justify our
derivation of optimal mechanisms in Section 4, we demonstrate the full equivalence to
show that we could just as well start our analysis with the one-dimensional model (with
Pareto weights given as a primitive of the model) and our conclusions would remain iden-
tical.

To simplify notation, we use (X̄B� X̄S� T̄B� T̄S) to denote a generic (direct) mechanism
eliciting (vK� vM) and (XB�XS�TB�TS) to denote a generic (direct) mechanism eliciting r.
Formally, a mechanism (XB�XS�TB�TS) is feasible in the one-dimensional model if, for
all r� r̂,

XB(r)r − TB(r)≥XB(r̂)r − TB(r̂)�
−XS(r)r + TS(r)r ≥ −XS(r̂)r + TS(r̂)�
XB(r)r − TB(r)≥ 0�

−XS(r)r + TS(r)≥ 0�∫ r̄B

rB

XB(r)μdGB(r)=
∫ r̄S

rS

XS(r)dGS(r)�

∫ r̄B

rB

TB(r)μdGB(r)≥
∫ r̄S

rS

TS(r)dGS(r)�

A feasible mechanism (XB�XS�TB�TS) is optimal in the one-dimensional model if it max-
imizes (VAL’) among all feasible mechanisms.

Piotr Dworczak: piotr.dworczak@northwestern.edu
Scott Duke Kominers: kominers@fas.harvard.edu
Mohammad Akbarpour: mohamwad@stanford.edu

© 2021 The Econometric Society https://doi.org/10.3982/ECTA16671

https://www.econometricsociety.org/suppmatlist.asp
mailto:piotr.dworczak@northwestern.edu
mailto:kominers@fas.harvard.edu
mailto:mohamwad@stanford.edu
https://www.econometricsociety.org/
https://doi.org/10.3982/ECTA16671


2 P. DWORCZAK, S. D. KOMINERS, AND M. AKBARPOUR

THEOREM 8: If a mechanism (X̄B� X̄S� T̄B� T̄S) is feasible (resp. optimal) in the two-
dimensional model, then there exists a payoff-equivalent mechanism (XB�XS�TB�TS) elic-
iting one-dimensional reports that is feasible (resp. optimal) in the one-dimensional model
with Gj equal to the distribution of vK/vM under Fj and λj given by

λj(r)= E
j

[
vM

∣∣∣ vK
vM

= r
]
� (A.1)

Conversely, if a mechanism (XB�XS�TB�TS) is feasible (resp. optimal) in the one-
dimensional model, then there exists a joint distribution Fj of (vK� vM) such that this mecha-
nism (with agents reporting vK/vM) is feasible (resp. optimal) in the two-dimensional model,
vK/vM has distribution Gj , and (A.1) holds.

PROOF: We establish Theorem 8 in three steps:
1. We show that, without loss of generality, an incentive-compatible mechanism in

the two-dimensional model only elicits information about the rate of substitution,
vK/vM ; thus, the space of feasible mechanisms is effectively the same in both set-
tings.

2. We argue that the total value function (VAL) corresponds exactly to the objective
function (VAL’) with Pareto weights λj(r) taken to be the expected value of vM con-
ditional on observing a rate of substitution r = vK/vM .

3. As a consequence, if Gj is the distribution of vK/vM under Fj , and Pareto weights
are defined as in Step 2, the same mechanism is optimal in both settings.

Step 1. We first formalize the idea that although agents have two-dimensional types, it
is without loss of generality to consider mechanisms that only elicit information about the
rate of substitution. While it is clear that the rate of substitution fully describes agents’
behavior, it could hypothetically be possible that the designer would elicit more informa-
tion by offering different combinations of trade probabilities and transfers among which
the agent is indifferent; we show, however, that this is only possible for a measure-zero
set of agents’ types, and thus cannot strictly improve the designer’s objective.

LEMMA 2: If (X̄B� X̄S� T̄B� T̄S) is incentive-compatible in the two-dimensional model, then
there exists a mechanism (XB�XS�TB�TS) eliciting one-dimensional reports such that

X̄j(v
K� vM)=Xj(v

K/vM) and T̄j(v
K� vM)= Tj(vK/vM)

for almost all (vK� vM) and j ∈ {B�S}.

We prove Lemma 2 at the end of Appendix A.1.1 Thanks to the lemma, and the as-
sumption that there are no mass points in the distribution of values, we can assume
(without loss of optimality) that agents report their rates of substitution vK/vM in the
two-dimensional model. Consequently, by direct inspection of the definition, the space of
feasible mechanisms is the same in both models.

Step 2. Suppose that the distribution Fj and the weights λj(r) are such that Λj = E
j[vM]

for j ∈ {B�S}, and λj(r) is given by (A.1). Moreover, let Gj be the distribution of the

1Lemma 4 of Che, Dessein, and Kartik (2013)—who studied a different economic problem—is mathemati-
cally equivalent to Lemma 2; we nevertheless provide a proof for completeness.
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random variable vK/vM when (vK� vM) is distributed according to Fj . Then, using Step 1,
the objective functions (VAL) and (VAL’) become identical:

μEB
[
XB

(
vK

vM

)
vK − TB

(
vK

vM

)
vM

]
+E

S

[
−XS

(
vK

vM

)
vK + TS

(
vK

vM

)
vM

]

= μEB[EB[vM | r]︸ ︷︷ ︸
λB(r)

[
XB(r)r − TB(r)

]
︸ ︷︷ ︸

UB(r)

] +E
S
[
E
S[vM | r]︸ ︷︷ ︸
λS(r)

[−XS(r)r + TS(r)
]

︸ ︷︷ ︸
US(r)

]
�

Step 3. The first part of Theorem 8 follows directly from preceding arguments. To prove
the second part, we have to show that for any (fixed) Gj and λj(r), there exists a distribu-
tion Fj of (vK� vM) that induces thatGj and λj(r). The proof is simple: Fixing the random
variable r (on some probability space) with distribution Gj(r), define random variables
vK = rλj(r) and vM = λj(r). It is clear that the distribution of vK/vM is the same as that of
r because these random variables are equal. Moreover, by construction, equation (A.1)
must hold. Q.E.D.

Proof of Lemma 2

We start with the following result that provides a key step of the proof.

LEMMA 3: Let X(θ1� θ2) be a function defined on [θ1� θ̄1] × [θ2� θ̄2], with θ1� θ2 ≥ 0, and
assume that X(θ1� θ2) is non-decreasing in θ1/θ2, that is,

θ1

θ2
>
θ′

1

θ′
2

=⇒ X(θ1� θ2)≥X(
θ′

1� θ
′
2

)
�

Then, there exists a non-decreasing function x : [θ1/θ̄2� θ̄1/θ2] → R such that X(θ1� θ2) =
x(θ1/θ2) almost everywhere.

