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APPENDIX A: ADDITIONAL DETAILS FOR RESTRICTIONS ON THE
SPACE OF CONTRACTS

IN THIS SECTION, we show that given the equilibrium we construct in the main text,
there are no incentives for firms to offer any insurance to workers that are not currently
matched with the firm. We build the argument in several steps. We first show that firms
do not have incentives to offer any unemployment insurance to workers after separation.
Then we show that the restricted employment contract that we construct in the main text
of the paper is in fact optimal in a larger contracting space where all firms are allowed to
offer insurance to all workers.

A.1. Insurance Provision to Unemployed Workers

First, consider an optimal contracting problem of a firm that offers payments {C̃t+s}∞
s=0

to an unemployed worker subject to two-sided limited commitment. Let Ṽ (U� y�S) be
the value of the insurance contract to a firm as a function of worker output y , promised
utility U for a given aggregate state S. Following the steps in the main text, the above
contracting problem can be expressed as

Ṽ (U� y�S)= max
C̃�{Ũ ′(g′)}g′

{
−C̃ + κ

∑
g′
π
(
g′|g)Λ(S′� S

)
(1 −χ)Ṽ (Ũ ′(g′)�λy�S′)}

subject to {
(1 −β)[by + C̃]1− 1

ψ +β
(
κ
∑
g′
π
(
g′|g)[(1 −χ)Ũ ′(g′)1−γ

+χ(u∗(S′)λy)1−γ] 1
1−γ
)1− 1

ψ
} 1

1− 1
ψ ≥U� (36)

Ũ ′(g′)≥ ū(S′)λy for all g′� (37)

Ṽ
(
Ũ ′(g′)�λy�S′)≥ 0 for all g′� (38)

where functions u∗(S) and ū(S) are defined in equations (13) and equation (12), respec-
tively.
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The optimal contract chooses the current period payment to the worker C̃ and a menu
of continuation utilities {Ũ ′(g′)}g′ to maximize the net present value of the contract to the
firm. The human capital of an unemployed worker depreciates deterministically at rate
1 − λ; therefore, in the absence of idiosyncratic shocks, the continuation utility is only a
function of aggregate shock g′. To understand the expression for the continuation payoff,
note that in the next period, with probability χ, the worker stays unemployed, in which
case the value of the contract is Ṽ (Ũ ′(g′)�λy�S′). With probability 1 − χ, the worker
receives an opportunity to match with a firm, which can be a different firm or the same
firm who is providing the insurance. In either case, because of competition, the value of
the continuation contract after the worker finds an employment opportunity gives the
worker a continuation value of u∗(S)λy and a value of zero to the firm.

Inequality (36) is the promise-keeping constraint. The worker receives by as unemploy-
ment benefit and a transfer of C̃ from the insurance firm. In the next period, with proba-
bility 1−χ, the worker stays unemployed and receives promised utility Ũ ′(g′). With prob-
ability χ, the worker has an opportunity to match with another firm and receives u∗(S′)λy .
Inequality (37) is the limited commitment constraint for workers: promised utility under
the insurance contract has to be higher than the utility associated with consuming unem-
ployment benefit as workers always have an option to default on the contract offered by
the insurance firm and to consume the unemployment benefit thereafter. Because work-
ers’ human capital depreciates at rate 1 − λ, the utility associated with consuming un-
employment benefit is ū(S′)λy in the next period. Finally, inequality (37) is the limited
commitment constraint for the firm which requires the net present value of the insurance
contract to be non-negative for the firm.

The lemma below provides a sufficient condition for the absence of unemployment
insurance offered by firms.

LEMMA 1: Suppose λ is small enough; in particular, for all S and S′,

λ≤
[
x
(
S′)

x(S)

][
w
(
S′)

n(S)

]ψγ−1

� (39)

Then, at U = ū(S)y , we must have C̃(U� y�S) = 0, Ũ ′(U�y�S�g′) = ū(S′)λy , and
Ṽ (U� y�S)= 0.

PROOF: As in the main text, the optimal contracting problem can be normalized. Ho-
mogeneity of the problem implies Ṽ (U� y�S)= ṽ(u�S)y for some ṽ, where u= U

y
. Using

normalized value and policy functions, we can write the optimal contracting problem in
the normalized form. Define the T operator as

T ṽ(u�S)= max
c�{u′(g′)}g′

{
−c̃+ κ

∑
g′
π
(
g′|g)Λ(S′� S

)
(1 −χ)λeg′

ṽ
(
u′(g′)� S′)} (40)

s.t.
{
(1 −β)[b+ c̃]1− 1

ψ +β(λm)1− 1
ψ
} 1

1−1/ψ ≥ u� (41)

m=
{
κ
∑
g′
π
(
g′|g)[(1 −χ)u′(g′)1−γ +χu∗(S′)1−γ] 1

1−γ
}
� (42)

u′(g′)≥ ū(S′) for all g′� (43)

ṽ
(
u′(g′)� S′)≥ 0 for all g′� (44)
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Under standard discounting assumptions, T is a contraction on the set of bounded con-
tinuous functions and ṽ(u�S) is the unique fixed point of the T operator. The conclusion
of the above lemma is therefore equivalent to the following property of the normalized
optimal contracting problem, that is, for u= ū(S),

c̃(u�S)= 0; u′(u�S�g′)= ū(S′(g′)) for all g′ and ṽ(u�S)= 0� (45)

Consider the constrained maximization problem (40). Let μ be the Lagrangian multi-
plier for the constraint (41). The first order conditions are

1 = μ(1 −β)
(
c

u

)− 1
ψ

�

Λ
(
S′� S

) d
du
ṽ
(
u′(g′)� S′)+μβe−γg′

(
λm

u

)− 1
ψ
(
u′(g′)
m

)−γ
≥ 0 for all g′� (46)

and “=” holds if ṽ(u′(g′)|S′) > 0. The envelope condition implies d
du
ṽ(u�S) = μ. Com-

bining the above conditions, and using the expression for the stochastic discount factor in
(20), the optimality condition (46) can be written as[

x
(
S′)

x(S)

]− 1
ψ
[
w
(
S′)

n(S)

] 1
ψ−γ

≤ λ− 1
ψ

[
b+ c̃(ū(g′)� S′)
b+ c̃(u�S)

]− 1
ψ
[
u′(g′)
m

] 1
ψ−γ
� (47)

and “=” holds if ṽ(u′(g′)|S′) > 0. Because (44) is a standard convex programming prob-
lem, (47) is both necessary and sufficient for optimality.

To prove (45), note that the set of functions that are concave in its first argument and
satisfy ṽ(ū(S)� S) = 0 is a closed subset in the set of bounded continuous functions. To
prove that the unique fixed of T satisfies ṽ(ū(S)�S) = 0, we start by assuming ṽ(u�S) is
concave in the first argument and satisfies ṽ(ū(S)�S) = 0, and we need to show that T ṽ
satisfies the same properties.

Because ṽ(u�S) is concave in its first argument, condition (47) together with the
promise-keeping constraint (41) are sufficient for optimality. Under Assumption (39),
the proposed policy functions in (45) satisfy the first-order condition (47). In addition,
the promise-keeping constraint is satisfied by the definition of ū(S) in (13). There-
fore, the policy functions (45) are optimal. Clearly, under the proposed policy functions,
T ṽ(ū(S)� S)= 0. The fact that T ṽ(ū(S)�S) must be concave follows from standard argu-
ment (see, e.g., Ai and Li (2015)). Q.E.D.

The above lemma has two implications. First, under condition (39), in equilibrium,
a firm cannot earn a positive profit by offering a non-trivial insurance contract to any
unemployed worker. To see this, note that the value function Ṽ (U� y�S) must be strictly
decreasing in U . Because the utility provided by the unemployment benefit is the lower
bound of the utility that an unemployed worker can achieve, we must have U ≥ ū(s)y
under any non-trivial insurance contract. Therefore, Ṽ (U� y�S) ≤ 0, that is, no firm can
make a positive profit by deviating from the trivial insurance contract.

