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APPENDIX B: PROOFS (CONTINUOUS TIME LIMIT)

IN THIS SECTION, we assume m is C2. We first define some useful objects. Say s(x� t)
is a policy mapping if s(x� t + t ′) ≡ s(s(x� t ′)� t); s(x�0) ≡ x; and s is weakly decreasing
in t. Given a policy mapping s(x� t), denote V (α) = Uα(S(m

−1(α))) − uα(m
−1(α)) and

W (x) = Um(x)(S(x)) − um(x)(x), where S(x) = (s(x� t))t . Given a policy path S, denote
Vα(S)=Uα(S)− uα(m

−1(α)).

REMARK 1: If s(x� t) is C1 and decreasing in t, there are functions d(x� y) : [x∗�x∗∗)2 →
R, e(z) : [x∗�x∗∗)→ R+ such that s(x�d(x� y))= y and d(x� y)= ∫ x

y
e(z)dz.

d(x� y) measures the time it takes the policy path to get from x to y , if x > y (if x < y ,
then d(x� y) = −d(y�x)). This time can be expressed as an integral of the instantaneous
delay e(z) at each policy z.

We first show that, if a CLS exists, it solves Equation (2). We restate it here:

e(x) = 1
r

⎛
⎜⎜⎝−
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LEMMA 5: Let x0 ∈ (x∗�x∗∗). If a policy mapping s(x� t) is such that W (x) = 0 for all x
in a neighborhood of x0, then d(x0�x) is differentiable with respect to its second argument at
(x0�x0), and e(x) = − ∂d(x0�x)

∂x
is given by Equation (*).

PROOF: First, assume a C1 policy mapping s(x� t). Denote n(α) = m−1(α) and α0 =
m(x0). By the envelope theorem,

V ′(α0)= ∂Uα

(
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)
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�
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We can use the fact that V (α) ≡ 0 in a neighborhood of α0, and hence V ′ ≡ V ′′ ≡ 0, to
determine e(x):

0 = V ′(α0)= ∂Uα

(
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Now we show that d must be differentiable at (x0�x0). Let (zn)n be a sequence such
that zn → x0. WLOG assume zn < x0 for all n. Note that
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This implies that limn→∞ 1−e−rd(x0�zn)

m(x0)−m(zn)
= n′(m(x0))re(x0), which in turn implies that

limn→∞
d(x0�zn)

x0−zn
= e(x0), as we wanted. Q.E.D.

LEMMA 6: Equation (*) has a unique solution, in the following sense: for any x1 > x0 ≥ x∗

and given a candidate path S(x0), there is at most one way to choose e : (x0�x1) → R≥0 so
that Equation (*) holds for all x ∈ (x0�x1).

PROOF: Let g̃(x) = re(x)[− 1
m′(x)

∂um(x)(x)

∂x
] and g(x) = max(g̃(x)�0). The issue is that

Equation (*) is an integral equation, since ∂2Um(x)(S(x))

∂α∂x
is an integral that depends on S(x),

which depends on g(x′) for x′ < x. We prove the result for the case x0 = x∗ < x1, but other
cases are analogous.

Given x1 ∈ (x∗�x∗∗), let Cx1 = {h : [x∗�x1] → R≥0 continuous} with the norm ‖h‖∞, and
define Tx1 : Cx1 → Cx1 as follows:
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(
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)

for x ∈ [x∗�x1]. Let g1, g2 ∈ Cx1 with ‖g1 − g2‖ ≤ K, and, for each x2 ∈ (x∗�x1), define gx2

by: gx2(x)= g1(x) if x≤ x2 and gx2(x)= g2(x) otherwise. Then
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for some constant C > 0.1 If x1 is close enough to x∗, C(x − x∗) < 1 and hence Tx1 is a
contraction. Thus g (and hence e) is uniquely determined in a neighborhood of x∗. By
repeating the same argument, we can extend the solution uniquely on any interval (x∗�x)
where e(x′) > 0 for all x ∈ (x∗�x). Q.E.D.

PROOF OF PROPOSITION 6: For (i), the uniqueness is proven by Lemmas 5 and 6; that
s is C1 follows from the fact that the RHS of Equation (*) is continuous. Part (ii) will be
proven as part of Proposition 8.

For (iii), suppose not. Then there is a sequence (δn)n with δn → 1 and a sequence of
Q1Es sn for each δn, such that sn is not a 1E for all n. By part (ii), we know that sn(x� t)→
s(x� t) for all x, t. Suppose that, for each n, there is xn

k for which Sn(x
n
k+1) is not a Con-

dorcet winner in I(xn
k) because a strict majority strictly prefers Sn(yn), and assume xn

k → x
and yn → y . Note that yn ≤ xn

k+1, as otherwise all agents to the left of m(xn
k) and some to

the right would strictly prefer Sn(x
n
k) over Sn(yn); and thus y ≤ x. If x ∈ (x∗�x∗∗) and y < x,

this leads to a contradiction as Uα(Sn(yn)) → Uα(S(y)) and Uα(Sn(x
n
k)) → Uα(S(x)) for

all α, and Uα(S(x)) > Uα(S(y)) for all α ∈ (m(x)−ε�x+d+
x ) for some ε > 0. If y = x, sup-

pose yn ∈ (xn
k+ln

� xn
k+ln−1), where ln ≥ 2. It is clear that Uα(Sn(x

n
k+1)) > Uα(Sn(x

n
k+ln−1)) >

Uα(Sn(yn)) for all α ∈ (xn
k+ln−1�x

n
k + d+

xn
k
) and Uα(Sn(x

n
k+1)) > Uα(Sn(x

n
k+ln

)) > Uα(Sn(yn))

for all α ∈ (m(x)�xn
k+ln

), so it must be that some αn ∈ (xn
k+ln−1�x

n
k+ln

) prefers Sn(yn) to
Sn(x

n
k+1). But then

0 ≥ 1 − δ

1 − δln−1

[
Uαn

(
Sn

(
xn
k+1

))−Uαn

(
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)]=
= 1 − δ

1 − δln−1

[
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t=0

δtuαn

(
xn
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(
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)]=

= 1 − δ

1 − δln−1

[
uαn

(
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(
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(
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[
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(
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a contradiction.
An analogous proof can be written if x = x∗ after a normalization argument. Briefly,

if x = x∗, assume WLOG that x∗ = 0 to simplify notation, and denote Tn(y) = xn
ky and

Un
α(y)= Uαxn

k
(αxn

k)− 1
(xn

k
)2 (Uαxn

k
(αxn

k)−Uαxn
k
(yxn

k)). In the normalized version of the prob-
lem, xn

k maps to yn
k = 1 > 0 and we can apply the above arguments. The case x = x∗∗ is

similar. Q.E.D.

PROOF OF PROPOSITION 7: WLOG assume r = 1. Suppose that there is a CLS with
e(x) ≥ A for all x ≤ x0. Take D > 0 fixed, and let L > 0 be such that, for all
α�x�x′ ∈ [−1�1], | ∂u2

α(x)

∂α2 − ∂u2
α(x

′)
∂α2 |� | ∂u2

α(x)

∂α∂x
− ∂u2

α(x
′)

∂α∂x
|� | ∂u2

α(x)
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α(x

′)
∂x2 | ≤ L|x − x′| + D. (For

any D, such L exists because u is C2.) Note then that ∂2uy (y)

∂x2 ≡ − ∂2uy(y)

∂α∂x
∈ [M ′�M];

| ∂2um(y)(y)

∂α∂x
− ∂2um(y)(m(y))

∂α∂x
|� | ∂2um(y)(y)

∂x2 − ∂2um(y)(m(y))

∂x2 | ≤ L(y −m(y))+D; and | ∂um(y)(y)

∂x
| ∈ [M ′(y −

1L is a Lipschitz constant for ∂2u
∂α2 , and m′ = supx m

′(x). The argument still goes through if we only require
∂2u
∂α2 to be Hölder continuous for some positive exponent.
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m(y))�M(y − m(y))]. In addition, |x − s(x� t)| ≤ t
A

for all t, so | ∂2 max(um(x)(s(x�t))�0)
∂α2 −

∂2um(x)(x)

∂α2 | ≤ L̃t
A

+D, where L̃ = max(L�
max | ∂2u

∂α2 |
mind−

y
). In turn, this means that

∣∣∣∣∂
2Um(x)

(
S(x)

)
∂α2 − ∂2um(x)(x)

∂α2

∣∣∣∣≤
∫ ∞

0
e−t

(
L̃t

A
+D

)
dt = L̃

A
+D�

Putting this all together, by Equation (*),

e(x0) ≥
(
2m′(x0)− 1

)
M ′ − (2m′(x0)+ 1

)
(LB +D)

MB

−
(
1 +B′)2

L̃

AMB
−
(
1 +B′)2

D

MB
− B′′

1 −B′
?≥A�

We now choose A =
√

(1+B′)2L̃
MB

. Then it is enough if

(
1 − 2B′)M ′ − (3 + 2B′)(LB +D)

MB
−
(
1 +B′)2

D

MB
− B′′

1 −B′ ≥ 2

√(
1 +B′)2

L̃

MB
�

Choose any B′ < 1
2 and any B′′. Choose D such that (1−2B′)M ′ > (3+2B′)D+(1+B′)2D.

Then this condition holds for B small enough. We can show with a similar argument that,
under these parameter conditions, e(x) −−→

x→x∗ ∞, so the unique solution to Equation (*)

must satisfy e(x) ≥A ∀x by an argument similar to Lemma 6. Q.E.D.

We now define a (not necessarily continuous) limit solution (LS) as a policy mapping s
such that

(i) x = arg maxy∈[−1�1] Um(x)(S(y)) ∀x ∈ [x∗�x∗∗).
(ii) If there is c > 0 s.t. W (x0 − ε) = 0 ∀ε ∈ [0� c], then d(x+

0 �x0)= 0.
(iii) If W (x0)= 0 and W (x′) > 0 for all x′ in a left-neighborhood of x0, then d(x+

0 �x
−
0 )

satisfies2

e
rd(x+

0 �x−
0 )

2 = 1 +m′(x0)

∂Vm(x0)

(
S
(
x−

0

))
∂α

∂um(x0)(x0)

∂x

�

This definition is backward-engineered so that the transition path generated by an LS
will be the limit of Q1E transition paths as δ → 1. Property (i) requires that an LS has to
be as if agents could choose their preferred continuation. Property (ii) says that, if in a
left-neighborhood of x0 pivotal agents are indifferent between the LS transition path and
a constant path, then the policy path cannot stop at x0 for a positive length of time. The
significance of (iii) is that non-CLS transition paths will have intervals in which W (x) > 0
and, as a result, the policy moves quickly (in the limit, instantaneously) through such inter-
vals. At a point x0 where W hits 0 again, the transition path has to slow down dramatically
(in the limit, stop for some time d(x+

0 �x
−
0 )) in order to increase the average policy of the

2We denote f (x−)= limt↗x f (x) and f (x+)= limt↘x f (x).
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path so that W ′ can have a kink and W ′(x+
0 ) can be nonnegative. But Q1Es have “iner-

tia”: when they slow down, they do so for long enough that the average policy increases
enough that W ′(x+

0 ) > 0. Property (iii) requires the correct value of d(x+
0 �x

−
0 ) to match

the behavior of Q1E transition paths around such points.
The following properties, defined jointly for the parameters u, m and a policy map-

ping s, will help us to ascertain the properties of an LS:
B2.1 m′(x∗) > 1

2 . (This implies that e(x) > 0 for x in a neighborhood of x∗.)3

B2.1′ Vm(x)(S(x))≡ 0 and there is K > 0 s.t. e(x) ≥K for all x ∈ (x∗�x∗∗).
B2.2 u, m are C3, and there is no point x ∈ [x∗�x∗∗) for which Vm(x)(S(x)) =

∂Vm(x)(S(x))

∂α
= ∂2Vm(x)(S(x))

∂α2 = ∂3Vm(x)(S(x))

∂α3 = 0.
B2.3 For all x ∈ (x∗�x∗∗) such that W (x) = 0 and W (x′) > 0 for x′ < x arbitrarily close

to x, W ′(x−) < 0. We refer to such points x as vertex points.
Conditions B2.1 and B2.1′ are not generic, but hold in an open set. Conditions B2.2

and B2.3 are generic conditions under the assumption that u, m are C3; this is shown
in Appendix C. On an intuitive level, B2.3 requires that, at points where an interval of
fast policy change ends (that is, where W hits 0), the derivative of W does not happen to
also equal zero; Condition B2.2 is a similar but weaker condition involving higher-order
derivatives of W .