PROOF: Consider Y(r�θ2) := X(rθ2� θ2). For small enough ε > 0 and almost all r ∈
[θ1/θ̄2� θ̄1/θ2],

Y(r + ε�θ2)≥ Y (
r� θ′

2

)
� ∀θ2� θ

′
2�

by assumption. Because Y(r�θ2) is non-decreasing in r for every θ2, it is continuous in r
almost everywhere. Thus, for almost all r, we obtain

Y(r�θ2)≥ Y (
r� θ′

2

)
� ∀θ2� θ

′
2;

this, however, means that Y(r�θ2)= x(r) for almost all r (that is, Y does not depend on
θ2), for some function x, that is moreover non-decreasing. Thus, X(rθ1� θ2) = x(r) for
almost all r. Therefore,

X(θ1� θ2)=X
(
θ1

θ2
θ2� θ2

)
= x

(
θ1

θ2

)

almost everywhere, as desired. Q.E.D.

We now show that incentive-compatibility for buyers implies that X̄B(v
K� vM) =

XB(v
K/vM) for some non-decreasing XB. The argument for sellers is identical, and the

statement for transfer rules follows immediately from the payoff equivalence theorem.
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Incentive-compatibility means that, for all (vK� vM) and (v̂K� v̂M) in the support of FB,
we have

X̄B(v
K� vM)

vK

vM
− T̄B(vK� vM)≥ X̄B

(
v̂K� v̂M

) vK
vM

− T̄B
(
v̂K� v̂M

)
� (A.2)

as well as

X̄B

(
v̂K� v̂M

) v̂K
v̂M

− T̄B
(
v̂K� v̂M

) ≥ X̄B(v
K� vM)

v̂K

v̂M
− T̄B(vK� vM)� (A.3)

Putting (A.2) and (A.3) together, we have

(
X̄B(v

K� vM)− X̄B

(
v̂K� v̂M

))( vK
vM

− v̂K

v̂M

)
≥ 0�

It follows that
vK

vM
>
v̂K

v̂M
=⇒ X̄B(v

K� vM)≥ X̄B

(
v̂K� v̂M

)
�

By Lemma 3, it follows that there exists a non-decreasing XB(·) such that

X̄B(v
K� vM)=XB(v

K/vM)

almost everywhere, which finishes the proof.

A.2. Why a Factor of 2 in the Definition of High Same-Side Inequality?

In this Appendix, we offer intuition for why 2 is the threshold separating low and high
same-side inequality—that is, why rationing may be part of an optimal mechanism only
when the trader with the lowest rate of substitution has a conditional value for money
more than twice the average value. We focus on the seller side of the market, although an
analogous intuition holds for the buyer side, as well.

With high seller-side inequality, Proposition 1 indicates that rationing is optimal at
small volumes of trade (if the budget constraint is not too tight). To simplify notation, we
assume that rS = 0, and consider the welfare associated with posting a small price p≈ 0.
As p is small, we can treat λS(r) as being approximately constant—equal to λS(0)—for
r ∈ [0�p].

If the budget constraint is not binding, then the opportunity cost of a unit of money
spent on purchases of the object is the marginal value of the lump-sum transfer, ΛS . Thus,
the welfare gain from setting price p is

G0 :=
∫ p

0
λS(r)(p− r)dGS(r)≈ λS(0)gS(0)

∫ p

0
(p− r)dr�

while the (opportunity) cost is

C0 :=ΛS ·pGS(p)�

Now, suppose that the designer considers introducing rationing by raising the price to
p+ ε while keeping the quantity fixed, for some small ε. The gain is now

G1 := GS(p)

GS(p+ ε)
∫ p+ε

0
λS(r)[p+ ε− r]dGS(r)≈ λS(0)gS(0)

∫ p+ε

0
(p+ ε− r) p

p+ ε dr�



REDISTRIBUTION THROUGH MARKETS 5

where GS(p)

GS(p+ε) is the rationing coefficient, and the new opportunity cost is

C1 :=ΛS · (p+ ε)GS(p)= C0 + εΛSgS(0)p�

Rationing is optimal when the change in gains exceeds the change in costs:

�G := λS(0)︸ ︷︷ ︸
value for money

g(0)p︸ ︷︷ ︸
mass

1
2
ε︸︷︷︸

per-agent surplus

>�C := ΛS︸︷︷︸
value for money

g(0)p︸ ︷︷ ︸
mass

ε︸︷︷︸
per-agent cost

�

that is, when λS(0) > 2ΛS . Intuitively, increasing the price received by sellers by ε requires
raising ε in additional revenue. But when the designer increases price by ε, half of the re-
sulting surplus is wasted because of inefficient rationing. Thus, for the switch to rationing
to be socially optimal, it has to be that the agents who receive the extra ε of money value
it at least twice as much as do the agents who give it up.

This intuition is illustrated in Figure A.1. The surplus G0 associated with price p is
given by the triangle ABC. The dotted triangle AED illustrates the hypothetical surplus
associated with raising the price to p+ ε without rationing—which increases surplus by
an amount proportional to ε (up to terms that are second-order in ε). With rationing, the
actual surplus is increased by an amount proportional to ε

2 and given by the area of the
solid triangle ABD (the seller with rate of substitution 0 is exactly indifferent between
receiving a price p for sure and receiving the price p + ε with probability p

p+ε under
rationing). The white area between the solid triangle ABD and the dotted triangle AED
represents the surplus lost due to inefficient rationing. The figure depicts unweighted
surplus—the actual contribution of the triangular areas to welfare is given by multiplying
the area by the conditional value for money, which is approximately λS(0) when p is small.

FIGURE A.1.—The surplus (gross of lump-sum transfers) from posting a price p (triangle ABC) versus from
rationing at a price p+ ε (triangle ABD).
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Rationing is optimal when

λS(0) · ε
2

exceeds the per-agent change in costs associated with the price increase from p to p+ ε,
which is

ΛS · ε�
The intuition just presented illustrates, in particular, that the threshold of 2 does not

depend on our uniform distribution assumption. Indeed, our reasoning only relies on
local (first-order) changes, so all the calculations remain approximately valid for any dis-
tribution GS that has a positive continuous density around its lower bound rS . For small
changes in the price, the region of the surplus change is approximately a triangle, and
hence the factor of 2 comes out of the formula for the area of a triangle.

APPENDIX B: PROOFS OMITTED FROM THE MAIN TEXT

In this appendix, we prove the results presented in Sections 3–5. Because the results in
Section 3 are mostly corollaries of the general results derived in Section 5, we first prove
the results of Section 4, then those of Section 5, and lastly those of Section 3.