Second, employer firms cannot offer any severance pay to a worker upon unemploy-
ment. To see this, consider an augmented contract space C ∪ C̃ with C̃ specifying pay-
ments to worker after separation. From the history at which the worker is unemployed,
the firm’s value under any contract with non-trivial payment to the worker cannot exceed
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Ṽ (U� y�S) defined in (38). An augmented contract with non-trivial severance pay will give
unemployed workers a value higher than the autarky value of consuming the unemploy-
ment benefits ū(S′)y ′. Thus, by the same argument as in the previous paragraph, any such
arrangement will imply Ṽ (U� y�S) < 0, which violates the firm-side limited commitment.

Intuitively, it is the joint assumption of two-sided limited commitment and perfect com-
petition on firm side that rule out unemployment insurance in equilibrium. The income
of unemployed workers is front loaded. In our model, as human capital depreciates, so
does the unemployment benefit. To provide any non-trivial intertemporal consumption
smoothing to unemployed workers, a firm would need to backload its payment. The lim-
ited commitment on firm side (̃v(ū(S)�S)≥ 0) implies that firms cannot commit to back-
loaded payments unless they can expect some profit in the future. However, there is no
profit to be made in an insurance contract with an unemployed worker: the worker will
need continued payment as long as he is unemployed; once the worker is employed, lim-
ited commitment on worker side and perfect competition between firms mean that the
worker will extract all surplus in the new match and cannot commit to pay back the un-
employment insurance provider. The fact that workers extract all surplus in a new em-
ployment contract is the key feature of our model that rules out equilibrium private un-
employment insurance.

Finally, from a quantitative point of view, condition (39) is a fairly weak assumption
on λ. In an economy without aggregate risk, it is equivalent to λ ≤ 1. In our calibration,
λ= 0�96 at the quarterly level, and (39) is certainty satisfied.

A.2. Insurance Provision to Other Workers

Here, we show that the employment contract that we construct in the main text of the
paper is in fact optimal in a larger contracting space where all firms are allowed to offer
insurance to all workers. To do so, we follow several steps. In step 1, we describe a dynamic
game in which firms compete for workers by offering long-term contracts where all firms
are allowed to pay all workers subject to incentive compatibility. In step 2, we describe an
equilibrium strategy in the above game where contracts only involve non-trivial payments
from firms to their employees. In step 3, we show that the proposed contract is optimal in
a Subgame Perfect Nash Equilibrium (SPNE) of the game.

Step 1: Here, we describe a game where all firms are allowed to offer contracts to all
workers. We first introduce some terminologies and notations. We define {ιi�t}∞

t=0 to be the
stochastic process that records the birth, death, and unemployment shocks experienced
by worker i.1 In addition, upon receiving an opportunity to match, a worker randomizes
among all firms that offer the most favorable contract. We use υi�t to denote the outcome
of the randomization device, with υi�t = j if firm j is chosen by worker i in period t.
We use ζi�j(t)= (gt�ηj�t� εi�t� ιi�t� υi�t) to denote time-t shocks for a firm-worker pair and
ζti�j = (gt�ηtj� εti� ιti�υti)= {gs�ηj�s� εi�s� ιi�s�υi�s}ts=0 to denote the history of shocks of a firm-

1To keep the convention that {ιi�t}∞
t=0 are exogenous shocks not influenced by agents’ actions, we can assume

that they are i.i.d. random variables uniformly distributed on [0�1]. If worker i is employed in period t, the
outcome of the match with the employer firm is described by I{ιi�t+1≤θi�j�t }, where I is the indicator function.
That is, I{ιi�t+1≤θi�j�t } = 0 if the worker separates from the current firm and becomes unemployed in period t + 1
and I{ιi�t+1≤θi�j�t } = 1 if the worker continues the match with his current employer in period t + 1. Consistent
with the setup of our model, the probability of the survival of the match is θi�j�t . Similarly, for worker i who
is unemployed in period t, I{ιi�t+1≤1−χ} = 0 if the worker continues to stay unemployed in period t + 1, and
I{ιi�t+1≤1−χ} = 1 if the worker receives an employment opportunity to match with a firm in period t + 1.
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worker pair up to time t.2 Because all workers are endowed with one unit of human capital
at birth, given the history of shocks, ζti�j , we can recover hi�t and yi�t for all t using equations
(1) and (2), which we denote as ht(ζti�j).

A contract offered by firm j to worker i specifies the net transfers from the firm to the
worker and the retention effort, Ci�j ≡ {Ci�j�t(ζti�j)� θi�j�t(ζti�j)}∞

t=0, as functions of the history
of shocks.3 Clearly, our setup implies that θi�j�t(ζti�j) = 0 unless worker i is matched with
firm j at history ζti�j . We use CCC = 〈Ci�j〉i�j as the collection of contracts offered by all firms to
all workers. We suppress the decision for keeping the firm-worker match δi�j�t and assume
from the outset that a firm-worker match is never voluntarily separated. As we have shown
in Proposition 1 in the main text of the paper, this is without loss of generality.

We consider a repeated game in which, in each period t, all firms offer longer-term
contracts to all workers and denote a contract offered by firm j as 〈Ci�j〉i. After all firms
make offers, workers make decisions on which contract(s) to accept. A worker is free
to default on previous contracts at any history. Default on the contract offered by the
employer firm results in a separation of the match and termination of all future cash
transfers. Default on a contract offered by an unrelated firm results in termination of
all future cash flows and nothing else. In addition, a worker who has an employment
opportunity can choose the firm that offers the most attractive employment contract to
match. If indifferent, he randomizes. Finally, firms are free to default on their contract at
any point in time. A default on the firm side results in a separation of the match (if this is
a contract with an employee) and termination of all future cash transfers.

In a typical period t, given the action of all firms, CCC , a firm’s payoff is calculated as the
present value of all cash flows generated by contracts with all workers. A worker’s payoff
is the present value of utility that the worker receives under all accepted contracts with all
firms.

Step 2: Here, we construct an SPNE of the game specified above using the optimal
employment contract that we describe in the main text of the paper. To describe an equi-
librium contract, we can without loss of generality focus on contracts that will be accepted
at all times and all histories, because if part of the contract is not accepted at some his-
tory in equilibrium, we can simply rename the contract so that it prescribes zero transfer
between the firm and the worker after that history. As a result, even though firms are
allowed to offer a different contract in every period, in the construction of the SPNE of
the game, we can focus on the case where the same contract (that will be accepted at all
future histories and all times) is offered in every period.

In every period, firms offer contracts to three different types of workers: workers em-
ployed by them, workers employed by other firms, and unemployed workers. To decribe
an SPNE strategy, we first specify the contract offered to an employee based on the op-
timal employment contract we describe in the paper. Given the pricing kernel Λ(S′� S)
and the equilibrium value of workers with a job opportunity, yu∗(S), firms’ value function
defined in (11) is the unique fixed point of the following T operator:

TV(U�y�S)= max
C�θ�{U ′(ζ′)}

{
(y −C)+ κθ

∫
Λ
(
S′� S

)
V
(
U ′(ζ ′)� yeg′+η′+ε′

� S′)Ω(dζ ′|g)} (48)

2The usage of ζ is consistent with the main text in the sense that it is a vector of aggregate and idiosyncratic
shocks in period t. However, unlike in the main text of the paper, here, worker i and firm j do not necessarily
have an employment relationship. In addition, the shock structure in this more general setup is richer—for
example, it contains unemployment shocks, ιi�t—in order to allow for a larger contracting space.

3Here, we use the same notation Ci�j as in the main text to denote contracts in a larger space.
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such that{
(1 −β)C1− 1

ψ +β
(
κ

∫ [
θU ′(ζ ′)1−γ + (1 − θ)[ū(S′)yeg′+η′+ε′]1−γ]

Ω
(
dζ ′|g)) 1

1−γ}
≥U�

U ′(ζ ′)≥ u(S′)yeg′+η′+ε′
�

V
(
U ′(ζ ′)� yeg′+η′+ε′

� S′)≥ 0�

We denote the policy functions associated with the above dynamic programming program
as C(U�y�S) and {U ′(U�y�S� ζ ′)}ζ′ .

