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This online appendix contains: (i) the construction of the continuous extension of
the choice probability function to a domain containing Ω, as mentioned in footnote 11
in the proof of Theorem 1, and (ii) a version of Theorem 1 (called Theorem S1) with
proof that does not require the limit conditions C/C’ of Theorem 1, but involves a slight
strengthening of the continuity conditions B/B’.

APPENDIX S1: CONSTRUCTION OF CONTINUOUS EXTENSION OF CHOICE
PROBABILITY FUNCTION

IN THE PROOF OF THEOREM 1, the definition of q−1(·� a1) in (12) in the main text im-
plicitly assumes that Ω0(a1) equals (or contains) [yL(a1)� yH(a1)]. If however the support
of price and income are discrete, then Ω0(a1) can be a strict subset of [yL(a1)� yH(a1)].
Then q(·� ·) is not defined at the points “in between” the points of support and, therefore,
q−1(·� a1) in (12) is not well-defined. To cover this case, one can extend q(·� ·) to a contin-
uous function qc(·� ·) defined on a rectangle Ωc containing Ω such that (i) qc(·� ·) equals
q(·� ·) on Ω, (ii) qc(·� ·) satisfies the same shape restrictions on Ωc that are satisfied by
q(·� ·) on Ω, and (iii) qc(·� ·) satisfies the limit conditions C of Theorem 1. The proof of
Theorem 1 then holds with Ω, Ω0(·) and q(·� ·) equalling their corresponding extensions
in the case where (P�Y) have discrete support. Here, we provide an explicit construction
that achieves this extension.1

Suppose the support of (P�Y) is the discrete set Ω̄ = {p1� � � � �pM} × {y1� � � � � yN}, with
p1 < p2 < · · · < pM and y1 < y2 < · · · < yN . Suppose the choice probability q(y� y − p),
which is defined for (p� y) ∈ Ω̄, satisfies the shape constraints (A) of Theorem 1, i.e.
q(·� ·) is nonincreasing in the first and nondecreasing in the second argument. We want
to construct an extension of q(·� ·), denoted by qc(y� y − p), which is (i) defined for all
(y� y − p) with p1 ≤ p ≤ pM and y1 ≤ y ≤ yN , (ii) equals q(y� y − p) for (p� y) ∈ Ω̄, and
(iii) satisfies all three conditions A, B, C of Theorem 1. The construction proceeds in
three steps.

Step 1: First, we extend q(·� ·) to the rectangular grid

T = {y1� � � � � yN} ×
N⋃
j=1

M⋃
k=1

{yj −pk}�

To do this, define q̃(·� ·) : T → [0�1] as

q̃(y� y −p)= λL̄(y� y −p)+ (1 − λ)Ū(y� y −p)� (S1)
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1Alternatively, one can construct qc(·� ·) as a smooth, tensor-product polynomial spline with coefficients

chosen to satisfy the shape restrictions and a high enough degree to guarantee that qc(·� ·) passes through the
interpolating points {yj� yj −pj�q(yj� yj −pj) : (yj� yj −pj) ∈Ω}, along the lines of Costantini and Fontanella
(1990).
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where λ ∈ [0�1] is arbitrary, and for any (y� y −p) ∈ T ,

L̄(y� y −p)=

⎧⎪⎪⎨
⎪⎪⎩

sup
(p′�y′)∈Ω̄:y′≥y�y′−p′≤y−p

q
(
y ′� y ′ −p′)

if
{(
p′� y ′) ∈ Ω̄ : y ′ ≥ y� y ′ −p′ ≤ y −p

} �= φ�

0 if
{(
p′� y ′) ∈ Ω̄ : y ′ ≥ y� y ′ −p′ ≤ y −p

} =φ�

Ū(y� y −p)=

⎧⎪⎪⎨
⎪⎪⎩

inf
(p′�y′)∈Ω̄:y′≤y�y′−p′≥y−p

q
(
y ′� y ′ −p′)

if
{(
p′� y ′) ∈ Ω̄ : y ′ ≤ y� y ′ −p′ ≥ y −p

} �= φ�

1 if
{(
p′� y ′) ∈ Ω̄ : y ′ ≤ y� y ′ −p′ ≥ y −p

} =φ�

Note that q̃(·� ·), which is well-defined on all of T , satisfies the shape constraints (A)
of Theorem 1. This is because the set {(p′� y ′) ∈ Ω̄ : y ′ ≥ y� y ′ − p′ ≤ y − p} is decreasing
in y for fixed y − p, and increasing in y − p for fixed y , so L̄(·� ·) is decreasing in the
first and increasing in the second argument; an analogous argument works for Ū(·� ·).
Furthermore, if (p� y) ∈ Ω̄, then