B.1. Proof of Lemma 1

Our optimization problem is an infinite-dimensional linear program: To use a La-
grangian approach, we need to check that a relevant qualification constraint is satis-
fied. Indeed, constraint (4.5) satisfies the generalized Slater condition (see, e.g., Proposi-
tion 2.106 and Theorem 3.4 of Bonnans and Shapiro (2000)).2 Thus, an approach based
on putting a Lagrange multiplier α ≥ 0 on the constraint (4.5) is valid (strong duality
holds). Moreover, we can assume without loss of generality that constraint (4.5) binds at
the optimal solution (because Gj admits a density, it follows that there exists a positive
measure of buyers and sellers with strictly positive value for good M , so it is always sub-
optimal to leave good M unassigned). This means that solving the problem (4.3)–(4.5) is
equivalent to finding α
 ≥ 0 such that the solution to the problem

max
{∫ 1

0
φα




B (q)d
(
μHB(q)

) +
∫ 1

0
φα




S (q)dHS(q)

}
(B.1)

over HS�HB ∈ �([0�1])�UB�US ≥ 0, subject to
∫ 1

0
qd

(
μHB(q)

) =
∫ 1

0
qdHS(q) (B.2)

satisfies constraint (4.5) with equality.
The value of the problem (B.1)–(B.2) can be computed by parameterizing Q =∫ 1

0 qd(μHB(q)) and noticing that for a fixed Q, the choice of the optimal HS is formally
equivalent to choosing a distribution of posterior beliefs in a Bayesian persuasion problem
with two states, where equation (B.2) is the Bayes plausibility constraint. Hence, by Au-
mann and Maschler (1995) or Kamenica and Gentzkow (2011), the optimal distribution

2Roughly, this condition requires the feasible set to have an interior point. This can be easily guaranteed for
our problem by endowing the space of distributions with, for example, the weak
 topology.
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H

S yields the value of the concave closure of φα
S (q) at Q. Similarly, the optimal distribu-

tion H

B yields the value of the concave closure of μφα
B (q) at Q/μ. Optimizing the value

of the unconstrained problem co(φα
S )(Q) + μ co(φα
B )(Q/μ) over Q�UB�US ≥ 0 yields
the optimal solution to the original problem if constraint (4.5) holds with equality at that
solution. This gives the first part of the lemma.

Conversely, if H

B and H


S are part of a solution to the problem (4.3)–(4.5), then we
argued that there exists α
 such that H


B and H

S are also part of a solution to the

problem (B.1)–(B.2). Moreover, constraint (4.5) binds at the optimal solution. Fixing
Q := ∫ 1

0 qdH


S(q)= ∫ 1

0 qd(μH


B(q)), optimality implies that H


j must concavify φα
j (q) at
Q, for j ∈ {B�S}. As a result, sinceQ is also chosen optimally, it must be thatQmaximizes
co(φα
S )(Q)+μ co(φα
B )(Q/μ). This yields the second part of the lemma.

B.2. Completion of the Proof of Theorem 1

First, we determine the optimal lump-sum transfers. Lemma 1 requires that the prob-
lem

max
Q∈[0�1]�UB�US≥0

{
co

(
φα




S

)
(Q)+μ co

(
φα




B

)
(Q/μ)

}
has a solution, and this restricts the Lagrange multiplier to satisfy α
 ≥ max{ΛS�ΛB}. In-
deed, in the opposite case, it would be optimal to set Uj = ∞ for some j and this would
clearly violate constraint (4.5). When ΛB = ΛS , it is either optimal to set α
 > ΛS = ΛB

and satisfy (4.5) with equality and US =UB = 0 (in which case there is no revenue and no
lump-sum redistribution), or to set α
 = ΛS = ΛB and US = UB ≥ 0 to satisfy (4.5) with
equality (in which case the revenue is redistributed to both buyers and sellers as an equal
lump-sum payment).3 When ΛB > ΛS , by similar reasoning, US must be 0, and UB ≥ 0 is
chosen to satisfy (4.5). When ΛS >ΛB, it is the seller side that obtains the lump-sum pay-
ment that balances the budget (4.5). In short, we can write the conditions for optimality
of US and UB as (ignoring the constraint (4.5) for now)

US ≥ 0� US

(
α
 −ΛS

) = 0; (B.3)

UB ≥ 0� UB

(
α
 −ΛB

) = 0� (B.4)

Next, we consider the optimal lotteries H

S and H


B. From Lemma 1, we know that each
optimal lotteryH


j concavifies a one-dimensional function φα
j (q) while satisfying a single
linear constraint (4.5). Therefore, by Carathéodory’s theorem, we can assume without loss
of generality thatH


j is supported on at most three points (an analogous mathematical ob-
servation in the context of persuasion was first made by Le Treust and Tomala (2019) and
was further generalized and explained by Doval and Skreta (2018); the version relevant
to our case, which requires dealing with arbitrary distributions of posteriors, was derived
by Kang and Zheng (2021)). We argue next that the dimension of the optimal pair of
lotteries (H


B�H


S) can be further reduced.

We denote ψB(q) := ∫ r̄B

G−1
B (1−q) JB(r)gB(r)dr and ψS(q) := ∫ G−1

S (q)

rS
JS(r)gS(r)dr. We then

let supp(H

j ) = {q1

j � q
2
j � q

3
j } with q1

j ≤ q2
j ≤ q3

j . Observe that because the distribution H

j

concavifiesφα
j (q), it must be that co(φα
j )(q) is affine on the convex hull of the support of

3Of course, in this case, the surplus can also be redistributed only to the sellers, or only to the buyers, as
long as condition (4.5) holds.
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H

j . Moreover, because the volume of trade Q := ∫ 1

0 qdH


s (q) maximizes the concavified

Lagrangian co(φα
S )(q)+μ co(φα
B )(q/μ) over q, it follows that the Lagrangian is constant
in q on supp(H


B) ∩ supp(H

S), that is, on [q� q̄] := [max{q1

S� q
1
B}�min{q3

S� q
3
B}]. Indeed, we

established that the concavified Lagrangian is affine on [q� q̄]; if it were not constant, the
optimalQ would coincide with either q or q̄, but in both cases this would imply that q= q̄,
making our claim trivially true. Thus, Q ∈ [q� q̄] and any volume of trade between q and
q̄ is optimal.

The preceding reasoning, in particular the last observation, implies that the following
linear system admits a solution (here, the solution νij represents the realization probabili-
ties of each qij , while US and UB satisfy (B.3) and (B.4)):

μ

3∑
i=1

νiBq
i
B =

3∑
i=1

νiSq
i
S� (B.5)

μ

3∑
i=1

νiBψB
(
qiB

) =
3∑
i=1

νiSψS
(
qiS

) +US +μUB� (B.6)

3∑
i=1

νiB =
3∑
i=1

νiS = 1� (B.7)

ν1
B� ν

2
B� ν

3
B� ν

1
S� ν

2
S� ν

3
S ≥ 0� (B.8)

q≤
3∑
i=1

νiSq
i
S ≤ q̄� (B.9)

where (B.5) and (B.6) correspond to binding constraints (4.4) and (4.5), (B.7)–(B.8) state
that we have well-defined probability measures, and (B.9) makes sure that the Lagrangian
is maximized. From Lemma 1, any solution (US�UB� ν) to the linear system (B.3)–(B.9)
constitutes a solution to our original problem (by defining H


j as putting a probability
weight νij on qij for all i and j). We can now establish the key claim.

