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ONLINE APPENDIX

THIS ONLINE APPENDIX EXTENDS THE RESULTS of Di Tella and Sannikov (2021) to in-
corporate hidden investment, aggregate risk, and renegotiation. The case with no hidden
investment and price of aggregate risk π = 0 yields the expressions in the paper.

O.1. Setting With Aggregate Risk and Hidden Investment

We introduce aggregate risk and hidden investment into the baseline setting in the
paper. The observed return is

dRt = (r +πσ̃ + α− at)dt + σ dZt + σ̃ dZ̃t� (O.1)

where Z and Z̃ are independent Brownian motions that represents idiosyncratic and ag-
gregate risk. There is a complete financial market with equivalent martingale measure Q.
The risk-free rate is r, aggregate risk has market price π, and idiosyncratic risk is not
priced. Capital has a loading σ on idiosyncratic risk and σ̃ on aggregate risk, so the excess
return on capital for the agent is α, as in the baseline.

The agent receives cumulative payments I from the principal and manages capital k
for him. Payments I can be any semimartingale (it could be decreasing if the agent must
pay the principal). This nests the relevant case where the contract gives the agent only
what he will consume, that is, dIt = ct dt. As in the baseline setting, the agent can steal
from the principal at rate at ≥ 0 and decide when to consume c̃t > 0. He can invest his
hidden savings in the same way the principal would, not only in a risk-free asset, but also
in aggregate risk Z̃. In addition, the agent may be able to invest his hidden savings in his
private technology. His hidden savings follow the law of motion:

dht = dIt +
(
rht +ztht(α+πσ̃)+ z̃thtπ− c̃t +φktat

)
dt+ztht(σ dZt + σ̃ dZ̃t)+ z̃tht dZ̃t�

where z is the portfolio weight on his own private technology, and z̃ the weight on aggre-
gate risk. While the agent can chose any position on aggregate risk, z̃t ∈R, for his hidden
private investment we consider two cases: (1) no hidden private investment, zt ∈H = {0},
and (2) hidden private investment, zt ∈H =R+.22
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Yuliy Sannikov: sannikov@gmail.com
22We can also study other cases where the agent may not be able to invest in aggregate risk, or only take

a positive position, which requires small modifications to the relevant incentive compatibility constraints. We
focus on the economically most relevant case, where the agent can always invest his hidden savings in the
market in the same way the principal would.
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The agent’s utility is

U0 = E

[∫ ∞

0
e−ρt c̃

1−γ
t

1 − γ dt
]

and the cost to the principal is

J0 = E
Q

[∫ ∞

0
e−rt(dIt − (α− at)kt

)
dt

]
	

A contract C = (I�k� c̃� a� z� z̃) specifies the contractible payments I and capital k, and
recommends the hidden action (c̃� a� z� z̃), all contingent on the history of observed re-
turnsR and the aggregate shock Z̃. After signing the contract the agent can choose a strat-
egy (c̃� a� z� z̃) to maximize his utility (potentially different from the one recommended by
the principal). Given contract C, a strategy is feasible if (1) utility Uc̃�a�z�z̃

0 is finite, and (2)
hidden savings ht ≥ 0 always. Since the agent can secretly invest in his private technology,
we also impose the regularity condition (3) EQ[∫ ∞

0 e−rt(c̃t + αztht)dt]<∞. Let S(C) be
the set of feasible strategies given contract C.

A contract C = (I�k� c̃� a� z� z̃) is admissible if (1) (c̃� a� z� z̃) is feasible given C, and (2)

E
Q

[∫ ∞

0
e−rt dIt

]
<∞� E

Q

[∫ ∞

0
e−rtkt dt

]
<∞� E

Q

[∫ ∞

0
e−rtatkt dt

]
<∞	 (O.2)

An admissible contract C = (I�k� c̃� a� z� z̃) is incentive compatible if the agent’s optimal
feasible strategy given C is (c̃� a� z� z̃), as recommended by the principal. Let IC be the
set of incentive compatible contracts. An incentive compatible contract is optimal if it
minimizes the principal’s cost

v0 = min
C
J0(C)≡ E

Q

[∫ ∞

0
e−rt(dIt − (α− at)kt

)
dt

]
s.t. Uc̃�a�z�z̃

0 ≥ u0

C ∈ IC	

To incorporate aggregate risk into the setting, we need to slightly modify the parameter
restrictions. We assume throughout that

ρ− r(1 − γ)
γ

− 1 − γ
2

(
π

γ

)2

> 0�

α < ᾱ≡ φσγ
√

2√
1 + γ

√
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2

	

O.2. No Stealing or Hidden Savings in the Optimal Contract

LEMMA O.1: It is without loss of generality to look only at contracts that induce no stealing
a= 0, no hidden savings, h= 0, and no hidden investment, z = z̃ = 0.

REMARK: This lemma is also valid for the baseline setting without aggregate risk or
hidden investment.
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PROOF: Imagine the principal is offering contract C = (I�k� c̃� a� z� z̃) with associated
hidden savings h. Let kh = zh and k̃h = z̃h be the agent’s absolute hidden positions in
his private technology and aggregate risk, respectively. We will show that we can offer
a new contract C ′ = (I ′�k′� dI ′�0�0�0) under which it is optimal for the agent to choose
not to steal, no hidden savings, and no hidden investment, that is, c̃′ = dI ′, a= z = z̃ = 0.
The new contract has I ′

t =
∫ t

0 c̃s ds and k′ = k(Ra)+ kh (to simplify notation, we suppress
dependence on Z̃).

If the agent now chooses c̃′ = dI ′, a = z = z̃ = 0, he gets hidden savings h′ = 0 and
consumption c̃, so he gets the same utility as under the original contract and this strategy
is therefore feasible under the new contract. If instead he chooses a different feasible
strategy (c̃′� a′� z′� z̃′), he gets the utility associated with c̃′. We will show that he could
achieve this utility under the original contract by picking consumption c̃′, stealing dR−
dRa(Ra

′
), hidden investment in private technology kh(Ra′

)+(kh)′, and hidden investment
in aggregate risk k̃h(Ra′

)+ (k̃h)′. Since the strategy (c̃′� a′� z′� z̃′) is feasible under the new
contract C ′, and (c̃� a� z� z̃) feasible under the old contract C, then in order to ensure the
new strategy is feasible under the original contract we only need to show that hidden
savings remain nonnegative always

h′
t =

∫ t

0
er(t−s)

(
dIt

(
Ra

(
Ra

′)) − c̃′
t dt +φkt

(
Ra

(
Ra

′))(
dRt − dRat

(
Ra

′))
+ (
kht

(
Ra

′) + (
kh

)′
t

)
dRt +

(
k̃ht

(
Ra

′) + (
k̃h

)′
t

)
(π dt + dZ̃t)

)
	

To show this is always nonnegative, we will show it is greater or equal to the sum of two
nonnegative terms. First, the hidden savings under the original contract, following the
original feasible strategy, had Ra′ been the true return

At =
∫ t

0
er(t−s)

(
dIt

(
Ra

(
Ra

′)) − c̃t
(
Ra

′)
dt +φkt

(
Ra

(
Ra

′))(
dRa

′
t − dRat

(
Ra

′))
+ kht

(
Ra

′)
dRa

′
t + k̃ht

(
Ra

′)
(π dt + dZ̃t)

) ≥ 0	

Second, hidden savings under the new contract, following the feasible new strategy:

Bt =
∫ t

0
er(t−s)

(
c̃t

(
Ra

′)
dt − c̃′

t dt +φ
(
kt

(
Ra

(
Ra

′)) + kht
(
Ra

′))(
dRt − dRa′

t

)
+ (
kh

)′
t
dRt +

(
k̃h

)′
t
(π dt + dZ̃t)

) ≥ 0	

If φ = 1, then h′
t =At + Bt ≥ 0. With φ < 1, we have h′

t ≥At + Bt ≥ 0, because dRt −
dRa

′
t = a′ dt ≥ 0 and kh(Ra′

) ≥ 0. This means that c̃′ = c′, a = z = z̃ = 0 is the agent’s
optimal choice under the new contract C ′, since any other choice delivers an utility that
he could have obtained—but chose not to—under the original contract C.

We can now compute the principal’s cost under the new contract

J ′
0 = E

Q

[∫ τn

0
e−rt(c̃t − α(

kt
(
Ra

) + kht
))
dt + e−rτnJ ′

τn

]

= E
Q

[∫ τn

0
e−rt(dIt(Ra) − (α− at)kt

(
Ra

)
dt

) + e−rτnJτn
]
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−E
Q

[∫ τn

0
e−rtatkt

(
Ra

)
(1 −φ)dt

]

−E
Q

[∫ τn

0
e−rt(dIt(Ra) − c̃t dt +φkt

(
Ra

)
at dt + kht αdt

)] +E
Q
[
e−rτn(J ′

τn − Jτn
)]
	

On the rhs, the first term is the cost under the original contract; the second term the
destruction produced by stealing under the original contract, which is nonnegative; and
the third term is EQ[e−rτnhτn] ≥ 0, where h is the agent’s hidden savings under the original
contract. To see this, write

dht = htr dt + dIt
(
Ra

) − c̃t dt +φkt
(
Ra

)
at dt

+ kht
(
(α+πσ̃)dt + σ dZt + σ̃ dZ̃t

) + k̃ht (π dt + dZ̃t)	
So

d
(
e−rtht

) = e−rt dht − re−rtht dt

= e−rt(dIt(Ra) − c̃t dt +φkt
(
Ra

)
at dt

+ kht
(
(α+πσ̃)dt + σ dZt + σ̃ dZ̃t

) + k̃ht (π dt + dZ̃t)
)
	

Now take expectations under Q, choosing the localizing process appropriately to get

E
Q

[∫ τn

0
d
(
e−rtht

)] = E
Q

[∫ τn

0
e−rt(dIt(Ra) − c̃t dt +φkt

(
Ra

)
at dt + kht αdt

)]
= E

Q
[
e−rτnhτn − h0

] ≥ 0	

Given these inequalities, we can write

J ′
0 − J0 ≤ E

Q
[
e−rτn(J ′

τn − Jτn
)]
	

Because the original contract was admissible, limn→∞ E
Q[e−rτnJτn] = 0. Since in addi-

tion the agent’s response was feasible, the new contract is also admissible, and we get
limn→∞ E

Q[e−rτnJ ′
τn] = 0 as well. This shows the new contract is admissible, and the cost for

the principal is not greater than under the old contract. This completes the proof. Q.E.D.

We can then simplify the contract to C = (c�k), and say an admissible contract is incen-
tive compatible if the agent’s optimal strategy is (c�0�0�0), or (c�0) for short.

O.3. Incentive Compatibility

Since the contract can depend on the history of aggregate shocks Z̃, so can his contin-
uation utility Uc�0 and his consumption c. However, because the agent is not responsible
for aggregate shocks, incentive compatibility does not place any constraints on his expo-
sure to aggregate risk. On the other hand, since the agent can invest his hidden savings,
his Euler equation needs to be modified appropriately. The discounted marginal utility of
a hidden dollar must be a supermartingale under any feasible hidden investment strategy,
since otherwise the agent could save a dollar instead of consuming it, invest it in aggregate
risk and his private technology, and consume it later when the marginal utility is expected
to be higher.
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LEMMA O.2: If C = (c�k) is an incentive compatible contract, the agent’s continuation
utility Uc�0 and consumption c satisfy the laws of motion

dUc�0
t =

(
ρUc�0

t − c1−γ
t

1 − γ
)
dt +Δtσ dZt + σ̃ut dZ̃t� (O.3)

dct

ct
=

(
r − ρ
γ

+ 1 + γ
2

(
σct

)2 + 1 + γ
2

(
σ̃ct

)2
)
dt + σct dZt + σ̃ct dZ̃t + dLt� (O.4)

for some Δ, σ̃u, σc , σ̃c , and a weakly increasing processes L, such that

Δt ≥ c−γ
t φkt� (O.5)

z
(
α− σct σγ

) ≤ 0 ∀z ∈H� (O.6)

σ̃ ct = π

γ
	 (O.7)

PROOF: The proof of (O.3) and (O.5) are similar to Lemmas 1 and 2, where the dZ̃
term appears because the contract can depend on the history of aggregate shocks. For
(O.4), the proof is analogous to Lemma 2, but now we need the discounted marginal
utility

Yt = e
∫ t

0 r−ρ+zs(α+πσ̃)+πsz̃s− 1
2 (zsσ)

2− 1
2 (zsσ̃+z̃s)2 ds+

∫ t
0 (zsσ)dZs+

∫ t
0 (zsσ̃+z̃s) dZ̃s c−γ

t (O.8)

to be a supermartingale for any investment strategy z̃t ∈ R and zt ∈H. Using the Doob–
Meyer decomposition, the Martingale representation theorem, and Ito’s lemma, we can
write

dct

ct
= μct dt + σct dZt + σ̃ct dZ̃t + dLt	

Since the finite variation part of expression (O.8) must be nonincreasing, we get

(
r − ρ− γμct + γ

2
(
(1 + γ)σct

)2 + γ

2
(
(1 + γ)σ̃ct

)2
)
dt

+ (
z(α+πσ̃)+πz̃− γσct zσ − γσ̃ct (zσ̃ + z̃))dt − γ dLt ≤ 0	 (O.9)

Taking z = z̃ = 0, which are always allowed, we obtain wlog the expression for μc in (O.4),
and L weakly increasing. Once we plug this into (O.9), and using that z̃t can be both
positive or negative, we get (O.7). Condition (O.6) is therefore necessary to ensure (O.9)
holds. Q.E.D.

The IC constraint (O.6) depends on whether the agent is allowed to have a hidden
investment in his own private technology. If hidden investment in the agent’s private
technology is not allowed, H = {0} so condition (O.6) drops out. If instead hidden in-
vestment in the agent’s private technology is allowed,H = R+, so condition (O.6) reduces
to σct ≥ α

σγ
.
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O.4. Change of Variables

We can still use the the state variables x and ĉ. Their laws of motion are

dxt

xt
=

(
ρ− ĉ1−γ

1 − γ + γ

2
(
σxt

)2 + γ

2
(
σ̃xt

)2
)
dt + σxt dZt + σ̃xt dZ̃t� (O.10)

dĉt

ĉt
=

(
r − ρ
γ

− ρ− ĉ1−γ
t

1 − γ +
(
σxt

)2

2
+ γσxt σĉt + 1 + γ

2
(
σĉt

)2

+
(
σ̃xt

)2

2
+ γσ̃xt σ̃ ĉt + 1 + γ

2
(
σ̃ ĉt

)2
)
dt + σĉt dZt + σ̃ ĉt dZ̃t + dLt�

dLt ≥ 0 (O.11)

and the incentive compatibility constraints can be written

σxt ≤ ĉ−γ
t φk̂tσ� (O.12)

z
(
α− (

σĉt + σxt
)
σγ

) ≤ 0 ∀z ∈H� (O.13)

σ̃ ĉt + σ̃xt = π

γ
	 (O.14)

As before, ĉ has an upper bound ĉh, which must be modified to take into account that it
is not incentive compatible to give the agent a perfectly safe consumption stream.