(p� y) ∈ {(
p′� y ′) ∈ Ω̄ : y ′ ≥ y� y ′ −p′ ≤ y −p

}
�

(p� y) ∈ {(
p′� y ′) ∈ Ω̄ : y ′ ≤ y� y ′ −p′ ≥ y −p

}
�

whence the shape restrictions on q(·� ·) imply that L̄(y� y − p) = q(y� y − p) = Ū(y� y −
p), and hence q̃(y� y − p) = q(y� y − p). Note, however, that q̃(·� ·) does not satisfy the
continuity condition (B) and the limit conditions (C) of Theorem 1.

Step 2: The second step is to extend q̃(·� ·) to a continuous function qc(·� ·) on the entire
rectangle [y1� yN] × [y1 −pM�yN −p1], satisfying the shape constraints (A) of theorem 1,
while also satisfying the interpolation conditions qc(y� y−p)= q(y� y−p) for (p� y) ∈ Ω̄.
This is done using bilinear shape-preserving interpolation as follows.

Recall y1 < y2 < · · ·< yN , and define w1 <w2 < · · ·<wJ with J ≤MN to be the ordered
values of the set {y1 −p1� � � � � y1 −pM� � � � � yN −p1� � � � � yN −pM}. We can have J <MN
if for some (j�k) �= (l�m), it holds that yj − pk = yl − pm. For each i = 1� � � �N − 1, j =
1� � � � � J − 1, and for (y� y −p) ∈ [yi� yi+1] × [wj�wj+1], let

αi(y)= y − yi

yi+1 − yi
�βj(w) = w −wj

wj+1 −wj

�

qc(y� y −p︸ ︷︷ ︸
w

)= (
1 − αi(y)

) × (
1 −βj(w)

) × q̃(yi�wj)

+ αi(y)× (
1 −βj(w)

) × q̃(yi+1�wj)

+ (
1 − αi(y)

) ×βj(w)× q̃(yi�wj+1)

+ αi(y)×βj(w)× q̃(yi+1�wj+1)� (S2)

where q̃(·� ·) is defined in (S1).
Step 3: The last step in the construction is to extend qc(·� ·) beyond [y1� yN] × [y1 −

pM�yN −p1] to ensure that the limit conditions (C) of Theorem 1 are satisfied. To do this,
choose any pair of real numbers yL� yH s.t. yL < y1 and yH > yN . Let

D= [yL� yH] × [y1 −pM�yN −p1]�
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For any w ∈ [y1 −pM�yN −p1], define

qc(y�w)=

⎧⎪⎨
⎪⎩

y − yL

y1 − yL
× qc(y1�w)+ y1 − y

y1 − yL
if y ∈ [yL� y1]�

yH − y

yH − yN +p1
qc(yN −p1�w) if y ∈ [yN −p1� yH]�

(S3)

That is for y ∈ [yL� y1], qc(y�w) is the negatively sloped straight line joining qc(y1�w) to
1 ≡ qc(yL�w), and for y ∈ [yN − p1� yH], qc(y�w) is the negatively sloped straight line
joining qc(yN −p1�w) to 0 ≡ qc(yH�w).

Proof that qc(·� ·) : D → [0�1] equals q(y� y − p) for (p� y) ∈ Ω̄ and satisfies conditions
(A), (B), (C) of Theorem 1 To see the first assertion, observe that at the grid points y = yi,
y−p= wj , we get from (S2) that αi(y)= 0 = βj(w), so that qc(y�w)= q̃(yi�wj). We have
already seen that for (p� y) ∈ Ω̄, q(y� y −p)= q̃(y� y −p). Now, since (p� y) ∈ Ω̄ implies
(y� y −p) ∈ T , putting these two conclusions together, we get that for (p� y) ∈ Ω̄, it holds
that qc(y� y −p)= q̃(y� y −p)= q(y� y −p).