As is standard in the dynamic contracting literature, in any period t, given a vector
of initial state variables, (U�y�S), the continuation contract from period t that specifies
payment to employed workers in all future dates and states can be constructed recur-
sively from the policy functions of the above dynamic contracting problem. We denote
an employment contract with initial condition (U�y�S) as C (U�y�S). To specify the con-
tinuation contract from any history ζti�j , we only need a procedure to construct the initial
state variables (Ui�t(ζ

t
i�j)� yi�t(ζ

t
i�j)� St(g

t)) at that history. The construction of the exoge-
nous state variables yi�t(ζti�j) and St(gt) is straightforward and is described in the main text
of the paper. We use the following procedure to construct the promised uitility at history
ζti�j . Let ζτi�j < ζ

t
i�j be the closest history that precedes ζti�j such that at ζτi�j , the worker has

an employment opportunity to match with a firm. Set Ui�τ(ζ
τ
i�j)= u∗(Sτ)yτ(ζτi�j). Given this

initial promised utility at history ζτi�j , we use the history of shocks between ζτi�j and ζti�j and
the policy function from (48) to construct the promised utility at ζti�j , Ui�t(ζ

t
i�j). Below is

our proposed SPNE strategy:
• Offer the contract C (Ui�t(ζ

t
i�j)� yi�t(ζ

t
i�j)� St(g

t)) to worker i if worker i is currently an
employee.

• Promise to offer C (Ui�τ(ζ
τ
i�j)� yi�τ(ζ

τ
i�j)� Sτ(g

τ)) at any future history ζτi�j where the
worker has an employment opportunity, where Ui�τ(ζ

τ
i�j)= u∗(Sτ)yτ(ζτi�j).• Offer a trivial contract, that is, a contract with zero transfers between the firm and

the worker at all future contingencies, if worker i is not currently an employee. Here
the worker can either be unemployed or employed by another firm.

With a slight abuse of terminology, we will call the above contracts employment con-
tracts.4

Step 3: Here, we provide a formal proof that the above described employment contracts
constitute an SPNE in the game we describe in step 1. We first summarize our results in
the following lemma.

LEMMA 2: The employment contracts described above are an SPNE.

PROOF: Because, at any history ζti�j , a worker can either be employed by a firm, or un-
employed but have an employment opportunity to match with a firm, or unemployed and
not have an employment opportunity in the current period, to establish that the employ-
ment contract is an SPNE, we need to show that given all other firms’ strategy, none of
the following deviations can yield a higher profit for the firm without violating any of the
incentive compatibility constraints: (i) a different contract to an employed worker; (ii) a

4The notion of employment contract here is the same as the one defined in the main text of the paper but
extended to a larger contracting space that allows the specification of payment between firms and unrelated
workers.
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different contract to a worker who is employed by another firm; (iii) a different contract
to a worker who is previously unemployed but has an employment opportunity in the cur-
rent period; (iv) a different contract to an unemployed worker who remains unemployed
in the current period; (v) a combination of the above.

First, because the employment contract solves the optimal contracting problem (48),
firms cannot obtain a higher profit by offering a different contract to an employee.

Second, no firm can obtain a higher profit by offering a non-trivial insurance contract
to a worker who is currently working for another firm. We prove this claim by contradic-
tion. Suppose, at ζti�j , a firm has a profitable deviation by offering a non-trivial insurance
contract to a worker who is currently employed by another firm; the policy functions and
the associated value functions for the insurance contract must solve the following optimal
contracting problem:

Ṽ (U� y�S)= max
C̃�{Ũ ′(ζ′)}z′

{
−C̃ + κ

∫
Λ
(
S′� S

)
Ṽ
(
Ũ ′(ζ ′)� y ′(ζ ′)� S′)Ω(dζ ′|S)}

subject to
{
(1 −β)[C(U�y)+ C̃]1− 1

ψ +β(E[Ũ ′(ζ ′)1−γ|S]) 1
1−γ }1− 1

ψ ≥U� (49)

Ũ ′(ζ ′)≥U ′(U�y�ζ ′� S′)� (50)

Ṽ

(
Ũ ′(ζ ′)� y ′(ζ ′) 1

ψ
S′
)

≥ 0� (51)

where C(U�y) and {U ′(U�y� ζ ′� S′)} are the policy functions of the optimal contract-
ing problem in (48). In the objective function of the optimal contracting problem, (51),
C̃ is the net payment from the firm to the unrelated worker. Inequality (49) is the
promise-keeping constraint. If the worker accepts the contract, his utility is given by
{(1 − β)[C(U�y) + C̃]1− 1

ψ + β(E[Ũ ′(ζ ′)|S]) 1
1−γ }, where the current period consumption

includes the payment from the current employer, C(U�y), as well as the transfer from
the unrelated firm, C̃ . Equation (50) is the limited commitment constraint for the worker.
Because the worker can always default on the contract offered by the unrelated firm and
obtain the utility under the employment contract U ′(U�y� ζ ′� S′), in order to prevent the
worker from default, the promised utility for the next period, Ũ ′(ζ ′), must be at least
as high as what the worker can obtain under the employment contract, U ′(U�y� ζ ′� S′).
Inequality (51) is the firm-side limited commitment constraint. Because the insurance
contract is a profitable deviation, we must have Ṽ (U� y�S) > 0. To arrive at a contradic-
tion, we define C̆(U� y�S)= C(U�y�S)+ C̃(U� y�S) and Ŭ(U� y�S� ζ ′)= Ũ(U� y�S� ζ ′).
Note that {C̆(U� y�S)� [Ŭ(U� y�S� ζ ′)]} is a feasible policy for (48) with V̆ (U� y�S) =
V (U�y�S)+ Ṽ (U� y�S) as the value function. However, V̆ (U� y�S) > V (U�y�S), which
contracts V (U�y�S) being the optimal solution to (48).

Third, given that all firms offer the optimal contract that provides the highest utility to
workers when a worker obtains an employment opportunity, no firm can make a higher
profit by deviating from this strategy. Fourth, as we show in Lemma 1, firms cannot make a
positive profit by offering a non-trivial insurance contract to unemployed workers. Finally,
combining all of the above arguments, it is clear that a combinations of deviations will not
be profitable either. Q.E.D.
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APPENDIX B: PROOF FOR PROPOSITIONS 1 AND 2

B.1. Characterization of Equilibrium

In this section, to prepare for the proofs for Propositions 1 and 2, we provide a set
of necessary and sufficient conditions that characterize the equilibrium. We first state a
lemma that establishes that the equality constraint (18) can be replaced by an inequality
constraint so that the optimal contracting problem P1 is a standard convex programming
problem.

LEMMA 3: Suppose A′(θ), A′′(θ), and A′′′(θ) > 0 for all θ ∈ (0�1). The policy functions
for the optimal contracting problem P1 in the main text can be constructed from the solution
to the convex programming problem described below:

v(u�S)

= max
c�θ�{u′(ζ′)�δ′(ζ′)}ζ′

⎧⎨⎩ 1 − c−A(θ)
+κθ

∫
Λ
(
S′� S

)
eg

′+η′+ε′[
δ′(ζ ′)v(u′(ζ ′)� S′)]Ω(dζ ′|g)

⎫⎬⎭ � (52)

s.t: u≤ [
(1 −β)c1− 1

ψ +βm1− 1
ψ
] 1

1− 1
ψ � (53)

δ′(ζ ′)v(u′(ζ ′)� S′)≥ 0 for all ζ ′� (54)

δ′(ζ ′)[u′(ζ ′)− λu(S′)]≥ 0 for all ζ ′� (55)

A′(θ)≤ κ
∫
Λ
(
S′� S

)
eg

′+η′+ε′
δ′(ζ ′)v(u′(ζ ′)� S′)Ω(dζ ′|g)� (56)

where

m=
{
κ

∫
e(1−γ)(g′+η′+ε′)[θδ′(ζ ′)u′(ζ ′)1−γ + (

1 − θδ′(ζ ′))[λu(S′)]1−γ]
Ω
(
dζ ′|g)} 1

1−γ
�

PROOF: We label the above-stated maximization problem as P2. The assumption that
A′(θ) is strictly convex means that (53)–(56) describe a convex set with a non-empty inte-
rior and the objective function (52) is concave. Thus, problem P2 is a convex programming
problem. Suppose the stochastic discount factor and the law of motion of the aggregate
state variables jointly satisfy the following condition:

ASSUMPTION 6: For some ε > 0, and for all (S),∑
π
(
g′|g)Λ(S′� S

)
eg

′
< 1 − ε� (57)

Given Assumption 6, standard arguments from Stokey, Lucas, and Prescott (1989) im-
ply that there is a unique v in the space of bounded continuous functions that satisfies (52).
In addition, v is continuous, strictly decreasing, strictly concave, and differentiable in the
interior. We denote the optimal policy functions for P2 by {c(u�S)�θ(u�S)� {δ′(u�S� ζ ′)�
u′(u�S� ζ ′)}ζ′ }. We first show that policy function for separations satisfies δ′(u�S� ζ ′)= 1
for all ζ ′.
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Suppose there exists some (u�S) such that with strictly positive probability, δ′(ζ̃ ′)= 0.
Consider an alternative set of policy functions denoted by hats:

ĉ(u�S)= c(u�S)� θ̂(u�S)= θ(u�S)� δ̂′(u�S�ζ ′)= 1 for all ζ ′�

û′(u�S�ζ ′)= I{δ′(u�S�ζ′)=1} × u(u�S�ζ ′)+ I{δ′(u�S�ζ′)=0} × (
λu
(
S′)+ ε)�

for some ε > 0 such that λu(S′) + ε < u∗(S′), where u∗(S) is such that v(u∗(S)�S) =
0. Because the value function is strictly decreasing, we have v(û′(u�S� ζ̃ ′)� S′) > 0 for ζ̃ ′

where δ′(ζ̃ ′)= 0. Then it is easy to verify that the hat policy functions satisfy (53)–(56) and
achieve a higher value for the objective in equation (52) and therefore cannot be optimal.
Thus,

δ′(u�S�ζ ′)= 1 for all ζ ′� (58)

We next show that optimal choices for P2 are feasible for problem P1. Optimal poli-
cies for P2 satisfy a set of first-order necessary conditions. In particular, let ι ≥ 0 be the
Lagrange multiplier of the constraint (56); first-order conditions with respect to θ after
imposing (58) imply

ιA′′(θ)= β

1 −βc
1
ψmγ− 1

ψ
1

1 − γ
∫
e(1−γ)(η′+ε′){u′(ζ ′)1−γ − λū(S′)1−γ}

Ω
(
dζ ′|g)� (59)

The limited commitment constraint on worker side, equation (55), along with (58) implies
that the right-hand side of (59) must be strictly positive. Therefore, ι > 0 and (56) must
hold with equality at the optimum.

Let ιu be the Lagrange multiplier of the promise-keeping constraint (53); the first-order
condition with respect to c implies

ιu = 1
1 −β

(
c

u

) 1
ψ

> 0� (60)

Thus, inequality (53) must also hold with equality at the optimum. As a result, the optimal
policies for P2 satisfy all of the constraints for P1, and as the constraint set for P2 is larger,
the optimal policies for P2 also attain the maximum for P1. Q.E.D.

The first-order necessary conditions for P2 imply that the above policy functions must
satisfy

1. ∀η′ + ε′ ∈ [ε(u�S�g′)� ε̄(u�S�g′)], u′(u�S� ζ ′) satisfy

Λ
(
S′� S

)= βe−γ(g′+η′+ε′)

1 + ι(u�S)

θ(u�S)

[
c
(
u′(u�S�ζ ′)� S′)
c(u�S)

]− 1
ψ
[
u′(u�S�ζ ′)
m(u�S)

] 1
ψ−γ
� (61)

2. ∀η′ + ε′ ≥ ε̄(u�S�g′) and ∀η′ + ε′ ≤ ε(u�S�g′),

u′(u�S�ζ ′)= λū(S′)� (62)

u′(u�S�ζ ′)= u∗(S′)� (63)
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3. The Lagrange multiplier ι(u�S) satisfies

ι(u�S)= 1
A′′(θ(u�S)) β

1 −βc(u�S)m(u�S)× 1
1 − γ

×
{∫

e(1−γ)(η′+ε′){u′(u�S�ζ ′)1−γ − λū(S′)1−γ}
Ω
(
dζ ′|g)}� (64)

The policy functions must satisfy the equality constraints of the problem P1

A′(θ(u�S))= κ
∫
Λ
(
S′� S

)
eg

′+η′+ε′
v
(
u′(s′)� S′)Ω(ζ ′)� (65)

u= [
(1 −β)c1− 1

ψ +βm(u�S)1− 1
ψ
] 1

1− 1
ψ � (66)

The following lemma states that conditions (61)–(66) are both necessary and suffi-
cient for optimality.

LEMMA 4: Suppose there exist an SDF Λ(S′� S), a worker’s value from unemployment,
ū(S), and a law of motion for aggregate state variables that satisfy Assumption 6. Suppose that
given Λ(S′� S), ū(S), and the law of motion for state variables, policy functions for problem
P2 satisfy (58), the optimality conditions (61)–(64), and the equality constraints (65)–(66).
In addition, c(u�S)

u
is nondecreasing in u for all S. Let v(u�S) be the unique fixed point of the

operator T :

Tv(u�S)= 1 − c(u�S)−A(θ(u�S))
+ κθ(u�S)

∫
Λ
(
S′� S

)
eg

′+η′+ε′
v
(
u′(u�S�ζ ′)� S′)Ω(dζ ′|g)� (67)

Then, the policy functions together with the value function v(u�S) solve the problem P2.

PROOF: Suppose there exists a set of policy functions that satisfy conditions (61)–(66).
Given condition (6), the operator defined in (67) is a contraction, and we can construct
the value function v(u�S) from the policy functions as the unique fixed point of (67).
The first-order conditions (61)–(63) imply that the value function constructed above must
satisfy

∂

∂u
v(u�S)= − 1

1 −β
(
c(u�S)

u

) 1
ψ

� (68)

Because c(u�S)

u
is nondecreasing in u, ∂

∂u
v(u�S) must be nonincreasing, that is, v(u�S) is a

concave function of u. As a result, given v(u�S), the first-order conditions (61)–(66) can
be shown to be equivalent to the set of first-order conditions for the programming prob-
lem P2, which is necessary and sufficient for optimality. Therefore, the above constructed
value functions and policy functions must solve the optimal contracting problem P2, as
needed. Q.E.D.

Given the above discussion, it is straightforward to provide a characterization for the
equilibrium price and quantities using optimality conditions. We summarize these condi-
tions in the following lemma. The proof is omitted as it follows directly from Lemma 3
and Lemma 4.
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LEMMA 5: The equilibrium prices and quantities can be summarized as a set of func-
tions: x(S), c(u�S), θ(u�S), ι(u�S), {ε̄(u�S�g′)�ε(u�S�g′)}g′� {δ(u�S� ζ ′)�u′(u�S� ζ ′)}ζ′ ;
worker’ outside option ū(S) and initial utility at employment u∗(S); a law of motion of φ
and B; an SDF and a firm value function v(u�S), such that the SDF is consistent with cap-
ital owner’s consumption, that is, Λ(S′� S) and x(S) satisfy equation (20), where the capital
owner’s utility, w(S), is constructed from x(S) using equation (19); the value function and
policy functions satisfy (58) and the optimality conditions (61)–(66); the outside option ū(S)
satisfies (13), u∗(S) satisfies v(u∗(S)�S)= 0 for all S, and the law of motion of the aggregate
state variables satisfies (23) and (25).

We now prove Propositions 1 and 2.

B.2. Proofs of Propositions 1 and 2

In Lemma 3, we have already proved that δ(u�S� ζ ′)= 1 for all ζ ′ is optimal for problem
P2, and Lemma 5 asserts that the same policy rule is optimal for problem P1, too.