We will now build toward a characterization of LS.

LEMMA 7: If any LS s(x� t) satisfying Conditions B2.2 and B2.3 is such that W (x) > 0
for some x ∈ (x∗�x∗∗), then there are sequences (yl)l∈N≥0 , (el)l∈N≥1 such that (yl)l is strictly
increasing in l; W (yl) = 0 for all l; W (y) > 0 for all y ∈ (yl� yl+1) for any l; d(y−

l+1� y
+
l ) = 0;

d(y+
l � y

−
l )= el; W ′(y+

l ) > 0 >W ′(y−
l ) for all l ≥ 1;

e
rel
2 = 1 +m′(yl)

∂Vm(yl)

(
S
(
y−
l

))
∂α

∂um(yl)(yl)

∂x

for all l; yl → x∗∗ as l → ∞; and W (z) = 0 for z < y0.

PROOF: Let (a�b) be the largest interval containing x such that W (y) > 0 for all y ∈
(a�b), and denote a = y0, b = y1. That d(x�x′) = 0 for all x′ < x ∈ (a�b) follows from
the following argument. Take x ∈ (a�b). Since W (x) > 0, there is x̃ ∈ (m(x)�x) such
that um(x)(x̃) = Um(x)(S(x)) > um(x)(x). Then d(x� x̃) = 0, as otherwise we would have
Um(x)(S(x̃)) > Um(x)(S(x)), contradicting the definition of a LS. Now suppose d(x�x′) > 0
for some x′ < x ∈ (a�b). Construct a decreasing sequence x = x̃0 > x̃1 > x̃2 > · · · such
that, for all n, um(x̃n)(x̃n+1) = Um(x̃n)(S(x̃n)) and d(x̃n� x̃n+1) = 0 per the above argument.
Let x̃∞ = lim x̃n. If x̃∞ < x′, we have a contradiction and the proof is done. If not, it follows
by continuity that um(x̃∞)(x̃∞)=Um(x̃∞)(S(x̃∞)), that is, W (x̃∞)= 0, a contradiction.

Let d(b+� b−) = e1. That e1 is as required follows from the definition of LS. Note that
Condition B2.3 implies that e1 > 0. In addition, W ′(b+) > 0. To see this, in general let

3As seen in Lemma 5, 1
m′(x∗)

∂2

∂x2 u|x∗�x∗ + 2 ∂2

∂α∂x
u|x∗�x∗ > 0 is enough to guarantee that e(x) > 0 for x close to

x∗—in fact, the condition guarantees e(x) ≥ C
x−x∗ for some C > 0. In addition, Assumptions A1, A4 imply that

∂2

∂x2 u|x∗�x∗ = − ∂2

∂α∂x
u|x∗�x∗ .
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εl = ∂
∂α
Vml

(S(y−
l )) and ε′

l = ∂
∂α
Vml

(S(y+
l )), and suppose εl < 0 as per Condition B2.3. Then

ε′
l =

∂Vml

(
S
(
y+
l

))
∂α

= e− rel

(
∂Vml

(
S
(
y−
l

))
∂α

)
+ (1 − e− rel

)(− 1
m′(x)

∂um(x)(x)

∂x

)

=
∂Vml

(
S
(
y−
l

))
∂α

1
m′(x)

∂um(x)(x)

∂x

−∂Vml

(
S
(
y−
l

))
∂α

− 1
m′(x)

∂um(x)(x)

∂x

= −∂Vml

(
S
(
y−
l

))
∂α

1

1 +
∂Vml

(
S
(
y−
l

))
∂α

1
m′(x)

∂um(x)(x)

∂x

= −εl
1

1 + εl
1

m′(x)
∂um(x)(x)

∂x

> 0�

This implies that there is y2 > y1 such that W (y) > 0 for y ∈ (y1� y2), with W (y2) = 0 and
W ′(y−

2 ) < 0, and so on.
Next we argue that yl → x∗∗ as l → +∞. Suppose instead that yl → y∗ < x∗∗, and

let ml = m(yl), m∗ = m(y∗). Since V is continuous, Vm(y∗)(S(y
∗)) = 0. In addition,

∂
∂α
Vm∗(S(y∗−)) must equal zero.4

Suppose, then, that ∂2

∂α2 Vm∗(S(y∗−)) �= 0. If this is positive, we have Vm(x)(S(x)) > 0 for
all x < y∗ in a neighborhood of y∗, a contradiction.

If it is negative, we will obtain a contradiction by showing that (εl)l cannot go fast
enough to 0 for (yl)l to converge. Note that εl < 0 < ε′

l and εl + ε′
l ∈ O(ε2

l ) since
ε′
l = −εl

1
1+ −εl

− 1
m′(x)

∂um(x)(x)
∂x

, as shown above, and − 1
m′(x)

∂um(x)(x)

∂x
is bounded away from 0 in a

neighborhood of y∗. Next, we argue that εl+1 = εl +O(ε2
l ).

Let N(α) = ∂Vα(S(m
−1(α)))

∂α
and M(α)= ∂2Vα(S(m−1(α)))

∂α2 . We claim that M is left-continuous at
m∗—indeed, for this to not be the case, we would require

∑
l el = +∞, which implies M is

not bounded in a neighborhood of y∗, a contradiction. Thus, since M(m∗) < 0, M(α) < 0
for all α<m∗ in a neighborhood of m∗.

Let Ml = maxα∈(αl�αl+1) −M(α), Ml = minα∈(αl�αl+1) −M(α). Note that Ml − Ml ≤
L(ml+1 − ml) for some fixed constant L, that is, Ml − Ml ∈ O(ml+1 − ml).5 Since
Vml

= Vml+1 = 0,

0 =
∫ ml+1

ml

N(α) = N
(
m+

l

)
(ml+1 −ml)+

∫ ml+1

ml

M(α)(ml+1 − α)�

4Indeed, if this derivative is negative, it follows that Vm(x)(S(x)) ≥ Vm(x)(S(y
∗−)) > 0 for all x < y∗ in a

neighborhood of y∗, contradicting that yl → y∗. If it is positive, then Vm(x)S(y
∗−) ≤ −c(y∗ − x) for x in such a

neighborhood and some c > 0. From the fact that Vm(x)S(x) ≥ 0 and 0 = Vm∗S(y∗) ≥ Vm(x)S(y
∗), it then follows

that E(S(y∗))−E(S(x)) ≥ c′ > 0 for all x < y∗, which is impossible.
5This follows from the assumption that u is C3.
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where N(m+
l )= ε′

l. This implies

Ml

(ml+1 −ml)
2

2
≤ ε′

l(ml+1 −ml)≤Ml

(ml+1 −ml)
2

2
�

Ml

ml+1 −ml

2
≤ ε′

l ≤Ml

ml+1 −ml

2
�

Now εl+1 = ε′
l+
∫ ml+1
ml

M(α)= ε′
l −(ml+1 −ml)M̃ , for some M̃ ∈ (Ml�Ml). From the above,

ε′
l = M̃l

ml+1−ml

2 + O((ml+1 − ml)
2). Then εl+1 = −ε′

l + O((ml+1 − ml)
2). In addition, it

follows that O(ε′
l)=O(ml+1 −ml). Since ε′

l = −εl +O(ε2
l ), we have that εl+1 = εl +O(ε2

l ),
that is, (εl)l at most decays (or grows) at the rate of a harmonic series, whence

∑
l εl = ∞.

Since εl ∈O(ml+1 −ml), we have
∑

l(ml+1 −ml)= ∞ as well, which contradicts yl → y∗.
Finally, suppose that P = ∂3

∂α3 Vm∗(S(y∗−)) �= 0. If it is negative, we again have V (α) > 0
for α in a left-neighborhood of m∗, a contradiction, so it must be positive; and, as before,
P(α) = ∂3

∂α3 Vα(S(m
−1(α))) must be left-continuous at m∗, that is, it must be close to P for

α close to m∗. Note that

0 =
∫ ml+1

ml

N(α) = ε′
l(ml+1 −ml)+

∫ ml+1

ml

M(α)(ml+1 − α)

= ε′
l(ml+1 −ml)+ (ml+1 −ml)

2

2
M(α̃l)

for some α̃l ∈ (ml�ml+1). This implies

ε′
l = −M(α̃l)

ml+1 −ml

2
� ε′

l+1 = −M(α̃l+1)
ml+2 −ml+1

2
�

εl+1 = ε′
l +
∫ ml+1

ml

M(α)= ε′
l + (ml+1 −ml)M( ˜̃αl)

=⇒ εl+1 = (ml+1 −ml)
2M( ˜̃αl)−M(α̃l)

2
�

where α̃l, ˜̃αl ∈ (ml�ml+1). To finish the proof, we will need to be more specific about the
positions of these values in the interval (ml�ml+1). Due to the left-continuity of P(α),
M(α) is roughly linear in each interval (ml�ml+1). This, coupled with the above, implies
that α̃l = 2ml+ml+1

3 + o(ml+1 −ml) and ˜̃αl = ml+ml+1
2 + o(ml+1 −ml). In addition, M(m+

l )−
M(m−

l ) ∈O(εl) ∈ o(ml −ml−1). Then

M(α̃l+1)− 2M( ˜̃αl)+M(α̃l)

=M(α̃l+1)−M( ˜̃αl)+M(α̃l)−M( ˜̃αl)

=O(εl+1)+ (P + o(l)
)(2ml+1 +ml+2

3
− ml +ml+1

2
+ o(ml+2 −ml)

)

+ (P + o(l)
)(2ml +ml+1

3
− ml +ml+1

2
+ o(ml+2 −ml)

)

= P

(
ml+2

3
− ml

3

)
+ o(ml+2 −ml) > 0�
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so that

−εl+1

−M(α̃l+1)
= ml+1 −ml

2
−2M( ˜̃αl)+M(α̃l)

−M(α̃l+1)
=

= ml+1 −ml

2

(
1 + M(α̃l+1)− 2M( ˜̃αl)+M(α̃l)

−M(α̃l+1)

)
≥ ml+1 −ml

2

=⇒ ml+2 −ml+1

2
= ε′

l+1

−M(α̃l+1)
= −εl+1 +O

(
ε2
l+1

)
−M(α̃l+1)

= −εl+1

−M(α̃l+1)

(
1 +O(ml+1 −ml)

)
≥ ml+1 −ml

2
+O

(
(ml+1 −ml)

2
)
�

which, as before, implies ml → ∞, a contradiction. As a result, we can conclude that if
yl → y∗ < x∗∗, then m violates Condition B2.2 at y∗, which is what we wanted.

As for what happens to the left of a, if W ′(a+)= 0, we are done. If W ′(a+) > 0 instead,
then by the same arguments as before, W ′(a−) < 0 and there must be y−1 < y0 s.t. W (y) >
0 for y ∈ (y−1� y0) and W (y−1) = 0, etc. If this sequence of intervals to the left of a is finite,
re-index the sequence (yl)l appropriately and we are done. If it is infinite, we would have
an infinite decreasing sequence y0 > y−1 > · · · such that yl → y∗ as l → −∞. If y∗ > x∗, we
obtain a contradiction analogously to our previous arguments. If y∗ = x∗, we still obtain
a contradiction by a slightly different argument—near x∗ and x∗∗, it is not true that ε′

l =
−εl + O(ε2

l ), as ∂um(x)(x)

∂x
approaches zero, but it is still true that ε′

l ≤ −εl, so it is possible
that εl is shrinking fast enough for (yl)l to converge as l → +∞, but not as l → −∞.

Finally, the fact that W (x) = 0 for x < y0 follows from the fact that, if this were false,
there would be a sequence (ỹl)l with ỹ0 < x < y0 and ỹl → x∗∗ as l → +∞, which contra-
dicts W ′(y+

0 )= 0. Q.E.D.

We can now construct a canonical LS, s∗, as follows. Under Condition B2.1, construct
a smooth LS based on Lemma 5 for a maximal interval (x∗�x0) where this is possible—
either (x∗�x∗∗) if e(x) > 0 everywhere, or else up to a point x0 where e(x0) = 0. In the
latter case, to the right of x0, Condition B2.2 guarantees that W ′′′(x+

0 ) > 0, so W (x) > 0 in
a right-neighborhood of x0. We can then construct the solution based on sequences (yl)l,
(el)l as described above, with Condition B2.3 guaranteeing that el > 0 and yl+1 > yl for
all l.

LEMMA 8: If s∗ satisfies Conditions B2.1, B2.2, and B2.3, then it is the unique LS.