LEMMA O.3: For any incentive compatible contract C = (c�k), we have for all t

ĉt ≤ ĉh� (O.15)

where ĉh is given by

ĉh ≡ max
σx≥0

(
ρ− r(1 − γ)

γ
− 1 − γ

2
(
σx

)2 − 1 − γ
2

(
π

γ

)2) 1
1−γ

s.t. z
(
α− σxσγ) ≤ 0 ∀z ∈H	

(O.16)

If ever ĉt = ĉh, then the continuation contract satisfies ĉt+s = ĉh and k̂t = σxĉ
γ
h

φσ
for all future

times t + s, and xt follows the law of motion (O.10), where σx is the optimizing choice in
(O.16) and σ̃x = π

γ
. Let v̂h be the cost of this continuation contract:

v̂h =
ĉh − α

φσ
ĉγhσ

x

r − ρ− ĉ1−γ

1 − γ − γ

2
(
σx

)2 + γ

2

(
π

γ

)2 	

If in addition σc and σ̃c are bounded, we have

ĉt ≤ E
P̃
t

[∫ ∞

t

e− ∫ s
t (
ρ−r(1−γ)

γ − 1−γ
2 (σcu)

2− 1−γ
2 (σ̃cu)

2)du ds

]− 1
1−γ
� (O.17)
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with equality ifLt = 0 always, where P̃ is an equivalent measure such thatZt−
∫ t

0 (1−γ)σcs ds
and Z̃t −

∫ t

0 (1 − γ)σ̃cs ds are P̃-martingales.

PROOF: The same reasoning as in Lemma 3 yields ĉt ≤ (ρ−r(1−γ)
γ

)
1

1−γ . For any ĉ between

ĉh and (ρ−r(1−γ)
γ

)
1

1−γ , preventing ĉt from crossing above ĉ requires σĉ = σ̃ ĉ = 0 at that point
and μĉ ≤ 0. But σĉ = σ̃ ĉ = 0 implies the drift of ĉt is

μĉt = r − ρ
γ

− ρ− ĉ1−γ
t

1 − γ +
(
σxt

)2

2
+

(
σ̃xt

)2

2
	

If ever ĉt > ĉh, the drift is strictly positive for any σxt and σ̃xt satisfying (O.13) and (O.14),
so we must have ĉt ≤ ĉh at all times, and if ever ĉt = ĉh, it must remain absorbed there
forever. Using the IC constraint (O.12) and the law of motion of x, we obtain σxt and
σ̃xt in the continuation contract, and from (O.12) we get k̂t . The cost of the continuation

contract with ĉt+s = ĉh and k̂t = σxĉ
γ
h

φσ
for all future times t + s can be obtained from the

HJB equation with σĉ = σ̃ ĉ = μĉ = 0, or simply applying the formula (O.32) for the cost
of stationary contracts at ĉ = ĉh.

For (O.17), the same reasoning as in Lemma 3 gives us

ĉt ≤ E
P̃
t

[∫ ∞

t

e− ∫ s
t (
ρ−r(1−γ)

γ − 1−γ
2 (σcu)

2− 1−γ
2 (σ̃cu)

2)du ds

]− 1
1−γ
�

with equality if Lt = 0 always, where P̃ is an equivalent measure such that Zt −
∫ t

0 (1 −
γ)σcs ds and Z̃t −

∫ t

0 (1 − γ)σ̃cs ds are P̃-martingales. Q.E.D.

The upper bound ĉh restricts the principal’s ability to promise safety in the future. Even
if the agent cannot invest his hidden savings in his private technology, H = {0}, he can
still invest in aggregate risk. In this case, the maximizing choice is σc = 0 and we get
ĉh = (ρ−r(1−γ)

γ
− 1−γ

2 (
π
γ
)2)

1
1−γ . Notice that if π = 0 this boils down to expression (14) in the

baseline setting without aggregate risk or hidden investment. If the agent can also invest
his hidden savings in his own private technology, H = R+, then the maximizing choice is
σc = α

σγ
, and ĉh = (ρ−r(1−γ)

γ
− 1−γ

2 (
α
σγ
)2 − 1−γ

2 (
π
γ
)2)

1
1−γ is lower.

We call any admissible contract locally incentive compatible if ĉt ≤ ĉh, and (O.11)–(O.14)
hold. Notice that equation (O.10) follows automatically from the definition of xt .

We can build a locally incentive compatible contract from processes x > 0 and ĉ > 0
satisfying (O.10), (O.11), (O.13), and (O.14), with σxt ≥ 0 and ĉt ≤ ĉh. Define the contract
(c�k) by ct = ĉtxt > 0 and kt = xtσ

x
t ĉ

γ
t /(φσ) ≥ 0. Then, under technical conditions, the

contract (c�k) is admissible as defined in Section 2 and delivers utility Uc�0
t = x

1−γ
t

1−γ under
good behavior. It is locally incentive compatible by definition.

LEMMA O.4: Let x > 0 and ĉ > 0 be stochastic processes satisfying (O.10), (O.11),
(O.13), and (O.14), bounded volatilities σx ≥ 0 and σ̃x, and with ĉ bounded away from
zero and above by ĉh.

Then the contract C = (c�k) with ct = ĉt × xt > 0 and kt = σxt ĉ
γ
t /(φσ) × xt ≥ 0 deliv-

ers utility Uc�0
t = x

1−γ
t

1−γ if the agent follows strategy (c�0). The contract C is admissible and,
therefore, locally incentive compatible if and only if EQ[∫ ∞

0 e−rtxt dt]<∞.
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PROOF: The proof is analogous to Lemma 4 in the main body of the paper. First, we

show the contract delivers utility x
1−γ
t

1−γ <∞ if the agent follows strategy (c�0). Let Yt =
x

1−γ
t

1−γ , and using the law of motion of x, (16), we get

dYt = Yt(1 − γ)
(
μxt − γ

2
(
σxt

)2 − γ

2
(
σ̃xt

)2
)

︸ ︷︷ ︸
ρYt− c

1−γ
t
1−γ

dt

+Yt(1 − γ)σxt dZt +Yt(1 − γ)σ̃xt dZt	 (O.18)

Integrating we obtain

Y0 = E

[∫ τn

0
e−ρs c

1−γ
s

1 − γ ds+ e−ρτnYτn
]

for an increasing sequence of bounded stopping times with τn → ∞ a.s. Take the limit
n→ ∞, using the monotone convergence theorem on the first term to get

Y0 = E

[∫ ∞

0
e−ρs c

1−γ
s

1 − γ ds
]

︸ ︷︷ ︸
U
c�0
0

+ lim
n→∞

E
[
e−ρτnYτn

]
	

We will now show that the last term is zero,

lim
n→∞

E
[
e−ρτnYτn

] = 0	

Since σx and σ̃x are bounded and ĉ bounded away from zero and above by ĉh, μx is
bounded too, and so is therefore the growth rate, (1 − γ)(μxt − γ

2 (σ
x
t )

2 − γ

2 (σ̃
x
t )

2), and
volatilities, (1 − γ)σxt and (1 − γ)σ̃xt , of Yt in (O.18). Furthermore, the growth rate of Yt
in (O.18), is bounded away below ρ,

(1 − γ)
(
μxt − γ

2
(
σxt

)2 − γ

2
(
σ̃xt

)2
)

− ρ= −ĉ1−γ
t ≤ max

{−ĉ1−γ
�−ĉ1−γ

h

}
< 0�

where ĉ is a lower bound on ĉt . We then get that limn→∞ E[e−ρτnYτn] = 0 and, therefore,

Uc�0
0 = Y0 = x

1−γ
0

1−γ <∞. The same reasoning yields Uc�0
t = x

1−γ
t

1−γ <∞ for all t.
Now we show that the resulting contract C is admissible if and only if EQ[∫ ∞

0 e−rtxt dt]<
∞. To show sufficiency, notice that since ĉ is bounded above by ĉh and σx bounded, we
can write

E
Q

[∫ ∞

0
e−rt(ct + kt)dt

]
≤ 2 max

{
ĉh�

σ̄xĉγh
φσ

}
E
Q

[∫ ∞

0
e−rtxt dt

]
<∞�

where σ̄x is an upper bound on σxt . For necessity, since ĉt is bounded away from zero,
ĉt ≥ ĉ > 0,

∞> E
Q

[∫ ∞

0
e−rtct dt

]
≥ ĉ ×E

Q

[∫ ∞

0
e−rtxt dt

]
	



OPTIMAL ASSET MANAGEMENT CONTRACTS WITH HIDDEN SAVINGS 9

Since the contract is admissible and satisfies (O.11)–(O.14), and ĉt ≤ ĉh, it is locally incen-
tive compatible. Q.E.D.

O.5. Sufficient Conditions for Global Incentive Compatibility

Incentive compatible contracts are locally incentive compatible. Here, we provide suf-
ficient conditions for a locally incentive compatible contract to be incentive compatible.
We can extend Theorem 1 to verify global incentive compatibility.

THEOREM O.1: Let C = (c�k) be locally incentive compatible contract with ĉ bounded
away for zero and bounded volatilities σx, σ̃x, σĉ and σ̃ ĉ . Suppose that the contract satisfies
the following property:

σĉt ≤ 0	

Then for any feasible strategy (c̃� a� z� z̃), with associated hidden savings h, we have the fol-
lowing upper bound on the agent’s utility, after any history:

Uc̃�a�z�z̃
t ≤

(
1 + ht

xt
ĉ−γ
t

)1−γ
Uc�0
t 	

In particular, since h0 = 0, for any feasible strategy Uc̃�a�z�z̃
0 ≤Uc�0

0 , and the contract C is there-
fore incentive compatible.

PROOF: Focus on the simple case with dLt = 0; the proof can be easily generalized for
dLt ≥ 0. Following the same steps as in the proof of Theorem 1, we obtain

e−ρt
(
Uc̃�a
t − x̄1−γ

t

1 − γ
)

= E
a
t

[∫ τn

t

e−ρu c̃
1−γ
u

1 − γ du+
∫ τn

t

d

(
e−ρu x̄

1−γ
u

1 − γ
)

+ e−ρτn
(
Uc̃�a
τn − x̄1−γ

τn

1 − γ
)]
�

where x̄t = xt + htĉ−γ
t , and c̆t = c̃t/x̄t . The first two terms can be written

E
a
t

[∫ τn

t

e−ρu c̃
1−γ
u

1 − γ du+
∫ τn

t

d

(
e−ρu x̄

1−γ
u

1 − γ
)]

= E
a
t

[∫ τn

t

e−ρux̄−γ
u

(
c̆1−γ
u − ρ
1 − γ x̄u + x̄uμx̄u − x̄u γ2

(
σx̄u

)2 − x̄u γ2
(
σ̃ x̄u

)2
)
du

]
� (O.19)

where

x̄tμ
x̄
t = xt

(
ρ− ĉ1−γ

t

1 − γ + γ

2
(
σxt

)2 + γ

2
(
σ̃xt

)2 − σxt
σ
at

)
+ ĉ−γ

t

(
rht + ztht(α+πσ̃)+ z̃thtπ + ct − c̃t +φktat

)
+ htĉ−γ

t

(
ρ− r − γ ĉ

1−γ − ρ
1 − γ − γ

2
(
σxt

)2 − γ2σxt σ
ĉ
t − γ

2
(
σ̃xt

)2 − γ2σ̃xt σ̃
ĉ
t + γσĉt at

)
− htĉ−γ

t γσ
ĉ
t ztσ − htĉ−γ

t γσ̃
ĉ
t (ztσ̃ + z̃t)�
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x̄tσ
x̄
t = σxt xt − htĉ−γ

t γσ
ĉ
t + htĉ−γ

t ztσ�

x̄t σ̃
x̄
t = σ̃xt − htĉ−γ

t γσ̃
ĉ
t + htĉ−γ

t (ztσ̃ + z̃t)	
Following the proof of Theorem 1, we can write the integrand as the sum of four parts

c̆1−γ
u − ρ
1 − γ x̄u + x̄uμx̄u − x̄u γ2

(
σx̄u

)2 − x̄u γ2
(
σ̃ x̄u

)2 =Auau +Bu +Cu + C̃u	

At and Bt are unchanged and we know they are nonpositive:

At = ĉ−γ
t φkt − xt

σxt
σ

+ htĉ−γ
t γσ

ĉ
t ≤ 0�

Bt = xt ρ− ĉ1−γ

1 − γ + ĉ−γ
t (rht + ĉtxt − c̆t x̄t)+ htĉ−γ

t

(
ρ− r − γ ĉ

1−γ − ρ
1 − γ

)
+ x̄t c̆

1−γ
u − ρ
1 − γ ≤ 0	

Ct needs to be modified to account for hidden investment, and the new term C̃t collects
the terms dealing with aggregate risk,

Ct = xt γ2
(
σxt

)2 + htĉ−γ
t

(
ztα− γσĉt ztσ − γ

2
(
σxt

)2 − γ2σxt σ
ĉ
t

)
− x̄t γ2

(
σx̄t

)2
�

Ct = γ

2

(
xt

(
σxt

)2 + 2htĉ−γ
t zt

(
α

γ
− σĉt σ

)
− htĉ−γ

t

(
σxt

)2 − htĉ−γ
t 2γσxt σ

ĉ
t − 1

x̄t

(
x̄tσ

x̄
t

)2
)
	

Notice that we included the zthtα term here. We will include π(zthtσ̃ + z̃tht) in C̃t .
Expand (x̄tσx̄t )

2:

Ct = γ

2

(
xt

(
σxt

)2 + 2htĉ−γ
t zt

(
α

γ
− σĉt σ

)
− htĉ−γ

t

(
σxt

)2 − htĉ−γ
t 2γσxt σ

ĉ
t

− 1
x̄t

(
x2
t

(
σxt

)2 + (
htĉ

−γ
t

(
ztσ − γσĉt

))2 + 2xtσxt ht ĉ
−γ
t

(
ztσ − γσĉt

)))
	

Take the 1/x̄t out of the parenthesis:

Ct = γ

2
1
x̄t

(
x2
t

(
σxt

)2 + htĉ−γ
t xt

(
σxt

)2 + 2xtht ĉ−γ
t zt

(
α

γ
− σĉt σ

)
+ 2

(
htĉ

−γ
t

)2
zt

(
α

γ
− σĉt σ

)