We next provide the characterization for the policy functions u′(u�S� ζ ′) and then
θ(u�S). Given Assumption 6 and Lemma 3, standard arguments from Stokey et al. (1989)
imply that the value function v for the optimal contracting problem (14) is continuous,
strictly decreasing, strictly concave, and differentiable in the interior. Because the value
function is strictly decreasing, the limited commitment constraint (16) can be written as
u′(s′) ≤ u∗(S′) for all s′, where u∗(S) is defined by equation (12). Therefore, the first-
order condition with respect to continuation utility and the envelope condition for the
programming problem (52) together imply that one of the following three cases has to be
true:

1. In the interior, equation (31) holds.
2. The worker-side limited commitment constraint binds, u′(u�S� ζ ′)= λū(S′), and[

x
(
S′)

x(S)

]− 1
ψ
[
w
(
S′)

n(S)

] 1
ψ−γ(

1 + ι(u�S)

θ(u�S)

)

≥ e−γ(η′+ε′)
[
c
(
u′(u�S�ζ ′)�φ′�B′)

c(u�S)

]− 1
ψ
[
u′(u�S�ζ ′)
m(u�S)

] 1
ψ−γ
� (69)

3. The firm-side limited commitment constraint binds, u′(s′)= u∗(S′), and[
x
(
S′)

x(S)

]− 1
ψ
[
w
(
S′)

n(S)

] 1
ψ−γ(

1 + ι(u�S)

θ(u�S)

)

≤ e−γ(η′+ε′)
[
c
(
u′(u�S�ζ ′)�φ′�B′)

c(u�S)

]− 1
ψ
[
u′(u�S�ζ ′)
m(u�S)

] 1
ψ−γ
� (70)

Define E = {η′ + ε′ : equation (31) holds}. Also, let

ε
(
u�S�g′)= infE� ε

(
u�S�g′)= supE � (71)

Let ι(u�S) be the Lagrange multiplier for the promise-keeping constraint of the pro-
gramming problem (52); then

∂

∂u
v(u�S)= ι(u�S)= 1

1 −β
(
c(u�S)

u

) 1
ψ

� (72)
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where the first equality is the envelope theorem, and the second equality is the first-
order condition, (60). Because v is concave, the above condition implies that c(u�S)
must be strictly increasing in u. Thereore, the optimality condition (31) implies that
on E , u′(u�S� ζ ′) must be strictly decreasing in η′ + ε′. Clearly, the strict monotonicity
of u′(u�S� ζ ′) implies that u′(u�S� ζ ′) = λū(S′) if η′ + ε′ = ε(u�S�g′) and u′(u�S� ζ ′) =
u∗(S′) if η′ + ε′ = ε(u�S�g′).

First, ∀η′ + ε′ > ε(u�S�g′), we must have u′(u�S� ζ ′)= λū(S′). Otherwise, none of the
equations, (31), (69), or (70), can hold. Similarly, ∀η′ + ε′ < ε(u�S�g′), we must have
u′(u�S� ζ ′)= u∗(S′).

Second, to complete the proof of parts 1 and 2 of Proposition 2, we need to show
that ∀η′ + ε′ ∈ (ε(u�S�g′)� ε(u�S�g′)), condition (31) must hold. It is enough to show
u′(u�S� ζ ′) ∈ (λū(S′)�u∗(S′)). This can be proved by contradiction. Suppose η′ + ε′ ∈
(ε(u�S�g′)� ε(u�S�g′)) and u′(u�S� ζ ′) = λū(S′); then the fact that equation (31) holds
at ε(u�S�g′) implies that (note that η′ + ε′ < ε(u�S�g′))[
x
(
S′)

x(S)

]− 1
ψ
[
w
(
S′)

n(S)

] 1
ψ−γ(

1 + ι(u�S)

θ(u�S)

)
< e−γ(η′+ε′)

[
c
(
λū
(
S′)�φ′�B′)
c(u�S)

]− 1
ψ
[
λū
(
S′)

m(u�S)

] 1
ψ−γ
�

which is a contradiction to condition (69). Similarly, one can show that u′(u�S� ζ ′) =
u∗(S′) cannot be true either.

To prove the second part of Proposition 1, note that because the value function is strictly
concave in u, the Lagrange multiplier ιu(u�S) must be strictly increasing in u. The first-
order condition with respect to u′(u�S� ζ ′) in the programming problem (52) then implies
that u′(u�S� ζ ′) must be strictly increasing in u as well. Given constraint (18), the mono-
tonicity of θ(u�S) with respect to u then follows directly from the fact that u′(u�S� ζ ′) is
increasing with respect to u and the fact that v(u′� S′) is strictly decreasing in u′.

APPENDIX C: PROOFS OF PROPOSITIONS 4 AND 5

This section provides the proofs for Propositions 4 and 5. In Section C.1, we provide
closed-form solutions for the equilibrium prices and quantities for the simple economy.
We prove Proposition 4 in Section C.2 and Proposition 5 in Section C.3.

C.1. Equilibrium in the Simple Economy

Notation. We first introduce some notation. In the simple model in Section 4, we as-
sume that the worker-specific shock follows a negative exponential distribution. The den-
sity of a negative exponential distribution is given by f (ε|gL)= ξeξ(ε−εMAX), for ε≤ εMAX,
and f (ε|gL) = 0 otherwise, where ξ and εMAX are the parameters of the distribution.
For later reference, we note that the moments of f (ε|gL) can be easily computed as∫ ε

−∞ e
θtf (t|gL)dt = ξ

ξ+θe
−ξεMAX +(θ+ξ)ε, for ξ + θ > 0. Clearly, the assumption E[eε] = 1

amounts to a parameter restriction that εMAX = ln 1+ξ
ξ

. We will impose this restriction
and call the above distribution a negative exponential distribution with parameter ξ.

As explained in the main text of the paper, we represent policy functions and value
functions as functions of the period-0 promised utility u0. For an arbitrary u0, we use
uH(u0) ≡ u′(u0� gH) and uL(u0� ε

′) ≡ u′(u0� gL�ε
′) to denote the normalized promised

utility for a worker with initial promised utility u0 at nodes H and L, respectively. We
use c0(u0) for workers’ consumption policy at nodes 0. The rest of the policy and value
functions are the same as defined in the main text. We also denote εL(u0)≡ ε(u0� gL) as
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the lowest level of realization of the ε1 shock such that the limited commitment constraint
does not bind at nodeL. In addition, let uFBH and uFBL denote the utility-to-consumption ra-
tio of an agent who consumes the aggregate consumption in state gH and gL, respectively.
That is, they are the normalized utility associated with full risk sharing. The first-best lev-
els, uFBH and uFBL , are determined by uFBH = (egHuFBH )β and uFBL = (egLuFBL )β. We use uCDL to
denote the normalized utility of an agent in an economy without risk sharing. That is, it is
utility-consumption ratio of an agent who consumes yt every period:

uCDL =
(∫ [

e{ε′+gL}uCDL
]1−γ

f
(
ε′|gL

)
dε

) β
1−γ
� (73)

It is straightforward to show that as γ→ 1+ξ, uCDL → 0. We solve the general equilibrium
in the simple economy by backward induction.

Below, we first solve the value functions and policy functions at nodes H and L in
period 1. In the second step, we analyze the optimal contracting problem in period 0
for an arbitrary promised utility u0. Finally, we impose market clearing to solve for the
equilibrium stochastic discount factor.

Value Functions at Nodes H and L. To solve the optimal contracting problem in period
1, note that our assumption that from period 2 and on, all workers consume an α fraction
of their output implies that firm value functions in period 2, after normalized by worker
output, take a simple form: v2(u

′� gH)= v2(u
′� gL)= 1−α

1−β . This allows us to derive a closed-
form solution for the value functions and consumption policies for period 1 at node H
and L, respectively. We summarize our results in the following lemma and refer readers
to Section B of the online appendix (in the replication file) for the detailed derivation.