CLAIM 2: Either:
• there exists a solution (US�UB�H



B�H



S) to (B.3)–(B.9) with US =UB = 0 and∣∣supp

(
H

B

)∣∣ + ∣∣supp
(
H

S

)∣∣ ≤ 4; or (B.10)

• there exists a solution (US�UB�H


B�H



S) to (B.3)–(B.9) with∣∣supp

(
H

B

)∣∣ + ∣∣supp
(
H

S

)∣∣ ≤ 3� (B.11)

PROOF: We consider two cases. First suppose that α
 =Λj for some j. For concreteness
and without loss of generality, we let j = S and set UB = 0; note that this automatically
satisfies (B.4). Then, constraints (B.3)–(B.4) reduce to

US ≥ 0� (B.12)

The linear system (B.5)–(B.9), (B.12) has four equality constraints and seven free vari-
ables (six variables in the vector ν and US), and admits a solution. By the Fundamen-
tal Theorem of Linear Algebra, there exists a solution in which seven constraints in
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the problem (B.5)–(B.9), (B.12) hold as equalities. Suppose first that (B.12) holds as
an equality so that US = 0. Then, there exists a solution (H


B�H


S) satisfying (B.10). In-

deed, (B.10) is clear if the two additional binding constraints in the (sub)system (B.5)–
(B.9) are constraints (B.8). In the alternative case when (B.9) binds, we conclude from
[q� q̄] := [max{q1

S� q
1
B}�min{q3

S� q
3
B}] that one of H


j must be degenerate (supported on a
singleton), so the claim follows as well. Next, suppose that (B.12) holds as a strict in-
equality. Then, there exists a solution (H


B�H


S) satisfying (B.11) because additional three

inequalities must be equalities in the (sub)system (B.5)–(B.9).
Now consider the second case in which α
 >max{ΛB�ΛS}. Then, we must have UB =

US = 0 in all solutions. Thus, the linear system (B.5)–(B.9) has four equality constraints
and six free variables (once US and UB are fixed). By the same reasoning as before, there
exists a solution (H


B�H


S) satisfying (B.10). This finishes the proof of the claim. Q.E.D.

Finally, we translate the results on the cardinality of the support of (H

B�H



S) into our

mechanism characterization.

CLAIM 3: If | supp(H

B)| + | supp(H


S)| ≤ m, then the corresponding direct mechanism
offers at most m− 2 rationing options in total.

PROOF: We consider the seller side; the argument for the buyer side is analogous. Sup-
pose that | supp(H


S)| = n. Let rkS =G−1
S (q

k
S), for all k= 1� � � � � n. Then, the corresponding

optimal XS(r) is given by

XS(r)=
n∑
k=1

νkS1{r≤rkS }�

By direct inspection, | Im(XS) \ {0�1}| ≤ n− 1, so the conclusion follows. Q.E.D.

Theorem 1 follows from Claim 2 and Claim 3.

B.3. Proof of Theorem 2

We show that under the assumptions of the theorem, the functions φα
j (q) are strictly
concave with the optimal Lagrange multiplier α
. This is sufficient to prove optimality
of a competitive mechanism because of Lemma 1—when the objective function is strictly
concave, it coincides with its concave closure and the unique optimal distribution of quan-
tities is degenerate, corresponding to a competitive mechanism.

As argued in the proof of Theorem 1, we must have α
 ≥ max{ΛS�ΛB}. Then, the deriva-
tive of the function φα
S (q) takes the form

(
φα




S

)′
(q)=ΠΛ

S

(
G−1
S (q)

) − α
JS
(
G−1
S (q)

)
�

so it is enough to prove that

ΠΛ
S (r)− α
JS(r) (B.13)

is strictly decreasing in r. Rewriting (B.13), we have

ΠΛ
S (r)− α
JS(r)=ΛS

[
∫ r

rS

[
λ̄S(τ)− 1

]
gS(τ)dτ

gS(r)
− r

]
︸ ︷︷ ︸

�S(r)−r

−(
α
 −ΛS

)
JS(r)�
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Virtual surplus JS(r) is non-decreasing, and α
 ≥ΛS , so it is enough to prove that the first
term is strictly decreasing. The function �S(r) − r is strictly quasi-concave by Assump-
tion 1, so to prove strict monotonicity on the entire domain, it is enough to show that the
derivative at r = rS is non-positive. We have

d

dr

[
�S(r)− r]∣∣

r=rS = λ̄S(rS)− 2 ≤ 0�

where the last inequality follows from the assumption that same-side inequality is low
(recall that ΛSλ̄S(rS)= λS(rS)).

We now show that φα
B (q) is also strictly concave:
(
φα




B

)′
(q)=ΠΛ

B

(
G−1
B (1 − q)) + α
JB

(
G−1
B (1 − q))�

so it is enough to show that

ΠΛ
B (r)+ α
JB(r) (B.14)

is strictly increasing. Rewriting (B.14), we have

ΠΛ
B (r)+ α
JB(r)=ΛB

[
r −�B(r)

] + (
α
 −ΛB

)
JB(r)�

Because the virtual surplus function JB(r) is non-decreasing, and α
 ≥ΛB, by assumption,
it is enough to prove that r − �B(r) is strictly increasing. Because this function is strictly
quasi-convex by Assumption 1, it is enough to prove that the derivative is non-negative at
the end point r = rB:

d

dr

[
r −�B(r)

]∣∣
r=rB = 2 − λ̄B(rB)≥ 0�

by the assumption that buyer-side inequality is low. Thus, we have proven that both func-
tions φα
j (q) are strictly concave.

It follows that a competitive mechanism without rationing is optimal for both sides of
the market, and the revenue (if strictly positive) is redistributed to the sellers if ΛS ≥ΛB,
and to the buyers otherwise (see Theorem 1). Concavity of φα
j (q) implies that the first-
order condition in problem (4.6) has to hold and is sufficient for optimality. This means
that the optimal volume of tradeQ
 ∈ [0�min{μ�1}] (the maximizer of the right-hand side
of (4.6)) satisfies

ΠΛ
S

(
G−1
S

(
Q


)) − α
JS
(
G−1
S

(
Q


)) +ΠΛ
B

(
G−1
B

(
1 − Q


μ

))
+ α
JB

(
G−1
B

(
1 − Q


μ

))
≥ 0

(= 0 when Q
 <min{μ�1})� (B.15)

Rewriting (B.15), and noting that pS =G−1
S (Q


) and pB =G−1
B (1 − Q


μ
),

ΛS

[
�S(pS)−pS

] − (
α
 −ΛS

)
JS(pS)+ΛB

[
pB −�B(pB)

] + (
α
 −ΛB

)
JB(pB)≥ 0(= 0 when Q
 <min{μ�1})� (B.16)

Moreover, prices pB�pS have to satisfy pB ≥ pS and clear the market:

μ
(
1 −GB(pB)

) =GS(pS)� (B.17)
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First, assume that (5.3) holds at the competitive-equilibrium price pCE; we show that in
this case, competitive equilibrium is optimal. At pCE, market-clearing and budget-balance
hold, by construction (with US =UB = 0). Therefore, we only have to prove existence of
α
 ≥ max{ΛS�ΛB} such that the first-order condition holds:

ΛS

[
�S

(
pCE

) −pCE
] − (

α
 −ΛS

)
JS

(
pCE

) +ΛB

[
pCE −�B

(
pCE

)]
+ (
α
 −ΛB

)
JB

(
pCE

) ≥ 0� (B.18)

with equality when the solution is interior (i.e., when pCE ∈ (rS� r̄B)). Simplifying (B.18)
gives

ΛS

[
�S

(
pCE

) + GS

(
pCE

)
gS

(
pCE

)
]

︸ ︷︷ ︸
≥0

−ΛB

[
�B

(
pCE

) − 1 −GB

(
pCE

)
gB

(
pCE

)
]

