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APPENDIX B: PROOFS FOR SECTION 5

B.1. Proof of Proposition 5

LET � = 1/K and recall that the message space for M(m�K) is

Mi = {m�m+�� � � � �m+K}�
Note that the highest message m = m+K is at least �−1. We shall extend the domain of
the allocation and transfer rules to all of RN

+ for notational convenience. Given an allo-
cation rule q : M → [0�1]N and transfer rule t : M → R, the discrete aggregate allocation
sensitivity is

μ(m) = 1
�

N∑
i=1

Imi<m

(
qi(mi +��m−i)− qi(m)

)
and the discrete aggregate excess growth is

Ξ(m)= 1
�

N∑
i=1

Imi<m

(
ti(mi +��m−i)− ti(m)

) −Σt(m)�

Now define

λ(m;v) = vμ(m)−Ξ(m)− cQ(Σm)

and let λ(v)= infm∈M λ(m;v).
LEMMA S1: For any information structure S and equilibrium β of (S�M(m�K)), ex-

pected profit is at least
∫
V
λ(v)H(dv).

PROOF: The equilibrium hypothesis implies that for all i,∫
S

∑
m∈M

[
w(s)

(
qi

(
min{mi +��m}�m−i

) − qi(m)
)

− (
ti
(
min{mi +��m}�m−i

) − ti(m)
)]
β(m|s)π(ds) ≤ 0�
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2 B. BROOKS AND S. DU

which corresponds to the incentive constraint for deviating to min{mi + ��m}. Summing
across bidders and dividing by �, we conclude that∫

S

∑
m∈M

[
w(s)μ(m)−Ξ(m)−Σt(m)

]
β(m|s)π(ds)≤ 0�

Hence, expected profit is∫
S

∑
m∈M

[
Σt(m)− cQ(Σm)

]
β(m|s)π(ds)

≥
∫
S

∑
m∈M

[
Σt(m)− cQ(Σm)+w(s)μ(m)−Ξ(m)−Σt(m)

]
β(m|s)π(ds)

=
∫
S

∑
m∈M

[
w(s)μ(m)−Ξ(m)− cQ(Σm)

]
β(m|s)π(ds)

≥
∫
S

λ
(
w(s)

)
π(ds)

≥
∫
V

λ(v)H(dv)�

where the last line follows from the mean-preserving spread condition on w(s) and the
fact that λ is concave, being the infimum of linear functions. Q.E.D.

LEMMA S2: For all m ∈M ,

μ(m) ≥ 1
�

∫ �

y=0
μ(Σm+ y)dy − L̂(m��)�

where

L̂(m��)=N(N + 1)�+ N(N − 1)
�

(
log(Nm+�)+ Nm

Nm+�
− log(Nm)− 1

)
�

Moreover, for all m> 0, L̂(m��)→ 0 as � → 0.

PROOF: From Lemma 12, we know that

μ(m) =
N∑
i=1

1
�

(
qi(mi +��m−i)− qi(m)

) −
N∑
i=1

Imi=m

1
�

(
qi(mi +��m−i)− qi(m)

)
≥

N∑
i=1

1
�

(
qi(mi +��m−i)− qi(m)

) −N
N + 1
m

≥
N∑
i=1

1
�

(
qi(mi +��m−i)− qi(m)

) −N(N + 1)��
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Recall that

μ(x) = N − 1
x

Q(x)+Q
′
(x)�

Also recall that

∂qi(m)

∂mi

= Σm−i

(Σm)2Q(Σm)+ mi

Σm
Q

′
(Σm)�

Thus,

N∑
i=1

1
�

(
qi(mi +��m−i)− qi(m)

)
= 1

�

N∑
i=1

∫ �

y=0

∂qi(mi + y�m−i)

∂mi

dy

= 1
�

N∑
i=1

∫ �

y=0

(
Σm−i

(Σm+ y)2Q(Σm+ y)+ mi + y

Σm+ y
Q

′
(Σm+ y)

)
dy

= 1
�

∫ �

y=0

(
(N − 1)Σm
(Σm+ y)2 Q(Σm+ y)+ Σm+Ny

Σm+ y
Q

′
(Σm+ y)

)
dy

= 1
�

∫ �

y=0
μ(Σm+ y)dy − N − 1

�

∫ �

y=0

y

Σm+ y

(
Q(Σm+ y)

Σm+ y
−Q

′
(Σm+ y)

)
dy�

We need to bound the last integral from above. If x is in a nongraded interval, then
Q(x)/x−Q

′
(x) is just 1/x. If x is in a graded interval [a�b], then

Q(x)

x
−Q

′
(x) = C(a�b)

N
+ D(a�b)

xN
− C(a�b)

N
+ (N − 1)

D(a�b)

xN
= ND(a�b)

xN
�

From equation (33), D(a�b) ≤ xN−1, so that the integrand in this case is at most N/x, and∫ �

y=0

y

x+ y

(
Q(x+ y)

x+ y
−Q

′
(x+ y)

)
dy ≤N

∫ �

y=0

y

(x+ y)2 dy

=N

∫ �

y=0

(
1

x+ y
− x

(x+ y)2

)
dy

=N

(
log(x+�)+ x

x+�
− log(x)− 1

)
�

The derivative with respect to x is

N

(
1

x+�
− 1

x
+ �

(x+�)2

)
=N�

(
1

(x+�)2 − 1
x(x+�)

)
�

which is clearly negative. Thus, subject to x ≥ Nm, the expression is maximized with x =
Nm, which gives us the lower bound on μ.
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Moreover, as � → 0, N(N + 1)� → 0 and by l’Hôpital’s rule,

lim
�→0

( log(Nm+�)+ Nm

Nm+�
− log(Nm)− 1

�

)
= lim

�→0

(
1

Nm+�
− Nm

(Nm+�)2

)
= 0�

Q.E.D.

We define Ξp(m) = Ξ(m)− v(μ(m)−Q(m)). Recall that Ξ
p
(x) = Ξ(x)− v(μ(x)−

Q(x)). These are the excess growths for the “premium” transfers tpi (m) = ti(m)−vqi(m)

and t
p

i (m)= ti(m)−vqi(m), respectively. We similarly denote by T
p
(x)= T(x)−vQ(x)

the aggregate premium transfer, and note that T
p

satisfies the differential equation(
N − 1
x

− 1
)
T

p
(x)+ d

dx
T

p
(x)= Ξ

p
(x)�

with the boundary condition T
p
(0)= 0.

LEMMA S3: Let LΞ be an upper bound on |Ξp| and let LT be an upper bound on T
p
.

Then

Ξp(m)≤ 1
�

∫ �

y=0
Ξ

p
(Σm+ y)dy + L̃(m)

�

2
+NLpm

− 1
�

∑
i

Imi=m

(
t
p

i (mi +��m−i)− t
p

i (m)
)
�

where

L̃(m)=
(

1 + N − 1
Nm

)
Lp + N − 1

(Nm)2LT �

PROOF: Recall that T
p

is Lipschitz with constant Lp. Furthermore, the function
T

p
(x)(N − 1)/x is Lipschitz on [Nm�∞) and∣∣∣∣ d

dx

(
N − 1
x

T
p
(x)

)∣∣∣∣ =
∣∣∣∣N − 1

x

d

dx
T

p
(x)− N − 1

x2 T
p
(x)

∣∣∣∣
≤ N − 1

Nm
Lp + N − 1

(Nm)2LT =L1(m)�

Using the differential equation for T
p
,

1
�

∫ �

y=0
Ξ

p
(Σm+ y)dy

= 1
�

∫ �

y=0

[(
N − 1
Σm+ y

− 1
)
T

p
(Σm+ y)+ d

dx
T

p
(x)

∣∣∣∣
x=Σm+y

]
dy
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= 1
�

[∫ �

y=0

(
N − 1
Σm+ y

− 1
)
T

p
(Σm+ y)dy + T

p
(Σm+�)− T

p
(Σm)

]

≥ 1
�

[∫ �

y=0

(
N − 1
Σm+�

T
p
(Σm+�)−L1(m)(�− y)− T

p
(Σm)−Lpy

)
dy

+ T
p
(Σm+�)− T

p
(Σm)

]
= 1

�

[
�

N − 1
Σm+�

T
p
(Σm+�)−�T

p
(Σm)− (

L1(m)+Lp

)�2

2

+ T
p
(Σm+�)− T

p
(Σm)