LEMMA 6—Value Function in Period 1: The firm’s value functions at nodes H and L are
given by

v(u�gH)= 1 − c(u�gH)+ β

1 −βxH − a ln
[

1 + βxH

a(1 −β)
]

and (74)

v(u�gL)= 1 − c(u�gL)+ β

1 −βxL − a ln
[

1 + βxL

a(1 −β)
]
� (75)

respectively, where the consumption policies are given by c(u�gH)= (αegHuFBH )−
β

1−β u
1

1−β and

c(u�gL)= (αΥegLuCD)− β
1−β u

1
1−β , where the parameter Υ is defined as

Υ =
{∫ ∞

−∞
e(1−γ)ε′

f
(
ε′|gL

)
dε′
} 1

1−γ
� (76)

The policy functions for effort choice do not depend on u. We denote θH = θ(u�gH) and
θL = θ(u�gL), and

θH = 1 − a

a+ β

1 −βxH
� θL = 1 − a

a+ β

1 −βxL
� (77)



14 H. AI AND A. BHANDARI

At node L, limited commitment on firm side requires that vL(u) ≥ 0. Therefore, by
equation (75), the maximum amount of consumption that the firm can promise to deliver
to a worker at node L is 1 −A(θL)+ θL β

1−βxL, which we will denote as cMAX
L . Recall that

for a worker with initial promised utility u0, εL(u0) is the lowest level of realization of the
ε′ shock such that the limited commitment constraint does not bind at node L. We must
have, for all u0,

cL
(
u0� εL(u0)

)= 1 + β

1 −βxL − a ln
[

1 + βxL

a(1 −β)
]
� (78)

We now turn to the optimal contracting problem at node 0.

Optimal Contracting at Node 0. We develop our results in several lemmas. The key
to characterize the policy functions for the optimal contracting problem at node 0 is the
consumption and promised utility for the marginal worker in period 1 at node L. Here,
the marginal worker is defined as the one with the lowest level of realization of ε1 shock
such that the limited commitment constraint does not bind at node L, that is, ε1 = εL(u0).
Our first lemma uses the optimal risk-sharing condition (31) to relate the marginal rate
of substitution of a marginal worker to that of the capital owners.

LEMMA 7—FOC for the Marginal Agent: Given the consumption share of the capital
owners, xH and xL, for all u0, the normalized consumption of the marginal worker with ε1 =
εL(u0) must satisfy

cH(u0)

e(1+τ)εL(u0)cL
(
u0� εL(u0)

)[ uFBL k(θH)
ΥuCDL k(θL)

]τ
= xH

xL
� (79)

where we denote τ = β(γ−1)
1+(1−β)(γ−1) , and k(θ)= [θ+ (1 − θ)λ1−γ] 1

1−γ .

Next, we provide a lemma that links the consumption of a marginal worker to the ex-
pected consumption of an average worker at node L.

LEMMA 8—Expected Worker Consumption at Node L: Given the consumption share
of the capital owners, xH and xL, the expected consumption of a worker with promised utility
u0 at node L is given by: for all ε≥ εL(u0),

eε
′
cL
(
u0� ε

′)= e−τε′
e(1+τ)εL(u0)cL

(
u0� εL(u0)

)
� (80)

and

E
[
eε

′
cL
(
u0� ε

′)]= e(1+τ)εL(u0)cL
(
u0� εL(u0)

)
�
(
εL(u0)

)
� (81)

for all u0, where the function �(ε) is defined as

�(ε)= ξ

ξ− τe
−τεMAX − ξ(1 + τ)

(1 + ξ)(ξ− τ)e
−ξεMAX+(ξ−τ)ε� (82)

Lemma 7 is the optimal risk-sharing condition that equalizes the marginal rate of sub-
stitution of workers and capital owners across the two states in period 1. The next lemma
provides another first-order condition that links the marginal rate of substitution of capi-
tal owners and workers across time. Together, Lemma 7 and Lemma 9 below completely
characterize optimal risk-sharing conditions.
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LEMMA 9—Optimal Risk Sharing: Optimal risk sharing requires that, for all u0,[
cH(u0)

eεL(u0)cL(u0� εL(u0))

]−1[
uH(u0)

eεL(u0)uL(u0� εL(u0))

]1−γ

=
[
xH

xL

]−1[
wH

wL

]1−γ
� (83)

[
xH

cH(u0)

]1+(1−β)(γ−1)

=
[

x0

c0(u0)

][
n̄0(xH�xL)

m̄0(u0)

]γ−1

� (84)

where

n̄0(xH�xL)= [
π
(
e(1+β)gHx(1−β)

H

(
uFBH

)β)1−γ + (1 −π)(e(1−γ)gLx(1−β)
L

(
uFBL

)β)1−γ] 1
1−γ �

m̄0(u0)

=
⎡⎣ π

(
e(1+β)gH c1−β

H

(
uFBH k(θH)

)β)1−γ

+(1 −π)e(1−γ)gL[e(1+τ)εL(u0)cL
(
u0� εL(u0)

)](1−β)(1−γ)
{

1
α
mL

}β(1−γ)
Ψ
(
εL(u0)

)
⎤⎦

1
1−γ

�

(85)

where Ψ(ε) is given by

Ψ(ε)=
{

ξ

ξ− τe
−τεMAX − ξ(1 − γ+ τ)

(ξ− τ)(ξ+ 1 − γ)e
−ξεMAX+(ξ−τ)εL(u0)

}
� (86)

General Equilibrium. A unit measure of a single type of workers and market clearing
at node 0, node H, and node L implies that u∗

0 solves c0(u
∗
0) = 1 − x0� cH(u

∗
0) = 1 − xH ,

and E[eε′
cL(u

∗
0� ε

′)] = 1 − xL, respectively. Note that equation (78) implies

cL
(
u∗

0� εL
(
u∗

0

))= 1 + β

1 −βxL − a ln
[

1 + βxL

a(1 −β)
]
� (87)

Using the market clearing at node L and equation (81) in Lemma 8, we have 1 − xL =
e(1+τ)εL(u∗

0)cL(u0� εL(u
∗
0))�(εL(u

∗
0)), which, after combining with (87), gives

e(1+τ)εL(u∗
0)�

(
εL
(
u∗

0

))= 1 − xL
1 + β

1 −βxL − a ln
[

1 + βxL

a(1 −β)
] � (88)

Equations (87) and (88) together define cL(u0� εL(u
∗
0)) and εL(u

∗
0) as functions of xL.

With a small abuse of notation, we denote these functions as cL(xL) and ε(xL).
Focusing on type-u∗

0 agents, using Lemma 8, it is easy to see that we can replace the
term e(1+τ)εL(u∗

0)cL(u
∗
0� εL(u

∗
0)) in equation (79) by the following:

e(1+τ)εL(u∗
0)cL

(
u∗

0� εL
(
u∗

0

))= (1 − xL)�
(
ε(xL)

)−1
� (89)

Therefore, the first-order condition (79) can be written as

�
(
ε(xL)

)[ uFBL k(θH)
ΥuCDL k(θL)

]τ
= xH

xL

1 − xL
1 − xH � (90)
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Also, we use the marketing clearing condition to replace cH by 1 − xH and use (89) to
replace e(1+τ)εL(u∗

0)cL(u
∗
0� εL(u

∗
0)). We define workers’ certainty equivalent as a function of

xH , xL, and ε using (85):

m̄0(xH�xL�ε)=

⎧⎪⎨⎪⎩
π
[
e(1+β)gH (1 − xH)(1−β)(uFBH k(θH))β]1−γ

+ (1 −π)
[
e(1+β)gL

[
1 − xL
�(ε)

](1−β)[
ΥuCDL k(θL)

]β]1−γ
Ψ(ε)

⎫⎪⎬⎪⎭
1

1−γ

� (91)

This allows us to write the first-order condition (84) as functions of xH and xL:[
xH

1 − xH
]1+(1−β)(γ−1)

=
[

x0

1 − x0

][
n̄0(xH�xL)

m̄0

(
xH�xL�ε(xL)

)]γ−1

� (92)

Given an initial condition of x0, equations (90) and (92) can be jointly solved for xH and
xL. Other equilibrium quantities can then be constructed analogously.

C.2. Proof of Proposition 4

1. From the definition of uCDL in (73), it is clear that as γ→ 1 + ξ, uCDL → 0. Consider
equation (90). It is straightforward to verify that�(ε) is strictly positive and bounded
(see equation (82)). Also, both k(θH) and k(θL) are bounded. Therefore, as γ →
1 + ξ, the left-hand side converges to ∞, and we must have xH

xL
→ ∞. By continuity,

there exists γ̂ ∈ (1�1 + ξ) such that xH
xL
> 1 if and only if γ > γ̂, as needed.