︸ ︷︷ ︸
≤0

≥ α

[
GS

(
pCE

)
gS

(
pCE

) + 1 −GB

(
pCE

)
gB

(
pCE

)
]
�

with equality when pCE ∈ (rS� r̄B). Since the left-hand side is non-negative, such a solution
α
 ≥ max{ΛS�ΛB} exists if and only if we have an inequality at the minimal possible α
,
that is, α
 = max{ΛS�ΛB}:

ΛS

[
�S

(
pCE

) + GS

(
pCE

)
gS

(
pCE

)
]

−ΛB

[
�B

(
pCE

) − 1 −GB

(
pCE

)
gB

(
pCE

)
]

≥ max{ΛS�ΛB}
[
GS

(
pCE

)
gS

(
pCE

) + 1 −GB

(
pCE

)
gB

(
pCE

)
]
�

Simplifying the preceding expression shows that it is equivalent to condition (5.3).
It remains to show what form the solution takes when condition (5.3) fails. A competi-

tive equilibrium cannot be optimal in this case because there does not exist α
 under which
the corresponding quantity maximizes the Lagrangian (4.6) in Lemma 1. Consequently,
we have pB > pS , and, in light of Theorem 1, there will be a strictly positive lump-sum
payment for the “poorer” side of the market: US > 0 when ΛS > ΛB and UB > 0 when
ΛB > ΛS ; this implies that we must have α
 = max{ΛS�ΛB}. Subsequently, the optimal
prices pB and pS are pinned down by market-clearing (B.17) and the first-order condition
(B.16) which—assuming that an interior solution exists—becomes

ΛS(pB −pS)= −ΛS�S(pS)+ΛB�B(pB)+ (ΛS −ΛB)
1 −GB(pB)

gB(pB)
�

when ΛS ≥ΛB, and

ΛB(pB −pS)= −ΛS�S(pS)+ΛB�B(pB)+ (ΛB −ΛS)
GS(pS)

gS(pS)
�

otherwise. When there is no interior solution, one of the prices is equal to the bound of the
support of rates of substitution, and the other price is determined by the market-clearing
condition. This finishes the proof of the theorem.
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B.4. Proof of Theorem 3

Consider the buyer side (we normalize μ= 1 to simplify notation). We can decompose
φα




B (q) in the following way:

φα



B (q)=ΛB

∫ r̄B

G−1
B (1−q)

[
r −�B(r)

]
gB(r)dr

︸ ︷︷ ︸
φ1
B(q)

+ (
α
 −ΛB

)∫ r̄B

G−1
B (1−q)

JB(r)gB(r)dr

︸ ︷︷ ︸
φ2
B(q)

+(
ΛB − α
)UB�

Because the virtual surplus function is non-decreasing, the function φ2
B(q) is concave.

Consider the function φ1
B(q). We know that φ1

B(0)= 0, and that, by Assumption 1,

(
φ1
B

)′
(q)=G−1

B (1 − q)−�B
(
G−1
B (1 − q))

is a quasi-convex function: it is non-increasing on [0� q̂] and non-decreasing on [q̂�1] for
some q̂ ∈ (0�1].4 It follows that φ1

B(q) is concave on [0� q̂] and convex on [q̂�1].
Consider co(φ1

B)(q). By the properties of φ1
B(q) already derived, co(φB1 )(q) is linear

on an interval [q̃�1] for some q̃, and co(φ1
B)(q) = φ1

B(q) for all q ≤ q̃. We show that
q̃ > 0. Suppose not, that is, assume that q̃ = 0, that is, the concave closure is a linear
function supported at the endpoints of the domain. Then, since φ1

B(q) is concave in the
neighborhood of 0, it must be that a linear function tangent to φ1

B(q) at q= 0 lies weakly
below φ1

B(q) at q= 1:

φ1
B(0)+ (

φ1
B

)′
(0)(1 − 0)≤φ1

B(1)�

Rewriting the above inequality, we obtain

r̄B ≤
∫ 1

0

[
G−1
B (1 − q)−�B

(
G−1
B (1 − q))]dq�

or equivalently,

r̄B ≤
∫ r̄B

rB

[
r −�B(r)

]
dGB(r)�

which is a contradiction because∫ r̄B

rB

[
r −�B(r)

]
dGB(r)≤

∫ r̄B

rB

r dGB(r) < r̄B�

The contradiction proves that q̃ > 0. Finally, notice that since α
 ≥ ΛB in the optimal
mechanism, by Lemma 1, (α
 −ΛB)φ

2
B(q) is a concave function which is added to φ1

B(q)
to obtain φα
B (q). Thus, the region in which co(φα
B )(q) is linear must be contained in

4By direct inspection, it is not possible for
(
φ1
B

)′
(q) to be everywhere non-decreasing; hence, q̂ > 0.
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the region where co(φ1
B)(q) is linear (this follows directly from the definition of the con-

cave closure). Therefore, co(φα
B )(q) cannot be linear on [0� q̃], and hence coincides with
φα




B (q) for q ∈ [0� q̃].
We are ready to finish the first part of the proof. If there is rationing on the buyer side,

then the optimal volume of trade must lie in the region where φα
B (q) lies strictly below
its concave closure. It follows that Q ≥ q̃ > 0, and that supp{H


B} ⊆ [q̃�1] (we can set
Q
B

= q̃). This means that each corresponding price pi =G−1
B (1 − qi) for qi ∈ supp{H


B}
satisfies pi < r̄B. Thus, there is a non-zero measure of buyers who trade with probability 1
under the optimal mechanism.

The proof of the second part of the theorem for the seller side is fully analogous and
thus skipped.

B.5. Proof of Theorem 4

The first part of Theorem 4 follows from Theorem 3: If there is rationing on the buyer
side, there must exist a non-zero measure of buyers that trade with probability 1—and
thus it is never optimal to ration at a single price.

To prove the second part of the theorem, it is enough to prove that the function φαS(q)
is first convex and then concave, for any α ≥ ΛS . Indeed, this implies that the concave
closure of φαS(q) is a linear function on [0� q̂] for some q̂ > 0, and coincides with φαS(q)
otherwise. Thus, when there is rationing, it takes the form of a lottery between the quan-
tities q= 0 and q= q̂, which corresponds to a single price with rationing.

It suffices to show that the derivative of φαS(q) is quasi-concave. Analogously to how we
decomposed φαB(q) in the proof of Theorem 3, we can decompose φαS(q) as

φαS(q)=ΛS

∫ G−1
S (q)

rS

[
�S(r)− r]gS(r)dr︸ ︷︷ ︸

φ1
S(q)

−(α−ΛS)

∫ G−1
S (q)

rS

JS(r)gS(r)dr︸ ︷︷ ︸
φ2
S(q)

+(
ΛS − α
)US�

Then, we have (
φαS

)′
(q)=ΛS

(
φ1
S

)′
(q)− (α−ΛS)

(
φ2
S

)′
(q)�

Under assumption (i), sellers receive a strictly positive lump-sum transfer and hence we
must have α = ΛS . At the same time, we have (φ1

S)
′(q) = �S(G

−1
S (q)) − G−1

S (q) which
is quasi-concave by Assumption 1 (a composition of a quasi-concave function with an in-
creasing function is quasi-concave). Under assumption (ii), (φ1

S)
′(q) is a concave function,

and (φ2
S)

′(q)= JS(G−1
S (q)) is a convex function. Thus, the derivative of φαS(q) is concave,

and hence quasi-concave.