]
= 1

�

(
Σm+N�

Σm+�
T

p
(Σm+�)− T

p
(Σm)

)
− T

p
(Σm)− (

L1(m)+Lp︸ ︷︷ ︸
≡L̃(m)

)�
2
�

We let Tp(Σm) denote the aggregate transfer when the messages are m. Thus,

Ξp(m) = 1
�

N∑
i=1

(
t
p
i (mi +��m−i)− t

p
i (m)

) − Tp(Σm)

− 1
�

N∑
i=1

Imi=m

(
t
p
i (mi +��m−i)− t

p
i (m)

)
= 1

�

N∑
i=1

(
t
p

i (mi +��m−i)− t
p

i (m)
) − Tp(Σm)

− 1
�

N∑
i=1

Imi=m

(
t
p

i (mi +��m−i)− t
p

i (m)
)

≤ 1
�

(
Σm+N�

(Σm+�)
T

p
(Σm+�)− T

p
(Σm)

)
− Tp(Σm)

− 1
�

∑
i

Imi=m

(
t
p

i (mi +��m−i)− t
p

i (m)
)
�

The lemma follows from combining these two inequalities, with the observation that
Tp(x)= T

p
(x)−NLpm. Q.E.D.

LEMMA S4: For all ε > 0, there exists a K such that for all m such that Σm>K and for
all i,

1
�

∣∣tpi (mi +��m−i)− t
p

i (m)
∣∣ < ε�

PROOF: Since limx→∞ T
p
(x)= −Ξ

p
(∞), we can find a K large enough so that for x >

K, |Tp
(x) + Ξ

p
(∞)| < ε/4 and LT/K < ε/4, and, thus, |dTp

(x)/dx| < ε/2. As a result,
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when Σm>K, then using � =K−1,

1
�

(
t
p

i (mi +��m−i)− t
p

i (m)
)

= 1
�

∫ �

y=0

∂t
p

i (mi + y�m−i)

∂mi

dy

= 1
�

∫ �

y=0

(
Σm−i

(Σm+ y)2T
p
(Σm+ y)+ mi + y

Σm+ y

d

dx
T

p
(x)

∣∣∣∣
x=Σm+y

)
dy

≤ LT

K
+ ε

2
< ε� Q.E.D.

PROOF OF PROPOSITION 5: We first argue that there exist m and a K such that
λ(m;v) ≥ infm′∈RN λ(m′;v)− ε for all m ∈M and v ∈ [v� v], where

λ(m;v) = (v − v)μ(Σm)−Ξ
p
(Σm)+ (v− c)Q(Σm)�

From Lemma 12, we know that |Q(x+ y)−Q(x)| ≤ y(N − 1)/m. Thus,∣∣∣∣Q(x)− 1
�

∫ �

y=0
Q(x+ y)dy

∣∣∣∣ ≤ 1
�

∫ �

y=0

∣∣Q(x+ y)−Q(x)
∣∣dy

≤ 1
�

∫ �

y=0
y
N − 1
m

dy = �
N − 1

2m
�

Combining this inequality with Lemmas S2 and S3, we get that

λ(m;v) = (v− v)μ(m)−Ξp(m)+ (v− c)Q(Σm)

≥ 1
�

∫ �

y=0

[
(v − v)μ(Σm+�)−Ξ

p
(Σm+ y)+ (v− c)Q(Σm+ y)

]
dy

− (v− v)L̂(m��)− v�
N − 1

2m
− �

2
L̃(m)−NLpm

− 1
�

∑
i

Imi=m

∣∣tpi (mi +��m−i)− t
p

i (m)
∣∣

≥ inf
{m′ |Σm≤Σm′≤Σm+�}

λ
(
m′;v)

− (v− v)L̂(m��)− v�
N − 1

2m
− �

2
L̃(m)−NLpm

− 1
�

∑
i

Imi=m

∣∣tpi (mi +��m−i)− t
p

i (m)
∣∣�

We first pick m > 0 so that NLpm < ε/2. We then pick K large enough (and � small
enough) such that the remaining terms in the last two lines sum to less than ε/2 (where
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for the first term in the middle line and last line, this follows from Lemmas S2 and S4,
respectively). We then conclude that

λ(m;v) ≥ inf
m′∈R+

N

λ
(
m′;v) − ε ≥ λ(v)− ε�

Hence, λ(v) ≥ λ(v)− ε, and Lemma S1 and Lemma 6 give the result. Q.E.D.

The preceding proof goes through verbatim with the maxmin must-sell mechanism M̂.

B.2. Proof of Proposition 6

Recall the definition of S(K). Let � = 1/K. We subsequently choose K sufficiently
large (and, equivalently, � sufficiently small) to attain the desired ε. Note that the signal
space can be written

Si =
{
0��� � � � �K2�

}
and the highest message is simply �−1. The probability mass function of si is

fi(si)=
{(

1 − exp(−�)
)

exp(−si) if si < �−1�

exp
(−�−1

)
if si = �−1�

As a result, si/� is a censored geometric random variable with arrival rate 1 − exp(−�).
We write f (s) =×N

i=1 fi(si) for the joint probability and write

Fi(si)=
∑
s′i≤si

fi
(
s′
i

) =
{

1 − exp(−si −�) if si < �−1�

1 otherwise

for the cumulative distribution. The value function is

w(s)= 1
f (s)

∫
{s′∈RN+ |τ(s′i)=si∀i}

w
(
Σs′)exp

(−Σs′)ds′�

where

τ(x)=
{
�
x/�� if x < �−1�

�−1 otherwise�

An interpretation is that we draw “true” signals s′ for the bidders from S and agent i
observes si = min{�
�−1s′

i���−1}, that is, signals above �−1 are censored, signals below
�−1 are rounded down to the nearest multiple of �, and w is the conditional expectation
of w given the noisy observations s. It is immediate that the distribution of w is a mean-
preserving spread of the distribution of w, so that H is a mean-preserving spread of the
distribution of w as well.
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LEMMA S5: If si < �−1 for all i, then w(s) only depends on the sum of the signals l = Σs
and

w(s)= exp(l)(
1 − exp(−�)

)N ∫ l+N�

x=l

w(x)ρ(x− l)exp(−x)dx�

where ρ(y) is the (N − 1)-dimensional volume of the set {s ∈ [0��]N |Σs = y}.

PROOF: First observe that for a signal profile s such that si < �−1 for all i,

f (s)= (
1 − exp(−�)

)N
exp(−Σs) = (

1 − exp(−�)
)N

exp(−l)�

Thus,

w(s)= exp(l)(
1 − exp(−�)

)N ∫
{s′∈RN+ |τi(s′)=si ∀i}

w
(
Σs′)exp

(−Σs′)ds′

= exp(l)(
1 − exp(−�)

)N ∫ l+N�

x=l

∫
{s′∈RN+ |τi(s′)=si ∀i�Σs′=x}

w
(
Σs′)exp

(−Σs′)ds′ dx

= exp(l)(
1 − exp(−�)

)N ∫ l+N�

x=l

w(x)exp(−x)

∫
{s′∈RN+ |τi(s′i−si)=0 ∀i�Σs′=x}

ds′ dx

= exp(l)(
1 − exp(−�)

)N ∫ l+N�

x=l

w(x)exp(−x)

∫
{s′∈RN+ |τi(s′)=0 ∀i�Σs′=x−l}

ds′ dx�

where the inner integral is just ρ(x− l). Q.E.D.

We now abuse notation slightly by writing w(l) for the value when l = Σs, and we let
γ(l)= w(l)− c.

LEMMA S6: If l > �, then γ(l)≤ exp(�)γ(l −�).