PROOF: Let ŝ be another LS. Suppose that W (x) > 0 for some x, so s∗ features a se-
quence (yl)l as in Lemma 7. Let ŷ0 = inf{y ∈ (x∗�x∗∗) : Ŵ (y) > 0}. Note that s∗ and ŝ must
be identical for x between x∗ and min(y0� ŷ0) by Lemma 6.

If y0 < ŷ0, it follows that V̂m(y)(Ŝ(y)) = 0 for y in a right-neighborhood of y0, but at the
same time V̂m(y)(Ŝ(y))≥ V̂m(y)(Ŝ(y0))= Vm(y)(S(y0)) > 0, a contradiction.

If ŷ0 < y0, there are two cases. First, suppose that Ŵ (y) > 0 for all y in a right-
neighborhood of ŷ0. Then we can apply the previous argument at ŷ0. Second, suppose
W (y) > 0 and W (y) = 0 are both obtained for y > ŷ0 arbitrarily close to ŷ0. Then there
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FIGURE 4.—Discontinuous limit solution.

must be an infinite collection of intervals (an�bn)n∈Z≤0 such that bn > an ≥ bn−1 for all
n; an −−−→

n→−∞
ŷ0; W (y) > 0 for all y ∈ (an�bn) and W (y) = 0 for all y = an or = bn. This

case leads to a contradiction by arguments developed in Lemmas 5 and 7. Briefly, for
y > ŷ0 close enough to ŷ0, S(y) and Ŝ(y) are similar; V ′′(m(y)) = 0; and e(y) ≥ C > 0,
so V̂ ′′(α) ≤ C̃ < 0 for any α such that m(α) ∈ (an�bn). This implies that ŝ in fact satisfies
Conditions B2.2 and B2.3, which contradicts an −−−→

n→−∞
ŷ0 by Lemma 7.

Hence y0 = ŷ0. Then s∗ and s̃ must be identical for x > y0 because their behavior is
uniquely pinned down by Lemma 7. Finally, note that, in the case where e(x) > 0 ∀x ∈
(x∗�x∗∗), the same proof goes through and we do not need to assume that s∗ satisfies
Condition B2.2 (in particular, we do not need to assume u or m are C3). Q.E.D.

The following proposition summarizes our results and extends Proposition 6 to the case
without a CLS.

PROPOSITION 8: Let ẽ(x) be the solution to Equation (*). Then, if ẽ(x) ≥ 0 for all x ∈
[x∗�x∗∗], there is a CLS s∗ given by e≡ ẽ. Moreover, this is the unique LS.

Otherwise, assume that the canonical LS s∗ satisfies Conditions B2.1, B2.2, and B2.3. Then
it is the unique LS, and it is given by e(x) = ẽ(x) for x up to some x̃, and by two sequences
(yl)l∈N≥0 , (el)l∈N≥1 such that: (yl)l is increasing, y0 = x̃ and yl −−→

l→∞
x∗∗; d(y−

l � y
+
l+1) = 0 and

d(y+
l � y

−
l )= el for all l ≥ 1; and

Um(yl+1)

(
S
(
y+
l

))= um(yl+1)(yl+1)�

e
rel
2 = 1 +m′(yl)

∂Vm(yl)

(
S
(
y−
l

))
∂α

∂um(yl)(yl)

∂x

�

For any sequence (sj)j , where sj is a Q1E of the j-refined game, and for any fixed x,
sj(x� t) −−→

j→∞
s∗(x� t) a.s. (more precisely, sj(x� t) −−→

j→∞
s∗(x� t) ∀t where s∗(x� t) is contin-

uous in t).
In addition, if m(yl) < yl−1 for all l or ẽ(x) ≥ 0∀x, there is δ < 1 such that all Q1Es for

discount factor δ are 1Es within [x∗�m−1(x∗ + d+
x∗)).

PROOF OF PROPOSITION 8: The last claim is a corollary of Proposition 5, and the char-
acterization of s∗ follows from Lemmas 7 and 8. It remains to show that all sequences of
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Q1Es of the j-refined games (sj)j converge to s∗ a.e., that is, sj(x� t) −−→
j→∞

s∗(x� t) ∀x� t
where s∗(x� t) is continuous. Take a fixed x0 and let p(x) = d(x�x0). Then we have to
show pj(x)−−→

j→∞
p(x) ∀x where p is continuous.

Suppose not, so there is a sequence (sj)j and an x1 for which p is continuous at x1 but
pj(x1) � p(x1). Take a subsequence (sl)l such that pl converges pointwise to some p̂,
and label the associated policy mapping ŝ.6 p̂ �= p as, in particular, p̂(x1) �= p(x1).

We will now prove the result simply by proving that ŝ is a LS.
(i) Let x ∈ (x∗�x∗∗). For each j and x′, Um(x)(Sj(sj(x)))≥ Um(x)(Sj(x

′)). If sj(x)−−→
j→∞

x,

we obtain Um(x)(Ŝ(x))) ≥Um(x)(Ŝ(x
′)) by taking the limit. If not, and sj′(x) −−−→

j′→∞
x̃ < x for

some subsequence, then Um(x)(Ŝ(x̃)))≥ Um(x)(Ŝ(x
′)). But this also implies p̂(x)− p̂(x̃) =

0, so Um(x)(Ŝ(x)) =Um(x)(Ŝ(x̃)))≥Um(x)(Ŝ(x
′)).

In turn, the fact that ŝ satisfies (i) means that Lemmas 5 and 6 apply to it.
(ii) Suppose ŝ violates this condition at some a ∈ (x∗�x∗∗), that is, p̂(a+) − p̂(a−) =

e∗ > 0. By an argument similar to Lemma 5, we have Ŵ ′(a+) > 0 and hence p̂ is constant
on some interval (a�b).

Take ε > 0 small, and let (xjn)n be the recognized sequence of sj for each j. By con-
struction, (xjn)n must have je∗ + jd̂(a−� a − ε) + o(j) elements in (a − ε�a + ε), and
jd̂(a − ε�a − 2ε) + o(j) elements in (a − 2ε�a − ε). In particular, given η > 0, for high
enough j there must be an element xjt ∈ (a − 2ε�a − ε) such that xjt − xj(t+1) ≥ 1

je(1+η)

for e = maxx∈(a−2ε�a−ε) e(x). Let xjt′ be the right-most element of (xjn)n contained in
(a− ε�a+ ε). The above implies t ′ − t ≥ je∗ + jd̂(a−� a− ε)+ o(j).

Now, denoting xjn = xn, m(xjn) = mn, and Sj(xjn) = S(xn), and exploiting the in-
difference conditions Umn−1(S(xn)) = Umn−1(S(xn+1)) = umn−1(xn) and Umn(S(xn+1)) =
Umn(S(xn+2))= umn(xn+1),

Vmn−1

(
S(xn+1)

)− Vmn

(
S(xn+1)

)
= Umn−1

(
S(xn+1)

)−Umn

(
S(xn+1)

)− umn−1(xn−1)+ umn(mn)

= −(umn−1(xn−1)− umn−1(xn)
)+ (umn(mn)− umn(xn+1)

)
�

m′(x̂n)(xn−1 − xn)
∂

∂α
Vα̃n

(
S(xn+1)

)
= −(xn−1 − xn)

∂

∂x
umn−1(x̃n)+ (xn − xn+1)

∂

∂x
umn(x̃n+1)�

(xn−1 − xn)= (xn − xn+1)
− ∂

∂x
umn(x̃n+1)

−m′(x̂n)
∂

∂α
Vα̃n

(
S(xn+1)

)− ∂

∂x
umn−1(x̃n)

�

6Use a diagonal argument to find a subsequence (sl′)l′ such that (pl′)l′ converges at all rational points.
This guarantees convergence at all points except points of discontinuity of lim supl′→∞ pl′ , which are countable
because the function in question is increasing. Use another diagonal argument to get (sl)l such that pl also
converges at all discontinuities of lim supl′→∞ pl′ .
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for some α̃n ∈ (mn�mn−1), x̃n� x̂n ∈ (xn�xn−1), x̃n+1 ∈ (xn+1�xn). In addition,

∂

∂α
Vα

(
S(xn)

)

= e− r
j
∂

∂α
Vα

(
S(xn+1)

)+ (1 − e− r
j
)
⎛
⎜⎜⎝∂uα(xn)

∂α
− ∂uα

(
m−1(α)

)
∂α

−
∂uα

(
m−1(α)

)
∂x

m′(m−1(α)
)
⎞
⎟⎟⎠ �

∂

∂α
Vα

(
S(xn)

)

= e− rk
j
∂

∂α
Vα

(
S(xn+k)

)+ (1 − e− rk
j
)
⎛
⎜⎝O(ε)−

∂

∂x
uα

(
m−1(α)

)
m′(m−1(α)

)
⎞
⎟⎠

for α ∈ (m(a− 2ε)�m(a+ ε)), xn�xn+k ∈ (a− 2ε�a+ ε).
Then, for n ∈ {t� � � � � t ′},

xj(n−1) − xjn

≥ (xjn − xj(n+1))
− ∂

∂x
um(a)(a)−Kε

−m̃′ ∂
∂α

Vα̃n

(
Sj(xj(n+1))

)− ∂

∂x
um(a)(a)+K′ε

≥ (xjn − xj(n+1))
− ∂

∂x
um(a)(a)−Kε

−e− r(t−n)
j m̃′ ∂

∂α
Vα̃n

(
Sj(xj(t+1))

)− e− r(t−n)
j

∂

∂x
um(a)(a)+K′′ε

≥ (xjn − xj(n+1))
− ∂

∂x
um(a)(a)−Kε

G(j)− e− r(t−n)
j

∂

∂x
um(a)(a)+K′′′ε

= (xjn − xj(n+1))
1 −K′′′′ε

e− r(t−n)
j + G̃(j)+K′′′′′ε

for some function G(j) such that G(j)−−→
j→∞

0, as

∣∣∣∣ ∂∂αVα̃n

(
Sj(xj(t+1))

)∣∣∣∣−−→j→∞

∣∣∣∣ ∂∂αVα∗
(
Ŝ
(
x∗))∣∣∣∣≤

∣∣∣∣ ∂∂αVm(x∗)
(
Ŝ
(
x∗))∣∣∣∣+Cε= Cε
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for some α∗ ∈ [m(a− 2ε)�m(a+ ε)], x∗ ∈ [a− 2ε�a− ε] and C > 0.7 Then

xj(n−1) − xjn ≥ (xjt − xj(t+1))

t−n∏
k=0

1 −K′ε

e− rk
j + G̃(j)+K′′′′ε

=⇒ xjt′ − xj(t′+1) ≥ 1
je∗(1 +η)

je∗−1∏
k=0

1 −K′ε

e− rk
j + G̃(j)+K′′′′ε

�

If we take ε small enough that 1 −K′ε > 0, the right-hand side grows to infinity as j → ∞.
In particular, for j high enough, xjt′ − xj(t′+1) > 3ε, a contradiction.

(iii) This follows from a calculation analogous to the one used for (ii). Briefly, if (iii)
is violated at x0 and p̂(x+

0 ) − p̂(x−
0 ) is higher than the value required by (iii), then xjt′ −

xj(t′+1) −−→
j→∞

∞, a contradiction. If p̂(x+
0 ) − p̂(x−

0 ) is lower than the value required by

(iii), then it can be shown that j(xjn − xj(n+1)) −−→
j→∞

0 for all n such that xj(n+1) ≥ a, which

implies that the number of elements of (xjn)j in (a − ε�a + ε) grows faster than j, a
contradiction. Q.E.D.

APPENDIX C: GENERICITY OF CONDITIONS ON m

In this section, we show that Conditions B1, B2.2, and B2.3 imposed on the function m
are “generic.”8 We employ two different notions of genericity. On the one hand, we show
that these conditions hold on an open and dense set (or, at least, a residual set) within
the function space with a natural metric. In addition, we show that some of these condi-
tions hold on a prevalent set, a notion introduced in Hunt, Sauer, and Yorke (1992) that
generalizes the measure-theoretic notion of “almost everywhere” to infinite-dimensional
spaces where an analog of the Lebesgue measure is not available.

CLAIM 1: Consider the set of functions

X1 = {m : [−1�1] −→ [−1�1] : m ∈ C1�m weakly increasing
}

with the norm ‖m‖ = max(‖m‖∞�‖m′‖∞). The subset Y1 ⊆ X1 satisfying Condition B1 is
open and dense,9 and also prevalent in the sense of Hunt, Sauer, and Yorke (1992).