− xtht ĉ−γ
t

(
σxt

)2 − (
htĉ

−γ
t

)2(
σxt

)2 − xtht ĉ−γ
t 2γσxt σ

ĉ
t − (

htĉ
−γ
t

)2
2γσxt σ

ĉ
t

− (
x2
t

(
σxt

)2 + (
htĉ

−γ
t

(
ztσ − γσĉt

))2 + 2xtσxt ht ĉ
−γ
t

(
ztσ − γσĉt

)))
	

Cancel some terms:

Ct = γ

2
1
x̄t

(
2xtht ĉ−γ

t zt

(
α

γ
− σĉt σ

)
+ 2

(
htĉ

−γ
t

)2
zt

(
α

γ
− σĉt σ

)
− (
htĉ

−γ
t

)2(
σxt

)2

− (
htĉ

−γ
t

)2
2γσxt σ

ĉ
t − (

htĉ
−γ
t

(
ztσ − γσĉt

))2 − 2xtσxt ht ĉ
−γ
t ztσ

)
	



OPTIMAL ASSET MANAGEMENT CONTRACTS WITH HIDDEN SAVINGS 11

And group the remaining ones to form a square:

Ct = −γ
2

(
htĉ

−γ
t

)2

x̄t

((
σxt

)2 + (
γσĉt − ztσ

)2 + 2σxt
(
γσĉt − ztσ

))
+ γ

2
1
x̄t

(
2xtht ĉ−γ

t zt

(
α

γ
− (
σxt + σĉt

)
σ

)
+ 2

(
htĉ

−γ
t

)2
zt

(
α

γ
− (
σxt + σĉt

)
σ

))
�

Ct = −γ
2

(
htĉ

−γ
t

)2

x̄t

(
σxt + (

γσĉt − ztσ
))2 + 1

x̄t

(
xt + htĉ−γ

t

)
htĉ

−γ
t zt

(
α− γ(

σxt + σĉt
)
σ

)
	

Rearrange

Ct = −γ
2

(
htĉ

−γ
t

)2

x̄t

(
σxt + (

γσĉt − ztσ
))2 + htĉ−γ

t ztσ

(
α

σ
− γ(

σxt + σĉt
)) ≤ 0	

where the last inequality uses the IC constraint for hidden investment (O.13).
The term C̃t collects the terms dealing with aggregate risk:

C̃t = xt γ2
(
σ̃xt

)2 + htĉ−γ
t

(
(ztσ̃ + z̃t)π − γσ̃ ĉt (ztσ̃ + z̃t)− γ

2
(
σ̃xt

)2 − γ2σ̃xt σ̃
ĉ
t

)
− x̄t γ2

(
σ̃ x̄t

)2
	

This term is the same as Ct except that α/σ is replaced with π and ztσ is replaced with
ztσ̃ + z̃t , and all the volatilities are with respect to the aggregate shock. The same steps as
above therefore lead to

C̃t = −γ
2

(
htĉ

−γ
t

)2

x̄t

(
σ̃xt + (

γσ̃ ĉt − (ztσ̃ + z̃t)
))2 + htĉ−γ

t (ztσ̃ + z̃t)
(
π − γ(

σ̃xt + σ̃ ĉt
)) ≤ 0�

where the last inequality follows from the IC constraint for hidden investment in aggre-
gate risk (O.14).

The rest of the proof dealing with the terminal term follows the same steps as in Theo-
rem 1 using Lemma O.14. Q.E.D.

O.6. The Solution to the Relaxed Problem Gives the Optimal Contract

The relaxed problem minimizes cost within the class of locally incentive compatible con-
tracts, and we call a solution to the relaxed problem a relaxed optimal contract. As in the
baseline setting, the relaxed optimal contract is in fact globally incentive compatible and,
therefore, an optimal contract. The solution to the relaxed problem can be character-
ized with the same HJB equation as in the case without hidden investment, appropriately
extended to incorporate aggregate risk and the new incentive compatibility constraints:

0 = min
σx�σĉ�σ̃x�σ̃ ĉ

ĉ− rv̂− σxĉγ α
φσ

+ v̂
(
ρ− ĉ1−γ

1 − γ + γ

2
(
σx

)2 + γ

2
(
σ̃x

)2 −πσ̃x
)

+ v̂′ĉ
(
r − ρ
γ

− ρ− ĉ1−γ

1 − γ +
(
σx

)2

2
+ (1 + γ)σxσĉ + 1 + γ

2
(
σĉ

)2 +
(
σ̃x

)2

2

+ (1 + γ)σ̃xσ̃ ĉ + 1 + γ
2

(
σ̃ ĉ

)2 − σ̃ ĉπ
)

+ v̂′′

2
ĉ2

((
σĉ

)2 + (
σ̃ ĉ

)2)
� (O.20)

subject to σx ≥ 0 and (O.13) and (O.14).
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Using (O.14) to eliminate σ̃ ĉ , and taking FOC for σ̃x, we obtain

σ̃x = π

γ
� σ̃ ĉ = 0	

This is the first best exposure to aggregate risk. The principal and the agent do not have
any conflict about aggregate risk, and the principal cannot use it to relax the moral hazard
problem, so they implement the first best aggregate risk sharing.23

The FOC for σx and σĉ depend on whether the agent can invest his hidden savings in his
private technology. Without hidden investment, the FOCs are the same as in the baseline.
With hidden investment, the IC constraint (O.13) could be binding in some region of the
state space. The shape of the contract, however, is the same as in the baseline without
hidden investment.

It is useful to define

A(ĉ� v̂)≡ min
σx≥0

ĉ − σxĉγ α
φσ

− rv̂+ v̂
(
ρ− ĉ1−γ

1 − γ + γ

2
(
σx

)2 − γ

2

(
π

γ

)2)
	 (O.21)

The HJB equation when v̂′ = v̂′′ = 0 and (O.13) is not binding is A(ĉ� v̂)= 0.

THEOREM O.2: The relaxed problem has the following properties:
1. The cost function v̂(ĉ) has a flat portion on (0� ĉl) and a strictly increasing C2 por-

tion on (ĉl� ĉh), for some ĉl ∈ (0� ĉh). The HJB equation (O.20) holds with equality in
ĉ ∈ (ĉl� ĉh). For ĉ < ĉl, we have v̂(ĉ) = v̂(ĉl) ≡ v̂l and the HJB holds as an inequality,
A(ĉ� v̂l) > 0.

2. At ĉl, we have v̂′(ĉl) = 0, v̂′′
+(ĉl) > 0, and A(ĉl� v̂l) = 0. The cost function satisfies

v̂(ĉ) < ĉγ for all ĉ ∈ [ĉl� ĉh), with v̂(ĉh)= v̂h.
3. The state variables xt and ĉt follow the laws of motion (O.10) and (O.11) with bounded
σxt > 0, σĉt < 0, σ̃xt = π

γ
, and σ̃ ĉt = 0 for all t > 0, and dLt = 0 always, so the Euler

equation holds as an equality. The state ĉt starts at ĉ0 = ĉl, with μĉ0 > 0 and σĉ0 = σ̃ ĉ0 = 0,
and immediately moves into the interior of the domain never reaching either boundary,
that is, ĉt ∈ (ĉl� ĉh) for all t > 0.

4. Without hidden investment, the optimal contract in the relaxed problem does not have a
stationary distribution:

1
t

∫ t

0
1{ĉt>ĉh−ε}(ĉs) ds→ 1 a.s. ∀ε > 0�

but P{ĉt → ĉh} = 0. With hidden investment, the optimal contract in the relaxed problem
has a stationary distribution with density proportional to

m(ĉ)= 1
σĉ(ĉ)ĉ

exp
(∫ ĉ 2μĉ(z)z

(σĉ(z)z)2
dz

)
�

which spikes near ĉh, that is, m(ĉ)→ ∞ as ĉ→ ĉh.

23If the agent did not have access to hidden investment in aggregate risk, and the agent’s private technology
is exposed to aggregate risk σ̃ �= 0, then the principal could potentially use the agent’s exposure to aggregate
risk to relax the moral hazard problem.
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5. Since the relaxed optimal contract satisfies the sufficient condition in Theorem O.1, it is
incentive compatible and, therefore, an optimal contract.

PROOF: The proof is similar to Theorem 2, except we use the more general definition
of A(ĉ� v̂) in (O.21), which once we optimize over σx can be written

A(ĉ� v̂)= ĉ− rv̂− 1
2

(
ĉγα

φσ

)
v̂γ

+ v̂
(
ρ− ĉ1−γ

1 − γ − 1
2
π2

γ

)
	

Notice we already know from the FOCs that σ̃x = π/γ and σ̃ ĉ = 0.
Part (1) and part (2) go through without modifications.
In Part (3), the proof that A(ĉl� v̂(ĉl))= 0 requires that we consider the possibility that

the hidden investment constraint is binding as we approach ĉl. Since the right-hand side
of the HJB can only be greater if the hidden investment constraint is binding, we get that
A(ĉl� v̂(ĉl))≤ 0. But we know thatA(ĉ� v̂(ĉl))≥ 0 for ĉ < ĉl from Lemma O.11, and since
A is continuous in ĉ, we get that A(ĉl� v̂(ĉl))= 0, as desired.

Part 4 goes through with natural modifications. The first-order ODE has the natural
modification

ĉ− rf − σxĉγ α
φσ

+ f
(
ρ− ĉ1−γ

1 − γ + γ

2
(
σx

)2 − 1
2
π2

γ

)
︸ ︷︷ ︸

A(ĉ�f )

+f ′ĉ
(
ĉ1−γ − (ĉu)1−γ

1 − γ +
(
σx

)2

2

)
= 0�

where we are fixing σĉ = 0 and σx = α
σγ

ĉ
γ
l

v̂lφ
. This is consistent with the hidden investment

constraint because ĉγl ≥ v̂l from Lemma O.15. The rest of the proof goes though and we
get v̂′′

+(ĉl) > 0.
Part (5) and (6) go though with appropriate modifications, noticing that σĉ(ĉl)= 0 and

σx(ĉl)= α
σγ

ĉ
γ
l

v̂l
satisfy the hidden investment constraint because v̂l ≤ ĉγl , from Lemma O.15.

The proof that v̂(ĉ) < ĉγ for ĉ ∈ (ĉl� ĉh) is unchanged, except replacing ĉh with ĉu where
appropriate. We only need to check that σĉ(ĉ) < 0 and σx(ĉ) > 0 for all ĉ ∈ (ĉl� ĉh) in the
case where the hidden investment constraint is binding. In that case σĉ = α

σγ
− σx, and

the FOC for σx yields

σx =
ĉγ
α

φσ
+ v̂′′ĉ2 α

σγ

γ
(
v̂− v̂′ĉ

) + v̂′′ĉ2 >
α

σγ
�

which implies σĉ < 0. To see this inequality, use v̂ < ĉγ to write

φĉ−γv̂ < 1�

and use v̂′ ≥ 0 to get

φĉ−γ(v̂− v̂′ĉ
)
< 1�

α

σ

(
v̂− v̂′ĉ

)
< ĉγ

α

φσ
�

α

γσ

(
γ
(
v̂− v̂′ĉ

) + v̂′′ĉ2
)
< ĉγ

α

φσ
+ v̂′′ĉ2 α

γσ
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Finally, divide throughout by γ(v̂ − v̂′ĉ) + v̂′′ĉ2 which must be strictly positive (second-
order condition for optimality)

α

γσ
<

ĉγ
α

φσ
+ v̂′′ĉ2 α

γσ

γ
(
v̂− v̂′ĉ

) + v̂′′ĉ2 = σx	

Part (7) is unchanged for the behavior near ĉl. For ĉh, we need to consider two cases.
Without hidden investment, Lemma O.17 shows that

μĉĉ ≈ (
4γ− 6(1 + γ)2

)
ĉ−γ
h ε�

σĉĉ ≈ −√
22(1 + γ)ĉ−γ/2

h ε3/2�

and the same analysis as in Theorem 2 shows that ĉh is inaccessible. With hidden invest-
ment, the IC constraint will be binding near the upper boundary. Lemma O.17 shows
that

μĉĉ ≈ (η− 2)
1
2

(
α

σγ

)2(
γ

1 −η
)2

(ĉh − ĉ) < 0�

σĉĉ ≈ −
(
α

σγ

)
γ

1 −η(ĉh − ĉ)�

for some η ∈ (0�1). We can compute the scale function

S(ĉ)=
∫ ĉ

exp
(

−
∫ y 2μ̄

σ̄2

1
ĉh − z dz

)
dy = − 1

2μ̄/σ̄2 + 1
(ĉh − ĉ) 2μ̄

σ̄2 +1
�

where μ̄ = (η− 2) 1
2(

α
σγ
)2( γ

1−η)
2 < 0 and σ̄2 = ( α

σγ
)2( γ

1−η)
2, so that 2μ̄/σ̄2 = η− 2 < −1.

So S(ĉh)= ∞, which means that ĉh is inaccessible and nonattracting (P{ĉt → ĉh} = 0).
For Part (8), without hidden investment the proof is unchanged. For the case with hid-

den investment, for the behavior near ĉh we must compute the speed measure

m(ĉ)= 1
σ̄2(ĉh − ĉ)2 exp

(∫ ĉ 2μ̄
σ̄2

1
ĉh − z dz

)
	

Using the approximation,

μĉĉ ≈ (η− 2)
1
2

(
α

σγ

)2(
γ

1 −η
)2

(ĉh − ĉ) < 0�

σĉĉ ≈ −
(
α

σγ

)
γ

1 −η(ĉh − ĉ)�

we get that near ĉh

m(ĉ)≈ 1
σ̄2 (ĉh − ĉ)− 2μ̄

σ̄2 −2
�
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where − 2μ̄
σ̄2 − 2 = 2 − η − 2 = −η < 0. This means that m(ĉ)→ ∞ as ĉ → ĉh. But the

integral of m(ĉ) is

M(ĉ)=
∫ ĉ 1

σ̄2 (ĉh − z)−η dz = 1
1 −η

1
σ̄2 (ĉh − ĉ)1−η�

which is finite as ĉ→ ĉh. Since ĉl is an entrance boundary, we have a stationary distribu-
tion,

ψ(ĉ)= m(ĉ)∫ ĉh

ĉl

m(z)dz

�

with a spike near ĉh.
Part (9) uses the more general Theorem O.1. Q.E.D.