PROOF: From Lemma S5, we know that

γ(l)= exp(l)(
1 − exp(−�)

)N ∫ l+N�

x=l

γ(x)exp(−x)ρ(x− l) dx

= exp(l)(
1 − exp(−�)

)N ∫ l+(N−1)�

x=l−�

γ(x+�)exp(−x−�)ρ(x− l +�)dx

≤ exp(l −�)(
1 − exp(−�)

)N ∫ l+(N−1)�

x=l−�

γ(x)exp(�)exp(−x)ρ(x− l +�)dx

= exp(�)γ(l −�)�

where the inequality follows from Lemma 2. Q.E.D.
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LEMMA S7: If the direct allocation qi(s) is incentive compatible and individually rational,
profit is at most

∑
s∈S

f (s)

N∑
i=1

qi(s)

(
γ(Σs)− 1 − Fi(si)

fi(si)

(
γ(Σs +�)− γ(Σs)

))
� (S1)

PROOF: This follows from standard revenue equivalence arguments: We write Ui(si� s
′
i)

for the utility of a signal si that reports s′
i, with Ui(si) = Ui(si� si). Incentive compatibility

implies that

Ui(si)≥Ui

(
si� s

′
i

) =Ui

(
s′
i

) +
∑

s−i∈S−i

f−i(s−i)qi

(
s′
i� s−i

)(
γ(si +Σs−i)− γ

(
s′
i +Σs−i

))
�

Thus, for si ≥ �,

Ui(si)≥ Ui(0)+
si/�−1∑
k=0

∑
s−i∈S−i

f−i(s−i)qi(k�� s−i)
(
γ
(
(k+ 1)�+Σs−i

) − γ(k�+Σs−i)
)
�

The expectation of Ui(si) across si is therefore bounded below by

∑
s∈S

f (s)

si/�−1∑
k=0

qi(k�� s−i)
(
γ
(
(k+ 1)�+Σs−i

) − γ(k�+Σs−i)
)

=
∑
s∈S

f (s)qi(s)
(
γ(Σs +�)− γ(Σs)

)1 − Fi(si)

fi(si)
�

The formula then follows from subtracting the bound on bidder surplus from total surplus.
Q.E.D.

Let Π̃ denote the profit bound when we set q1(s) = 1 and qj(s) = 0 for all j �= 1.

LEMMA S8: For any allocation q, the expression (S1) is at most Π̃ + (1 − (1 −
exp(−�−1))N)v.

PROOF: When signals are all less than �−1, the bidder-independent virtual value is

γ(l)− 1
exp(�)− 1

(
γ(l +�)− γ(l)

)
≥ γ(l)− exp(−�)

1 − exp(−�)

(
γ(l)exp(�)− γ(l)

) = 0�

where the inequality follows from Lemma S6. Thus, the virtual value is maximized
pointwise by allocating with probability 1 to, say, bidder 1. With probability 1 − (1 −
exp(−�−1))N , one of the signals is above �−1, in which case v is an upper bound on the
virtual value. Q.E.D.

LEMMA S9: The limit of Π̃ as � → 0 is less than Π.
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PROOF: Plugging in q1 = 1, we find that

Π̃ =
∑

s−1∈S−1

f−1(s−1)
∑
s1∈S1

(
f1(s1)γ(Σs)−

∑
s′1>s1

f1

(
s′

1

)(
γ(Σs +�)− γ(Σs)

))

=
∑

s−1∈S−1

f−1(s−1)
∑
s1∈S1

(
f1(s1)

[
γ(Σs)+

∑
s′1<s1

(
γ
(
s′

1 +Σs−1

) − γ
(
s′

1 +Σs−1 +�
))])

=
∑

s−1∈S−1

f−1(s−1)γ(Σs−1)�

Using the definition of γ, this is

Π̃ = 1
1 − exp(−�)

∫ �

y=0

∫ ∞

x=0
γ(x+ y)gN−1(x)exp(−y)dxdy

= 1
1 − exp(−�)

∫ ∞

x=0
γ(x)

∫ min{x��}

y=0
gN−1(x− y)exp(−y)dy dx

≤ 1
1 − exp(−�)

(∫ ∞

x=�

γ(x)

∫ �

y=0
gN−1(x− y)exp(−y)dy dx+GN(�)v

)
�

Now observe that∫ �

y=0
gN−1(x− y)exp(−y)dy = xN−1 − (x−�)N−1

(N − 1)! exp(−x)

≤ �(N − 1)xN−2

(N − 1)! exp(−x) = �gN−1(x)�

where we have used convexity of xN−1. Thus,

Π̃ ≤ �

1 − exp(−�)

∫ ∞

x=0
γ(x)gN−1(x)dx+ GN(�)v

1 − exp(−�)
�

An application of l’Hôpital’s rule shows that the last term converges to zero as �→ 0 and
�/(1 − exp(−�)) → 1; this implies the lemma. Q.E.D.

PROOF OF PROPOSITION 6: By Lemma S9, for any ε > 0, we can pick K = �−1 suf-
ficiently large that Π̃ ≤ Π + ε/2. Moreover, we can also take K large enough so that
(1 − (1 − exp(−K))N)v is at most ε/2. For any mechanism and equilibrium of S(K),
there is an incentive compatible and individually rational direct mechanism that has the
same expected profit. By Lemmas S7 and S8, this expected profit is at most Π̃ + ε/2.
Thus, we conclude that expected profit is at most Π+ ε, which completes the proof of the
proposition. Q.E.D.

Every step of the proof of Proposition 6 goes through in the must-sell case, where we
replace w with ŵ, except that we skip the step in Lemma S8 of proving that the discrete
virtual value is nonnegative.
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APPENDIX C: PROOFS FOR SECTION 6

PROOF OF LEMMA 9: The left-tail assumption is equivalently stated as follows: there
exists some α> 0 and ϕ> 1 such that for all 0 ≤ α′ <α≤ α,

H−1(α)− v ≤G−1
N (α)ϕ�

and if v > c,

H−1(α)− c

H−1
(
α′) − c

≤ exp
(
G−1

N (α)−G−1
N

(
α′))�

The following lemma implies that if the above two conditions hold for N , they hold for
all N ′ >N as well. Q.E.D.

LEMMA S10: For any N ≥ 1 and N ′ >N , there exists α> 0 such that G−1
N (α)−G−1

N (α′)≤
G−1

N ′ (α)−G−1
N ′ (α′) for all 0 ≤ α′ <α≤ α.

PROOF: Clearly it suffices to prove the lemma for N ′ = N + 1. Let us extend the defi-
nition of GN to any real number N ,

GN(x) =
∫ x

y=0
e−y y

N−1

�(N)
dy�

where

�(N) =
∫ ∞

y=0
e−yyN−1 dy�

(We have �(N) = (N − 1)! when N ≥ 1 is an integer.)
By definition, we have ∫ G−1

N (α)

x=0
e−x x

N−1

�(N)
dx= α�

Differentiating the above equation with respect to N gives

∂G−1
N (α)

∂N

e−G−1
N (α)G−1

N (α)N−1

�(N)
+

∫ G−1
N (α)

x=0
e−x

∂

(
xN−1

�(N)

)
∂N

dx= 0�

that is,

∂G−1
N (α)

∂N
= �(N)eG

−1
N (α)

G−1
N (α)N−1

(
−

∫ G−1
N (α)

x=0
e−x

∂

(
xN−1

�(N)

)
∂N

dx

)

= eG
−1
N (α)

�(N)G−1
N (α)N−1

∫ G−1
N (α)

x=0
e−x

(−xN−1 log(x)�(N)+ xN−1�′(N)
)
dx

= eG
−1
N (α)

�(N)
f
(
G−1

N (α)�N
)
�
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where

f (z�N)= 1
zN−1

∫ z

x=0
e−x

(−xN−1 log(x)�(N)+ xN−1�′(N)
)
dx�

Next, we compute

∂f (z�N)

∂z

= 1
z2(N−1)

(
zN−1e−z

(−zN−1 log(z)�(N)+ zN−1�′(N)
)

− (N − 1)zN−2

∫ z

x=0
e−x

(−xN−1 log(x)�(N)+ xN−1�′(N)
)
dx

)
= e−z

(− log(z)�(N)+ �′(N)
)

− (N − 1)z−N

∫ z

x=0
e−x

(−xN−1 log(x)�(N)+ xN−1�′(N)
)
dx�

For any z ≤ 1, we have

∂f (z�N)

∂z

≥ e−z
(− log(z)�(N)+ �′(N)

) − (N − 1)z−N

∫ z

x=0

(−xN−1 log(x)�(N)+ xN−1�′(N)
)
dx

= e−z
(− log(z)�(N)+ �′(N)

) − (N − 1)z−N

(
�(N)

(
zN

N2 − zN logz
N

)
+ �′(N)

zN

N

)
= e−z

(− log(z)�(N)+ �′(N)
( − N − 1

N

(
�(N)

(
1
N

− logz
)

+ �′(N)

)
=

(
e−z − N − 1

N

)(− log(z)�(N)+ �′(N)
) − N − 1

N2 �(N)�

Since the last line goes to infinity as z goes to zero, for any fixed N ≥ 1, we can choose
z ∈ (0�1] such that ∂f (z� N̂)/∂z ≥ 0 for all z ∈ [0� z] and N̂ ∈ [N�N+1]. Let α=GN+1(z).