PROOF: We first show Y1 is open. Let m0 ∈ Y1; x∗
1 < · · ·< x∗

N be the fixed points of m0;
αi = m′

0(x
∗
i ) for i = 1� � � � �N ; ε > 0 and ν > 0 such that |m′

0(y)− 1| ≥ ν for y ∈ Ii = (x∗
i −

ε�x∗
i + ε) for any i; υ > 0 such that |m(y) − y| ≥ υ for y /∈ Ii for any i; η = min(ε�υ� ν);

and m1 ∈ B(m0�η). Then m1(y) = y implies |m0(y) − y| < η ≤ υ, so y ∈ Ii for some i,
so |m′

1(y) − 1| ≥ |m′
0(y) − 1| − |m′

1(y) − m′
0(y)| > ν − ν = 0. This shows that m′(y) �= 1

at any fixed point y of m1. Moreover, by construction, either m′
0(y) > 1 for all y ∈ Ii and

m′
1(y) > 1 for all y ∈ Ii as well, or the reverse inequalities hold, whence m1 can have at

most one fixed point in Ii for each i, and the set of fixed points is finite.
Next, we show Y1 is dense. Let m0 ∈ X1 and ε > 0. We want to show that there is m1 ∈

B(m0� ε)∩Y1. Since m′
0 is continuous in [−1�1], it is uniformly continuous, so we can take

7If necessary, take a convergent subsequence so that (α̃nj )j and xj(tj+1) converge for this argument.
8We say m satisfies Conditions B2.1, B2.2, and B2.3 if there is an LS for this m that satisfies them—

equivalently, if the canonical LS for this m satisfies them.
9The statement is also true within the space of C3 functions, taken with the appropriate norm.
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ν > 0 such that if |y − y ′| < ν, then |m′
0(y) − m′

0(y
′)| < ε

4 . Partition [−1�1] into intervals
I1� I2� � � � � IJ as follows: Ij = [yj−1� yj), where yj = −1+ jν, for j < J, and IJ = [yJ−1�1]. For
each j, if m′

0(yj−1) ≥ 1, let m′
2(y) = m′

0(y) + ε
4 for all y ∈ Ij (which implies m′

2(y) > 1 for
y ∈ Ij); otherwise let m′

2(y) = m′
0(y) − ε

4 for all y ∈ Ij (so m′
2(y) < 1 for y ∈ Ij), and then

define m2 by integrating m′
2, with m2(−1)=m0(−1). By construction, m2 has at most one

fixed point in each interval Ij and m′
2 �= 1 at such points. Moreover, ‖m′

2 − m′
0‖ ≤ ε

4 and
‖m2 −m0‖ ≤ 2 ε

4 = ε
2 . If m2(yj) �= yj for all yj , we can construct a “smoothed-out” version of

m′
2, which we will call m′

1, that is in B(m0� ε)∩Y1. If m2(yj)= yj for some j, and m′
2(y) > 1

for y ∈ Ij ∪ Ij+1 or m′
2(y) < 1 for y ∈ Ij ∪ Ij+1, this is not a problem. If m2(yj)= yj for some

j and m′
2(y) > 1 for y ∈ Ij , m′

2(y) < 1 for y ∈ Ij+1, we can construct a smooth m′
1 such that

m′
1(yj) = 1, m′

1(y) > 1 to the left of yj and < 1 to the right, and m1(yj) <m2(yj)= yj . The
remaining case is analogous.

For the last claim, note that, if a C1 function m defined on a compact interval has
m′ �= 1 at all its fixed points, it automatically has a finite number of them. Consider the
translation X1 − v, where v is the identity function. Then m ∈ Y1 iff m − v has no points
where (m − v)(y) = (m − v)′(y) = 0. Finally, the fact that Y1 − v is prevalent in X1 − v
follows from Proposition 3 in Hunt, Sauer, and Yorke (1992). Q.E.D.

CLAIM 2: Condition B2.1 holds in an open set Y2 within

X2 ={m : [x∗�x∗∗]−→ [
x∗�x∗∗] :m ∈ C2�m weakly increasing�

m
(
x∗)= x∗� m

(
x∗∗)= x∗∗� m(x) < x∀x ∈ (x∗�x∗∗)}

taken with the norm ‖m‖ = max(‖m‖∞�‖m′‖∞�‖m′′‖∞).10

PROOF: Trivial. Q.E.D.

CLAIM 3: Condition B2.1′ holds in an open set Y4 within X2.

PROOF: This amounts to showing that e is continuous in m′′, and it follows from an
argument similar to the proof of the uniqueness of e from Lemma 6. Q.E.D.

CLAIM 4: Assume u is C3. Let

X3 = {m ∈ Y2 :m ∈ C3�m
(
x∗)= x∗�m

(
x∗∗)= x∗∗�m(x) < x ∀x ∈ (x∗�x∗∗)�

m strictly increasing�m satisfies Condition B2.1
}

taken with the norm ‖m‖ = max(‖m‖∞�‖m′‖∞�‖m′′‖∞�‖m′′′‖∞). For each y ∈ (x∗�x∗∗), the
set Y3(y) ⊆ X3 of functions m for which Conditions B2.2 and B2.3 hold in [x∗� y] is open
and dense.

PROOF: We proceed in two steps. First, we show that the set Y5(y) ⊆ X3 for which
Condition B2.2 holds in [x∗� y] is open and dense. Second, we show that the set Y3(y) is
open and dense within Y5(y).

To show that Y5(y) is open, take m ∈ Y5(y) and suppose there is a sequence (mn)n such
that mn /∈ Y5(y) for all n but mn → m. For each mn we can construct a LS sn (possibly

10Again, this is also true within the space of C3 functions.
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not unique) by finding a convergent sequence of discrete-time equilibria (snj)j for δ= e− r
j

with j → ∞, as in Proposition 8. Using a diagonal argument, we can find a convergent
subsequence of (sn)n, which by continuity must converge to a LS for m, ŝ. WLOG assume
(sn)n → ŝ. We will need the following lemma:

LEMMA 9: If s∗ satisfies Conditions B2.1 and B2.2, then it is the unique LS. Moreover, s∗
has a finite number of vertex points in [x∗� y] for any y < x∗∗.

PROOF: Briefly, if s∗ has an infinite number of vertex points in [x∗� y], they must
accumulate at some y∗ ∈ (x∗� y], which must satisfy Vm(y∗)(S(y

∗)) = ∂Vm(y∗)(S(y∗))
∂α

= 0. If
∂2Vm(y∗)(S(y∗))

∂α2 > 0, we obtain V > 0 in a neighborhood of y∗, a contradiction. If ∂2Vm(y∗)(S(y∗))
∂α2 <

0, this guarantees Condition B2.3 in a neighborhood of y∗, which means the vertex points
near y∗ must be part of a single sequence, contradicting Lemma 7.

Suppose that there are infinitely many vertex points on a left-neighborhood of y∗ (the

other case is analogous). Similar arguments apply if ∂3Vm(y∗)(S(y∗))
∂α3 < 0 or ∂3Vm(y∗)(S(y∗))

∂α3 > 0,
respectively.

As for the uniqueness of s∗, the proof in Lemma 8 can be extended to this case.
Q.E.D.

From this we conclude that ŝ = s∗. Letting Wn be the value function for sn, we then
have Wn → W . It can be shown in addition that, at every y that is not a vertex point of s∗,
W ′

n(y) →W ′(y), W ′′
n (y)→ W ′′(y), and W ′′′

n (y)→ W ′′′(y), by using Lemmas 6 and 9.
Next, we show that Y5(y) is dense. Take m ∈ X3 and ε > 0. Consider m̂ given by:
ˆm(x∗) = x∗, m̂′(x∗) = m′(x∗), m̂′′(x∗) = m′′(x∗), and m̂′′′(x) = m′′′(x) + η(x), where

|η(x)| ≤ ε will be defined as 0 except where we specify otherwise. We will argue that,
by picking η correctly, we can find a m̂ ∈ Y5(y) that is close to m.

Apply the following algorithm. Take ν > 0 small and N > 0 large. Let η0 ≡ 0 and m0 ≡
m. Let

x0 = inf
{
x ∈ (x∗� y] : max

(∣∣Vm0(x)

(
S0(x)

)∣∣� ∣∣∣∣ ∂∂αVm0(x)

(
S0(x)

)∣∣∣∣�∣∣∣∣ ∂2

∂α2Vm0(x)

(
S0(x)

)∣∣∣∣�
∣∣∣∣ ∂3

∂α3Vm0(x)

(
S0(x)

)∣∣∣∣
)

≤ ε

N

}
�

where S0(x) is a policy path starting at x for a LS given median voter function m0.11 Let
α0 = m(x0). Define η1(x) = −ε for x ∈ [x0�x

′
0) and η1(x) = 0 for all other x, with x′

0
taken so that m1(x

′
0)=m1(x0)+ ν. Next, let x1 be the infimum of x ∈ (x0 + ν� y] for which

|Vm1(x)(S1(x))|, | ∂
∂α
Vm1(x)(S1(x))|, | ∂2

∂α2 Vm1(x)(S1(x))|, and | ∂3

∂α3 Vm1(x)(S1(x))| ≤ ε
N

, and define
α1 = m(x1) and η2(x) = −ε for x ∈ [x1�x

′
1) and η2(x) = η1(x) for all other x, with x′

1
taken so that m2(x

′
1) = m2(x1)+ ν. Define xk, αk, ηk+1, mk+1 for k = 2�3� � � � in the same

fashion until xK = +∞ for some K.12 Let m̃ =mK .
We argue that, if ν and N are taken to be small and large enough, respectively, m̃

satisfies Condition B2.2. To explain why, we will need the following:

11Note that, for ε small enough, x0 > x∗ since e(x) ≥ C > 0 in a neighborhood of x∗, which implies
∂2

∂α2 Vm0(x)(S0(x)) ≥ C ′ > 0.
12This must happen for a finite K, as αk − αk−1 ≥ ν > 0 for all k.
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REMARK 2: A function f : [a�b] →R is uniformly continuous iff there is an increasing
function h : [0�+∞) → [0�+∞) such that h(0) = 0, h is continuous at 0, and |f (x) −
f (y)| ≤ h(|x− y|) for all x� y ∈ [a�b]. We say a function h satisfying these properties is a
bounding function.

Now note that, for any k and any x < x′ such that m(x) = a, m(x′) = a′ satisfy a�a′ ∈
[αk�αk + ν], we have∣∣∣∣ ∂3

∂α3Va

(
S̃(x)

)− ∂3

∂α3Va′
(
S̃
(
x′))∣∣∣∣

≤
∣∣∣∣ ∂3

∂α3Ua

(
S̃(x)

)− ∂3

∂α3Ua

(
S̃
(
x′))∣∣∣∣

+
∣∣∣∣ ∂3

∂α3Ua

(
S̃
(
x′))− ∂3

∂α3Ua′
(
S̃
(
x′))∣∣∣∣+

∣∣∣∣− d3

dα3ua

(
m̃−1(a)

)+ d3

dα3ua′
(
m̃−1

(
a′))∣∣∣∣

≤
∣∣∣∣ ∂3

∂α3Ua

(
S̃(x)

)− ∂3

∂α3Ua

(
S̃
(
x′))∣∣∣∣+ h1

(
a′ − a

)+ h2

(
a′ − a

)
≤K

ε

N
+K′(a′ − a

)+ h1

(
a′ − a

)+ h2

(
a′ − a

)≤ K
ε

N
+ h3

(
a′ − a

)
�

where h1, h2, h3 are bounding functions, K�K′ > 0, and K, h1, h2, h3 are independent of
ν and N .

The bound | d3

dα3 ua(m̃
−1(a)) + d3

dα3 ua′(m̃−1(a′))| ≤ h2(|a − a′|) uses the uniform con-
tinuity of d3

dα3 uã(m̃
−1(ã)), which follows from the fact that u is C3 and m̃ is C3 on

[a�a′] ⊆ [αk�αk + ν]. The bound | ∂3

∂α3 Ua(S̃(x
′)) − ∂3

∂α3 Ua′(S̃(x′))| ≤ h1(|a − a′|) uses the
uniform continuity of ∂3

∂α3 U , and the fact that the mapping x �→ max(x�0) is Lipschitz.
The first bound is the trickiest, and is based on the idea that, if ∂V

∂α
and ∂2V

∂α2 are low, then
s̃(x� t) changes relatively quickly as a function of t, so S̃(x) and S̃(x′) are similar. Formally,∣∣∣∣ ∂3

∂α3Ua

(
S̃(x)

)− ∂3

∂α3Ua

(
S̃
(
x′))∣∣∣∣

≤ (1 − e−rd̃(x′�x))2 max
a�y

∂3

∂α3uα(y)1 − e−rd̃(x′�x) ≤ rd̃
(
x′�x

)

= r

( ∑
ỹl∈(x�x′)

vertex point

el +
∫ x′

x

e(y)dy

)
≤ r

2
r

∑
ỹl∈(x�x′)v.p.