For a given solution to the HJB equation, we can identify controls σx and σĉ as func-
tions of ĉ, and use those to build a candidate optimal contract C∗. Specifically, let x∗ and ĉ∗

be the solutions to (O.10) and (O.11) with σx∗
t = σx(ĉ∗

t ), σ
ĉ∗
t = σĉ(ĉ∗

t ) and dLt = 0, start-
ing from initial values x∗

0 = ((1 − γ)u0)
1

1−γ and ĉ∗
0 = ĉl. We then construct the candidate

contract C∗ = (c∗�k∗) with c∗ = ĉ∗x∗ and k∗ = σx∗ (ĉ∗)γ
φσ
x∗.

THEOREM O.3: Let v̂(ĉ) : [ĉl� ĉh] → [v̂l� v̂h] be a strictly increasing C2 solution to the HJB
equation (O.20) for some ĉl ∈ (0� ĉh), such that v̂l ≡ v̂(ĉl) ∈ (0� v̂h], v̂′(ĉl)= 0, v̂′′(ĉl) > 0 and
v̂(ĉh)= v̂h. Assume that for ĉ < ĉl the HJB equation holds as an inequality,A(ĉ� v̂l) > 0, and
that v̂(ĉ)≤ ĉγ for ĉ ∈ [ĉl� ĉh]. Then:

1. For any locally incentive compatible contract C = (c�k) that delivers at least utility u0

to the agent, we have v̂(ĉl)((1 − γ)u0)
1

1−γ ≤ J0(C).
2. Let C∗ be a candidate optimal contract generated by the policy functions of the HJB as

described above. If C∗ is admissible, then C∗ is an optimal contract with cost J0(C∗) =
v̂(ĉl)((1 − γ)u0)

1
1−γ .

PROOF: The proof is very similar to Theorem 3, except we use the more general
Lemma O.4 and Theorem O.2. Q.E.D.

The following lemma is useful to ensure the existence of an optimal contract.

LEMMA O.5: When γ ≥ 1/2, if α ≤ φσ
√
γ√

2

√
ρ−r(1−γ)

γ
− 1−γ

2 (
π
γ
)2 then v̂ ≥ ĉγh/2 > 0. When

γ ≤ 1/2, if α≤φσγ√
2(1 − γ)

√
ρ−r(1−γ)

γ
− 1−γ

2 (
π
γ
)2 then v̂≥ (1 − γ)(2γ) γ

1−γ ĉγh > 0.

PROOF: For the case γ ≥ 1/2, we will show that v̂l = ĉγh/2 is a lower bound on the cost
function. To do this, it is sufficient to show that A(ĉ� v̂l)≥ 0 for any ĉ ∈ (0� ĉh),

A(ĉ� v̂l)= ĉ+ v̂l γĉ
1−γ
h − ĉ1−γ

1 − γ − γ

2

ĉ2γ

(
α

φσ

)2

v̂lγ
2

≥ ĉ+ ĉγh
2
γĉ1−γ

h − ĉ1−γ

1 − γ − 1
2
ĉ2γĉ1−2γ

h = ĉ1+γ
h ĉ−γ

2

(
2y1+γ + γyγ − y

1 − γ − y3γ

)
�
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where y = ĉ/ĉh ∈ (0�1). Since y3γ < y1+γ the expression in parenthesis is greater or equal
to

y1+γ + γyγ − y
1 − γ 	

Here, we have three powers of y , and the middle coefficient is always negative, while the
outside coefficients are positive (this is true both if γ < 1 and γ > 1). Moreover, the sum
of the coefficients is 0 and the weighted sum (with weights equal to the powers) is

1 + γ+ γ2 − 1
1 − γ = 0	

Hence, by Jensen’s inequality, the expression is positive.
For the case γ ≤ 1/2, we will show that v̂l = (1 − γ)ĉγm is a lower bound, where ĉm is

defined by 2γĉ1−γ
h = ĉ1−γ

m . We have

A(ĉ� v̂l)= ĉ+ v̂l γĉ
1−γ
h − ĉ1−γ

1 − γ − γ

2

ĉ2γ

(
α

φσ

)2

v̂lγ
2

≥ ĉ+ ĉγm
(
ĉ1−γ
m /2 − ĉ1−γ) − 1

2
ĉ2γĉ1−γ

m

ĉγm

= ĉ+ ĉm/2 − ĉ1−γĉγm − 1
2
ĉ2γĉ1−2γ

m

=
(
ĉm

2
(
1 + (ĉ/ĉm)γ

) − ĉ1−γĉγm

)(
1 − (ĉ/ĉm)γ

)
	

If ĉ/ĉm < 1, then ĉ1−γĉγm < ĉ
γĉ1−γ
m < ĉm and, therefore, the expression is positive. If ĉ/ĉm >

1, then ĉ1−γĉγm > ĉ
γĉ1−γ
m > ĉm and also the expression is positive. This completes the proof.

Q.E.D.

O.7. Benchmark Contracts and Autarky Limit

We can extend the benchmark contracts in Section 3 to incorporate aggregate risk. In
addition, we can find conditions under which the gains from trade are exhausted and the
optimal contract coincides with autarky, as mentioned in Section 4 in the paper.

Without Hidden Savings

The optimal contract without hidden savings is characterized by the HJB equation:

rv̂n = min
σx�ĉ�σ̃x

ĉ − σxĉγ α
φσ

+ v̂n
(
ρ− ĉ1−γ

1 − γ + γ

2
(
σx

)2 + γ

2
(
σ̃x

)2 − σ̃xπ
)
� (O.22)

where vn(x)= v̂nx is the principal’s cost function. The FOC are

σx = α

γ
(
v̂nĉ

−γ
n φ

)
σ
� (O.23)
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1 = v̂nĉ−γ + v̂nγ2
(
σx

)2
ĉ−1� (O.24)

σ̃x = π

γ
	 (O.25)

The optimal contract exists only if γ ≤ 1/2 and only if α is sufficiently low; otherwise, the
principal’s value function becomes infinite.

The inverse Euler equation says that e(r−ρ)tcγt is a Q-martingale. If the contract has
constant ĉ, it requires

σx =
√
(ĉu)

1−γ − ĉ1−γ

1 − γ
2

1 − 2γ
� (O.26)

where

ĉu =
(
ρ− r(1 − γ)

γ
− (1 − γ)1

2

(
π

γ

)2) 1
1−γ

(O.27)

coincides with ĉh without hidden investment.

LEMMA O.6: The optimal contract without hidden savings satisfies the inverse Euler equa-
tion, that is, e(r−ρ)tcγt is a Q-martingale, and myopic optimization over σx, that is, (O.23).
The marginal cost of utility is lower than the inverse of the marginal utility of consumption,
v̂n < ĉ

γ
n .

PROOF: Myopic optimization follows from the FOC (O.23), and v̂n < ĉγn from FOC
(O.24). Given stationarity, the inverse Euler equation is equivalent to

μx = r − ρ
γ

+ (1 − γ)1
2
(
σx

)2 + (1 + γ)1
2
(
σ̃x

)2
	

Using the FOC for ĉ, we can write

=⇒ v̂ĉ1−γ = ĉ− v̂γ2
(
σx

)2
	 (O.28)

Plug into the HJB (O.22) along with the FOC for σx, (O.23), to obtain

rv̂= ĉ− (
σx

)2
v̂γ+ 1

2
(
σx

)2
v̂γ+ v̂ ρ− ĉ1−γ

1 − γ − v̂γ
(
σ̃x

)2

2
	

Divide by v̂ and use (O.28), to obtain

ĉ1−γ =
(
ρ− r(1 − γ)

γ
− (1 − γ)

(
σ̃x

)2

2

)
−

(
σx

)2

2
(1 − 2γ)(1 − γ)	 (O.29)

And now compute μx:

μx = ρ− ĉ1−γ

1 − γ + γ

2
(
σx

)2 + γ

2
(
σ̃x

)2
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After some algebra, we obtain the inverse Euler equation

μx = r − ρ
γ

+ (1 − γ)1
2
(
σx

)2 + (1 + γ)1
2
(
σ̃x

)2
	 Q.E.D.

Stationary Contracts and the Myopic Contract

Stationary contracts have a constant ĉ and are obtained by setting σĉ = σ̃ ĉ = 0, σ̃x =
π/γ, and σx to satisfy

σx = σxs (ĉ)≡ √
2

√
(ĉu)

1−γ − ĉ1−γ

1 − γ � (O.30)

so that μĉ = 0 in (17). To ensure admissibility, we must restrict

ĉ > ĉa ≡ ĉu
(

2γ
1 + γ

) 1
1−γ
< ĉu� (O.31)

so that μx − π2

γ
< r. Theorem O.1 is general enough to ensure that stationary contracts

are globally incentive compatible. The HJB equation (21) yields the cost of the stationary
contract,

v̂s(ĉ)=
ĉ− α

φσ
ĉγσxs (ĉ)

2r − ρ− (1 + γ)ρ− ĉ1−γ

1 − γ + γ(π/γ)2

	 (O.32)

A special stationary contract corresponds to myopic optimization,

σxs (ĉp)= α

γ
(
v̂s(ĉp)ĉ

−γ
p φ

)
σ
�

which yields

ĉp =
(
ĉ1−γ
h − (1 − γ)1

2

(
α

γφσ

)2

− (1 − γ)1
2
(π/γ)2

) 1
1−γ
�

σxp = α

γφσ
� v̂p = ĉγp	

(O.33)

The best stationary contract minimizes the cost, ĉr ≡ arg minĉ∈(ĉa�ĉh] v̂s(ĉ) and v̂r ≡ v̂s(ĉr).
LEMMA O.7: For any ĉ ∈ (ĉa� ĉh], the corresponding stationary contract is globally incen-

tive compatible and has cost v̂s(ĉ) given by (O.32). Since stationary contracts are incentive
compatible, we have v̂(ĉ)≤ v̂s(ĉ).

The myopic stationary contract is an incentive compatible stationary contract correspond-
ing to ĉp, and the marginal cost of utility is equal to the inverse of the marginal utility of
consumption, v̂s(ĉp) = ĉγp. The best stationary contract is less risky for the agent, that is, we
have ĉa < ĉp < ĉr and σxs (ĉr) < σ

x
p . For all ĉ ∈ (ĉp� ĉh), the marginal cost of utility is below

the inverse of the marginal utility of consumption v̂s(ĉ) < ĉγ , and we depart from myopic
optimization, σxs (ĉ) <

α
γ(v̂s(ĉ)ĉ−γφ)σ .
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PROOF: First, using α < ᾱ, we can verify that 0 ≤ ĉh ≤ ĉu, regardless of whether
the agent can invest in his hidden savings. Second, v̂s(ĉ) > 0 for all ĉ ∈ (ĉa� ĉh) from
Lemma O.8. The same argument as in Theorem O.3 shows that v̂s(ĉ) from (O.32) is
the cost corresponding to the stationary contract with ĉ and σx given by (O.30), as long
as the contract is indeed admissible and delivers utility u0 to the agent. We can check
that μx < r + π2

γ
for the stationary contract if and only if ĉ > ĉa. In this case, we can use

Lemma O.4 to show that the stationary contract is admissible and delivers utility u0 to
the agent if ĉ > ĉa. Since the contract satisfies (O.10), (O.11), and (O.12), and (O.14) by
construction, we only need to check that (O.13) holds, too. It is easy to see this is the case
because ĉ ≤ ĉh. Theorem O.1 then ensures that it is incentive compatible.

The myopic stationary contract has ĉ = ĉp given by (O.33). Lemma O.16 ensures that
ĉp ∈ (ĉa� ĉh] and, therefore, by the argument above, it is an incentive compatible contract.
The best stationary contract has ĉr > ĉp > ĉa from part 1) of Lemma O.16. From (O.30), it
follows that σxp > σ

x
s (ĉr). Part 2) of Lemma O.16 shows that v̂s(ĉ) < ĉγ for all ĉ ∈ (ĉp� ĉh),

with equality at ĉp and ĉh. Therefore,

σxs (ĉ) < σ
x
p = α

γφσ
<

α

γ
(
v̂s(ĉ)ĉ

−γφ
)
σ
	 Q.E.D.

LEMMA O.8: The cost function of stationary contracts v̂s(ĉ) defined by (O.32) is strictly
positive for all ĉ ∈ (ĉa� ĉh] if and only if α< ᾱ.

PROOF: We need to check the numerator in (O.32), since the denominator is positive
for all ĉ ≥ ĉa:

ĉ

(
1 − α

φσ

√
2

√√√√√
ĉγ−1

(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2)
ĉγ−1 − 1

1 − γ

)
	

The rest of the proof consists of evaluating this expression at ĉ = ĉa and showing it is
non-positive iff the bound is violated, since the expression is increasing in ĉ. We get ĉ
times

1 − α

φσ

√
2
√

1 + γ 1
2γ

√(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2)−1

	

So if α ≥ ᾱ the numerator is nonpositive, and if α < ᾱ then it is strictly positive. This
completes the proof. Q.E.D.

LEMMA O.9: If the agent has access to hidden investment,H =R+ andφ= 1, the optimal
contract is the myopic stationary contract characterized in (O.33).

PROOF: The myopic stationary contract is both admissible and incentive compatible by
Lemma O.7. Since in this case

ĉh = ĉp =
(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
α

γσ

)2

− 1 − γ
2

(
π

γ

)2)
�
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we can use the same verification argument as in Theorem O.3, using the flat value function
v̂(ĉ)= v̂p for all ĉ ∈ (0� ĉh). For the argument to go through, it must be the case that the
HJB holds as an inequality for all ĉ < ĉp:

A(ĉ� v̂p)= ĉ− rv̂p − 1
2

(
ĉγα

φσ

)
v̂pγ

+ v̂p
(
ρ− ĉ1−γ

1 − γ − 1
2
π2

γ

)
> 0	

This is true because v̂p = ĉγp, and from Lemma O.16 we know that ∂1A(ĉp� ĉ
γ
p) < 0. From

Lemma O.13, we know that A(ĉ� v̂) is positive near 0 and either has one root in ĉ if
γ ≥ 1/2, or is convex with at most two roots if ĉ ≤ 1/2. This means that A(ĉ� ĉγp) > 0 for
all ĉ ∈ (0� ĉp). Q.E.D.

O.8. Renegotiation

Here, we provide technical details for Section 5 of the paper. This section is consistent
with the presence of aggregate risk and hidden investment introduced in Section 4 and
the Online Appendix.

We say that an incentive compatible contract C = (c�k) is renegotiation-proof (RP) if

∞ ∈ arg min
τ

E
Q

[∫ τ

0
e−rt(c − ktα)dt + e−rτxτv̂

]
�

where v̂= inf v̂(ω� t). The optimal contract with hidden savings is not renegotiation proof,
because after any history v̂t > v̂l = v̂, so the principal is always tempted to “start over.” In
fact, it is easy to see that RP contracts must have a constant v̂t . The converse it also true.

LEMMA O.10: An incentive compatible contract C is renegotiation proof if and only if the
continuation cost v̂ is constant.