Suppose 0 ≤ α′ <α≤ α. We have

(
G−1

N+1(α)−G−1
N+1

(
α′)) − (

G−1
N (α)−G−1

N

(
α′)) =

∫ N+1

N̂=N

(
∂G−1

N̂
(α)

∂N̂
− ∂G−1

N̂

(
α′)

∂N̂

)
dN̂�

Since d(ezf (z� N̂)/�(N̂))/dz ≥ 0 for all z ∈ [0� z] and N̂ ∈ [N�N + 1], we have
∂G−1

N̂
(α)/∂N̂ − ∂G−1

N̂
(α′)/∂N̂ ≥ 0, which proves the lemma. Q.E.D.

Recall that

GC
N(x) =GN(

√
N − 1x+N − 1)�

gC
N(x) =

√
N − 1gN(

√
N − 1x+N − 1)�

To prove Proposition 7, we first need a number of technical results.
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LEMMA S11: As N goes to infinity, gC
N and GC

N converge pointwise to φ and �, respectively.

PROOF: Note that

gC
N+1(x)= √

NgN+1(
√
Nx+N)

= √
N
(
√
Nx+N)N

N! exp(−√
Nx−N)�

Stirling’s approximation says that

lim
N→∞

N!
√

2πN
(
N

e

)N
= 1�

Moreover, for all N , the ratio inside the limit is greater than 1.
Thus, when N is large, gC

N+1(x) is approximately

1√
2π

(
1 + x√

N

)N

exp(−√
Nx)

and, hence,

log
(
gC
N+1(x)

) ≈ log(1/
√

2π)+N log
(

1 + x√
N

)
− √

Nx�

Using the mean-value formulation of Taylor’s theorem centered around 0, for every y ,
there exists a z ∈ [0� y] such that

log(1 + y)= y − y2

2
+ 1

(1 + z)3 y
3�

Plugging in y = x/
√
N , we conclude that

log
(
gC
N+1(x)

) ≈ log(1/
√

2π)+N
x√
N

−N
1
2

(
x√
N

)2

+N
1

(1 + z)3

(
x√
N

)3

− √
Nx

= log(1/
√

2π)− 1
2
x2 + 1

(1 + z)3

x3

√
N
�

which converges to log(1/
√

2π) − 1
2x

2 as N goes to infinity, so gC
N+1(x) converges to

φ(x) = exp(−x2/2)/
√

2π. Pointwise convergence of GC
N to � follows from Scheffé’s

lemma. Q.E.D.

Let us define

g̃(x) =

⎧⎪⎪⎨⎪⎪⎩
1√
2π

exp
(

−x2

2

)
if x < 0�

1√
2π

(1 + x)exp(−x) otherwise�
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LEMMA S12: The function g̃(x)|x| is integrable, and for all N and x, |gC
N(x)| ≤ g̃(x).

PROOF: Note that∫ ∞

x=−∞
g̃(x)|x|dx =

∫ 0

x=−∞
φ(x)|x|dx+ 1√

2π

∫ ∞

x=0
(1 + x)xexp(−x)dx�

which is clearly finite, since the half-normal distribution has finite expectation.
Next, Stirling’s approximation implies that

gC
N+1(x)≤ 1√

2π

(
1 + x√

N

)N

exp(−√
Nx)≡ g̃N(x)�

Now

d

dN
log

(
g̃N(x)

) = log
(

1 + x√
N

)
− 1

2
x√

N + x
− x

2
√
N
�

which is clearly zero when x= 0, and

d

dx

d

dN
log

(
g̃N(x)

) = 1√
N + x

−
√
N

2(
√
N + x)2

− 1

2
√
N

= 2N + 2
√
Nx

2
√
N(

√
N + x)2

− N

2
√
N(

√
N + x)2

− N + 2
√
Nx+ x2

2
√
N(

√
N + x)2

= −x2

2
√
N(

√
N + x)2

�

which is nonpositive and strictly negative when x �= 0. As a result, g̃N(x) is increasing in
N when x < 0 and decreasing in N when x > 0. Since it converges to φ(x) in the limit as
N goes to infinity, we conclude that for x < 0, gC

N+1(x) ≤ g̃N(x) ≤ φ(x) = g̃(x), and for
x > 0, gC

N+1(x) ≤ g̃N(x)≤ g̃1(x) = g̃(x) as desired. Q.E.D.

LEMMA S13: As N goes to infinity, γ̂C
N converges almost surely to γ̂C

∞(x) = H−1(�(x))

and �̂C
N converges pointwise to

�̂C
∞(x) =

∫ x

y=−∞
γ̂C

∞(y)φ(y)dy�

The latter convergence is uniform on any bounded interval.

PROOF: Note that γ̂C
N(x)= H−1(GC

N(x))−c. By Lemma S11, GC
N(x) converges to �(x)

pointwise. Thus, if H−1 is continuous at �(x), then as N goes to infinity, we must have
γ̂C
N(x) → H−1(�(x))− c = γ̂C

∞(x). Since H−1 is monotonic, the set of discontinuities has
Lebesgue measure zero, so that the pointwise convergence is almost everywhere.

Pointwise convergence of �̂C
N follows from almost sure convergence of γ̂C

N , combined
with the fact that γ̂C

N is uniformly bounded by |v|, so that we can apply the dominated
convergence theorem. Moreover, �̂C

N(x) is uniformly Lipschitz continuous across N and
x. As a result, the family {̂�C

N(·)}∞
N=2 is uniformly bounded and uniformly equicontinuous.
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The conclusion about uniform convergence is then a consequence of the Arzela–Ascoli
theorem. Q.E.D.

Recall that x∗ is the largest solution to �̂C
∞(x∗) = 0 (which may be −∞). Also, let us

define xN so that �
C

N has a graded interval [−√
N − 1�xN]. (If there is no graded interval

with left endpoint −√
N − 1, then we let xN = −√

N − 1.)

LEMMA S14: As N goes to infinity, xN converges to x∗.

PROOF: By a change of variables y = (GC
N)

−1(�(x)), we conclude that

�̂C
∞

(
x∗) =

∫ x∗

x=−∞
γ̂C

∞(x)φ(x)dx=
∫ (GC

N)−1(�(x∗))

x=−√
N−1

γ̂C
N(x)g

C
N(x)dx= �̂C

N

((
GC

N

)−1(
�

(
x∗)))�

This integral must be zero by the definition of x∗, so that xN ≥ (GC
N)

−1(�(x∗)). Since the
latter converges to x∗ as N → ∞, we conclude that lim infN→∞ xN ≥ x∗.

Next recall that xN+1 solves the equation

�̂C
N+1(xN+1)= γ̂C

N+1(xN+1)

∫ xN+1

x=−√
N

exp
(√

N(x− xN+1)
)
gC
N+1(x)dx

= γ̂C
N+1(xN+1)exp(−√

NxN+1 −N)

∫ xN+1

x=−√
N

exp(
√
Nx+N)gC

N+1(x)dx

= γ̂C
N+1(xN+1)exp(−√

NxN+1 −N)

∫ xN+1

x=−√
N

√
N
(
√
Nx+N)N

N! dx

≤ v exp(−√
NxN+1 −N)

(
√
NxN+1 +N)N+1

(N + 1)!

= vgC
N+2

(√
N

N + 1
xN+1 − 1√

N + 1

)
1√

N + 1

≤ vg̃

(√
N

N + 1
xN+1 − 1√

N + 1

)
1√

N + 1
�

where we have used Lemma S12. The last line converges to zero pointwise, so �̂C
N(xN)

must converge to zero as well.
Now, if z = lim supN→∞ xN > x∗, then since �̂C

∞(z) > �̂C
∞(x∗) = 0, we would contradict

our earlier finding that �̂C
N(xN) → 0. Thus, lim supN→∞ xN ≤ x∗, so xN must converge to

x∗ as N goes to ∞. Q.E.D.

LEMMA S15: For every ε > 0, there exists N̂ such that for all N > N̂ , there exists an x ∈
[x∗ + ε�x∗ + 2ε] at which γC

N is not graded.