(
e

rel
2 − 1

)+ re
(
x′ − x

)

≤ 2
∑

ỹl∈(x�x′)v.p.

∣∣max m̃′∣∣
min

x∈[x0�y]

∣∣∣∣∂um(x)(x)

∂x

∣∣∣∣
∣∣∣∣ ∂∂αVal

(
S̃
(
y−
l

))∣∣∣∣+ re
(
x′ − x

)

≤K′′
(∣∣∣∣ ∂∂αVa

(
S̃(x)

)∣∣∣∣+
∫ a′

a

∣∣∣∣ ∂2

∂α2Vã

(
S̃
(
n(ã)

))∣∣∣∣dã
)

+ re
(
x′ − x

)
≤K′′ ε

N
+K′′′(a′ − a

)
�
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Pick ν and N so that K ε
N

+h3(ν)≤ ε
2 and N ≥ 4. Now m̃ satisfies Condition B2.2 because,

for a ∈ [αk�αk + ν),∣∣∣∣ ∂3

∂α3Va

(
S̃(x)

)∣∣∣∣≥
∣∣∣∣ ∂3

∂α3Vαk

(
S̃(xk)

)∣∣∣∣−
∣∣∣∣ ∂3

∂α3Vαk

(
S̃(xk)

)− ∂3

∂α3Va

(
S̃(x)

)∣∣∣∣≥ ε− ε

N
− ε

2
≥ ε

4
> 0�

On the other hand, if a /∈ [αk�αk + ν) for any k, then | ∂i

∂αi
V |> ε

N
for some i = 0�1�2�3 by

construction.
The only remaining issue is that m̃ is not C3 because ηK is not continuous at αk and

αk + ν for k= 0�1� � � � �K − 1. However, it is easy to construct a continuous η close to ηK

that fixes this problem.13

Next, we argue that Y3(y) is open. As shown in Proposition 8, Conditions B2.1, B2.2,
and B2.3 taken together imply that the equilibrium path s(x� t) will be given by either a
smooth path with e(x) > 0 for all x ∈ (x∗� y] or a smooth path up to some y0 followed by
a finite sequence of jumps and stops with stops at y1� y2� � � � � yl. It is enough to show that
e′ is continuous in m′′′, which follows from the arguments in Proposition 8, and that yi is
continuous in m′′′ for i = 1�2� � � � � l, which is elementary (in fact, yi is continuous in m′).

Finally, we argue that Y3(y) is dense. Take m ∈ X3 and ε > 0. Because Y5(y) is
dense, there is m̂ ∈ B(m�ε) ∩ Y5(y). Because Y5(y) is open, there is ε′ > 0 such that
B(m̂� ε′)⊆ B(m�ε)∩Y5(y). Next, we claim that there is ˆ̂m ∈ B(m̂� ε′)∩Y3(y), which com-
pletes the proof. This can be shown by construction. If ê(x) > 0 for all x ∈ [x∗� y], we are
done. If not, ŝ induces a policy path that is continuous up to some y0 and then features
a sequence of jumps and stops with stops at y1� y2� � � � � yl. (By the arguments in Propo-
sition 8, this sequence cannot be infinite.) If Condition B2.3 holds at y1� � � � � yl, we are
done. If not, suppose WLOG that it first fails at yl. m̂ can be perturbed near yl to obtain
m̂2 ∈ B(m̂� ε′) that satisfies Condition B2.3 at y1� � � � � yl. Similarly, if m̂2 first fails Condi-
tion B2.3 at some yl′ > yl, we can construct m̂3 ∈ B(m̂� ε′), a perturbation of m̂2 near yl′ ,
that satisfies Condition B2.3 up to yl′ . If this process stops in a finite number of steps, we
are done. If not, let m̂∞ be the pointwise limit of (m̂k)k. m̂∞ must feature an infinite se-
quence of vertex points y1 < y2 < · · · with yl −−−→

l→+∞
y∗ ≤ y , but, as m̂∞ ∈ Y5(y), m̂∞ satisfies

Condition B2.2, leading to a contradiction. Q.E.D.

COROLLARY 3: The set Y3 ⊆ X3 of functions for which Conditions B2.2 and B2.3 hold in
[x∗�x∗∗] is a residual set.

CLAIM 5: In the case of quadratic utility, the set of functions m for which Condition B2.2
holds for x ∈ (x∗�x∗ + d) is prevalent.

PROOF: The result follows from Theorem 3 in Hunt, Sauer, and Yorke (1992). Follow-
ing their notation, take M = {y ∈ R

4 : 2y3−1
y1−y2

+ y4
y3

= 0} and Z = {y ∈ R
5 : (y1� y2� y3� y4) ∈

M and 2y4(y1−y2)−2y3(1−y3)

(y1−y2)
2 + y5y3−y2

4
y2

3
= 0}. We need to check that M is a manifold of codi-

mension 1, and that the projection π : M −→ R given by y �−→ y1 is a submersion; both

13WLOG, take a= αk. If Va(S(x
−)) > 0, it is easy to perturb ηK to make it continuous at a without violating

Condition B2.2. If not, but Vã(S(x̃
−)) > 0 for ã < a arbitrarily close to a, we can perturb ηK at one such

ã instead. If Vã(S(x̃
−)) = 0 for all ã < a close to a, but ∂2

∂α2 V is nonzero close to a, we can do the same

argument. If ∂2

∂α2 V is also zero in an interval to the left of a, then Condition B2.2 would be violated for ã < a,
a contradiction.
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follow from the implicit function theorem. Finally, we need to check that Z is a zero set
in M ×R, which can also be shown using the implicit function theorem. Theorem 3 from
Hunt, Sauer, and Yorke (1992) then implies that the set of functions m for which there is
an x such that

e(x) = 2m′(x)− 1
x−m(x)

+ m′′(x)
m′(x)

= 0

= 2m′′(x)
(
x−m(x)

)− 2m′(x)
(
1 −m′(x)

)
(
x−m(x)

)2 + m′′′(x)m′(x)−m′′(x)2

m′(x)2 = e′(x)

is shy, that is, its complement is prevalent. Q.E.D.

I conjecture that Conditions B2.2 and B2.3 hold in a prevalent set even for general
utility functions, but this is hard to prove.

APPENDIX D: OTHER EQUILIBRIA

The discrete-time model in Section 2 may admit MVEs other than 1-equilibria. We
discuss two possible types here: k-equilibria (kE), which are composed of k interleaved
sequences, and continuous equilibria. For brevity, we present our analysis for the model
in Section 5.

DEFINITION 4: Let s be a MVE on [x∗�x∗∗]. s is a k-equilibrium if there is a sequence
(xn)n∈Z such that xn+1 < xn for all n, xn −−−→

n→−∞
x∗∗, xn −−→

n→∞
x∗, and s(x) = xn+k if x ∈

[xn�xn−1). s is a continuous equilibrium if it is an MVE and continuous.

Figure 5 shows a 2E (5(b)) compared to a 1E (5(a)). Although kEs and continuous
equilibria do not exhaust the set of possible equilibria, studying them sheds light on the
general behavior of non-1Es. Our main conclusion will be that the existence of these
equilibria is not robust in any sense analogous to what is shown in Propositions 5 and 6
for 1Es. This is why the paper does not focus on them.

We first note that, when m is linear14 and u is quadratic, we can explicitly find kEs for
all k, as well as a continuous equilibrium.

FIGURE 5.—Equilibria for uα(x) = C − (α− x)2, m(x) = 0�7x, δ = 0�7.

14We can construct densities f such that m(x)= ax for x ∈ [−d�d]. For example, for a continuous f symmet-
ric around x= 0, take f (y)= 1 − 1−a

d
y for y ∈ [0�d] and f (y)= a+ (1 − a)(2a2 + 1)− (1−a)(2a2+1)

d
y thereafter.
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PROPOSITION 9: Let uα(x) = C−(α−x)2 and m(x) = ax for x ∈ [−d�d]. Assume δ≥ 2
3

and a ∈ ( 1
2 �1). Then, for each k and x < d, there is a kE sk restricted to [−d�d] such that

x0 = x, given by xn = γn
kx, where γk ∈ (0�1). There is also a continuous equilibrium s∞ given

by s∞(x) = γ∞x. γk
k is decreasing in k and γk

k → γ∞.

PROOF OF PROPOSITION 9: Given k ≥ 1, assume a kE of the form s(xn) = γk
kxn. Since

s(xn) = xn+k but s(xn − ε) = xn+k+1, m(xn) must be indifferent between xn+k and xn+k+1.
This implies

−
∑

δt(axn − xn+(t+1)k)
2 = −

∑
δt(axn − xn+(t+1)k+1)

2�∑
δt
(
a− γ(t+1)k

)2 =
∑

δt
(
a− γ(t+1)k+1

)2
�

γk(1 + γ)

1 − δγ2k = 2a
1 − δγk

�

We now argue that the expression γk−δγ2k

1−δγ2k is increasing in γ. It is equivalent to show that
x−δx2

1−δx2 is increasing in x for x ∈ [0�1]. This is true because x− δx2 ≤ 1 − δx2 but 1 − 2δx >

−2δx, so the log-derivative of x−δx2

1−δx2 is positive. Hence, (γk−δγ2k)(1+γ)

1−δγ2k is also increasing in γ,
and equals 2a for a unique value of γ which we denote γk ∈ (0�1).

Denote Ak(x) = (x−δx2)(1+x
1
k )

1−δx2 . Then Ak(γ
k
k) = 2a for all k, and Ak(x) is increasing in x

and k. It follows that γk
k is decreasing in k.

We now show that the constructed sk supports an MVE. By the same argument given
in Proposition 5 for 1Es, since m(xn) is indifferent between S(xn+k) and S(xn+k+1), all
α > m(xn) strictly prefer S(xn+k) to S(xn+k+1), and α < m(xn) strictly prefer S(xn+k+1).
Hence, m(xn) prefers S(xn+k) to S(xr) for all r �= n+ k.

Next, we show that m(xn) prefers xn+k to other policies x /∈ (xn)n. We do this in two
steps. First, we argue that γk+1 > a, which implies xn+k+1 >m(xn). Second, we note that
this yields our result by the same argument as in Proposition 5. For the first part, note that
γk+1 > a iff

(
γk + γk+1

)(
1 − δγk

)
< 2γk+1

(
1 − δγ2k

)
⇐⇒ (1 − γ) < δ

(
γk
(
1 − γk+1

)+ γk+1
(
1 − γk

))
⇐⇒ 1 < δ

(
γk + 2γk+1 + · · · + 2γ2k

)
�

Note that Ak is decreasing in δ, so γ is increasing in δ and a. Hence the worst case is
δ = 2

3 , a = 1
2 . Now suppose k = 1. Then the required inequality is 1 < 2

3(γ + 2γ2), which
holds if γ ≥ 2

3 , so it is enough to verify 1 >A1(
2
3)= 50

57 . If k ≥ 2, then it is enough to satisfy
1 < 2

3(γ
k + 4γ2k), which is true if γk ≥ 1

2 . We then check that 1 >Ak(
1
2). Because Ak is

increasing in k, it is enough to check 1 > limk→∞ Ak(
1
2)= 4

5 .
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Finally, we construct a continuous equilibrium. In general, s must solve

s(x) = arg max
y

∞∑
t=0

δt
(
C − (m(x)− st(y)

)2)

=⇒ 0 =
∞∑
t=0

δt

(
−2
(
m(x)− st(y)

) t−1∏
i=0

s′(si(y))
)

if s is smooth. Since m(x) = ax, we look for a solution of the form s∞(x) = γx:

∞∑
t=0

δt

((
a− γt+1

) t−1∏
i=0

γ

)
=

∞∑
t=0

δt
((
a− γt+1

)
γt
)= 0�

whence a
1−δγ

= γ

1−δγ2 . By similar arguments as before, this equation has a unique solution

γ∞ ∈ (0�1) and γk
k → γ∞ because Ak(x) −−→

k→∞
x−δx2

1−δx2 . Finally, ∂Um(x)(S(y))

∂y
|y=y0 > 0 (<) for

y0 < s(x) (>) follows from combining Assumption A2 with the fact ∂Um(x)(S(y))

∂y
|y=s(x) = 0

∀x. Hence y = s(x) maximizes Um(x)(S(y)). Q.E.D.