PROOF: If ever v̂t > v̂, then renegotiating at that point is better than never renegotiat-
ing and obtaining v̂0. In the other direction, if v̂ is constant, any stopping time τ yields the
same value to the principal, so τ = ∞ is an optimal choice. Q.E.D.

Stationary contracts have a constant v̂, because ĉ is constant. However, those contracts
were built using dLt = 0. There are other contracts with a constant ĉ that use dLt > 0, that
is, the drift of ĉ would be negative without dLt . In addition, there could be nonstationary
contracts with a constant cost v̂(ĉ) for all ĉ in the domain. The next lemma shows they are
all worse than the best stationary contract Cr , with cost v̂r = minĉ∈(ĉa�ĉh] v̂s(ĉ).

THEOREM O.4: The optimal renegotiation-proof contract is the optimal stationary con-
tract Cr with cost v̂r .

PROOF: Since the optimal stationary contract is incentive compatible and has a con-
stant v̂, we only need to show that any incentive compatible contract with constant v̂ has
v̂ ≥ v̂r . This is clearly true for all stationary contracts as defined in Lemma O.7 with ag-
gregate risk.



OPTIMAL ASSET MANAGEMENT CONTRACTS WITH HIDDEN SAVINGS 21

There could also be stationary contracts with a constant ĉ but dLt > 0. For these con-
tracts, the drift μĉ < 0 in the absence of dLt . Consider the optimization problem

0 = min
σx
ĉ− rv̂− σxĉγ α

φσ
+ v̂

(
ρ− ĉ1−γ

1 − γ + γ

2
(
σx

)2 − γ

2

(
π

γ

)2)

s.t.
r − ρ
γ

− ρ− ĉ1−γ

1 − γ + 1
2
(
σx

)2 + 1
2

(
π

γ

)2

≤ 0	

If the constraint is binding, we get the stationary contracts with dLt = 0, so v̂ = v̂s. We
want to show that it must be binding. Toward contradiction, if the constraint is not bind-
ing we have σx = α

σγ

ĉ
γ
l

v̂lφ
and, therefore, we have A(ĉ� v̂) = 0, where A is defined as in

Lemma O.13. If v̂ ≤ v̂r , then v̂ ≤ v̂p, because the myopic stationary contract is incentive
compatible (ĉp ≤ ĉh for any valid hidden investment). Then Lemma O.15 ensures that
r−ρ
γ

− ρ−ĉ1−γ
1−γ + 1

2(σ
x)2 + 1

2(
π
γ
)2 > 0, which violates the constraint. This means that v̂≥ v̂r .

Finally, if we have a nonstationary contract with a constant v̂ < v̂r , the domain of ĉ
must have an upper bound c̄ ≤ ĉh because otherwise they would have a lower cost than
the optimal contract near ĉh, and this cannot be for an IC contract. For the upper bound
c̄� we must have σĉ = 0 and μĉ ≤ 0. But this is the same situation with stationary contracts
with dLt > 0, and we know their cost is above v̂r . Q.E.D.

REMARK: It is possible that ĉr = ĉh if the agent can invest his hidden savings and φ is
close enough to 1. In the special case with hidden investment and φ = 1, we have ĉr =
ĉp = ĉh, as shown in Lemma O.9.

O.9. Intermediate Results

LEMMA O.11: The cost function v̂ is flat on (0� ĉl), v̂(ĉ) = v̂(ĉl), and the HJB equation
holds as an inequality in that region, A(ĉ� v̂(ĉ))≥ 0. For ĉ ∈ (ĉl� ĉh), the cost function is C2,
strictly increasing with v̂′(ĉ) > 0, and satisfies the HJB equation. At ĉl, we have the smooth
pasting condition v̂′(ĉl)= 0.

PROOF: Denote v̂ the true cost function. We will use f to denote test functions, and
sometimes use f , f ′, and f ′′ to denote its value and derivatives at a point ĉ. Because
the dLt ≥ 0 term in the law of motion of ĉt allows it to go up at any time, v̂ must be non-
decreasing and it can have a flat region (0� ĉl) where ĉt would jump up to ĉl, so v̂(ĉ)= v̂(ĉl)
for all ĉ ∈ (0� ĉl). ĉl > 0 because ĉ = 0 requires not giving the agent any capital, so it is just
delaying the start of the contract, which is not optimal because ρ > r(1 − γ).

Recall the HJB equation, for a generic test function f ,

0 = min
σx≥0�σĉ

ĉ− rf − σxĉγ α
φσ

+ f
(
ρ− ĉ1−γ

1 − γ + γ

2
(
σx

)2 − 1
2
π2

γ

)

+ f ′ĉ
(
ĉ1−γ − (ĉu)1−γ

1 − γ +
(
σx

)2

2
+ (1 + γ)σxσĉ + 1 + γ

2
(
σĉ

)2
)

+ f ′′

2
ĉ2

((
σĉ

)2)
	 (O.34)
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If the agent has access to hidden investment, the minimization is subject to the constraint
σx+σĉ ≥ α/(σγ). Notice we already plugged in σ̃x = π/γ and σ̃ ĉ = 0. Recall ĉu is defined
in (O.27).

Before going into the proof, let us review a few facts. A C2 function f is called a super-
solution of (O.34) if instead of equality, it satisfies the inequality

0 ≥ min
σx�σĉ

	 	 	

For a supersolution f , if it is possible to attain points ĉ− and ĉ+ at cost less than or equal
to f (ĉ−) and f (ĉ+), respectively, then the contract that satisfies the inequality above at-
tains any point ĉ ∈ [ĉ−� ĉ+] with a cost of less or equal to f (ĉ), as long as the contract is
admissible.

A C2 subsolution satisfies

0 ≤ min
σx�σĉ

	 	 	

If the cost of attaining points ĉ− and ĉ+ is greater than or equal to f (ĉ−) and f (ĉ+), then
the cost of attaining ĉ ∈ [ĉ−� ĉ+] is greater than f (ĉ). We call functions strict super and
subsolutions if the corresponding inequality is strict. If f is locally a strict supersolution,
then a perturbation of f , for example, a small translation or rotation, is also locally a
strict supersolution (and a similar statement holds for strict subsolutions). We will use
super and subsolutions as test functions around the true cost v̂ to prove properties of v̂
(such as differentiability).

Next fact, equation (O.34) implies a value of f ′′ only for some triples (ĉ� f� f ′). Let us
elaborate. Let us write the HJB equation for deterministic contracts, in which we must
choose σĉ = 0, as

Â
(
ĉ� f� f ′) = 0� (O.35)

where

Â
(
ĉ� f� f ′) ≡ min

σx≥0
ĉ − σxĉγ α

φσ
+ f

(
ρ− ĉ1−γ

1 − γ + γ

2
(
σx

)2 − 1
2
π2

γ

)
− rf

+ f ′ĉ
(
ĉ1−γ − (ĉu)1−γ

1 − γ +
(
σx

)2

2

)
�

subject to σx ≥ α/(φσ) if the agent has access to hidden investment.
Notice that Â(ĉ� f� f ′) is concave in f ′ as the minimum of linear functions, and that Â

goes to −∞ as f ′ goes to ∞ or −γf/ĉ. For f ′ ∈ (−γf/ĉ�∞), the optimal choice of σx is

σx = ĉγ α
φσ

1
γf + f ′ĉ

if the hidden investment constraint is not binding, and when this leads to

(
σx

)2

2
= (ĉu)

1−γ − ĉ1−γ

1 − γ �
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the hidden investment constraint is not binding (because ĉ ≤ ĉh) and function Â(ĉ� f� f ′)
achieves its maximum in variable f ′, because then

Â3

(
ĉ� f� f ′) = 0	

Thus, we have

max
f ′ Â

(
ĉ� f� f ′) = ĉ− σxĉγ α

φσ
+ f

(
ρ− ĉ1−γ

1 − γ + γ

2
(
σx

)2 − 1
2
π2

γ

)
− rf�

σx =
√

2
(ĉu)

1−γ − ĉ1−γ

1 − γ 	

When maxf ′ Â(ĉ� f� f ′) > 0, then the equation Â(ĉ� f� f ′) = 0 has two roots f̃ ′
L and

f̃ ′
R > f̃

′
L, in the range f ′ = (−γf/ĉ�∞). Then at point (ĉ� f ) it is possible to solve the

deterministic equation as a first-order ODE with slopes f ′(ĉ)= f̃ ′
L and f̃ ′

R. The former so-
lution has positive drift at ĉ, points on the solution to the left of ĉ are attainable if (ĉ� f )
is attainable. The latter solution has negative drift at ĉ, and points on the solution to the
right of ĉ are attainable if (ĉ� f ) is attainable. When maxf ′ Â(ĉ� f� f ′)= 0, we can say that
f̃ ′
L = f̃ ′

R is the unique root.
In fact, maxf ′ Â(ĉ� f� f ′) ≥ 0 if and only if f < v̂s(ĉ) on (ĉa� ĉh) and if and only if f >

v̂s(ĉ) on (0� ĉa). Recall that ĉa is defined in (O.31), and recall that the curve f = v̂s(ĉ) is
defined by

ĉ− σxĉγ α
φσ

+ f
(
ρ− ĉ1−γ

1 − γ + γ

2
(
σx

)2 − 1
2
π2

γ

)
− rf = 0�

σx =
√

2
(ĉu)

1−γ − ĉ1−γ

1 − γ 	

For ĉ ∈ (ĉa� ĉh), we have ρ−ĉ1−γ
1−γ + γ

2 (σ
x)2 − 1

2
π2

γ
< r, hence maxf ′ Â(ĉ� f� f ′)≥ 0 if and only

if f < v̂s(ĉ). For ĉ < ĉa, ρ−ĉ1−γ
1−γ + γ

2 (σ
x)2 − 1

2
π2

γ
> r, hence maxf ′ Â(ĉ� f� f ′)≥ 0 if and only

if f > v̂s(ĉ). We have maxf ′ Â(ĉ� f� f ′)= 0 if and only if f = v̂s(ĉ).
Whenever maxf ′ Â(ĉ� f� f ′) > 0, if f ′ ∈ (f̃ ′

L� f̃
′
R) and f ′ > 0, equation (O.34) implies

a unique value of f ′′, and can be solved locally as a second-order ordinary differential
equation (ODE). To see this, notice that with f ′′ = ∞, the right-hand side becomes equal
to Â(ĉ� f� f ′) > 0, and is increasing in f ′′. As f ′′ → −γ(f − f ′ĉ)ĉ−1 (1+γ)f ′

fγ+f ′ ĉ from above,
the objective function diverges to −∞ if the hidden investment constraint is not bind-
ing as we approach the limit. If the hidden investment constraint is binding, then as
f ′′ → −γ(f − f ′ĉ)ĉ−1 the objective function diverges to −∞ if γ(f − f ′ĉ)ĉ α

σγ
< ĉγ α

φσ
;

if not, then it means we hit the σx ≥ 0 constraint and we must set σĉ = α/(σγ) and
the objective function diverges to −∞ as f ′′ → −∞. So we have a unique f ′′ that solves
(O.34). The equation is locally Lipschitz-continuous, as long as we stay in the region where
maxf ′ Â(ĉ� v̂(ĉ)� f ′) > 0, which implies all the usual properties (existence, uniqueness, and
continuity in initial conditions).
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Notice that also if maxf ′ Â(ĉ� f� f ′) ≤ 0, and f ′ > 0, then any C2 function is locally a
strict supersolution, no matter how high f ′′ is. Indeed, if we set σĉ = 0 and minimize over
σx, we get the inequality ≥ in equation (O.34), and we can make the inequality strict using
σĉ . Also, for any triple (ĉ� f� f ′) with f ′ > 0, a sufficiently concave C2 function is locally a
strict supersolution.

Now, let us prove some regularity properties of function v̂. First, left and right deriva-
tives v̂′

−(ĉ) and v̂′
+(ĉ) exist. If not, for example, if

lim inf
ĉn→ĉ

v̂(ĉ)− v̂(ĉn)
ĉ− ĉn < lim sup

ĉn→ĉ

v̂(ĉ)− v̂(ĉn)
ĉ− ĉn

for some sequence {ĉn} converging to ĉ from below, then we can take a local strict super-
solution f with f (ĉ)= v̂(ĉ) and f ′(ĉ) between these two bounds. Points (ĉn� v̂(ĉn)) above
f for sufficiently large n can be improved upon by a contract based on the solution f .

Second, we have v̂′
−(ĉ)≤ v̂′

+(ĉ). If not, that is, v̂′
−(ĉ) > v̂

′
+(ĉ), then a local supersolution

f with f (ĉ)= v̂(ĉ) and f ′(ĉ)= (v̂′
−(ĉ)+ v̂′

+(ĉ))/2 can be used to improve upon the optimal
contract with value v̂(ĉ). Indeed, if we slightly lower f (ĉ)= v̂(ĉ)− ε, the solution is still
a local strict supersolution that goes above v̂ on both sides of ĉ, and the corresponding
contract has cost less than or equal to v̂(ĉ)− ε at ĉ.

Third, we have maxf ′ Â(ĉ� v̂(ĉ)� f ′) ≥ 0. For ĉ ∈ (ĉa� ĉh), this follows immediately be-
cause v̂(ĉ)≤ v̂s(ĉ), because stationary contracts provide an upper bound on the cost func-
tion from the optimal contract. For ĉ ∈ (0� ĉa), the argument is a bit more involved. Con-
sider the time-varying version of the HJB equations with choices σĉ = 0 and

σx =
√

2
(ĉu)

1−γ − ĉ1−γ

1 − γ �

which satisfies the hidden investment constraint for all ĉ ≤ ĉh,

∂f

∂t
+ ĉ − σxĉγ α

φσ
+ f

(
ρ− ĉ1−γ

1 − γ + γ

2
(
σx

)2 − 1
2
π2

γ

)
− rf = 0	

For ĉ ∈ (0� ĉa) and f < v̂s(ĉ), this equation implies ∂f∂t > 0, that is, this choice of controls
leads to f drifting straight up. This means that if v̂(ĉ) < v̂s(ĉ) on (0� ĉa), this contract
allows us to achieve lower cost.