B.6. Proof of Theorem 5

First, we prove a key property of the function φαS(q). Importantly, with α treated as a
free parameter,φαS(q) is determined by the primitive variables and does not depend on μ.

LEMMA 4: There exist q̂ > 0 and ᾱ > ΛS such that if α < ᾱ, then φαS(q) is strictly convex
on [0� q̂].

PROOF: The derivative of φαS(q) is ΠΛ
S (G

−1
S (q))− αJS(G−1

S (q)). Because the function
G−1
S (q) is strictly increasing, it is enough to prove thatΠΛ

S (r)−αJS(r) is strictly increasing
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for r ∈ [rS� r̂], for some r̂ (we then set q̂=GS(r̂)). Taking a derivative again, and rearrang-
ing, yields the following sufficient condition: for r ∈ [rS� r̂],

λ̄S(r) > 2 + g′
S(r)

gS(r)
�S(r)+ α−ΛS

ΛS

[
2 − g′

S(r)GS(r)

g2
S(r)

]
�

Because gS(r) was assumed continuously differentiable and strictly positive, including at
r = rS , we can put a uniform (across r) boundM <∞ on g′

S(r)

gS(r)
and 2− g′

S(r)GS(r)

g2
S(r)

. This means
that it is enough that

λ̄S(r) > 2 +M�S(r)+ α−ΛS

ΛS

M�

Continuity of λ̄S(r) and the assumption that seller-side inequality is high imply that
λ̄S(r) > 2 + ε for r ∈ [rS� rS + δ] for some δ > 0. Continuity of �S(r) and the fact that
�S(rS)= 0 imply that �S(r) < ε/(3M) for all r ∈ [rS� rS + ν] for some ν > 0. Finally, there
exists a ᾱ > ΛS such that for all α < ᾱ, we have (α − ΛS)/ΛS < ε/(3M). Then, for all
r ∈ [rS� rS + min{δ�ν}] and α< ᾱ, we have

λ̄S(r) > 2 + ε > 2 +M �S(r)︸ ︷︷ ︸
≤ε/(3M)

+ α−ΛS

ΛS︸ ︷︷ ︸
≤ε/(3M)

M�

The proof is finished by setting r̂ = rS + min{δ�ν}. Q.E.D.

We now prove Theorem 5. Suppose that the optimal mechanism for sellers is a compet-
itive mechanism. We derive a contradiction when μ is low enough. There are two cases to
consider: either (1) α
 =ΛS , or (2) α
 > ΛS .

Consider case (1). We can invoke Lemma 4: Because α
 = ΛS , there exists q̂ > 0 such
that φα
S (q) is strictly convex on [0� q̂]. For small enough μ, namely μ < q̂, we must have
Q ≤ q̂ because the volume of trade is bounded above by the mass of buyers. But then,
at the optimal quantity Q, φα
S (Q) cannot be equal to its concave closure, and hence the
optimal mechanism cannot be a competitive mechanism, contrary to our supposition. The
obtained contradiction means that we must have case (2) when μ< q̂.

Now, consider case (2). Suppose that the optimal competitive mechanism for sellers
has a price pS . By Theorem 1, we can assume that at most two rationing options are
optimal on the buyer side; this corresponds to some prices pB1 ≤ pB2 ≤ pB3 , and corre-
sponding quantities qB1 ≥ qB2 ≥ qB3 that comprise the support ofH


B. Because the functions
co(φα
j )(q) are differentiable, we know that the first-order condition of the problem (4.6)
must hold at the optimal Q:

(
co

(
φα




S

))′
(Q)+ (

co
(
φα




B

))′
(Q/μ)≥ 0

with equality for Q< μ. Moreover, from the definition of the concave closure, using the
fact that Q≤ qB1 , (

co
(
φα




B

))′
(Q/μ)≤ (

φα



B

)′(
qB1 /μ

)
�

with equality if qB1 < 1. Similarly, on the seller side, since Q is interior for μ small enough,
(
co

(
φα




S

))′
(Q)= (

φα



S

)′
(Q)�
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Therefore, we obtain (
φα




S

)′
(Q)+ (

φα



B

)′(
qB1 /μ

) ≥ 0�

Substituting GS(p
S)=Q and μ(1 −GB(p

B
1 ))= qB1 , we obtain

ΛS

[
�S

(
pS

) + GS

(
pS

)
gS

(
pS

)
]

−ΛB

[
�B

(
pB1

) − 1 −GB

(
pB1

)
gB

(
pB1

)
]

≥ α

[
pS −pB1 + GS

(
pS

)
gS

(
pS

) + 1 −GB

(
pB1

)
gB

(
pB1

)
]
�

Now, consider what happens as μ→ 0. Since the market must clear, we must have pSμ →
rS as μ→ 0. Indeed, otherwise, there would be a positive (bounded away from 0) measure
of sellers trading despite the fact that total volume of trade goes to 0. Therefore, writing
the above expression in the limit asμ→ 0, we obtain (using the fact thatGS(rS)= �(rS)=
0)

−ΛB

[
�B

(
pB1

) − 1 −GB

(
pB1

)
gB

(
pB1

)
]

≥ α

[
rS −pB1 + 1 −GB

(
pB1

)
gB

(
pB1

)
]
�

where, with slight abuse of notation, pB1 denotes the limit as μ goes to 0.5 By assumption,
α
 > ΛS along the sequence, so we know that there cannot be any lump-sum transfers
under any optimal mechanism. Thus, budget-balance requires that rS ∈ [pB1 �pB3 ]. This
implies that

(
ΛB − α
)1 −GB

(
pB1

)
gB

(
pB1

) ≥ΛB�B
(
pB1

) ≥ 0�

Because α
 > ΛB, and GB(p
B
1 ) < 1 in the optimal mechanism, we obtain a contradiction.6

B.7. Proof of Theorem 6

By Theorem 2, we know that rationing cannot be optimal for buyers when there is low
buyer-side inequality, so we can assume that buyer-side inequality is high without loss of
generality.

Let φ1
B(q) and φ2

B(q) be defined as in the proof of Theorem 3, and normalize μ= 1 (it
plays no role in this part of the proof). Recall that

(φ1
B)

′(q)=G−1
B (1 − q)−�B(G−1

B (1 − q))�
The function r − �B(r) is strictly quasi-convex by Assumption 1. Moreover, the func-
tion G−1

B (1 − q) is strictly decreasing. A composition of a strictly quasi-convex func-
tion with a strictly decreasing function is strictly quasi-convex. Therefore, (φ1

B)
′(q) is

strictly decreasing on [0� q̄] and strictly increasing on [q̄�1] for some 0 ≤ q̄≤ 1. Moreover,

5We can assume that the limit exists because the domain of pB1 is compact.
6Formally, we have to exclude the possibility that pB1 = r̄B . There are two cases. If a competitive mechanism

is optimal for buyers, then pB1 = rS by budget-balance, and hence pB1 < r̄B because the supports of buyer and
seller rates overlap. If rationing is optimal on the buyer side, then prices are bounded away from r̄B , as we
showed in the proof of Theorem 3.
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(φ1
B)

′(0)= r̄B > 0 and (φ1
B)

′(1)= rB = 0. It follows that (φ1
B)

′(q) is negative whenever it
is increasing, and thus φ1

B(q) is decreasing whenever it is convex. Because φ1
B(0)= 0 and

(φ1
B)

′(0) > 0, it follows that φ1
B(q) is (strictly) concave on [0� q
], where q
 achieves the

global maximum of co(φ1
B)(q) over all q ∈ [0�1].