In the general case, however, kEs for k > 1 and continuous equilibria may not exist.
The issue is the following. Suppose that a kE sk exists in a right-neighborhood of a stable
steady state, [x∗�x∗ + ε) (even this is not guaranteed in general). sk can then be extended
at least to [x∗�x∗ + d+

x∗ ] (Lemma 10), but its extension may fail to be a kE. Similarly,
the unique extension of a continuous equilibrium may have discontinuities; whether this
happens depends on arbitrarily small details of m.

Here is an intuition. Assume uα(x) = C − (α − x)2, δ > 2
3 , a > 0�5, and m̃(x) =

ax + a
4 max(c − |x − x′|�0), where c > 0 is small. We are in the linear case, except m̃

has a small “bump” around x′. Let s be a 2E for m(x) = ax such that x0 = x′, and let
s̃ be a 2E for m̃ such that x̃n = xn for n > 0. As m(x0) and m̃(x̃0) must both be indif-
ferent between S(x2) and S(x3), m(x0) = m̃(x̃0), but m̃(x0) > m(x0), so x̃0 < x0. Mean-
while, x̃−1 = x−1. But m(x̃−2), being indifferent between S̃(x̃0) and S(x1), must be lower
than m(x−2) because x̃0 being lower makes the former path more attractive than S(x0),
so x̃−2 is lower. On the other hand, x̃−3 > x−3 because it is defined by indifference be-
tween S(x−1) and S̃(x̃0) (more attractive than S(x0)). Continuing in this fashion, the sub-
sequence (x̃0� x̃−2� x̃−4� � � �) is lower than (x0�x−2� � � �), and the opposite is true for the odd
elements. Eventually, x̃2l < x̃2l+1 for some l, that is, the even subsequence becomes so at-
tractive that a voter m(x̃2l+1), though indifferent between S̃(x̃2l+3) and S̃(x̃2l+4), instead
prefers S̃(x̃2l+2) to both, so no one votes for x2l+3.
kEs for k > 1 are unstable for this reason. We now give a local argument to this effect.

Let En = (1−δ)
∑∞

t=0 δ
txn+tk, Wn = (1−δ)

∑∞
t=0 δ

tx2
n+tk, and characterize a kE recursively

as follows, using the indifference of m(xn) between Sn+k and Sn+k+1, that is, −(m(xn) −
En+k)

2 −Wn+k = −(m(xn)−En+k+1)
2 −Wn+k+1:

En = (1 − δ)xn + δEn+k = (1 − δ)m−1

(
1
2
Wn+k −Wn+k+1

En+k −En+k+1

)
+ δEn+k�

Wn = (1 − δ)x2
n + δWn+k = (En − δEn+k)xn + δWn+k�
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Taking Yn = (En� � � � �En+k+1�Wn+1� � � � �Wn+k+1) as the state variable of the recursion, its
linearization around an equilibrium is given by Yn = MnYn+1, where

Mn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 � � � 0 A B 0 � � � 0 C D
1 0 · · · 0
0 1 · · · 0
���

���
� � �

���
0 0 · · · 1

0
0
���
0

0 0 · · · 0 0
0 0 · · · 0 0
���

���
� � �

���
���

0 0 · · · 0 0
2x 0 � � � 0 −2δx 0 0 � � � 0 δ

0 0 · · · 0
0 0 · · · 0
���

���
� � �

���
0 0 · · · 0

0
0
���
0

1 0 · · · 0 0
0 1 · · · 0 0
���

���
� � �

���
���

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

}
1⎫⎪⎪⎬
⎪⎪⎭k

}
1⎫⎪⎪⎬
⎪⎪⎭k− 1

where x= xn+1; B = ∂En

∂En+k+1
, D = ∂En

∂Wn+k+1
, and so on. Note that

det(Mn) = −δB − 2δxn+1D= δ(1 − δ)
xn+1 −m(xn)

m′(xn)(En+k −En+k+1)
�

det(Mn � � �Mn−k+1)≥ δk(1 − δ)k
[

min
0≤l≤k−1

(
xn−l+1 −m(xn−l)

m′(xn−l)

)]k 1
k−1∏
l=0

(En−l+k −En−l+k+1)

≥ δk(1 − δ)k
[

min
0≤l≤k−1

(
xn−l+1 −m(xn−l)

m′(xn−l)

)]k
kk

(En+1 −En+k+1)
k

= δk

[
min

0≤l≤k−1

(
xn−l+1 −m(xn−l)

m′(xn−l)

)]k
kk

(xn+1 −En+k+1)
k
�

where we have used the AM-GM inequality. Now, if δ is close to 1 and the equilibrium is
close to a CLS in the sense of Proposition 6, then x−m(x)

m′(x)(x−E(S(s(x))))
≈ 1 (see Appendix B) and

det(Mn � � �Mn−k+1) ≈ kk. (In particular, these statements hold with equality for the linear
case we have solved above.) Hence there must be an eigenvalue of absolute value at least
k

k
2k+1 > 1. Thus, any deviation from an equilibrium resulting from a local perturbation of

m which adds a nonzero component to a generalized eigenvector of this eigenvalue (in
the Jordan form decomposition of the matrix) will grow exponentially.

Similarly, in the example given above of a linear m with a bump, a continuous equilib-
rium constructed up to x′ − c would have a discontinuity at s−1(x′). This insight extends
more generally. For brevity, we show this for smooth (C∞) equilibria.

PROPOSITION 10: Assume ua(x)= C−(α−x)2. Let s : [x∗�x∗∗) → [x∗�x∗∗) be a smooth
equilibrium for a given m. Let x0 ∈ (x∗�x∗∗). A perturbation m̃ of m is an increasing function
m̃ =m+ρκ where κ : [x∗�x∗∗)→ [x∗�x∗∗) has support (x0 − ε�x0 + ε). For each m̃, let s̃ be
an equilibrium under m̃ such that s̃|[x∗�x0−ε) = s|[x∗�x0−ε).

Suppose m is C∞. Then, if κ is Ck but its (k+ 1)th derivative has a discontinuity in (x0 −
ε�x0 + ε), s̃ has a discontinuity in [x∗� s−k−1(x0 + ε)] for all ρ �= 0.
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PROOF: Denote E(y)= E(S(y)), W (y)=W (S(y)), and 1
2
∂W (y)

∂E(y)
= L−1(y). Then

s(x) = arg max
y

−m(x)2 + 2m(x)E(y)−W (y) ⇒ m(x) = 1
2
∂W (y)

∂E(y)

∣∣∣∣
s(x)

�

s(x) =
(

1
2
∂W (y)

∂E(y)

)−1(
m(x)

)=L
(
m(x)

)
�

(W �E)(x)= ((1 − δ)x2 + δW
(
L
(
m(x)

))
� (1 − δ)x+ δE

(
L
(
m(x)

)))
�

In particular, W (E) must be a strictly convex function so that s is surjective, and it must
have no kinks, that is, s must be strictly increasing (if s is locally constant at x, it will be
discontinuous at s−1(x) as long as s(y) > m(y) in this area), so L−1 and L are strictly
increasing and well-defined.

Now suppose E is Cl+1 around s(s(x)) but s has a (l + 1)-kink at s(x), that is, it is Cl+1

in (s(x) − η� s(x)) ∪ (s(x)� s(x) + η) but only Cl in (s(x) − η� s(x) + η). Then s′ has a
l-kink at s(x). Since

∂W (y)

∂E(y)
=

∂W (y)

∂y
∂E(y)

∂y

= 2(1 − δ)y + δW ′(s(y))s′(y)

(1 − δ)+ δE′(s(y))s′(y)

= W ′(s(y))
E′(s(y)) +

(1 − δ)

(
2y − W ′(s(y))

E′(s(y))
)

1 − δ+ δE′(s(y))s′(y)
= 2m(y)+ (1 − δ)

(
2y − 2m(y)

)
1 − δ+ δE′(s(y))s′(y)

�

L−1 has a l-kink at s(x); L has a l-kink at m(x); and s has a l-kink at x.
Then, if κ has a (k+ 1)-kink at x, then m̃ has a (k+ 1)-kink at x; s̃ has a (k+ 1)-kink

at x; s̃ has a k-kink at s̃−1(x); . . . and s̃ has a discontinuity at s̃−k−1(x). Q.E.D.

A similar result holds even for smooth perturbations.

PROPOSITION 11: Assume ua(x)= C−(α−x)2. Let s : [x∗�x∗∗)→ [x∗�x∗∗) be a smooth
equilibrium for a given m with m′ ≥A> 1

2 everywhere. Let z ∈ (x∗�x∗∗) and z′ = s(z). Given
a smooth function κ : [x∗�x∗∗) → [x∗�x∗∗) with support contained in [z′� z] and ρ ∈ R, let
mρ = m + ρκ, and let sρ be the unique equilibrium under mρ that equals s within [x∗� z′], if
it exists. Then there exists κ such that sρ is discontinuous for all ρ �= 0.

PROOF: Pick K ∈ N and define a set of 2K sequences (yni) (n ∈ Z, i ∈ {1� � � � �2K}) as
follows. y01 = z′, y0(2K) = z, (y0i)i is an arithmetic sequence, and, for all n, i, y(n+1)i = s(yni).

Let κ̃ be a nonnegative C∞ function with support [0�1] such that κ̃( 1
2) = 1. Define

κ(x) = ∑
i≤2K odd κ̃(

x−y0i
y0(i+1)−y0i

), so that κ has a copy of κ̃ “squeezed” into each interval
[y0i� y0(i+1)] for i odd. Any such κ will work.

We write W (E) to denote W (E−1(E)), Wρ to denote W with perturbation ρκ, etc. As-
sume ρ > 0. It is easy to show that sρ(x)≡ s(x) for x ∈ [yni� yn(i+1)] for all n and even i, and
sρ(x) > s(x) for x ∈ [y0i� y0(i+1)] for odd i (because sρ(x) = s(y) whenever mρ(x) =m(y)).
In addition, Wρ(E) < W (E) for x ∈ [E(y0i)�E(y0(i+1))] for odd i, since ∂W

∂E
(y) = 2m(y)
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but, for a path (xt)t , decreasing x0 by ε decreases E((xt)t) by (1 − δ)ε and W ((xt)t)) by
(1 − δ)ε(2x0 − ε), that is, �W

�E
≈ 2x0 > 2m(x0).

For odd i, let �W0i = maxE∈[E(y0i)�E(y0(i+1))][W (E)−Wρ(E)], and denote by Ẽ0i the argmax.
Then there must be a point Ê0i ∈ [E(y0i)�E(y0(i+1))] for which ∂W

∂E
(Ê0i) − ∂Wρ

∂Eρ
(Ê0i) ≥

�W0i
E(y0(i+1))−E(y0i)

.

Let ý be such that 2m(ý) = ∂W
∂E
(Ê0i) and ỳ be such that 2m(ỳ) = ∂Wρ

∂Eρ
(Ê0i). Then

ý − ỳ ≥ 1
2m′

�W0i
E(y0(i+1))−E(y0i)

. Then, denoting È = Eρ(ỳ) and É = Eρ(ý), Wρ(È) = (1 − δ)ỳ2 +
δWρ(Ê0i) ≤ (1 − δ)ỳ2 + δW (Ê0i), and W (È) ≥ W (É) − (É − È) ∂W

∂E
(É) = (1 − δ)ý2 +

δW (Ê0i)− (É− È)2m(ý). Also note that ỳ > s(ý) >m(ý) and y −E(s(y))≥ 2(y −m(y))
for all y . Hence

�W1i ≥ W (È)−Wρ(È) ≥ (1 − δ)(ý − ỳ)
(
ý + ỳ − 2m(ý)

)
≥ 1 − δ

2m′

[
ý −m(ý)

E(y0(i+1))−E(y0i)

]
�W0i�

∏
i

�W1i ≥
[

1 − δ

2m′

]K∏
i

[
ýi −m(ýi)

E(y0(i+1))−E(y0i)

]∏
i

�W0i

≥
[
(1 − δ)K

2m′

]K∏
i

[
ýi −m(ýi)

E(y0(2K))−E(y01)

]∏
i

�W0i

≥
[

K

4m′

]K∏
i

[
ýi −m(ýi)

y0(2K) −m(y0(2K))

]∏
i

�W0i ≥
[

K

8m′

]K∏
i

�W0i�

If we choose K > 8m′, iterating this argument, we find that there must be n, i (possibly
functions of ρ) for which �Wni > (x∗∗ − x∗)2, a contradiction. Q.E.D.