PROOF: Suppose not. Then there exist infinitely many N such that for every x ∈ [x∗ +
ε�x∗ + 2ε], γC

N+1(x) = exp(
√
N(x − x̃))γ̂C

N+1(x̃) for some x̃ ≥ x∗ + 2ε. Thus, for all x ≤
x∗ + ε, we conclude that

γC
N+1(x) ≤ γC

N+1

(
x∗ + ε

) ≤ exp(−√
Nε)v�
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which converges to zero as N goes to infinity. This implies that lim infN→∞ �
C

N+1(x
∗ + ε) =

0. But �
C

N+1(x
∗ + ε) must be weakly larger than �̂C

N+1(x
∗ + ε), so

0 = lim inf
N→∞

�
C

N+1

(
x∗ + ε

) ≥ lim inf
N→∞

�̂C
N+1

(
x∗ + ε

) = �̂C
∞

(
x∗ + ε

)
> 0�

a contradiction. Q.E.D.

LEMMA S16: As N goes to infinity, γC
N converges almost surely to

γC
∞(x) =

{
0 if x < x∗�
γ̂C

∞(x) if x≥ x∗�

PROOF: Let x < x∗. Since xN → x∗ by Lemma S14, for N sufficiently large, xN > (x∗ +
x)/2. Since γC

N(x) is graded on (−∞�xN], it is graded at x, and

γC
N(x) = exp

(√
N − 1(x− xN)

)
γ̂C
N(xN)

≤ exp
(√

N − 1
(
x− x∗)/2

)
v�

The last line clearly converges to zero pointwise. Since γC
N(x) ≥ 0 for all N , we conclude

that γC
N(x)→ 0.

Now consider x > x∗ at which γ̂C
∞ is continuous. Take ε so that x > x∗ + 2ε and so that

γ̂C
∞ is continuous at x∗ +ε. Lemma S15 says that there is a N̂ such that for all N > N̂ , there

exists a point in [x∗ +ε�x∗ +2ε] at which the gains function is not graded. Moreover, since
γ̂C
N(x

∗ +ε) converges to γ̂C
∞(x∗ +ε), we can pick N̂ large enough and find a constant γ > 0

such that for N > N̂ , γ̂C
N(x

∗ + ε) ≥ γ.
Now suppose that γC

N is graded at x, with x in a graded interval [a�b]. Then a ≥ x∗ + ε
and, hence, γ̂C

N(a)≥ γ̂C
N(x

∗ + ε) ≥ γ. Recall that on [a�b],

γC
N(x) = γ̂C

N(a)exp
(√

N − 1(x− a)
)
�

Since γ̂C
N is bounded above by v, it must be that γ̂C

N(a)exp(
√
N − 1(b− a))≤ v, so

b− a≤ 1√
N − 1

log
(

v

γ̂C
N(a)

)

≤ 1√
N − 1

log
(
v

γ

)
= εN�

Thus,

γ̂C
N(x− εN)≤ γC

N(x)≤ γ̂C
N(x+ εN)�

This inequality holds if γC
N is graded at x, but clearly the inequality is also true if γC

N is not
graded at x, in which case γC

N(x) = γ̂C
N(x). Now, γ̂C

N(x) = γ̂C
∞(�−1(GC

N(x))), so

γ̂C
∞

(
�−1

(
GC

N(x− εN)
)) ≤ γC

N(x)≤ γ̂C
∞

(
�−1

(
GC

N(x+ εN)
))
�
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As N → ∞, the left- and right-hand sides converge to γ̂C
∞(x) from the left and right,

respectively. Since γ̂C
∞ is continuous at x, we conclude that γC

N(x) → γ̂C
∞(x). The lemma

follows from the fact that the monotonic function γ̂C
∞ is continuous almost everywhere.

Q.E.D.

PROOF OF PROPOSITION 7: We argue that

ZN+1 = √
N

∫ ∞

x=0
γN+1(x)

(
gN+1(x)− gN(x)

)
dx

converges to a positive constant as N goes to infinity. Since this is
√
N times the difference

between ex ante gains from trade and profit, this proves the result.
To that end, observe that

ZN+1 = √
N

∫ N/2

x=0
γN+1(x)

(
gN+1(x)− gN(x)

)
dx

+
∫ ∞

x=−√
N/2

γC
N+1(x)g

C
N+1(x)

Nx√
Nx+N

dx�

We claim that the first integral converges to zero as N → ∞. Note that gN+1(x) ≤ gN(x)
if and only if x≤N . Therefore,∣∣∣∣√N

∫ N/2

x=0
γN+1(x)

(
gN+1(x)− gN(x)

)
dx

∣∣∣∣ ≤ (v + c)
√
N

∫ N/2

x=0

(
gN(x)− gN+1(x)

)
dx

= (v+ c)
√
N

(
GN(N/2)−GN+1(N/2)

)
= (v+ c)

√
NgN+1(N/2)

= (v+ c)
√
N
(N/2)N exp(−N/2)

N!
≈ (v+ c)

√
N
(N/2)N exp(−N/2)√

2πN(N/e)N

= (v+ c)
1√
2π

exp
(−N

(
log(2)− 1/2

))
�

where we have again used Stirling’s approximation between the third-to-last and second-
to-last lines. The last line converges to zero as N goes to infinity.

Now consider the second integral in the formula for ZN+1. By Lemma S12, the in-
tegrand is bounded above in absolute value by the integrable function vg̃(x)|x|. More-
over, from Lemmas S11 and S16, we know that the integrand converges pointwise to
γC

∞(x)φ(x)x. The dominated convergence theorem then implies that as N goes to infin-
ity, ZN converges to ∫ ∞

x=−∞
γC

∞(x)φ(x)xdx�

which is strictly positive because γC
∞ is strictly increasing. Q.E.D.

The preceding proof remains valid for the must-sell case if we replace γC
N with γ̂C

N .
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To prove Proposition 9, we need a few more intermediate results. Let GN(x) =GN(Nx)
be the cumulative distribution for the mean of N independent standard exponential ran-
dom variables. Define FN(x) = exp(N(1 − x + log(x))). Clearly, FN(x) is a cumulative
distribution for x ∈ [0�1]: FN(0)= 0 and FN(1)= 1. Finally, define the function

DN(α)=

⎧⎪⎨⎪⎩
1

F
−1

N (α)
if α ∈ [0�0�4]�

1�1 if α ∈ (0�4�1]�
The choices of 0�4 and 1.1 in DN(α) are arbitrary: any numbers work that are less than
1/2 and more than 1, respectively.

LEMMA S17: There exists a N̂ such that for all N ≥ N̂ and α ∈ [0�1], μN(G
−1
N (α)) ≤

DN̂(α).

PROOF: We first apply the theory of large deviations to the exponential distribution.
Let Λ(t) be the logarithmic moment generating function for the exponential distribution:

Λ(t) = log
(∫ ∞

x=0
exp(xt − x)dx

)
=

{
∞ if t ≥ 1�
− log(1 − t) if t < 1�

Let Λ∗(x) be the Legendre transform of Λ(t):

Λ∗(x) = sup
t∈R

{
xt −Λ(t)

} =
{

∞� x ≤ 0�
x− 1 − logx� x > 0�

Cramér’s theorem (or the Chernoff bound; see Theorem 1.3.12 in Stroock (2011)) im-
plies that for any N ,

GN(x)≤ exp
(−NΛ∗(x)

) = FN(x)

for every x ∈ [0�1], or, equivalently, F
−1

N (α)≤G
−1

N (α) for every α ∈ [0�GN(1)].
By the law of large numbers, when N̂ is sufficiently large, we have GN(1) ≥ 0�4 and

1/G
−1

N (0�4)≤ 1�1 for all N ≥ N̂ . The claim of the lemma then follows from two cases.
If α ∈ [0�0�4], then we have

μN

(
G−1

N (α)
) ≤ N

G−1
N (α)

= 1

G
−1

N (α)
≤ 1

F
−1

N (α)
≤ 1

F
−1

N̂ (α)
= DN̂(α)�

where we have used the bound μN(x)≤ N/x (equation (21)), and the facts that GN(1)≥
0�4 when N ≥ N̂ (so F

−1

N (α) ≤ G
−1

N (α) for α ≤ 0�4 ≤ GN(1)) and that FN(x) ≤ FN̂(x) for
all N ≥ N̂ and x ∈ [0�1] (so F

−1

N̂ (α)≤ F
−1

N (α) for all α).
If α ∈ (0�4�1], then

μN

(
G−1

N (α)
) ≤ 1

G
−1

N (α)
≤ 1

G
−1

N (0�4)
≤ 1�1 = DN̂(α)�

since G
−1

N (α) is increasing in α, and 1/G
−1

N (0�4)≤ 1�1 when N ≥ N̂ . Q.E.D.
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LEMMA S18: There exists a N̂ such that for all N ≥ N̂ ,∫ 1

α=0
DN(α)dH

−1(α) <∞�

PROOF: Since GN(x)= 1 − ∑N

k=1 gk(x), we have

GN(x)= 1 −
N∑

k=1

exp(−Nx)
(Nx)k−1

(k− 1)!