Fourth, let us show that maxf ′ Â(ĉ� v̂(ĉ)� f ′) > 0 everywhere, that is, v̂(ĉ) �= v̂s(ĉ). At
any point ĉ ∈ (ĉa� ĉh), when v̂′

s(ĉ) < 0 then the principal can get a better value than v̂s(ĉ)
by switching to the optimal stationary contract slightly above ĉ. At any point ĉ ∈ (0� ĉa),
when v̂′

s(ĉ) < 0, if it were the case that v̂(ĉ)= v̂s(ĉ), then the principal could achieve v̂(ĉ)
at ĉ − ε, so v̂(ĉ − ε)≤ v̂(ĉ) < v̂s(ĉ − ε), which we know cannot be. When ĉ ∈ (ĉa� ĉh) and
v̂′
s(ĉ) > 0, we can conclude that v̂(ĉ) < v̂s(ĉ) by the following argument. Any C2 function

which satisfies f (ĉ) = v̂s(ĉ), f ′(ĉ) = v̂′
s(ĉ) > 0, including those that go above v̂s in the

neighborhood of ĉ, is locally a strict supersolution. Hence, v̂s(ĉ)− ε is locally attainable
for sufficiently small ε.

The following lemma is helpful to deal with the remaining cases (recall ĉp is defined in
(O.33) as the myopic stationary contract).

LEMMA O.12: When A(ĉ� f ) ≤ 0 and f < ĉγ , then Â3(ĉ� f�0) > 0. Hence, for any ĉ ∈
(ĉp� ĉh) and any ĉ ∈ (0� ĉa), at (ĉ� v̂s(ĉ)), f̃ ′

L = f̃ ′
R > 0.
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PROOF: We have

Â3(ĉ� f�0)=
(
ĉ1−γ − (ĉu)1−γ

1 − γ +
(
σx

)2

2

)
	

Since A(ĉ� f )≤ 0, it means that

ĉ− σxĉγ α
φσ

− rf + f
(
ρ− ĉ1−γ

1 − γ + γ

2
(
σx

)2 − γ

2

(
π

γ

)2)
≤ 0�

f
γ

2
(
σx

)2 ≥ ĉ + f γ(ĉu)
1−γ − ĉ1−γ

1 − γ � σx = ĉγ α
φσ

1
γf
	

Toward a contradiction, suppose Â3(ĉ� f�0)≤ 0. Then

(ĉu)
1−γ − ĉ1−γ

1 − γ ≥
(
σx

)2

2

⇒ γf
(ĉu)

1−γ − ĉ1−γ

1 − γ ≥ f γ
2

(
σx

)2 ≥ ĉ+ f γ(ĉu)
1−γ − ĉ1−γ

1 − γ ⇒ f ≥ ĉγ�

a contradiction.
Now, we have A(ĉ� v̂s(ĉ)) < 0 and v̂s(ĉ) < ĉγ for any ĉ ∈ (0� ĉa) ∪ (ĉp� ĉh), so at those

points we have f̃ ′
L = f̃ ′

R > 0. Q.E.D.

It follows from the lemma that starting from the minimum of v̂s on (ĉa� ĉh) to the left,
we can solve the equation (O.35) with slope f̃ ′

L > 0 (locally) with nonnegative drift. This
solution is attainable,24 hence v̂ must be at the level of this solution or below, but 0< f ′

L ≤
v̂′

− ≤ v̂′
+ ≤ v̂′

s(ĉ) = 0, which contradicts this. So v̂ is below v̂s everywhere on ĉ ∈ (ĉa� ĉh),
including at the minimum of v̂s.

Now, let us rule out the possibility that f = v̂(ĉ) = v̂s(ĉ) on the increasing portion of
v̂s (including the local maximum) in the range (0� ĉa). Then A3(ĉ� f� f̃

′
L = f̃ ′

R)= 0. Hence,
for

σx =
√

2
(ĉu)

1−γ − ĉ1−γ

1 − γ − ε�

The value of

ĉ− σxĉγ α
φσ

+ f
(
ρ− ĉ1−γ

1 − γ + γ

2
(
σx

)2 − 1
2
π2

γ

)
− rf︸ ︷︷ ︸

>0�O(ε)

+ f ′ĉ
(
ĉ1−γ − (ĉu)1−γ

1 − γ +
(
σx

)2

2

)
︸ ︷︷ ︸

<0�O(ε)

< 0�

24This solution corresponds to a deterministic contract, in which ĉt converges slowly to the minimum of v̂s ,
as the drift gets closer and closer to 0.
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on the order of ε2. Hence, we can satisfy this equation by setting f ′ slightly lower than f̃ ′
L.

For that choice of σx, we get a deterministic contract with positive drift near ĉ, and the
curve that corresponds to this contract is an upper bound on v̂. Likewise, by choosing

σx =
√

2
(ĉu)

1−γ − ĉ1−γ

1 − γ + ε�

we get a contract with slope slightly higher than f̃ ′
R. These contracts allow us to achieve

values below v̂s (which is impossible), unless f̃ ′
L = f̃ ′

R = v̂′
s(ĉ). In the latter case, letting

ε→ 0, we find that v̂′ = f̃ ′
L = f̃ ′

R. Now, anyC2 function which satisfies f (ĉ)= v̂s(ĉ), f ′(ĉ)=
v̂′
s(ĉ) > 0, including those that go above v̂ in the neighborhood of ĉ, is locally a strict

supersolution. Hence, v̂s(ĉ)−ε is locally attainable for sufficiently small ε, a contradiction.
We conclude that maxf ′ Â(ĉ� v̂(ĉ)� f ′) > 0 for all ĉ ∈ (0� ĉh).

Now, at any ĉ, the slope v̂′
+ cannot be steeper than f̃ ′

R, or else we can improve upon the
cost function v̂ to the right of ĉ through a deterministic solution with slope f̃ ′

R that passes
through (ĉ� v̂(ĉ)). Likewise, the slope v̂′

− cannot be less than f̃ ′
L and cannot be negative.

We already showed that v̂′
− ≤ v̂′

+. The inequality cannot be strict, or else the equation
(O.34) is solvable as a second-order ODE at ĉ with f (ĉ) = v̂(ĉ) + ε and slope f ′(ĉ) =
(v̂′

− + v̂′
+)/2 ∈ (f̃ ′

L� f̃
′
R), for sufficiently small ε. Because this is a subsolution, this implies

that cost v̂(ĉ) at ĉ is unattainable. To sum up, the derivative v̂′ exists and must be in the
interval [f̃ ′

L� f̃
′
R] and nonnegative.

Now, let us show that v̂′ ∈ (f̃ ′
L� f̃

′
R) whenever v̂′ > 0. Otherwise, any C2 test function f

with f = v̂, f ′ = v̂′ and arbitrarily large f ′′ is locally a strict supersolution. Suppose v̂′ = f̃ ′
R,

then the solution of (O.35) with this initial condition to the right of ĉ is weakly above v̂ and
has finite second derivative. The test function f goes strictly above the solution of (O.35)
to the right of ĉ, assuming f ′′ is large enough. We can rotate the test function clockwise
slightly, it remains a supersolution that goes below v̂ and then above to the right of ĉ.
When it goes below, those points are attainable, hence we can improve upon the cost
function v̂, a contradiction.

Since v̂′ ∈ (f̃ ′
L� f̃

′
R), if v̂′ > 0, we can solve (O.34) locally with initial conditions (ĉ� v̂� v̂′).

If the solution f does not coincide with v̂ locally, if it goes above, then we can rotate it
slightly to find points below v̂ that are attainable. If it goes below, then likewise we can
rotate it slightly to find points above v̂ that are unattainable. Hence, the tangent solution
of (O.34) must coincide with v̂ locally.

To sum up, whenever v̂′ > 0, the cost function v̂ satisfies the HJB equation (O.34) as a
second-order ODE.

Now, whenever also A(ĉ� v̂(ĉ)) < 0 we know that v̂(ĉ) < ĉγ , and we can rule out the
possibility that v̂′ = 0 because otherwise f̃ ′

L > 0 and we can improve upon v̂ using the
solution of the deterministic equation (O.35) with slope f̃ ′

L > 0 at (ĉ� v̂) (and positive
drift). To see that A(ĉ� v̂(ĉ)) < 0 implies v̂(ĉ) < ĉγ , use Lemma O.16, and notice that
v̂(ĉ) ≥ ĉγ can only occur for ĉ ≤ ĉp because v̂(ĉ) < v̂s(ĉ) < ĉγ for ĉ > ĉp. For ĉ ≤ ĉp, we
know A(ĉ− δ� ĉγ)≥ 0 for any δ ∈ [0� ĉ]. So A(ĉ� v̂(ĉ)) < 0 implies v̂(ĉ) < ĉγ .

We also know that if v̂′(ĉ) > 0 for some ĉ ∈ (0� ĉh), then v̂′(ĉ′) > 0 and the HJB holds for
all ĉ′ ∈ (ĉ� ĉh). To see why, if v̂′(ĉ) > 0 then v̂ is C2 and the HJB holds in a neighborhood
of ĉ. We must always have

v̂′ĉ(1 + γ)+ v̂′′ĉ2 ≥ 0	
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Otherwise, we can set σx = 0 and σĉ arbitrarily large, satisfying the hidden investment
constraint and getting an arbitrarily negative value on the left-hand side of the HJB. Re-
arrange to get

v̂′′ ≥ −v̂′ĉ−1(1 + γ)	
Use Gronwall’s inequality to get

v̂′(ĉ′) ≥ v̂′(ĉ)× e∫ ĉ′
ĉ −x−1(1+γ)dx > 0 ∀ĉ′ ∈ (ĉ� ĉh)�

and, therefore, v̂ satisfies the HJB in (ĉ� ĉh).
It follows that v̂′ could be zero only in (0� ĉl], where A(ĉ� v̂(ĉ))≥ 0 and the HJB there-

fore holds only as an inequality, but the derivative v̂′ must become strictly positive before
A(ĉ� v̂(ĉ)) < 0, so ĉl = inf{ĉ : v̂′(ĉ) > 0} ∈ (0� ĉh). Once v̂′(ĉ) > 0, it remains strictly posi-
tive and the HJB holds for all ĉ ∈ (ĉl� ĉh). Since we know there are no kinks, we have the
smooth pasting condition v̂′(ĉl)= 0 at ĉl. Q.E.D.

LEMMA O.13: Define the function

A(ĉ� v̂)≡ ĉ− rv̂− 1
2

(
ĉγα

φσ

)2

v̂γ
+ v̂

(
ρ− ĉ1−γ

1 − γ − 1
2
π2

γ

)
	

For any v̂ ∈ (0� (ĉu)γ), we have A(ĉ; v̂) > 0 for ĉ near 0, where ĉu = (ρ−r(1−γ)
γ

− 1−γ
2 (

π
γ
)2)

1
1−γ .

In addition, if γ ≥ 1
2 then A(ĉ; v̂) has at most one root in [0� ĉu]. If instead γ < 1

2 , A(ĉ; v̂) is
convex and has at most two roots.

PROOF: First, for γ < 1 limĉ→0A(ĉ; v̂) = v̂ γ

1−γ (
ρ−r(1−γ)

γ
− 1−γ

2 (
π
γ
)2) > 0. For γ > 1,

limĉ→0A(ĉ; v̂)= ∞.
For γ ≥ 1/2, to show that A(ĉ; v̂) has at most one root in [0� ĉu] for any v̂ ∈ (0� v̂h),

we will show that A′
ĉ(ĉ; v̂) = 0 =⇒ A(ĉ; v̂) > 0 for all ĉ < ĉu. Compute the derivative

(dropping the arguments to avoid clutter)

A′
ĉ = 1 − v̂ĉ−γ − ĉ2γ−1

(
α

φσ

)2 1
v̂
	

So

A′
ĉ = 0 =⇒ ĉ− v̂ĉ1−γ = ĉ2γ

(
α

φσ

)2 1
v̂
	

Plug this into the formula for A to get

A= ĉ − rv̂+ v̂ ρ− ĉ1−γ

1 − γ − ĉ2γ

2v̂γ

(
α

φσ

)2

− v̂

2
π2

γ
�

A= ĉ − rv̂+ v̂ ρ− ĉ1−γ

1 − γ − 1
2γ

(
ĉ− v̂ĉ1−γ) − v̂

2
π2

γ

= 2γ− 1
2γ

ĉ+ 1 − 3γ
2γ

v̂
ĉ1−γ

1 − γ + v̂ ρ− r(1 − γ)
1 − γ − v̂

2
π2

γ
≡ B(ĉ� v̂)	
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B(ĉ� v̂) is convex in ĉ because 1 − 3γ < 0 for γ ≥ 1
2 , so it is minimized in ĉ when B′

ĉ = 0:

2γ− 1
3γ− 1

= v̂ĉ−γ� (O.36)

and it is strictly decreasing before this point. Now we have two possible cases.
CASE 1: The minimum of B is achieved for ĉ ≥ ĉu, so in the relevant range, it is mini-

mized at ĉh. So let us plug in ĉu into B(ĉ� v̂):

2γB(ĉu� v̂)= (2γ− 1)ĉu + v̂

1 − γ
((
ρ− r(1 − γ))2γ+ (1 − 3γ)(ĉu)1−γ) − v̂π2

= (2γ− 1)ĉu + v̂

1 − γ
(
ρ− r(1 − γ))

γ

(
2γ2 + (1 − 3γ)

)
− v̂

1 − γ (1 − 3γ)
1
2
(1 − γ)

(
π

γ

)2

− v̂π2

= (2γ− 1)ĉu + v̂
((
ρ− r(1 − γ))

γ

)
(1 − 2γ)

− 1
2
(1 − γ)

(
π

γ

)2

v̂

(
1 − 3γ
1 − γ + 2γ2

1 − γ
)

= (2γ− 1)ĉu + v̂
((
ρ− r(1 − γ))

γ

)
(1 − 2γ)− 1

2
(1 − γ)

(
π

γ

)2

v̂(1 − 2γ)

= (2γ− 1)
(
ĉu − v̂

(
ρ− r(1 − γ)

γ
− 1

2
(1 − γ)

(
π

γ

)2))
≥ 0�

and the inequality is strict if v̂ < (ĉu)γ . So A(ĉ� v̂)= B(ĉ� v̂) > B(ĉu� v̂)≥ 0 for any ĉ < ĉu.
CASE 2: If the minimum is achieved for ĉm ∈ [0� ĉu), it must be that γ > 1/2. Then

plugging in (O.36) into B:

B(ĉ� v̂)≥ 2γ− 1
2γ

ĉm − 2γ− 1
2γ

ĉm

1 − γ + v̂ ρ− r(1 − γ)
1 − γ − v̂

2
π2

γ

= 1 − 2γ
2

ĉm

1 − γ + v̂ ρ− r(1 − γ)
1 − γ − v̂

2
π2

γ

= 1 − 2γ
2

ĉm

1 − γ + 2γ− 1
3γ− 1

ĉγm

(
ρ− r(1 − γ)

1 − γ − 1
2
π2

γ

)
�

and dividing throughout by 2γ− 1> 0,

B(ĉ� v̂)

2γ− 1
≥ −1

2
ĉm

1 − γ + ĉγm
3γ− 1

(
ρ− r(1 − γ)

1 − γ − 1
2
π2

γ

)
�
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and multiplying by ĉ−γ
m > 0 and using ĉ

1−γ
m

1−γ <
(ĉu)

1−γ
1−γ ,

B(ĉ� v̂)

2γ− 1
ĉ−γ
m >−1

2
(ĉu)

1−γ

1 − γ + 1
3γ− 1

(
ρ− r(1 − γ)

1 − γ − 1
2
π2

γ

)

=
(
ρ− r(1 − γ)

γ
− 1

2
(1 − γ)

(
π

γ

)2)(
−1

2
1

1 − γ + γ

(3γ− 1)(1 − γ)
)

=
(
ρ− r(1 − γ)

γ
− 1

2
(1 − γ)

(
π

γ

)2) 1 − 3γ+ 2γ
(1 − γ)(3γ− 1)2

=
(
ρ− r(1 − γ)

γ
− 1

2
(1 − γ)

(
π

γ

)2) 1
(3γ− 1)2

> 0	

So A(ĉ; v̂)≥ B(ĉ� v̂) > 0 for all ĉ ∈ [0� ĉu].
For the case with γ < 1

2 , the second derivative of A is

A′′
ĉ = γv̂ĉ−γ−1 − (2γ− 1)ĉ2γ−2

(
α

φσ

)2 1
v̂
> 0	

So A(ĉ; v̂) is strictly convex and so can have at most two roots. Q.E.D.