It follows that, if m|[x∗�z) admits a smooth equilibrium s, then the set of extensions of m
to [x∗�x∗∗) that admit a smooth extension of s to [x∗�x∗∗) is shy. I conjecture that ∀ε > 0,
the set of m’s admitting a smooth equilibrium on [x∗�x∗ + ε] is also shy.

Non-Monotonic Equilibria

Proposition 3 shows that MVEs must be monotonic in a neighborhood of a stable steady
state, and 1Es are monotonic everywhere. However, non-monotonic MVEs may exist; we
provide an example here. Assume that uα(x) = C − (α − x)2 and let d = √

C = d−
x = d+

x

for all x. In addition, suppose that m(x) = x − ρd for all x ∈ R, where ρ ∈ [ 1
2 �1) is a

parameter.15 For simplicity, we will take the MVT as a primitive, that is, we will analyze
the game in which m(x) picks s(x).

Assume δ = 0. Then s(x) = m(x), so S(s(x)) = (x − ρd�x − 2ρd�x − 3ρd� � � �). Cru-
cially, x− ρd�x− 2ρd ∈ (m(x)− d�m(x)+ d) but x− 3ρd /∈ (m(x)− d�m(x)+ d).

15m can be obtained as a median voter function if f (x) = ke−ρ̂x for an appropriately chosen ρ̂ > 0. This is a
degenerate example in the sense that there is an infinite mass of voters distributed on the real line, as opposed
to a unit mass with support [−1�1], but it allows for a simpler construction.
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Now, suppose that δ is small but positive. Assume a successor function s1 of the form
s1(x) = x− ρd +η1 with η1 small, such that s2

1(x) >m(x)− d but s3
1(x) <m(x)− d. For

s1 to be an equilibrium, η1 must maximize

um(x)(x− ρd +η)+ δum(x)

(
s1(x− ρd +η)

)= C(1 + δ)−η2 − δ(ρd −η1 −η)2

=⇒ η1 = δ

1 + 2δ
ρd�

Note that, since η1 > 0, this calculation will be invalid for ρ close enough to 1
2 , as in fact

we will then have s3
1(x) >m(x)− d.

Next, assume a successor function s2(x)= x−ρd+η2 with η2 such that s3
2(x) >m(x)−

d but s4
2(x) <m(x)− d. For s2 to be an equilibrium, we must have

η2 = arg max
η′

um(x)

(
x− ρd +η′)+ δum(x)

(
s2

(
x− ρd +η′))+ δ2um(x)

(
s2

2

(
x− ρd +η′))

=⇒ η2 = δ+ 2δ2

1 + 2δ+ 3δ2ρd�

Now suppose that s2 is being played, and x considers deviating to some η3 such that
s2

2(x− ρd +η3) <m(x)− d. The (locally) optimal η3 must satisfy

−2η3 − 2δ(η3 +η2 − ρd)= 0 =⇒ η3 = δ

1 + δ
(ρd −η2) = δ

1 + δ

1 + δ+ δ2

1 + 2δ+ 3δ2ρd�

Note that η2 > η1 > η3 > 0. In particular, since η2 > η3, we can choose ρ, δ so that
x − 3ρd + 3η2 > m(x) − d > x − 3ρd + η3 + 2η2. Furthermore, we can choose them
so that Um(x)(S2(x − ρd + η3)) = Um(x)(S2(x − ρd + η2)).16 If we choose our parameters
this way, then m(x) is indifferent about deviating (this is true for all x). Now construct
a successor function s as follows: s(x) = s2(x) for all x < x0; s(x0) = x − ρd + η3; and
s(x) for x > x0 is defined by backward induction. This is a non-monotonic equilibrium by
construction. While this example relies on indifference, we can adjust m to make it strict.

APPENDIX E: ADDITIONAL RESULTS

E.1. Supermajority Requirements and Other Decision Rules

We assume as part of our solution concept that chosen policies are Condorcet winners.
The analysis readily extends to other decision rules. We briefly discuss two.

First, suppose that, given a policy x and a set of members I(x), an unmodeled politi-
cal process gives some agent n(x) the right to choose tomorrow’s policy. (For example,
the function n(x) might reflect the notion that the policy x affects the relative power of
different agents within the organization.) All the results extend to this case, substituting
n(x) for m(x), even if n(x) is not a median voter function.

Second, consider an organization with a bias toward inaction in which policy changes
require a supermajority ρ > 1

2 . Define mp(x) as the pth percentile-member of I(x), and

16This follows from a continuity argument: when s2
2(x − ρd + η3) = m(x) − d, Um(x)(S2(x − ρd + η3)) <

Um(x)(S2(x−ρd+η2)), whereas when s2
2(x−ρd+η2)=m(x)−d, then Um(x)(S2(x−ρd+η3)) > Um(x)(S2(x−

ρd+η2)), so we can choose intermediate values of ρ, δ for which Um(x)(S2(x−ρd+η3)) =Um(x)(S2(x−ρd+
η2)).
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assume that a policy y > x can only be chosen over the current policy x if m1−ρ(x) votes
for it, while a change to y < x is only possible if mρ votes for it. It follows that, in inter-
vals where x > mρ(x), the game is equivalent to the main model with n(x) = mρ(x); in
intervals where x < m1−ρ(x), it is equivalent to setting n(x) = m1−ρ(x); and in intervals
where m1−ρ(x) < x <mρ(x), no policy changes are possible. In other words, steady states
are now intervals rather than points, and we will observe lower policy drift, but the gist of
the results is unchanged.

E.2. Positive Entry and Exit Costs

The main model assumes free entry and exit. This assumption adds a lot of tractability,
but is rarely exactly true in a descriptive sense. Here, we demonstrate that our results
are also relevant in a setting with positive entry and exit costs. We begin by considering a
variant of the game with only entry costs: every time an outsider chooses to join the club,
she must pay a cost c > 0.

A full extension of the results to this case is difficult because the introduction of entry
costs adds intertemporal concerns to entry and exit decisions: agents considering entry
now need to think about what the policy will be several periods from now, whether they
will want to leave later, etc. Relatedly, agents with identical preferences may behave dif-
ferently depending on their current status: if the policy x is stable over time, and an agent
α’s flow payoff from membership, uα(x), is positive but very small, then α would choose
to remain in the club if she is already a member but not bother entering otherwise. As a
result, the club’s current policy is no longer the only payoff-relevant state variable; It is
now an (infinite-dimensional) state variable as well.

In spite of this, the main thrust of the paper’s results—namely, that the club should
converge to a myopically stable policy—still carries over in this model if we impose some
reasonable simplifications. Concretely, we will assume the following:

(i) As in Section 4, we restrict the analysis to [x∗�x∗∗], the right side of the basin of
attraction of a stable steady state x∗.

(ii) Assume xt+1 ≤ xt for all x ∈ [x∗�x∗∗], that is, the policy cannot move to the right.
(iii) Assume an initial x0 ∈ [x∗�x∗∗] such that ux0−dx0

(x∗) ≥ (1 − δ)c. In other words,
x0 is close enough to x∗ that all agents who might consider joining the club as the
policy moves left from x0 will strictly prefer not to quit later.17

(iv) Assume an initial set of members I0 = I(x0).
(v) Voting behavior at time t can condition on It only up to a set of measure zero, that

is, if I1, I2 differ by a set of Lebesgue measure zero, then s(I1)= s(I2).
An MVE of this game is given by mappings s(I) and I(x� I ′) satisfying the above con-

ditions such that I reflects optimal entry and exit decisions given current policy x, an
existing set of members I ′, and the expected continuation; and S(s(I)) is a Condorcet
winner among all S(y) for the set of voters I.

It turns out that the set of equilibria of this game corresponds exactly to the set of equi-
libria of a game with free entry and exit but modified utility functions. Let G(u� c) denote
the game just described, with cost of entry c and utility functions uα(x). Let G(v�0) de-
note the game with free entry and exit and utility functions vα(x) given by vα = uα for
α≥ x0 − dx0 and vα = uα − (1 − δ)c for α< x0 − dx0 .

17Effectively, this means we find equilibria restricted to [x∗�x0].
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PROPOSITION 12: In any MVE (s� I) of G(u� c), I(x� I ′) = Iv(x) for all (x� I ′) on the
equilibrium path.

For any MVE (s� I) of G(u� c), there is an MVE s̃ of G(v�0) given by s̃(x) = s(Iv(x)).
Conversely, for any MVE s̃ of G(v�0), there is an MVE (s� Ĩ) of G(u� c) given by s(I) =
s̃(mv(I)) and Ĩ(x� I ′)= Iv(x).

PROOF: For the first claim, suppose (xt� It)t is an equilibrium path, and assume that
It = Iv(xt). We aim to show that It+1 = Iv(xt+1).

There are four types of agents to consider. First, suppose α /∈ It and α> xt , that is, α is
an outsider with a policy preference to the right of xt . Then α /∈ Iv(xt), that is, uα(xt) < 0,
so uα(xt+1) ≤ uα(xt) < 0, whence α /∈ Iv(xt+1). Moreover, since uα(xs) < 0 for all s ≥ t, α
should not join the club at time t + 1, that is, α /∈ It+1.

Second, suppose α ∈ It and α≥ x0 −dx0 . Then α is an incumbent member at time t + 1,
and will choose to remain a member iff uα(xt+1) ≥ 0, which is also the condition that
determines whether α ∈ Iv(xt+1) as uα = vα for this agent.

Third, suppose α ∈ It and α < x0 − dx0 . Since α ∈ It , α is an incumbent member at
time t + 1. Since α < x0 − dx0 , we have uα(xs) ≥ (1 − δ)c > 0 for all s ≥ t. This means
both that α will choose to remain a member forever (in particular, at time t + 1) and that
α ∈ Iv(xt+1).

Fourth, suppose α /∈ It and α < xt , that is, α is an outsider with a policy preference
to the left of xt . Then α should join at time t + 1 iff uα(xt+1) ≥ (1 − δ)c, that is, iff α ∈
Iv(xt+1).18 Since G(u� c) has the same membership behavior as G(v�0), the two games
are equivalent, so the sets of equilibrium successor functions are the same. Q.E.D.

As for the case of positive exit costs, it can be shown that, with a positive exit cost c′ > 0,
the game G(u� c� c′) is still equivalent to a game with free entry and exit, except that now
the relevant utility functions are vα = uα +(1−δ)c′ for α≥ x0 −dx0 and vα = uα −(1−δ)c
for α< x0 − dx0 .

We can apply Propositions 2 and 3 to G(u� c� c′) to determine the organization’s long-
run policy in this setting. Let mv(y) = m(Iv(y)), and note that mv(y) ≥ mu(y) for all y ∈
[x∗�x0]. Let y∗(c� c′� δ) be the highest y ∈ [x∗�x0] for which mv(y

∗) = y∗. Then it follows
that xt → y∗ for any equilibrium path (xt� It)t .

A few interesting observations can be made. First, y∗ > x∗: the existence of entry and
exit costs affects the long-run policy, as some marginal agents near x∗ − d−

x∗ never enter,
or some agents near x∗ + d+

x∗ never exit. Second, y∗ is a function of δ, unlike x∗; this is
because the entry and exit decisions of marginal agents now involve intertemporal trade-
offs. Third, it can be shown that y∗(c� c′� δ) → x∗ as c� c → 0, or as δ → 1 if we take c, c′

as fixed. That is, small entry and exit costs only have a small effect on the organization’s
long-run policy, and even sizable costs matter less and less as agents become more patient,
as they only have to be paid once.

E.3. Non-Markov Equilibria

The restriction to Markov equilibria may appear restrictive: allowing strategies to con-
dition only on the current policy prevents agents from doling out history-dependent re-
wards and punishments in ways that might be plausible in some applications. This section
discusses the set of non-Markov equilibria of the game.

18In all of these arguments, α expects the equilibrium path not to change as a function of her behavior,
because her joining or leaving the club amounts to a measure zero change to It+1.
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We make two main points. First, if non-Markov equilibria are allowed, many outcomes
are possible; under some conditions, an “anything goes” result is obtained. Thus, no
strong predictions can be made if we take SPE as our solution concept. Second, there are
several substantively plausible perturbations of the game which rule out all non-Markov
equilibria. Taken together, the results suggest that Markov equilibria are the most sensible
to study in this setting.