= 1 − exp(−Nx)

(
exp(Nx)−

∞∑
k=N

(Nx)k

k!

)
≥ exp(−Nx)

(Nx)N

N! �

Clearly, there exists an x ∈ (0�1) such that

FN+1(x) = exp
(
(N + 1)(1 − x)

)
xN+1 ≤ exp(−Nx)

(Nx)N

N! ≤ GN(x)

for all x ∈ [0�x]. We therefore have DN+1(α) = 1/F
−1

N+1(α) ≤ 1/G
−1

N (α) for all α ∈ [0�α],
where α= min{FN+1(x)�0�4}. As a result,∫ 1

α=0
DN+1(α)dH

−1(α)≤
∫ α

α=0

1

G
−1

N (α)
dH−1(α)+

∫ 1

α=α

max
(

1

F
−1

N+1(α)
�1�1

)
dH−1(α) <∞

whenever we have ∫ 1

α=0

1

G
−1

N (α)
dH−1(α)=

∫ ∞

x=0

N

x
dŵN(x) < ∞�

Finiteness of the last integral follows from the first part of the left-tail assumption. Q.E.D.

LEMMA S19: Suppose limN→∞ yN ∈ (−∞�∞). Then limN→∞ μN+1(
√
NyN +N) = 1.

PROOF: We first argue that for almost every y , μN+1(
√
Ny +N) tends to 1 as N → ∞.

For this we recall x∗ and xN from Lemmas S14–S16.
Consider first y < x∗. By Lemma S14, for N sufficiently large, the gains function is

graded at y and, hence,

μN+1(
√
Ny +N) = C(0�

√
NxN+1 +N) = N + 1√

NxN+1 +N
�

Since we have already shown that xN → x∗ (Lemma S14), we conclude that μN+1(
√
Ny +

N) goes to 1.
Now consider y > x∗ at which γ̂C

∞ is continuous. If the gains function is not graded at
y , then μN+1(

√
Ny + N) = N/(

√
Ny + N). If the gains function is graded at y , then the

length of the graded interval [a�b] � y in central limit units is less than εN = v/(γ
√
N) for
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some γ > 0 independent of N (see Lemma S16). Since μ is decreasing (Lemma 3), we
have

N√
N(y + εN)+N

≤ μN+1(
√
Ny +N) ≤ N√

N(y − εN)+N
�

since limz↗a μN+1(
√
Nz+N) =N/(

√
Na+N) and limz↘b μN+1(

√
Nz+N) =N/(

√
Nb+

N). As a result, μN+1(
√
Ny +N) is squeezed to 1 as N goes to infinity.

We conclude that μN+1(
√
Ny+N) goes to 1 for y > x∗ at which γ̂C

∞ is continuous. Since
γ̂C

∞(y) is a monotone function of y , it is continuous at almost every y , so the convergence
μN → 1 is almost everywhere.

Finally, suppose limN→∞ yN = y ∈ (−∞�∞). Choose y ′ and y ′′ such that y ∈ (y ′� y ′′) and
such that

lim
N→∞

μN+1

(√
Ny ′ +N

) = 1 = lim
N→∞

μN+1

(√
Ny ′′ +N

)
�

When N is sufficiently large, we have yN ∈ (y ′� y ′′), so

μN+1

(√
Ny ′′ +N

) ≤ μN+1(
√
NyN +N) ≤ μN+1

(√
Ny ′ +N

)
�

Taking the limit as N → ∞, we conclude limN→∞ μN+1(
√
NyN +N) = 1. Q.E.D.

PROOF OF PROPOSITION 9: We first prove that

lim
N→∞

λN(v;H)→ v− c (S2)

for every v ∈ [v� v].
Replacing μN by 1 in equation (18), the definition of λN(v;H), we have

ΠN(H)+
∫ ∞

y=0
GN(y)dŵN(y)−

∫ v

ν=v

dν

= ΠN(H)+
(
v −

∫ ∞

y=0
gN(y)ŵN(y)dy

)
− (v − v)

= ΠN(H)−
∫ v

v′=v

v′ dH
(
v′) + v�

Since by Proposition 7, limN→∞ ΠN(H) → ∫ v

v′=v
v′ dH(v′) − c, to prove (S2), it suffices to

prove that

lim
N→∞

∫ ∞

y=0

∣∣1 −μN(y)
∣∣dŵN(y)= 0�

Changing variables, we can rewrite the above equation as

lim
N→∞

∫ 1

α=0

∣∣1 −μN

(
G−1

N (α)
)∣∣dH−1(α) = 0� (S3)

We note that Stieltjes integration with respect to dH−1(α) is equivalent to a Lebesgue
integration with respect to the finite measure ω on [0�1] satisfying ω([s� t)) = H−1(t) −
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H−1(s), 0 ≤ s ≤ t ≤ 1, and ω({1}) = 0. The first part of the left-tail assumption implies
that

ω
({0}) = lim

α→0
ω

([0�α)) = lim
α→0

H−1(α)−H−1(0)≤ lim
α→0

G−1
N (α)ϕ = 0

for some ϕ> 1. Therefore, ω({0�1})= 0.
The central limit theorem implies that limN→∞(G−1

N (α) − (N − 1))/
√
N − 1 = �−1(α)

for every α ∈ (0�1). Therefore, Lemma S19 implies limN→∞ μN(G
−1
N (α)) = 1 for every

α ∈ (0�1). Moreover, Lemmas S17 and S18 imply that there exists a N̂ such that for
all N ≥ N̂ , the integrand |1 − μN(G

−1
N (α))| in (S3) is dominated by 1 + DN̂(α) which

is integrable with respect to ω. Therefore, equation (S3) follows from the dominated
convergence theorem, from which equation (S2) follows.

Finally, using the definition of λN(v;H), we have

λN(v;H)≤ΠN(H)+
∫ ∞

y=0
μN(y)

(
1 +GN(y)

)
dŵN(y)

≤ (v − c)+ 2
∫ 1

α=0
DN̂(α)dH

−1(α) <∞

for all v ∈ [v� v] and N ≥ N̂ , where the last two inequalities follow from Lemmas S17 and
S18, respectively. Thus,

lim
N→∞

∫
V

λN(v;H)dH ′(v)=
∫
V

v dH ′(v)− c

follows from the dominated convergence theorem using (S2).
The preceding proof remains valid for the must-sell case, if we replace μN(x) with

μ̂N(x)= (N − 1)/x and ΠN(H) with Π̂N(H). Q.E.D.

LEMMA S20: Suppose the condition on H in Lemma 10 holds. For any ε > 0, there exists
an N̂ such that for all N > N̂ , we have

γ̂N(x) ≤ γ̂N(y)exp(x− y)

for all x≥ y such that γ̂N(y)≥ ε.

PROOF: The condition on H implies that the support of H has no gap on [v� v], so
H−1 is continuous on [0�1]. We can partition [0�1] into a countable collection of intervals
{[αi�βi] : i ∈ I} such that αi < βi and either H−1 is strictly increasing on [αi�βi] or H−1 is
constant on [αi�βi] (i.e., H has a mass point at v, where v = H−1(p) for all p ∈ [αi�βi]).
If H−1 is strictly increasing on [αi�βi], then

H−1(q)−H−1(p)≤ q−p

C
(S4)

for any p�q ∈ (αi�βi) such that p ≤ q, since in this case we have H(H−1(q)) = q and
H(H−1(p)) = p. By continuity of H−1 we can extend (S4) to any p�q ∈ [αi�βi] such that
p ≤ q.