LEMMA O.14: Assume there are some constants λ1, λ2, λ3, and a constant λ4 > 0 such
that for any feasible strategy (c̃� a� z� z̃) there is a nonnegative process N with

dNt ≤
((
λ1t + λ2tσ

N
t + λ3t σ̃

N
t

)
Nt − λ4c̃t

)
dt + σNt Nt dZ

a
t + σ̃Nt Nt dZ̃t�

for some locally bounded processes σN and σ̃N , which can depend on the strategy. Then for
a given T > 0, there is a constant λ5 > 0 such that for any feasible strategy (c̃� a� z� z̃),

E
a

[∫ T

0
e−ρt c̃

1−γ
t

1 − γ dt
]

≤ λ5
N1−γ

0

1 − γ 	

PROOF: First, define nt as the solution to the SDE

dnt =
((
λ1 + λ2σ

N
t + λ3σ̃

N
t

)
nt − c̃t

)
dt + σNt nt dZa

t + σ̃Nt nt dZ̃t�
and n0 = N0

λ4
. It follows that nt ≥ Nt

λ4
≥ 0. Now define ζ as

dζt

ζt
= −λ1 dt − λ2 dZ

a
t − λ3 dZ̃t� ζ0 = 1�

and

ñt =
∫ t

0
ζsc̃s ds+ ζtnt	

We can check that ñt is a local martingale under Pa. Since ζt > 0 and nt ≥ 0, it follows that

E
a

[∫ τm∧T

0
ζsc̃s ds

]
≤ E

a

[∫ τm∧T

0
ζsc̃s ds+ ζτm∧Tnτm∧T

]
= n0�
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where {τm} reduces the stochastic integral and has limm→∞ τm = ∞ a.s. Taking m→ ∞
and using the monotone convergence theorem, we obtain

E
a

[∫ T

0
ζsc̃s ds

]
≤ n0	

Now we want to maximize E
a[∫ T

0 e
−ρt c̃1−γ

t

1−γ dt] subject to this budget constraint. Notice that
a appears both in the budget constraint and objective function, but does not affect the
law of motion of ζ under Pa, so we can ignore it since we are choosing c̃. The candidate
solution c has

e−ρtc−γ
t = ζtμ�

where μ> 0 is the Lagrange multiplier and is chosen so that the budget constraint holds
with equality. For any c̃ that satisfies the budget constraint, we have

E
a

[∫ T

0
e−ρt c̃

1−γ
t

1 − γ dt
]

≤ E
a

[∫ T

0
e−ρt

(
c1−γ
t

1 − γ + c−γ
t (c̃t − ct)

)
dt

]

= E
a

[∫ T

0
e−ρt c

1−γ
t

1 − γ dt
]

+μEa
[∫ T

0
ζt(c̃t − ct) dt

]

≤ E
a

[∫ T

0
e−ρt c

1−γ
t

1 − γ dt
]
	

Now since ct = (ζtμ)− 1
γ e− ρ

γ t it follows a geometric Brownian motion so E
a[∫ T0 e−ρt c1−γ

t

1−γ dt]
is finite. Because of homothetic preferences, we know that Ea[∫ T0 e−ρt c1−γ

t

1−γ dt] = λ̃5
n

1−γ
0

1−γ =
λ5

N
1−γ
0

1−γ for some constant λ5 > 0. Q.E.D.

COROLLARY: For γ > 1, limn→∞ E
a
t [e−ρτn N

1−γ
τn

1−γ ] = 0 for any feasible strategy (c̃� a� z� z̃).

PROOF: The continuation utility at any stopping time τn <∞ has

Uc̃�a
τn = E

a
τn

[∫ τn+T

τn
e−ρ(t−τn) c̃

1−γ
t

1 − γ dt + e
−ρ(T−τn)Uc̃�a

τn+T

]

≤ E
a
τn

[∫ τn+T

τn
e−ρ(t−τn) c̃

1−γ
t

1 − γ dt
]

≤ λ5
N1−γ
τn

1 − γ 	

So at t = 0 we get

Uc̃�a
0 = E

a

[∫ τn

0
e−ρt c̃

1−γ
t

1 − γ dt + e
−ρτnUc̃�a

τn

]
≤ E

a

[∫ τn

0
e−ρt c̃

1−γ
t

1 − γ dt + e
−ρτnλ5

N1−γ
τn

1 − γ
]
	

Take limits n→ ∞ and use the monotone convergence theorem on the first term on the

right-hand side to get 0 ≥ limn→∞ Eat [e−ρτn N
1−γ
τn

1−γ ] ≥ 0. Q.E.D.
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LEMMA O.15: Let ĉl ∈ (0� ĉh) and v̂l ≤ v̂p. If σĉ = σ̃ ĉ = 0, σx = α
σγ

ĉ
γ
l

v̂lφ
, and σ̃x = π/γ,

and A(ĉl� v̂l)= 0, where

A(ĉ� v̂)≡ ĉ − rv̂− 1
2

(
ĉγα

φσ

)2

v̂γ
+ v̂

(
ρ− ĉ1−γ

1 − γ − 1
2
π2

γ

)
�

then v̂l < ĉ
γ
l and

μĉ = r − ρ
γ

− ρ− ĉ1−γ
l

1 − γ + 1
2
(
σx

)2 + 1
2

(
π

γ

)2

> 0	

PROOF: Looking at (O.11), with σĉ = σ̃ ĉ = 0 we get for the drift

μĉ = r − ρ
γ

+ 1
2
(
σx

)2 + 1
2
(
σ̃x

)2 − ρ− ĉ1−γ

1 − γ 	

So μĉ > 0 implies

1
2
(
σx

)2 + 1
2
(
σ̃x

)2
>
ρ− r
γ

+ ρ− ĉ1−γ

1 − γ 	

Since we also want A(ĉ; v̂)= 0, we get

0 = ĉ − rv̂+ v̂
(
ρ− ĉ1−γ

1 − γ − γ

2
(
σx

)2 − γ

2

(
π

γ

)2)
< ĉ − v̂ĉ1−γ ≡M	

Notice that if v̂ = ĉγ we have M = 0. If v̂ > ĉγ , we have M < 0 and if v̂ < ĉγ we have
M > 0. So for A(ĉ; v̂)= 0 and μĉ > 0 we need v̂ < ĉγ . In fact, if v̂= ĉγ and in addition

1
2

(
α

φσγ

)2

+ 1
2

(
π

γ

)2

= ρ− ĉ1−γ

1 − γ + ρ− r
γ

� (O.37)

then we haveA= 0 and μĉ = 0. In this case, because we have μĉ = 0 we therefore have the
value of a stationary contract, that is, v̂= v̂s(ĉ) given by (O.32). This point corresponds to
the myopic stationary contract with (ĉp� v̂p). We know from Lemma O.16 that ĉp ∈ [ĉa� ĉh].
By assumption, v̂l ≤ v̂p.

First, we will show that μĉ ≥ 0, and then make the inequality strict. Toward contra-
diction, suppose μĉ < 0 at ĉl. Then it must be the case that v̂l > ĉ

γ
l because we have

A(ĉl� v̂l) = 0. We will show that A(ĉl� v̂l) > 0 and get a contradiction. First, take the
derivative of A:

A′
ĉ(ĉl� v̂l)= 1 − v̂l

(
ĉ−γ
l + ĉ2γ−1

l

(
α

φσ

)2 1
v̂2
l

)
< 0�
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where the inequality holds for all ĉ < v̂
1
γ

l . So A(ĉl� v̂l) > A(v̂
1
γ

l � v̂l). Letting ĉm = v̂
1
γ

l , we
get

A(ĉl� v̂l) > ĉm − rv̂l + v̂l
(
ρ− ĉ1−γ

m

1 − γ − 1
2

(
α

φσ

)2 1
γ

− γ

2

(
π

γ

)2)

= ĉm − rv̂l + v̂l
(
ρ− ĉ1−γ

m

1 − γ − γρ− ĉ1−γ
p

1 − γ − (ρ− r)
)

=⇒ A(ĉl� v̂l) > ĉm + v̂l
γĉ1−γ

p − ĉ1−γ
m

1 − γ = ĉγmγ
ĉ1−γ
p − ĉ1−γ

m

1 − γ ≥ 0�

where the last equality uses v̂l = ĉγm and the last inequality uses ĉm = v̂
1
γ

l ≤ v̂
1
γ
p = ĉp. This is

a contradiction and, therefore, it must be the case that μĉ ≥ 0 at ĉl.
It is clear from the previous argument that μĉ(ĉl)= 0 only if (ĉl� v̂l)= (ĉp� v̂p). We will

show this cannot be the case because α > 0. First, note that (ĉp� v̂p) is a tangency point
where v̂s(ĉ) touches the locus v̂m(ĉ) defined byA(ĉ; v̂m(ĉ))= 0. If (ĉl� v̂l)= (ĉp� v̂p), then
this must be the minimum point for v̂s(ĉ), so the derivative of both v̂s(ĉ) and v̂m(ĉ) must
be zero. This means that A′

ĉ(ĉl� v̂l)= 0. However,

1 − v̂l
(
ĉ−γ
l + ĉ2γ−1

l

(
α

φσ

)2 1
v̂2
l

)
< 0�

where the inequality follows from v̂l = v̂p = ĉγl (note that ĉl > 0 because as Lemma O.13
showsA(ĉ� v̂l) is strictly positive for ĉ near 0). This cannot be a minimum of v̂s(ĉ). There-
fore, (ĉl� v̂l) �= (ĉp� v̂p) and μĉ(ĉl) > 0. This completes the proof. Q.E.D.

LEMMA O.16: Let

ĉp ≡
(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
α

φσγ

)2

− 1 − γ
2

(
π

γ

)2) 1
1−γ
�

v̂p ≡ ĉγp

be the ĉ and v̂ corresponding to the myopic stationary contract. We have the following prop-
erties:

1. ĉa < ĉp < ĉr ≤ ĉh, for any valid hidden investment setting

2. ĉγ intersects v̂s(ĉ) only at ĉp and ĉu = (ρ−r(1−γ)
γ

− 1−γ
2 (

π
γ
)2)

1
1−γ in [0� ĉu]. Furthermore,

ĉγ ≥ v̂s(ĉ) for all ĉ ∈ [ĉp� ĉu], and ĉγ ≤ v̂s(ĉ) for all ĉ ∈ [ĉa� ĉp], with strict inequality in
the interior of each region.

3. A(ĉ� ĉγ) = 0 only at ĉ = 0 and ĉp. Furthermore, A(ĉ� ĉγ) ≤ 0 for all ĉ ∈ [ĉp� ĉh] and
A(ĉ� ĉγ)≥ 0 for all ĉ ∈ [0� ĉp], and ∂1A(ĉ� ĉ

γ) < 0 for all ĉ ∈ (0� ĉh].
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PROOF: First, let us show that ĉp ∈ (ĉa� ĉh). Clearly, ĉp < ĉh for any type of valid hidden
investment, because φ< 1. Now write ĉp

ĉp =
(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
α

φσγ

)2

− 1 − γ
2

(
π

γ

)2) 1
1−γ

>

(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2) 1
1−γ (

1 − 1 − γ
1 + γ

) 1
1−γ
�

where the inequality comes from α< ᾱ= φσγ
√

2√
1+γ

√
ρ−r(1−γ)

γ
− 1−γ

2 (
π
γ
)2. Notice 1 − 1−γ

1+γ = 2γ
1+γ

and use the definition of ĉa,

ĉa =
(

2γ
1 + γ

) 1
1−γ (ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2) 1
1−γ
�

to conclude that ĉa < ĉp. The cost of this contract is v̂p = ĉγp.
Now go to 2). We are looking for roots of v̂s(ĉ)= ĉγ:

ĉ− α

φσ
ĉγ

√
2

√√√√√
(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2)
− ĉ1−γ

1 − γ

= ĉγ
(

2r − ρ− 1 + γ
1 − γρ+ γ

(
π

γ

)2

+ ĉ1−γ

1 − γ (1 + γ)
)
	

Divide throughout by ĉγ > 0 and reorganize the right-hand side

ĉ1−γ

1 − γ (1 − γ)− α

φσ

√
2

√√√√√
(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2)
− ĉ1−γ

1 − γ

= −2γ

(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2)
1 − γ + ĉ1−γ

1 − γ(1 + γ)�

− α

φσ

√
2

√√√√√
(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2)
− ĉ1−γ

1 − γ

= −2γ

(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2)
1 − γ + ĉ1−γ

1 − γ2γ�
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α

φσ

√
2

√√√√√
(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2)
− ĉ1−γ

1 − γ

= 2γ

(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2)
− ĉ1−γ

1 − γ 	

If ĉ = (ρ−r(1−γ)
γ

− 1−γ
2 (

π
γ
)2)

1
1−γ , we have a root. If not, then we can write

α

φσγ
= √

2

√√√√√
(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2)
− ĉ1−γ

1 − γ �

ĉ =
(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
α

φσγ

)
− 1 − γ

2

(
π

γ

)2) 1
1−γ

= ĉp <
(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2) 1
1−γ
	

We know that at ĉ = 0, ĉγ = 0, while v̂s(ĉ) is always positive above ĉa and diverges to
infinity as ĉ ↘ ĉa. So we know that ĉp is the first time they intersect and, therefore, ĉγ
intersects v̂s(ĉ) from below. Since they will not intersect again until ĉu, we get the other
inequality.