We now prove that the above property of φ1
B(q) continues to hold for φα
B (q).

LEMMA 5: Suppose that the function co(φα
B )(q) has a global maximum at some q=Q
.
Then, φα
B (q) is strictly concave on [0�Q
] (and in particular equal to co(φα
B )(q)).

PROOF: The proof differs depending on which assumption, (i) or (ii), is satisfied.
(i) When buyers receive a strictly positive lump-sum transfer, then we must have

α
 = ΛB. It follows that φα
B (q) = ΛBφ
1
B(q)+ (ΛB − α
)UB, and hence φα
B (q) im-

mediately inherits the required property from φ1
B(q).

(ii) We have (φ2
B)

′(q) = JB(G
−1
B (1 − q)), and thus (φ2

B)
′(q) is convex by assumption.

Similarly, (φ1
B)

′(q) is convex by assumption. Therefore, (φα
B )
′(q) is convex, and

moreover, (φα
B )
′(1)≤ 0. Therefore, φα
B (q) has the same property as φ1

B(q) (by the
same argument). Q.E.D.

The proof of the first part of the theorem now follows from Lemma 5. First, notice
that φαS(q) (and hence also co(φαS)(q)) is non-increasing in q for any α ≥ ΛS under the
assumptions of the theorem. This follows from (φαS)

′(0)= −αrS ≤ 0 and the proof of The-
orem 2 where we showed that under the regularity condition and low seller-side inequal-
ity, (φαS)

′(q) is strictly decreasing. This implies that Q, the maximizer of the Lagrangian
(4.6), must be lower than Q
—the maximizer of co(φα
B )(q) from Lemma 5. But then, by
Lemma 5, φα
B (q) is strictly concave on [0�Q
] and coincides with its concave closure at
q=Q. Thus, there cannot be rationing on the buyer side.

It remains to prove the second part of Theorem 6. That condition (ii) holds when GB is
uniform is immediate. To prove the first claim, we will show that the Lagrange multiplier
can be taken to be α
 = ΛB in this case (we no longer assume that μ = 1 as this is not
without loss of generality for this part of the proof). From the first part of the proof, we
know that with α = ΛB, the function φαB(q) is first concave and then convex, and that
it achieves its global maximum on the part of the domain where it is concave. Because
seller-side inequality is low (so that φαS(q) is non-increasing and concave), it is sufficient
to prove that the first-order condition is satisfied (see the proof of Theorem 2),

ΛS

[
�S(pS)−pS

] − (ΛB −ΛS)JS(pS)+ΛB

[
pB −�B(pB)

] = 0; (B.19)

the market clears,

μ
(
1 −GB(pB)

) =GS(pS); (B.20)

and budget-balance is maintained. Because we aim to prove that a competitive mechanism
is optimal for both sides, and α
 =ΛB implies thatUB can be an arbitrary positive number,
it is enough if we prove that

pB ≥ pS� (B.21)

Thus, we seek to prove existence of a solution (p
B�p


S) to the system (B.19)–(B.20) which

additionally satisfies (B.21). First, notice that (B.20) can be equivalently written as

pS =ψ(pB) :=G−1
S

(
μ

(
1 −GB(pB)

))
� pB ∈ [p

B
� r̄B]�
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where p
B

=G−1
B (max(0�1 − 1

μ
)) (when μ> 1, there cannot exist a solution in which pB <

p
B
). Therefore, we can write a single equation for p ∈ [p

B
� r̄B] as

�(p) :=ΛS

[
�S

(
ψ(p)

) −ψ(p)] − (ΛB −ΛS)JS
(
ψ(p)

) +ΛB

[
p−�B(p)

] = 0�

The function �(p) is continuous in p, and we have

�(r̄B)= ΛS

[
�S(rS)− rS

] − (ΛB −ΛS)JS(rS)+ΛB

[
r̄B −�B(r̄B)

]
= −ΛBrS +ΛBr̄B

> 0�

There are two cases to consider. When μ≤ 1, we have p
B

= rB, ψ(p
B
)=G−1

S (μ), so that

�(p
B
)≤ΛBrB = 0�

by assumption. In the opposite case μ > 1, we have p
B

= G−1
B (1 − 1

μ
), ψ(p

B
) = r̄S , and

thus

�(p
B
)≤ −ΛBr̄S +ΛBG

−1
B

(
1 − 1

μ

)
≤ −ΛBr̄S +ΛBr̄B ≤ 0�

using the assumption that r̄S ≥ r̄B. In both cases, we conclude that�(p
B
)≤ 0. Because the

function �(p) changes sign, there exists p
B such that �(p
B)= 0, and then p
S =ψ(p
B) is
well-defined as well.

It remains to prove that this solution (p
B�p


S) satisfies (B.21). Rewrite the first-order

condition as

pB −pS = �B(pB)− ΛS

ΛB

�S(pS)+ ΛB −ΛS

ΛB

GS(pS)

gS(pS)
�

Under assumption (b), there is no seller-side inequality and thus �S(pS) ≡ 0. Because
�B(pB) > 0 and ΛB ≥ΛS , we conclude that pB > pS . Under assumption (a), we have

pB −pS ≥ �B(pB)− 1
2
�S(pS)+ 1

2
GS(pS)

gS(pS)
≥ 1

2

∫ pS

rS

[
2 − λ̄S(r)

]
dGS(r)

gS(pS)
> 0

because seller-side inequality is low (λ̄S(r)≤ 2 for all r).
This finishes the proof: The fact that pB > pS implies that there is a strictly positive

revenue in the mechanism, and the fact that α
 = ΛB implies that the revenue in the
optimal mechanism is redistributed as a lump-sum payment to buyers.

B.8. Proof of Theorem 7

Under the assumptions of Theorem 7, we have that rB > r̄S ; thus, any feasible (in par-
ticular, any optimal) mechanism must feature a strictly positive lump-sum transfer and
α
 =ΛB ≥ΛS (by the proof of Theorem 1). We prove that

μ co(φα



B )(Q/μ)+ co(φα



S )(Q)

is non-decreasing in Q. Set M = 1/gB(rB)+ 1/gS(r̄S)—a finite constant.
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When α
 =ΛB, we have(
φα




B

)′
(q)=ΛB

[
G−1
B (1 − q)−�B

(
G−1
B (1 − q))]

≥ΛB

[
G−1
B (1 − q)− 1 −GB

(
G−1
B (1 − q))

gB
(
G−1
B (1 − q))

]

=ΛBJB
(
G−1
B (1 − q))

≥ΛBJB(rB)�

where the last inequality follows from the fact that virtual surplus is monotone by assump-
tion. Hence, we have

inf
q

{
d

dq

[
μ co

(
φα




B

)
(q/μ)

]} = inf
q

{
co

(
φα




B

)′
(q/μ)

} ≥ inf
q

{(
φα




B

)′
(q/μ)

} ≥ΛBJB(rB)�

using the fact that the derivative of the concave closure of a function is lower-bounded by
the infimum of the derivatives of that function.