If H−1 is constant on [αi�βi], then clearly (S4) also holds for any p�q ∈ [αi�βi] such
that p ≤ q. Since {[αi�βi] : i ∈ I} is a partition of [0�1], we conclude that (S4) holds for
any p�q ∈ [0�1] such that p< q.
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With the substitution q =GC
N(x) and p= GC

N(y), with x > y , equation (S4) becomes

γ̂C
N(x)− γ̂C

N(y)≤ GC
N(x)−GC

N(y)

C
�

Thus,

γ̂C
N(x)

γ̂C
N(y)

≤ 1 + 1
γ̂C
N(y)

GC
N(x)−GC

N(y)

C
�

The log-1 Lipschitz condition that we want to prove is equivalent to

γ̂C
N(x)

γ̂C
N(y)

≤ exp
(
G−1

N

(
GC

N(x)
) −G−1

N

(
GC

N(y)
))
�

Thus, it is sufficient to show that for large N ,

1 + 1
γ̂C
N(y)

GC
N(x)−GC

N(y)

C
≤ exp

(
G−1

N

(
GC

N(x)
) −G−1

N

(
GC

N(y)
))
�

Both sides are equal to 1 when x= y , and the derivatives of the left- and right-hand sides
with respect to x are, respectively

gC
N(x)

γ̂C
N(y)C

(S5)

and

gC
N(x)

gN

(
G−1

N

(
GC

N(x)
)) exp

(
G−1

N

(
GC

N(x)
) −G−1

N

(
GC

N(y)
))

=
√
N − 1 exp

(
G−1

N

(
GC

N(x)
) −G−1

N

(
GC

N(y)
)) ≥

√
N − 1� (S6)

We now show that (S5) is always less than (S6). Note that gN attains its maximum
when gN = gN−1, i.e., when x = N − 1, at a value of (N−1)N−1

(N−1)! exp(−(N − 1)). Multiplied
by

√
N − 1, this upper bound converges to φ(0). Hence, when N is sufficiently large,

gC
N(x)≤ 2φ(0) for all x. Since γ̂C

N(z) > 0, then there is an N large enough such that

gC
N(x)

γ̂C
N(y)C

≤ 2φ(0)
εC

≤
√
N − 1�

which proves the lemma. Q.E.D.

PROOF OF LEMMA 10: If v > c, then we can take ε = v − c in the statement of Lemma
S20, in which case the statement of the lemma follows immediately.

If v < c, then γ̂C
N(−

√
N − 1) < 0, so that �̂C

N(x) is nonpositive for x close to −√
N − 1.

Hence, there must be a graded interval at the bottom of the form [−√
N − 1�xN]. By

Lemma S14, xN converges to x∗. Moreover, by Lemma S16, γC
N converges almost surely to

γC
∞. Thus, there exists an N̂ such that for all N > N̂ , γ̂C

N(xN)≥ ε. If we take ε= γ̂C
∞(x∗)/2
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in Lemma S20, then there exists a N̂ ′ ≥ N̂ so that for all N > N̂ ′, the log-1 Lipschitz
condition is satisfied for all x ≥ xN . This implies that there is exactly one graded interval
and the conclusion of the lemma follows. Q.E.D.

PROOF OF PROPOSITION 10: We first derive the allocation. When v > c, we have x∗ =
−∞ and the gains function γ is not graded when N is sufficiently large. In this case, Q

C

N(x)
is always exactly 1.

When v < c, x∗ ∈ (−∞�∞), and the gains function γ is single crossing (Section 4.4)
when N is sufficiently large. Then Q

C

N(x)= min((x
√
N +N)/(xN

√
N +N)�1). Since xN

converges to x∗ as defined by equation (29), Q
C

N(x) converges to 1 as N → ∞.
We now derive the transfer. From Lemma 10, we know that there is at most one graded

interval of the form [−√
N�xN], where xN = −√

N if v > c and xN >−√
N if v < c.

Recall that

TN(x) = 1
gN(x)

∫ x

y=0
ΞN(y)gN(y)dy�

ΞN(x)= μN(x)ŵN(x)− λN

(
ŵN(x)

) − cQN(x)�

λN

(
ŵN(x)

)
=

∫ ∞

y=0
γN(y)gN−1(y)dy +

∫ ∞

y=0
μN(y)GN(y)dŵN(y)−

∫ ∞

y=x

μN(y)dŵN(y)

=
∫ ∞

y=0
γN(y)gN−1(y)dy +

∫ ∞

y=0
μN(y)GN(y)dŵN(y)

+μN(x)ŵN(x)+
∫ ∞

y=x

ŵN(y)dμ̂N(y)�

Furthermore,∫ ∞

y=0
μN(y)GN(y)dŵN(y)

=
∫ ∞

y=0
μN(y)GN(y)dγ̂N(y)

= −
∫ ∞

y=0
γ̂N(y)d

(
μN(y)GN(y)

)
= −

∫ ∞

y=0
γ̂N(y)GN(y)dμN(y)−

∫ ∞

y=0
γ̂N(y)μ(y)gN(y)dy

= −
∫ ∞

y=0
γ̂N(y)GN(y)dμN(y)−

∫ ∞

y=0
γN(y)gN−1(y)dy�

where the last inequality comes from equation (32). Thus,

λN

(
ŵN(x)

) = −
∫ ∞

y=0
γ̂N(y)GN(y)dμN(y)+μN(x)ŵN(x)+

∫ ∞

y=x

ŵN(y)dμN(y)
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and

ΞN(x)=
∫ x

y=0
γ̂N(y)GN(y)dμN(y)

+
∫ ∞

y=x

(
γ̂N(y)GN(y)− ŵN(y)

)
dμN(y)− cQN(x)

=
∫ x

y=0
γ̂N(y)GN(y)dμN(y)

−
∫ ∞

y=x

γ̂N(y)
(
1 −GN(y)

)
dμN(y)− c

(
QN(x)−μN(x)

)
�

Let us now switch to central limit units:

ΞC
N(x) =ΞN(

√
N − 1x+N − 1)

=
∫ x

y=−√
N

γ̂C
N(y)G

C
N(y)dμ

C
N(y)

−
∫ ∞

y=x

γ̂C
N(y)

(
1 −GC

N(y)
)
dμC

N(y)− c
(
Q

C

N(x)−μC
N(x)

)
�

By Lemmas S11 and S13, γ̂C
N(y) → γ̂C

∞(y) = H−1(�(y)) − c and GC
N(y) → �(y) as

N → ∞.
Moreover, we have

√
N − 1dμC

N(y)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if y < xN�

(N − 1)
(

N − 1

xN

√
N − 1 +N − 1

− N

xN

√
N − 1 +N − 1

)
→ −1 if y = xN�

−(N − 1)
N − 1

(y
√
N − 1 +N − 1)2

dy → −dy if y > xN�

where the mass point on xN is derived by comparing μC
N to the left and right of xN , and

√
N − 1

(
Q

C

N(x)−μC
N(x)

)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
N − 1

(
x
√
N − 1 +N − 1

xN

√
N − 1 +N − 1

− N

xN

√
N − 1 +N − 1

)
if x < xN�√

N − 1
(

1 − N − 1

x
√
N − 1 +N − 1

)
if x > xN�

which converges to x in both cases.
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Define F(x) = limN→∞
√
N − 1Ξ

C

N(x). We have

F(x)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−cx+ γ̂C
∞

(
x∗)(1 −�

(
x∗)) +

∫ ∞

y=x∗
γ̂C

∞(y)
(
1 −�(y)

)
dy�

x < x∗�

−cx− γ̂C
∞

(
x∗)�(

x∗) −
∫ x

y=x∗
γ̂C

∞(y)�(y)dy +
∫ ∞

y=x

γ̂C
∞(y)

(
1 −�(y)

)
dy�

x > x∗�

Therefore,

lim
N→∞

T
C

N(x)= 1
φ(x)

∫ x

y=0
F(y)φ(y)dy� Q.E.D.

APPENDIX D: DERIVATION OF THE AGGREGATE TRANSFER FOR THE UNIFORM
DISTRIBUTION

Suppose the prior H is the standard uniform distribution, so that ŵ(x) = GN(x), and
that c = 0.