Back to (1), consider the locus v̂m(ĉ) defined by A(ĉ� v̂m(ĉ)) = 0. Since A(ĉ� v̂) mini-
mizes over σx, it is always below v̂s(ĉ). At (ĉp� v̂p) we have v̂m(ĉ)= v̂s(ĉ) by part (3) below,
which means this is a tangency point of v̂m and v̂s. We can now show that A′

ĉ(ĉp� v̂p) < 0
andA′

v̂(ĉp� v̂p) < 0, so that v̂m(ĉp)= v̂s(ĉp) < 0 which means that the Cp is not the optimal
stationary contract, since ĉp < ĉh. Write

A′
ĉ(ĉp� v̂p)= 1 − v̂p

(
ĉ−γ
p + ĉ2γ−1

p

(
α

φσ

)2 1
v̂2
p

)
= −ĉγ−1

p

(
α

φσ

)
< 0�

A′
v̂(ĉp� v̂p)= 1

1 − γ
(
γ

(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2)
− ĉ1−γ

p

)
+ 1

2

(
ĉγpα

φσ

)2

v̂2
pγ

= 1
1 − γ

(
γ

(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2)

−
(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
α

φσγ

)2

− 1 − γ
2

(
π

γ

)2))

+ γ

2

(
α

φσγ

)2

= 1
1 − γ

(
(γ− 1)

(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2))
+ 1 + γ

2

(
α

φσγ

)2

< 0�
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where the last inequalities follows from the bound on

α< ᾱ≡ φσγ
√

2√
1 + γ

√
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2

	

To find the best stationary contract, use the HJB

rv̂r = min
ĉ
ĉ− σxs (ĉ)ĉγ

α

φσ
+ v̂r

(
ρ− ĉ1−γ

1 − γ + γ

2
(
σxs (ĉ)

)2 + γ

2
(π/γ)2

)
�

with FOC for ĉ:

1 − γĉγ−1 α

φσ
σxs (ĉ)− v̂r ĉ−γ +

(
v̂rγσ

x
s (ĉ)− ĉγ α

φσ

)
∂ĉσ

x
s (ĉ)= 0	

We already know that for ĉ ≤ ĉp we have v̂s(ĉ)≥ ĉγ and σxs (ĉ)≥ α
γφσ

. We can them show
that for ĉ ≤ ĉp the left-hand side of the FOC is strictly negative:

lhs = 1 − γĉγ−1 α

φσ
σxs (ĉ)− v̂s(ĉ)ĉ−γ +

(
v̂s(ĉ)γσ

x
s (ĉ)− ĉγ α

φσ

)
∂ĉσ

x
s (ĉ)	

Use v̂s(ĉ)≥ ĉγ and ∂ĉσxs (ĉ) < 0 to obtain

lhs ≤ −γĉγ−1 α

φσ
σxs (ĉ)+

(
v̂s(ĉ)γσ

x
s (ĉ)− ĉγ α

φσ

)
∂ĉσ

x
s (ĉ)

and

lhs ≤ −γĉγ−1 α

φσ
σxs (ĉ)+ ĉγ

(
γσxs (ĉ)− α

φσ

)
∂ĉσ

x
s (ĉ)	

Finally, σxs (ĉ) ≥ α
γφσ

yields lhs < 0. This means the best stationary contract must have
ĉr > ĉp. We know ĉr ≤ ĉh from the definition of ĉr .

For (3), we are looking for roots of

ĉ− rĉγ − 1
2

(
αĉγ

φσ

)2

ĉγγ
+ ĉγ

(
ρ− ĉ1−γ

1 − γ − 1
2
π2

γ

)
= 0	

This works for ĉ = 0. Otherwise, divide by ĉγ ,

ĉ1−γ

1 − γ (1 − γ)− r − 1
2

(
α

φσ

)2

γ
+ ρ− ĉ1−γ

1 − γ − 1
2
π2

γ
= 0�

ρ− r(1 − γ)
1 − γ − γ

2

(
α

φσγ

)2

− γ

2

(
π

γ

)2

= ĉ1−γ

1 − γγ�

ρ− r(1 − γ)
γ

− 1 − γ
2

(
α

φσγ

)2

− 1 − γ
2

(
π

γ

)2

= ĉ1−γ�
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ĉ =
(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
α

φσγ

)2

− 1 − γ
2

(
π

γ

)2) 1
1−γ

= ĉp	

So we have only ĉp and ĉ = 0 as roots. This argument also shows that A(ĉ� ĉγ) ≤ 0 for
ĉ ∈ [ĉp� ĉh], and A(ĉ� ĉγ)≥ 0 for ĉ ∈ [0� ĉp]. Also, evaluating the derivative ∂1A(ĉ� ĉ

γ),

∂1A
(
ĉ� ĉγ

) = 1 − ĉγĉ−γ − ĉ2γ−1

(
α

φσ

)2 1
ĉγ
�

∂1A
(
ĉ� ĉγ

) = 1 − 1 − ĉγ−1

(
α

φσ

)2

= −ĉγ−1

(
α

φσ

)2

< 0

for all ĉ ∈ (0� ĉh]. Q.E.D.

LEMMA O.17: Suppose μĉ and σĉ are derived from first-order conditions from a solution
to the HJB equation (O.20) with the properties in Theorem O.2. Without hidden investment,
H = {0}, the drift and volatility of ĉ near ĉh are approximately,

μĉĉ ≈ (
4γ− 6(1 + γ)2

)
ĉ−γ
h ε�

σĉĉ ≈ −√
22(1 + γ)ĉ−γ/2

h ε3/2�

where ε= ĉh − ĉ. With hidden investment, H =R
+, we have

μĉĉ ≈ (η− 2)
1
2

(
α

σγ

)2(
γ

1 −η
)2

ε < 0�

σĉĉ ≈ −
(
α

σγ

)
γ

1 −ηε�

with η ∈ (0�1).

PROOF: WITHOUT HIDDEN INVESTMENT. First, we derive the drift of v̂′ using
the HJB equation (21). Differentiating with respect to ĉ and using the envelope theorem,
we obtain

rv̂′ = 1 − γσxĉγ−1 α

φσ
+ v̂′

(
ρ− ĉ1−γ

1 − γ + γ

2
(
σx

)2 − γ

2

(
π

γ

)2)
− v̂ĉ−γ

+ v̂′′ĉ
(
ĉ1−γ − ĉ1−γ

h

1 − γ +
(
σx

)2

2
+ (1 + γ)σxσĉ + 1 + γ

2
(
σĉ

)2
)

+ v̂′′′

2
ĉ2

(
σĉ

)2

+ v̂′ĉ1−γ + v̂′
(
ĉ1−γ − ĉ1−γ

h

1 − γ +
(
σx

)2

2
+ (1 + γ)σxσĉ + 1 + γ

2
(
σĉ

)2
)

+ v̂′′ĉ
(
σĉ

)2
	

The middle line has the drift of v̂′ plus an extra term v̂′′ĉσxσĉ , which we can combine with
the term containing v̂′′ in the third line. We also know that v̂′′σĉĉ = −v̂′(1 + γ)(σĉ + σx)
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from the FOC for σĉ . Using this, we find the drift of v̂′ to be

+v̂′′ĉ
(
ĉ1−γ − ĉ1−γ

h

1 − γ +
(
σx

)2

2
+ γσxσĉ + 1 + γ

2
(
σĉ

)2
)

+ v̂′′′

2
ĉ2

(
σĉ

)2

= v̂′
(

1 + γ
2

(
σx + σĉ)2 + ĉ1−γ

h − ĉ1−γ
)

+ γσxĉγ−1 α

φσ
+ v̂ĉ−γ − 1	

Now we approximate the cost function near ĉh. Conjecture, and later verify, that v̂(ĉ)=
ĉγh −K√

ε. Then

v̂′ = K

2
ε−1/2� v̂′′ = K

4
ε−3/2� v̂′′′ = 3K

8
ε−5/2�

plus smaller order terms.
Now conjecture that σĉ is of smaller order than σx (also verified later) and use the FOC

for σx to obtain

ĉγ
α

φσ
= K

2
ε−1/2ĉσx =⇒ σx = 2

K
ĉγ−1 α

φσ

√
ε�

plus smaller order terms. Now plug into the FOC for σĉ:

K

2
ε−1/2(1 + γ)(σx + σĉ) + K

4
ε−3/2ĉσ ĉ = 0 =⇒ ĉσ ĉ = −2(1 + γ)σxε	

This verifies that indeed σĉ is of smaller order than σx.
Now we plug everything into the HJB equation and collect terms of order

√
ε (the

constant order terms match because the cost function we specified works at ĉh). The only
terms of order

√
ε are

−σxĉγ α
φσ

+
(
ĉ+ v̂ γĉ

1−γ
h − ĉ1−γ

1 − γ
)

+ v̂′ĉ
((
σx

)2

2
− ĉ1−γ

h − ĉ1−γ

1 − γ
)

= 0�

−2ĉ2γ−1
h

(
α

φσ

)2

−K2γĉ
1−γ
h − ĉ1−γ

h

1 − γ + K

2
ĉh

(
4
2

1
K2 ĉ

2γ−2
h − ĉ−γ

h

)
= 0	

We can solve for

K = √
2ĉ1	5γ−1

h

α

φσ
	

Now we plug into our expression for σx and σĉ

σx = √
2ĉ−γ/2

h

√
ε�

σĉĉ = −√
22(1 + γ)ĉ−γ/2

h ε3/2�

as desired.
For the drift, evaluate the drift of v̂′ using the formula above

K

2
ε−1/2

(
1 + γ

2
2ĉ−γ

h ε+ (1 − γ)ĉ−γ
h ε

)
+ γ(√

2ĉ−γ/2
h

√
ε
)
ĉγ−1 α

φσ
+ (
ĉγh −K√

ε
)
ĉ−γ − 1

= γKĉ−γ
h

√
ε	
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But we can also use Ito’s lemma to obtain the drift of v̂′

v̂′′ĉμĉ + 1
2
v̂′′′(ĉσ ĉ)2 = K

4
ε−3/2ĉμĉ + 1

2
3K
8
ε−5/28(1 + γ)2ĉ−γ

h ε
3 = γKĉ−γ

h

√
ε	

Solve for ĉμĉ

ĉμĉ = (
4γ− 6(1 + γ)2

)
ĉ−γ
h ε

2�

which completes the proof.
WITH HIDDEN INVESTMENT. The IC constraints for hidden investment will be

binding near ĉh, so we have

σx =
ĉγ
α

φσ
+ v̂′′ĉ2 α

σγ

γ
(
v̂− v̂′ĉ

) + v̂′′ĉ2 �

σĉ = α

γσ
− σx	

In this case, we use the approximation

v̂= v̂h −Kεη�
v̂′ =Kηεη−1�

v̂′′ = −Kη(η− 1)εη−2	

Divide the FOC for σx by v̂′′ĉ on both sides (v̂′′ �= 0, or we would have σx > α/(γσ) and
the IC wouldn’t be binding):

σx =
α

σγ
+

ĉγ
α

φσ

Kη(η− 1)
ε2−η

1 + γ
(
v̂s −Kεη −Kηεη−1ĉ

)
Kη(η− 1)ĉ2 ε2−η

	

The largest terms are of order ε because η ∈ (0�1), so we get

σx ≈ α

σγ
(1 +Aε)�

where A= γĉ−1
h

1
1−η > 0 and, therefore,

σĉ ≈ − α

σγ
Aε	

We need to make sure the HJB holds up to terms of order εη. Plug into the HJB to obtain

0 = (ĉh − ε)−
(
α

σγ

)
(1 +Aε)(ĉγh − γĉγ−1

h ε
) α
φσ

+ (
v̂h −Kεη)

(γ(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2)
− ĉ1−γ

h

1 − γ
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+ ĉ−γ
h ε+ γ

2

(
α

σγ

)2

(1 +Aε)2

)

+Kηεη−1(ĉh − ε)
((

α

γσ

)2(
(1 +Aε)2

2
− (1 + γ)(1 +Aε)Aε+ 1 + γ

2
A2ε2

)

−

(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2)
− ĉ1−γ

h

1 − γ − ĉ−γ
h ε

)

−Kη(η− 1)εη−2
(
ĉ2
h − 2ĉhε

)( α

γσ

)2

A2ε2	

The constant terms match. Then there are terms of order εη−1:

Kηĉh

((
α

γσ

)2 1
2

−

(
ρ− r(1 − γ)

γ
− 1 − γ

2

(
π

γ

)2)
− ĉ1−γ

h

1 − γ

)

=Kηĉh
((

α

γσ

)2 1
2

−
1 − γ

2

(
α

γσ

)2

1 − γ

)
= 0	

Then there are terms of order εη:

−K
(γ(

ρ− r(1 − γ)
γ

− 1 − γ
2

(
π

γ

)2)
− ĉ1−γ

h

1 − γ + γ

2

(
α

σγ

)2
)

+Kηĉh
((

α

γσ

)2(
A− (1 + γ)A) − ĉ−γ

h

)

− 1
2
Kη(η− 1)ĉ2

h

(
α

γσ

)2

A2	

We want this to be zero. K factors out, and there is a unique η ∈ (0�1) that makes this
expression zero. After some algebra, we obtain

ĉ1−γ
h (1 −η)2 +η

(
1 − γ

2

)
γ

(
α

σγ

)2

− γ
(
α

σγ

)2

= 0	 (O.38)

The bound α < ᾱ implies ĉ1−γ
h > γ( α

γσ
)2 > 0, so at η = 0 the rhs is strictly positive. At

η= 1, we have γ( α
σγ
)2 − (1 − γ

2 )γ(
α
σγ
)2 = γ2

2 (
α
σγ
)2 > 0, so the rhs is negative. And because

the vertex of the quadratic term is η= 1 there is a unique η that satisfies the expression.
So we have

σx =
(
α

σγ

)(
1 + γĉ−1

h

1
1 −ηε

)
�
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σĉĉ ≈ −
(
α

σγ

)
γ

1 −ηε	

Now let us find the drift of ĉ. Using (17) and plugging in the expression for σx and σĉ , the
constant terms cancel, and we get terms of order ε (plus smaller terms)

μĉĉ =
(

−ĉ1−γ
h +

(
α

σγ

)2
γ

1 −η(1 − γ)
)
ε	

Now use (O.38) to replace ĉ1−γ
h and obtain

μĉĉ =
(
α

σγ

)2(
γ

1 −η(1 − γ)+η2 − γ
2

γ

(1 −η)2 − γ

(1 −η)2

)
	

After some algebra, we get

μĉĉ ≈ η− 2
2

(
α

σγ

)2(
γ

1 −η
)2

ε < 0�

as desired. Q.E.D.
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