In addition, if γ = 1, then τ = 0. Using the definition of �(ε), �(ε) = 1 −
1

(1+ξ)e
−ξ(εMAX−ε) < 1. Therefore, we must have xH

xL
< 1.

2. The economy without moral hazard is a special case in which the parameter for
cost of effort, a = 0. We use θH(a) and θL(a) to denote policy functions with
the understanding that they are policy functions of the moral hazard economy if
a > 0, and they stand for policy functions in the economy without moral hazard
if a = 0. Using our result from part 1 of the proof, as γ → 1 + ξ, xH

xL
→ ∞. Be-

cause both xH and xL are bounded between [0�1], we must have xL → 0. There-
fore, θL(a) → 0 by equation (77). Also, equation (92) implies that as γ → 1 + ξ,
m̄0(xH(a)�xL(a)�ε(xL(a)))→ 0; therefore, xH(a)→ 0 as well. Therefore, as γ →
1 + ξ, θH(a)→ 1 − a

a+ β
1−β x

∗
H

. Consider equation (90); for an arbitrary a, [ k(θH(a))
k(θL(a))

]τ =
[ θH(a)+(1−θH(a))λ1−γ
θL(a)+(1−θL(a))λ1−γ ] τ

1−γ . Suppose a > 0; then as γ → 1 + ξ, there exist ε > 0 such
that [

θH(a)+ (
1 − θH(a)

)
λ1−γ

θL(a)+ (
1 − θL(a)

)
λ1−γ

] τ
1−γ

→

⎡⎢⎢⎢⎢⎢⎢⎣
1 − a

a+ β

1 −βx
∗
H(a)

+
(

1 − a

a+ β

1 −βx
∗
H(a)

)
λ−ξ

λ−ξ

⎤⎥⎥⎥⎥⎥⎥⎦

− 1
ξ

βξ
1+ξ(1−β)
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> 1 + ε�
In addition, equation (88) implies that as γ → 1 + ξ, xL → 0, and therefore,

εL(a)→ ε∗ for all a, where ε∗ is such that e(1+τ)ε∗
�(ε∗)= 1. Therefore, with a > 0,

for γ close enough to 1+ξ, we must have�(εL(a))[ uFBL k(θH(a))

ΥuCDL k(θL(a))
]τ > �(εL(0))[ uFBL

ΥuCDL
]τ.

Equation (90) implies that for γ close enough to 1 +ξ, xH
xL
> 1 because as γ→ 1 +ξ,

xL → 0 and xH → x∗
H has a limit.

3. By part 1 of the proposition, for γ large enough, xH > xL. The fact that θH > θL
follows from equation (77).

C.3. Proof of Proposition 5

Firm Risk Pass Through. Fixing u0, equation (80) implies that ∀ε′ ≥ ε(u0),
d ln[eεcL(u0�ε)]

dε
= −τ. For ε′ < ε(u0), the limited commitment constraint binds, and the

term eεcL(u0� ε) = eεcL(u0� ε(u0)). Therefore, d ln[eεcL(u0�ε)]
dε

= 1. Combining the above
two equations, we have that E[ ∂ ln[eεcL(u0�ε)]

∂ε
] = ∫ εL(u0)

−∞ f (ε′|gL)dε′τ + ∫ εMAX
εL(u0)

f (ε′|gL)dε′ =
e−ξ(εMAX−εL(u0)) − τ[1 − e−ξ(εMAX−εL(u0))]. Clearly, the average elasticity is increasing in
εL(u0). Using the optimal risk-sharing conditions (83) and (84), we can show that εL(u0)
is an increasing function of u0.

Cross Section of Expected Returns. To characterize the dependence of vH(u0)

E[eεvL(u0�ε)] ,

note that in general, cH(u0) = xH
xL

[ ξuCDL k(θL)

uFBL k(θL)
]τe(1+τ)εL(u0)cL(u0� εL(u0)) by Lemma 7, and

E[eεcL(u0� ε)] = e(1+τ)εL(u0)cL(u0� εL(u0))�(εL(u0)) by Lemma 8. Because at ε= εL(u0),
the limited commitment constraint, vL(u0� ε) = 0 binds, cL(u0� εL(u0)) = 1 + β

1−βxL −
a ln[1 + βxL

a(1−β) ] by (78). To simplify notation, we denote �H = 1 + β

1−βxH − a ln[1 +
βxH
a(1−β) ] and �L = 1 + β

1−βxL − a ln[1 + βxL
a(1−β) ]. We then write vH(u0)

E[eεvL(u0�ε)] as vH(u0)

E[eεvL(u0�ε)] =
�H−φe(1+τ)εL(u0)

�L{1−e(1+τ)εL(u0)�(ε(u0))}
, where we denote φ = xH

xL
[ ξuCDL k(θL)

uFBL k(θL)
]τ�L to simplify notation. By

Proposition 2, ε(u0) is a strictly increasing function of u0. Therefore, we complete the
proof for Proposition 5 by noticing that

∂

∂ε

�H −φe(1+τ)ε{
1 − e(1+τ)ε�(ε)

} > 0� (93)

It is possible to show that the above inequality holds for γ large enough (but smaller than
1+ξ so that worker utility is well defined). We refer the readers to Lemma 11 in Section B
of the online appendix (in the replication file) for the details of proof.

APPENDIX D: COMPUTATIONAL ALGORITHM

We describe our computation algorithm. The algorithm consists of an “outer loop,” in
which we iterate over the law of motion for aggregate states and an associated stochastic
discount factor, and an “inner loop,” in which we solve for the optimal contract. Below
are the steps of our numerical procedure.

1. Initialize the law of motion of x, �x(g�x�g′). We use a log-linear functional form:

logx′ = a(g�g′)+ b(g�g′) logx� (94)
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Given the law of motion of x, the SDF Λ(x�g�g′) is calculated using

Λ
(
x�g�g′)= β

[
x′(g′|g�x)eg′

x

]− 1
ψ
[
w
(
x′� g′)eg′

n(g�x)

] 1
ψ−γ
�

where w(g�x) and n(g�x) are derived from equation (19).
2. The inner loop consists of using �x(g�x�g′) and Λ(x�g�g′), to solve the value func-

tion v(u�g�x), the worker-outside value u(g�x), and value of a new job u∗(g�x),
along with the policy functions c(u�g�x), θ(u�g�x), and u′(u�g�x� ζ ′) that solve the
optimal contracting problem P1. We solve a Bellman equation by a modified value
function iteration, as applying a standard value function iteration is complicated by
the presence of the occasionally binding constraints (16) and (17). Our procedure
borrows elements from the endogenous grid method of Carroll (2006). Please see
below “Details of Inner Loop.”

3. To check the accuracy in computing the optimal contract, we compute Euler equa-
tion errors. Fixing u�x�g and the aggregate state next period g′, we draw 1000 id-
iosyncratic shocks ε′ + η′ such that both agent and firm-side limited commitment
constraints are not binding. We then use the maximum absolute log10 ratio of work-
ers’ MRS to owners’ MRS across these shocks as our measure of Euler equation
error. We repeat this procedure for different (u�x�g) and g′ combinations with val-
ues of (u�x) that are not on the grid points where the value function is solved. The
Euler equation errors computed this way range between −3 and −4, which suggests
that our approximation is reasonable.

4. We now describe the outer loop where we use optimal policies to simulate the model
and update �x. Please see below the paragraph “Details of the Simulation Proce-
dure.”

5. Up to now, we have described a procedure to simulate forward the economy. This
allows us to compute the market clearing {xMC

t+1}∞
t=0 as follows:

xMC
t+1 =

N+2∑
m=1

φt+1[m] −
N+2∑
m=1

c
(
û[m](t + 1)|gt+1�xt+1

)
φt+1[m] −Bt+1� (95)

Given the sequence of {gt}Tt=1, we simulate the economy forward for T periods to
obtain {xMC

t }Tt=0. We divide the sample into four cases: gH → gH , gH → gL, gL → gH ,
gL → gL and use regression to update the law of motion of x. We go back to step 1
to iterate. Note that under the above procedure, given the sequence of {gt}Tt=1, the
sequence of xt+1 that is used for computing decision rules is completely determined
by (95). In the simulation, we assume that xt+1 follows the perceived law of motion,
based on which agents make their decisions. We use the market clearing condition
to update the actual law of motion of x and iterate.