Similarly, on the seller side, we have
(
φα




S

)′
(q)=ΛS

[
�S(G

−1
S (q)−G−1

S (q)
] − (ΛB −ΛS)JS

(
G−1
S (q)

)

≥ΛS

[
−GS

(
G−1
S (q)

)
gS

(
G−1
S (q)

) −G−1
S (q)

]
− (ΛB −ΛS)JS

(
G−1
S (q)

)

= −ΛBJS
(
G−1
S (q)

)
≥ −ΛBJS(r̄S)�

using the assumption that virtual cost is monotone. Therefore,

inf
q

{
co

(
φα




S

)′
(q)

} ≥ inf
q

{(
φα




S

)′
(q)

} ≥ −ΛBJS(r̄S)�

The obtained inequalities imply that the derivative of μco(φα
B )(Q/μ) + co(φα
S )(Q) is
lower-bounded by

ΛB

[
JB(rB)− JS(r̄S)

] =ΛB

[
rB − r̄S −

(
1

gB(rB)
+ 1
gS(r̄S)

)
︸ ︷︷ ︸

M

]
�

which is non-negative by assumption of the theorem. Because the Lagrangian
μ co(φα
B )(Q/μ) + co(φα
S )(Q) is non-decreasing, the optimal volume of trade is equal
to the maximal feasible quantity: Q= min{μ�1}. Assume that μ> 1 so that Q= 1.

To finish the proof, recall from the proof of Theorem 3 that when α
 = ΛB and buyer-
side inequality is high, the function φα
B (q) lies strictly below its concave closure when the
fraction of buyers trading is sufficiently close to 1.7 Because the optimal volume of trade
is 1 and the mass of buyers is μ, when μ ∈ (1�1 + ε), the fraction of buyers trading in the

7In the proof of Theorem 3, we normalized μ= 1; thus, q close to 1 in the proof of Theorem 3 should be
interpreted as q close enough to μ when μ is arbitrary.
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optimal mechanism is arbitrarily close to 1 for small ε. Thus, there exists ε > 0 such that
the optimal mechanism rations the buyers whenever μ ∈ (1�1+ε) (rationing is equivalent
to φα
B (q) lying below its concave closure at the optimal volume of trade).

B.9. Proofs of the Results Presented in Section 3

Finally, we explain how the results stated in Section 3 follow from the general results of
Sections 4 and 5.

First, note that while the one-sided problems considered in Section 3 are formally dif-
ferent from the two-sided problem studied in Sections 4 and 5, the techniques extend
immediately to this case because most of our analysis looked at the two sides of the mar-
ket separately. In particular, we found that optimality of rationing on side j depends solely
on the properties of the function φα
j (q); this is still the case in the one-sided problem.
The only differences are that (i) the budget constraint has an exogenous revenue level
R, and (ii) Q is fixed rather than determined endogenously. Thus, optimality of rationing
depends on whether or not the function φα
j (q) lies below its concave closure at the fixed
quantity Q.

Next, we note that under the assumption of uniform distribution, all of the functions
G−1
B (q)− �B(G−1

B (q)), JB(G
−1
B (q), G

−1
S (q)− �S(G−1

S (q)), and JS(G−1
S (q)) are convex. By

inspection of the proof of Theorem 3, this implies that regardless of the Lagrange mul-
tiplier α, the function φαB(q) is first concave and then convex, and the function φαS(q) is
first convex and then concave. Consequently, we observe that there exists qαB such that
rationing on the buyer side is optimal if and only if Q ∈ (qαB�1) (with μ normalized to 1).
Similarly, there exists qαS such that rationing on the seller side is optimal if and only if
Q ∈ (0� qαS).
Proof of Proposition 1

When seller-side inequality is low, the function φαS(q) is strictly concave (this corre-
sponds to the case qαS = 0) and thus a competitive mechanism is always optimal.

Suppose that seller-side inequality is high. By Theorem 4, whenever it is optimal to
ration, it is optimal to ration at a single price. We can defineQ(R) as qαS with α= α
R being
the optimal Lagrange multiplier on the budget constraint with revenue target R. Then,
to establish Proposition 1, it only remains to show the three properties of the function
Q(R):

1. Q(R) is strictly positive for high enough R—Indeed, when R is high enough, sellers
must receive a strictly positive lump-sum transfer in the optimal mechanism. But
then, we must have α
R =ΛS , and thus qαS > 0, by the proof of Theorem 3.

2. Q(R) < 1 for all R—This follows directly from Theorem 3.
3. Q(R) is non-decreasing—This follows from two claims. First, the optimal Lagrange

multiplier α
R is non-increasing in the revenue level R (a higher R corresponds to
an easier-to-satisfy constraint, so the corresponding Lagrange multiplier must be
lower).8 Second, φα1

S (q)−φα2
S (q) is a concave function when α1 ≥ α2; thus, the set of

points at which φα1
S (q) lies below its concave closure is contained in the set of points

at which φα2
S (q) lies below its concave closure. It follows that qαS is non-increasing

in α. Putting the two preceding observations together, we conclude that Q(R) is
non-decreasing.

8Formally, this claim follows from analyzing the dual problem: The Lagrange multiplier is equal to the
optimal dual variable in the dual problem; a lower constantR implies that the dual variable in the dual objective
function is multiplied by a smaller positive scalar; thus the optimal α
R cannot increase.
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Proof of Proposition 2

Differentiating the designer’s objective function over pB yields

Q

[
gB(pB)(

1 −GB(pB)
)2

∫ r̄B

pB

λB(r)(r −pB)dGB(r)

︸ ︷︷ ︸
≥0

+ΛB − 1
1 −GB(pB)

∫ r̄B

pB

λB(r)dGB(r)

]

≥Q
[
ΛB −

∫ r̄B

pB

λB(r)dGB(r)

1 −GB(pB)

]
=Q[

E
B
[
λB(r)

] −E
B
[
λB(r)|r ≥ pB

]] ≥ 0� (B.22)

where the last inequality follows from the fact that λB(r) is non-increasing (note that this
inequality corresponds to the comparison of forces (ii) and (iii) described in the discussion
of Proposition 2). This shows that the objective function of the designer is non-decreasing
in the choice variable; thus, it is optimal to set pB to be equal to its upper bound

G−1
B (1 −Q)= pC

B�

Proofs of Propositions 3–7

The argument for Proposition 3 is fully analogous to the proof of Proposition 1, and
thus skipped. Proposition 4 is a special case of Theorem 2. Proposition 5 is a special
case of Theorem 5; the conclusion that rationing happens at a single price follows from
Theorem 4. Proposition 6 is a special case of Theorem 6. Finally, Proposition 7 is a special
case of Theorem 7. Note that the constant M in the proof of Theorem 7 is given by
M = 1/gB(rB) + 1/gS(r̄S); specializing to the case of uniform distribution gives us the
condition assumed in Proposition 7.
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