For simplicity, we restrict our analysis in the following ways. First, as in Section 4, we
restrict our analysis to [x∗�x∗∗), the right side of the basin of attraction of a stable steady
state x∗. Second, we write the results for the framework given in Section 5, which avoids
some non-essential technical issues related to entry and exit. Third, we assume the MVT
as a primitive, that is, we study a game in which, given a current policy x, m(x) directly
chooses tomorrow’s policy.19 Recall our definition of reluctant agents from Section 4, and
say m(x) is very reluctant if she is reluctant and (1 −δ)um(x)(x

′)+δum(x)(z(x
′))≤ um(x)(x)

for all x′ ∈ (z(x)�x).

PROPOSITION 13: If every x ∈ [x∗�x∗∗) is very reluctant, then, for every weakly decreasing
path (yt)t∈N0 ⊆ [x∗�x∗∗) such that Um(yt )((yt+1� yt+2� � � �)) ≥ um(yt )(yt )

1−δ
for all t, there is an SPE

with policy path (yt)t .

PROOF: We construct a suitable successor function s(x�T), where T is a payoff-
irrelevant function of the history. T can take on the values 0, 1, or 2. s is defined as
follows:

(i) s(yt�0)= yt+1 for all t, and s(x�0)= x for all x /∈ (yt)t ;
(ii) s(x�1)= x;

(iii) s(x�2)= z(x).
Define T0 = 0, and Tτ for τ > 0 according to the following mapping H:

(i) If T = 0 and x = yt , x′ = yt+1 for some t, then H(x�T�x′) = 0;
(ii) else, if x′ /∈ (z(x)�x), H(x�T�x′)= 1;

(iii) else H(x�T�x′)= 2.
In other words, in state 0, the policy follows the intended equilibrium path, (yt)t , and
Tτ remains equal to zero. In state 1, the policy path is constant and Tτ remains equal
to 1. In state 2, the current decision-maker, m(x), chooses the lowest policy that she
weakly prefers to x, and the state then changes to 1. Deviations to myopically attractive
policies (policies that m(x) strictly prefers to x) are punished by switching to state 2, while
deviations to myopically unattractive policies are punished by switching to state 1.

We can verify that this is an SPE. If (xτ�Tτ) = (yt�0) for some t, then m(xτ)’s equilib-
rium continuation utility is Um(yt )(S(yt+1)) ≥ um(yt )(yt )

1−δ
. If she deviates to x′ /∈ (z(xτ)�xτ),

then Tτ+1 = 1 and the continuation is given by xτ′ = x′ for all τ′ > τ, yielding utility
um(yt )(x

′)
1−δ

≤ um(yt )(yt )

1−δ
. If she deviates to x′ ∈ (z(xτ)�xτ), then Tτ+1 = 2 and the continuation

is xτ+1 = x′, xτ′ = z(x′) for all τ′ > τ + 1, yielding utility um(yt )(x
′) + δ

1−δ
um(yt )(z(x

′)) ≤
um(yt )(yt )

1−δ
.

If (xτ�Tτ)= (x�T) with T = 1 or T = 2, then m(x)’s equilibrium continuation utility is
um(x)(x). If she deviates to x′ /∈ (z(x)�x), she gets utility um(x)(x

′)
1−δ

≤ um(x)(x)

1−δ
. If she deviates

to x′ ∈ (z(x)�x), she gets um(x)(x
′)+ δ

1−δ
um(x)(z(x

′))≤ um(x)(x)

1−δ
. Q.E.D.

19In the model from Section 5, the MVT always holds, so this assumption is only for brevity.
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The condition Um(yt )((yt+1� yt+2� � � �)) ≥ um(yt )(yt) is clearly necessary—otherwise, m(yt)
would deviate to staying at yt forever. What this result shows is that, aside from this
common-sense restriction, anything goes.20 In particular, for each x ∈ [x∗�x∗∗], there is an
SPE with policy path constantly equal to x, so any policy can become an intrinsic steady
state in the right SPE.

However, there are several arguments for focusing on Markov equilibria.
(i) Non-Markovian behavior must be supported by non-Markovian behavior arbitrarily

close to x∗. Moreover, assuming any particular form of Markov behavior in a neighbor-
hood of x∗ collapses the set of equilibria to a single (Markov) equilibrium:

LEMMA 10: Let ε > 0 and s̃ : [x∗�x∗ + ε] → [x∗�x∗ + ε] such that s̃(x) < x for all
x. Let s, s′ be two SPEs on [x∗�x∗∗] such that s(x�h) = s′(x�h) = s̃(x) for all x ∈
[x∗�x∗ + ε] and h, and assume that s and s′ obey the following tie-breaking rule: if the set
arg maxy≤x Um(x)S(y�h) has multiple elements, then s(y) is the highest element of the set.
Then s ≡ s′ and s(x�h) is independent of h.

PROOF OF LEMMA 10: The intuition behind this result is a simple unraveling argu-
ment: suppose two equilibria coincide up to some point x∗ + ε. Then, for y slightly above
x∗ + ε, I(y) will be choosing between successors in [x∗�x∗ + ε], which have the same
continuation in both equilibria, so the same choice will be made. Formally, let

A = {x ∈ [x∗�x∗∗] : ∃ŝ s.t. ∀h�∀y ∈ [x∗�x
]
� s(y�h)= s′(y�h)= ŝ(y)

}
�

and x0 = sup(A). By assumption, x0 ≥ x∗ + ε. Suppose x0 < x∗∗.
There are two cases. First, suppose x0 /∈ A. Then the same proof as in Proposi-

tion 2 shows that um(x0)(x0) < maxy∈[x∗�x0) Um(x0)Ŝ(y), so s(x0�h), s′(x0�h) < x0 ∀h. The
tie-breaking rule then implies s(x0�h) = s′(x0�h) = max(arg maxy∈[x∗�x0)

Um(x0)Ŝ(y)) ∀h,
whence ŝ can be extended to x0, a contradiction.

Second, suppose x0 ∈ A. Then there is a sequence (xn)n such that xn → x0 and xn > x0

∀n such that, for each n, s(xn�hn) > x0 for some history hn, as otherwise the tie-breaking
rule would guarantee that s(xn�h)≡ s′(xn�h) are independent of h.

Note that, for each n, m(xn) always has the option of jumping to any policy z ∈ [x∗�x0],
and that the continuation would be the history-independent path Ŝ(z); hence, the opti-
mality of s requires that Um(xn)(S(s(xn�hn)�hn))≥Um(xn)(Ŝ(z)).

For each n, label the continuation path starting at s(xn�hn) as Sn = (sn0 � s
n
1 � � � �), where

sn0 = s(xn�hn). Let snkn be the first policy in this path that is in [x∗�x0]. Note that
(snkn� s

n
kn+1� � � �) = Ŝ(snkn) is history-independent, and m(xn) always has the option of jump-

ing directly to snkn , so

Um(xn)

(
Ŝ
(
snkn
)) ≤ Um(xn)(Sn)

≤ 1
1 − δkn+1

kn−1∑
t=0

δtum(xn)

(
snt
)

≤ um(xn)(x0)

1 − δ
�

20The condition that all x be very reluctant is a joint condition on u and δ, which is not hard to satisfy. For
example, in the quadratic-linear case given by uα(x)= C − (α− x)2 and m(x)= ax, it holds if 2aδ ≥ 1, that is,
if a > 1

2 and δ is high enough.
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As m(xn) can also choose any z ∈ [x∗�x0], it must be that

max
z∈[x∗�x0]

Um(xn)

(
Ŝ(z)

)≤Um(xn)(Sn)≤ um(xn)(x0)�

By continuity, Um(x0)(Ŝ(ŝ(x0)))≤ um(x0)(x0), which contradicts Proposition 2. Q.E.D.

(ii) Consider a discrete approximation of the problem in which the policy space is re-
stricted to a finite set X . Then, for a generic choice of X = {x1� � � � � xN} ⊆ [−1�1], there
is a unique subgame perfect equilibrium, which is Markov.21 Hence, if we are interested
in equilibria that can be obtained as limits of discrete policy-space equilibria,22 we need
only to study Markov equilibria.

(iii) Consider a variant of the game with a finite number of periods t = 0�1� � � � �T . For
each T , the game has a unique equilibrium sT , which is Markov in (x� t). A limit of such
equilibria as we take T → ∞ may not be Markov in x exclusively, but Propositions 2 and
3 can still be extended to this case, so intrinsic steady states are also ruled out under this
refinement.

Finally, it is worth noting that the MVEs we construct in the main text, which converge
to a myopically stable policy, are strictly preferred by all pivotal decision-makers to an
SPE in which the policy never changes. In other words, the fall down the slippery slope is
desired by agents. More precisely, assume an initial policy x0, and consider an MVE s such
that st(x0) −−→

t→∞
x∗, and an SPE s̃ where the policy remains constant at x0. By Lemma 2,

there is α0 such that all agents to the left of α0 strictly prefer the continuation under s;
since m(x0) has this preference, α0 ≥ m(x0). Consequently, all agents in [x∗�m(x0)]—in
particular, all agents who will be pivotal on the equilibrium path—have the same prefer-
ence. Hence, by focusing on Markov equilibria, we are not ruling out preferable equilibria
that just require mutually desirable coordination on the part of the players to arise.

E.4. Explicit Voting Protocols

Our solution concept assumes that, for a policy y to be chosen by a set of voters I(x),
S(y) must be a Condorcet winner. This assumption is agnostic about the actual voting
process taking place. Here, we discuss two natural microfoundations.

The first is Downsian competition. Suppose that, at each voting stage, there are two
politicians At , Bt who simultaneously propose policies xAt , xBt ; voters observe the two
proposals and then vote for the candidate proposing the policy whose continuation path
they prefer. Assume either that the politicians are short-lived (they are replaced every pe-
riod) or that they play Markov strategies, and they are office-motivated, that is, they ob-
tain R> 0 from winning and zero from losing. An equilibrium of the voting stage is given
by policy proposal strategies xA(I), xB(I) and voting strategies vα(xA�xB) such that: for
each candidate i, offering xi(I) maximizes i’s winning probability given a set of voters I,
and vα(xA�xB)= i if Uα(S(xi)) > Uα(S(x−i)), where S(xi) is the equilibrium continuation
starting at xi. Then the following holds:

21This can be shown by proving Proposition 1 in the discrete case, and then applying backward induction
(Acemoglu, Egorov, and Sonin, 2015). The equilibrium is unique so long as there are no indifferences.

22Formally, denoting sX to be the equilibrium for policy space sX , an equilibrium s is a limit of discrete
policy-space equilibria if there is a sequence (Xn)n such that maxy∈[−1�1] d(Xn� y) −−−→

n→∞ 0, that is, the sets Xn

become arbitrarily fine, and sXn(xn)→ s(x) ∀(xn)n s.t. xn ∈Xn∀n and xn → x.
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REMARK 3: Given an MVE s from the main model, we can construct an MPE
of the Downsian model as follows: xA(I(x)) = xB(I(x)) = s(x) and vα(xA�xB) =
1{Uα(S(xA))>Uα(S(xB))} for all x, xA, xB.

Conversely, for any MPE of the Downsian model in pure strategies, xi(I) must be a
Condorcet winner for every i, I. Moreover, if xA(I)= xB(I) for all I, then s(x)= xi(I(x))
constitutes an MVE of the main model.

In other words, requiring S(s(x)) to be a Condorcet winner among I(x) is equivalent
to assuming Downsian competition at the voting stage, except that we implicitly rule out
situations where there is no Condorcet winner (in which case the Downsian model might
still have equilibria with mixed proposal strategies), and we rule out mixed policy choices
by voters (s(x) is assumed to be deterministic).

Another possible microfoundation is a sequential proposal protocol similar to that used
in Acemoglu, Egorov, and Sonin (2008, 2012). Suppose that, at each voting stage, there
is a period of continuous time [0�1] (this is measured on a different scale from the time
that passes between periods, and no discounting accrues during the voting stage). At each
instant y ∈ [0�1], policy y is proposed to the organization and each voter α casts a vote
vα(y� I) ∈ {0�1}. If a majority votes 1 when y is under consideration, the voting stage ends
and y is chosen; if no policy receives a majority, then the policy next period is equal to
the current policy. Voters are strategic and voting strategies are pure and weakly undom-
inated. Any MVE s from the main model can also be implemented as an equilibrium of
this model.
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