6. We divide the sample into four cases: gH → gH , gH → gL, gL → gH , gL → gL and
use regressions (94) to update the law of motion of x. We go back to step 1 to iterate
until the unconditional R2 approaches 99.99%.

Details of the Inner Loop.
1. Guess v(u�g�x) and c(u�g�x). These imply functions u∗(g�x) and u(g�x) using

equations (12) and (13). We denote c(u∗(g�x)|g�x) and c(λu(g�x)�g�x) by c∗(g�x)
and c(g�x).
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2. Let {ε(u�S�g′)� ε(u�S�g′)}g′ be the thresholds for η′ + ε′ such that constraints (16)
and (17) bind for a worker with state u, aggregate states (S), and next period for ag-
gregate shock g′ = gL. Define a grid EL×X ≡ {(εL�0�x0)� (εL�1�x0)� � � � � (εL�nE�xnX )}
with the understanding that εL(j) and x(j) are the entries in the jth element of the
grid EL ×X with j ∈ {1�2� � � � � nE × nX }.

3. For all j ∈ {1�2� � � � � nE × nX }, we solve for {εg′(j)� εg′(j)}g′ that are consistent with
εL(j) and the guess for functions v and c in step (a) using the following equations
that need to hold for all g′:

Λ
(
x(j)�g�g′)

Λ
(
gL�g�x(j)

) = e−γ(εg′ (j))

e−γ(εgL (j))

[
c∗(g′��x

(
x(j)�g�g′))

c∗(gL��x(x(j)�g�g′))]− 1
ψ
[
u∗(g′��x

(
x(j)�g�g′))

u∗(gL��x(x(j)�g�g′))] 1
ψ−γ

and

Λ
(
x(j)�g�g′)

Λ
(
gL�g�x(j)

) = e−γ(εg′ (j))

e−γ(εgL (j))

[
c
(
g′��x

(
x(j)�g�g′))

c
(
gL��x

(
x(j)�g�g′))]− 1

ψ
[
u
(
g′��x

(
x(j)�g�g′))

u
(
gL��x

(
x(j)�g�g′))] 1

ψ−γ
�

4. Now we construct the policy function u′(ζ ′� j). First, ∀η′ + ε′ < εg′(j) use (62) and
∀η′ + ε′ > εg′(j) use (63); for η′ + ε′ ∈ (εg′(j)� εg′(j)) use

e−γ(εg′ (j))

e−γ(η′+ε′)

[
c∗(g′��x

(
x(j)�g�g′))
c
(
u′) ]− 1

ψ
[
u∗(g′��x

(
x(j)�g�g′))
u′

] 1
ψ−γ

= 1

to solve out for u′.
5. We compute c(j), θ(j), and ι(j) using equations (61), (64), and (65), where certainty

equivalent m(j) only depends on {u′(s′� g)}s′ and {u(g′��x(x(j)� g�g′))}g′ .
6. Finally, we use the promise-keeping constraint (15) to back out u(j) that is con-

sistent with c(j) and {u′(s′� g)}s′ and we use the objective function of the firm, the
right-hand side of (14), to obtain vj .

7. The guesses for v(u�g�x) and c(u�g�x) are updated by interpolating values {uj� vj}
and {uj� cj}. We then iterate until the value function and consumption functions both
converge with a tolerance of 1e-7 under a sup norm.

Details for the Simulation Procedure. Let φ(t) denote the summary measure at time
t. In simulations, we approximate the continuous distribution φ(t) by a finite-state dis-
tribution as follows. We choose u(t)1 �u

(t)
2 � � � � � u

(t)
N+1, where u(t)1 = λu(gt�xt) and u(t)N+1 =

u∗(gt� xt). A density φ is characterized by a set of grid points {û[n](t)}N+3
n=1 and corre-

sponding weights {φ[n](t)}N+3
n=1 such that (i) û[1] and û[N + 1] are the boundaries where

the limited commitment constraint binds: û[1] = λu(gt�xt) and û[N + 1] = u∗(gt� xt);
û[N + 2] = u∗(gt� xt) is the restarting utility; (ii) {û[n]}n=2�3�����N are the interior points:
û[j] ∈ (uj−1�uj), for j = 2�3� � � � �N , are chosen appropriately to minimize the approxi-
mation error; (iii) φ[1] and φ[N + 1] are the total amount of human capital owned by
agents with a binding limited commitment constraint at û[1] and û[N + 1], respectively;
(iv) {φ[n]}n=2�3�����N are the human capital owned by agents in the interior; (iv) the mass
on φ[N + 2] is the human capital of agents who (re)start at u∗(g�x); this include both
the newly employed and the newly born; (v) the mass φ[N + 3] is the total human capital
owned by workers in the unemployed pool.
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1. Start with an initial distribution of u, denoted {φ0(u)}. Having solved x0, use the law
of motion of u′(u�g�x� ζ ′) to compute φ1. Here we describe a general procedure to
solve for {φ[n](t + 1); û[n](t + 1);xt+1}N+3

n=1 and Bt+1 given {φ[n](t); û[n](t);xt}N+3
n=1

and Bt . Note that the assumed law of motion gives a natural candidate for xt+1. We
denote xt+1 = �(xt� gt� gt+1).

2. First, we approximate the distribution s ∼ f (ε+η|g) by a finite-dimensional distri-
bution such that

∑K

k fg[j] = 1 and
∑K

k e
skfg[j] = 1, for g= gH�gL.

3. Given {φ[n](t)� û[n](t)}N+3
n=1 for period t, conditioning on the realization of aggregate

state gt+1, for each n= 1�2� � � � �N + 2, we compute {φt+1[n�k]}n�k:

φt+1[n�k] = κθ(û[n](t)� gt� xt)fgt+1[k]φt[n]esk� k= 1�2� � � � �K�

4. We now compute {φt+1[m]}m for the next period:

φt+1[1] =
N+2∑
n=1

K∑
k=1

φt+1[n� j]I{u′(û[n](t)�gt �xt �gt+1�sk)≤λu(gt+1�xt+1)}�

φt+1[2] =
N+2∑
n=1

K∑
k=1

φt+1[n�k]I{u′(û[n](t)�gt �xt �gt+1�sk)∈(u(t+1)
1 �u

(t+1)
2 )}�

φt+1[m] =
N+2∑
n=1

K∑
k=1

φt+1[n�k]I{u′(û[n](t)�gt �xt �gt+1�sk)∈[u(t+1)
m−1 �u

(t+1)
m )}� m= 3� � � � �N�

φt+1[N + 1] =
N+2∑
n=1

K∑
k=1

φt+1[n�k]I{u′(û[n](t)�gt �xt �gt+1�sk)≥u∗(gt+1�xt+1)}�

φt+1[N + 2] = 1 − κ+ κλχφt[N + 3]�

φt+1[N + 3] = κλ
{
N+2∑
n=1

[
1 − θ(û[n](t)� gt� xt)]φt[n] + [1 −χ]φt[N + 3]

}
�

5. We need to update the vector normalized utilities {û[n](t + 1)}N+2
n=1 . Clearly, we

should have û[1](t+1)= λu(gt+1�xt+1), û[N+1](t+1)= u∗(gt+1�xt+1), and û[N+
2](t + 1)= u∗(gt+1�xt+1). For m= 2� � � � �N , we choose û[m](t + 1) ∈ [u(t+1)

m−1 �u
(t+1)
m )

such that the resource constraint holds exactly for u ∈ [u(t+1)
m−1 �u

(t+1)
m ). That is, we pick

û[m](t + 1) to be the solution (denoted û) to

c(û� gt+1�xt+1)φt+1[m]

=
N+2∑
n=1

K∑
k=1

φt+1[n�k]c(u′(û[n](t)� gt� xt� gt+1� εj
)
� gt+1�xt+1

)
× I{u′(û[n](t)�gt �xt �gt+1�εk)∈[u(t+1)

m−1 �u
(t+1)
m )}�

6. Finally, the total unemployment benefit consumed by all unemployed workers is
Bt+1 = bφt+1[N + 3].
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