D.1. The Must-Sell Case

We have

λ̂
(
GN(x)

) =
∫ ∞

y=0
GN(y)gN−1(y)dy +

∫ ∞

y=0

N − 1
y

GN(y)gN(y)dy −
∫ ∞

y=x

N − 1
y

gN(y)dy

= 2
∫ ∞

y=0
GN(y)gN−1(y)dy − (

1 −GN−1(x)
)

= 2Π̂ − (
1 −GN−1(x)

)
�

Ξ̂(x) = N − 1
x

GN(x)−GN−1(x)+ 1 − 2Π̂�

Next, ∫ x

y=0
Ξ̂(y)gN(y)dy

=
∫ x

y=0

(
N − 1

y
GN(y)−GN−1(y)+ 1 − 2Π̂

)
gN(y)dy

= 2
∫ x

y=0
GN(y)gN−1(y)dy −GN(x)GN−1(x)+ (1 − 2Π̂)GN(x)

=GN−1(x)
2 − 2

∫ x

y=0
gN(y)gN−1(y)dy −GN(x)GN−1(x)+ (1 − 2Π̂)GN(x)

=GN−1(x)gN(x)− 2
∫ x

y=0
gN(y)gN−1(y)dy + (1 − 2Π̂)GN(x)
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= GN−1(x)gN(x)− (2N − 3)!
22N−3(N − 1)!(N − 2)!G2N−2(2x)+ (1 − 2Π̂)GN(x)

= GN−1(x)gN(x)+ (2N − 3)!
22N−3(N − 1)!(N − 2)!

(
GN(x)−G2N−2(2x)

)
�

where the second line follows from integration by parts, the third and fourth lines use
GN = GN−1 − gN , the fifth line is a direct computation using the formula for gN in (14),
and the last line follows from

Π̂ =
∫ ∞

y=0
GN(y)gN−1(y)dy = 1

2
−

∫ ∞

y=0
gN(y)gN−1(y)dy

= 1
2

(
1 − (2N − 3)!

22N−3(N − 1)!(N − 2)!
)
�

Therefore, when x > 0,

T̂ (x) =GN−1(x)+

(
2N − 3
N − 1

)
22N−3

GN(x)−G2N−2(2x)
gN(x)

�

In the central limit normalization, we define

T̂ C(x) = T̂ (N − 1 +
√
N − 1x)�

Lemma S11 shows that GN(N − 1 + √
N − 1x) → �(x) and gN(N − 1 + √

N − 1x) ×√
N − 1 → φ(x) as N → ∞, where � and φ are, respectively, the cumulative distri-

bution and the density of a standard Normal; this also implies that G2N−2(2(N − 1 +√
N − 1x)) → �(x

√
2). Finally, using Stirling’s approximation, it is easy to check that

(
2N−3
N−1

)

22N−3

√
N − 1 → 1√

π
as N → ∞. Therefore,

lim
N→∞

T̂ C(x) =�(x)+ �(x)−�(x
√

2)√
πφ(x)

for a fixed x.

D.2. The Can-Keep Case

We have shown in Section 4.4 that the uniform distribution is single crossing. Let [0�x∗]
denote the graded interval. The cutoff x∗ satisfies (cf. (28))

GN

(
x∗)

2
= gN+1

(
x∗)� (S7)

This equation implies that GN+1(x
∗)= GN(x

∗)− gN+1(x
∗)= gN+1(x

∗)=GN(x
∗)/2.

Define the constants

C =
∫ ∞

x=0
γ(x)gN−1(x)dx+

∫ ∞

x=0
μ(x)GN(x)gN(x)dx



OPTIMAL AUCTION DESIGN 27

=
∫ x∗

x=0
exp

(
x− x∗)GN

(
x∗)gN−1(x)dx+

∫ x∗

x=0

N

x∗GN(x)gN(x)dx︸ ︷︷ ︸
C1

+
∫ ∞

x=x∗
GN(x)gN−1(x)dx+

∫ ∞

x=x∗

N − 1
x

GN(x)gN(x)dx︸ ︷︷ ︸
C2

�

We next simplify the constants:

C1 = 2
∫ x∗

x=0
exp

(
x− x∗)GN

(
x∗)gN−1(x)dx

= 2GN

(
x∗)gN

(
x∗)�

C2 = 2
∫ ∞

x=x∗
GN(x)gN−1(x)dx

= 1 −GN−1

(
x∗)2 − 2

∫ ∞

x=x∗
gN(x)gN−1(x)dx

= 1 −GN−1

(
x∗)2 −

(
2N − 3
N − 1

)
22N−3

(
1 −G2N−2

(
2x∗))�

C = 2GN

(
x∗)gN

(
x∗) + 1 −GN−1

(
x∗)2 −

(
2N − 3
N − 1

)
22N−3

(
1 −G2N−2

(
2x∗))�

Then

λ
(
GN(x)

) = C −
∫ ∞

y=x

μ(y)gN(y)dy

=

⎧⎪⎪⎨⎪⎪⎩
C −

∫ x∗

y=x

N

x∗ gN(y)dy −
∫ ∞

y=x∗

N − 1
y

gN(y)dy� x≤ x∗�

C −
∫ ∞

y=x

N − 1
y

gN(y)dy� x > x∗

=
⎧⎨⎩C − (

GN

(
x∗) −GN(x)

)N
x∗ − (

1 −GN−1

(
x∗))� x ≤ x∗�

C − (
1 −GN−1(x)

)
� x > x∗

and

Ξ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
GN(x)

N

x∗ −C + (
GN

(
x∗) −GN(x)

)N
x∗ + (1 −GN−1

(
x∗)

= −C +GN

(
x∗)N

x∗ + 1 −GN−1

(
x∗) x≤ x∗�

GN(x)
N − 1
x

−C + 1 −GN−1(x)� x > x∗�
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For x≤ x∗, we have∫ x

y=0
Ξ(y)gN(y)dy =

∫ x

y=0

(
−C +GN

(
x∗)N

x∗ + 1 −GN−1

(
x∗))gN(y)dy

=
(

−C +GN

(
x∗)N

x∗ + 1 −GN−1

(
x∗))GN(x)�

For x > x∗, we have∫ x

y=0
Ξ(y)gN(y)dy =

(
−C +GN

(
x∗)N

x∗ + 1 −GN−1

(
x∗))GN

(
x∗)

+
∫ x

x∗

(
GN(y)

N − 1
y

−C + 1 −GN−1(y)

)
gN(y)dy︸ ︷︷ ︸

X

�

Simplifying the second term, we get

X = (1 −C)
(
GN(x)−GN

(
x∗))

+ 2
∫ x

y=x∗
GN(y)gN−1(y)dy − (

GN(x)GN−1(x)−GN

(
x∗)GN−1

(
x∗))

= (1 −C)
(
GN(x)−GN

(
x∗))

− 2
∫ x

y=x∗
gN(y)gN−1(y)dy + gN(x)GN−1(x)− gN

(
x∗)GN−1

(
x∗)

= (1 −C)
(
GN(x)−GN

(
x∗))

−

(
2N − 3
N − 1

)
22N−3

(
G2N−2(2x)−G2N−2

(
2x∗)) + gN(x)GN−1(x)− gN

(
x∗)GN−1

(
x∗)�

Therefore, for x≤ x∗, we have

T(x) =
(

−C +GN

(
x∗)N

x∗ + 1 −GN−1

(
x∗))GN(x)

gN(x)
�

For x > x∗, we have

T(x) =
[
GN

(
x∗)2 N

x∗ −GN−1

(
x∗)2 + (1 −C)GN(x)

−

(
2N − 3
N − 1

)
22N−3

(
G2N−2(2x)−G2N−2

(
2x∗))] 1

gN(x)
+GN−1(x)�

Finally, we take the limit as N → ∞ for the central limit normalization:

T
C
(x) = T(N − 1 +

√
N − 1x)�
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Since GN(x
∗)/2 = GN+1(x

∗) by the discussion following equation (S7), we must have
(x∗ − (N − 1))/

√
N − 1 → −∞, GN(x

∗) → 0, and gN(x
∗) → 0 as N → ∞. Moreover,

by equation (S7), NGN(x
∗)/x∗ = 2NgN+1(x

∗)/x∗ = 2gN(x
∗)→ 0 as N → ∞. Substituting

these into the expressions of C and T , and simplifying as in the must-sell case, we get

lim
N→∞

T
C
(x) =�(x)+ �(x)−�(x

√
2)√

πφ(x)
�
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