As for the continuity condition (B) of Theorem 1, observe that holding fixed w, as
y ∈ [yi� yi+1)↗ yi+1−, we have that αi(y)↗ 1 whence from (S2), it follows that

qc(y�w)↘ (
1 −βj(w)

) × q̃(yi+1�wj)+βj(w)× q̃(yi+1�wj+1)� (S4)

On the other hand, for the same w and for y ∈ [yi+1� yi+2), we have that αi(y) = y−yi+1
yi+2−yi+1

which at y = yi+1 ∈ [yi+1� yi+2) equals 0, whence from (S2) with i replaced by i+1 and i+1
replaced by i+ 2, we get

qc(y�w)= (
1 −βj(w)

) × q̃(yi+1�wj)+βj(w)× q̃(yi+1�wj+1)�

which equals (S4). Therefore, for fixed w, q̃(y�w) is simply a piecewise linear func-
tion of y joined at the end-points y2� � � � � yN−1 and, therefore, continuous in y for
y ∈ [y1� yN]. For y ∈ [yL� yH]\[y1� yN], continuity is obvious from (S3) and the fact that
limy↗y1− qc(y�w) = qc(y1�w) = limy↘y1+ qc(y�w) and limy↗(yN−p1)− q

c(y�w) = qc(yN −
p1�w) = limy↘(yN−p1)+ q

c(y�w). An analogous argument shows that qc(y�w) is also con-
tinuous in w for fixed y (this property is not needed to prove Theorem 1 but is used in
Theorem S1, the alternative version of Theorem 1 without the limiting condition, which
appears below).

The limiting conditions (C) of Theorem 1 are satisfied, since (S3) implies that
qc(yL�w)= 1 and qc(yH�w)= 0 for each w ∈ [y1 −pM�yN −p1].

Finally, to see that the shape restrictions (A) of Theorem 1 hold on [y1� yN] × [y1 −
pM�yN −p1], note from (S2) that the coefficient of y in qc(y�w) equals

1
yi+1 − yi︸ ︷︷ ︸

≥0

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 −βj(w)

)
︸ ︷︷ ︸

≥0

× [
q̃(yi+1�wj)− q̃(yi�wj)

]
︸ ︷︷ ︸

≤0� since yi≤yi+1

−βj(w)︸ ︷︷ ︸
≤0

× [
q̃(yi�wj+1)− q̃(yi+1�wj+1)︸ ︷︷ ︸

≥0� since yi≤yi+1

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≤ 0�
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Similarly, the coefficient of w in qc(y�w) equals

1
wj+1 −wj︸ ︷︷ ︸

≥0

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − αi(y)

)
︸ ︷︷ ︸

≥0

× [
q̃(yi�wj+1)− q̃(yi�wj)

]
︸ ︷︷ ︸

≥0� since wj≤wj+1

+αi(y)︸ ︷︷ ︸
≥0

× [
q̃(yi+1�wj+1)− q̃(yi+1�wj)︸ ︷︷ ︸

≥0� since wj≤wj+1

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≥ 0�

From (S3), it follows that the shape restrictions also hold on [yL� y1] × [y1 −pM�yN −p1]
and on [yN� yH] × [y1 −pM�yN −p1], and thus condition (A) of Theorem 1 holds on all of
[yL� yH] × [y1 −pM�yN −p1].

Thus qc(·� ·) satisfies all three conditions of Theorem 1.

APPENDIX S2: MAIN RESULT WITHOUT CONDITION (C/C’)

The following is a version of Theorem 1 that does not require the technical conditions
C and C’ of Theorem 1, but involves a slight strengthening of the technical condition
B. The proof of this version is considerably longer than that of Theorem 1. The proof
works by constructing an extension Q(·� ·) of q(·� ·) which satisfies properties (A)–(C) of
Theorem 1 although q(·� ·) itself does not satisfy property (C).2

Suppose the support of price P and income Y in the population is [pl�pu] × [yl� yu].
Correspondingly, the support of Y − P is Ω1

defn= [yl −pu� yu −pl]. Pick any a1 ∈ Ω1. Cor-
responding to Y − P = a1, the support of Y = a1 + P is therefore

Ω0(a1)
defn= [

max{pl + a1� yl}︸ ︷︷ ︸
L(a1)

�min{pu + a1� yu}︸ ︷︷ ︸
U(a1)

]
�

Note that by definition, L(·) and U(·) are nondecreasing and continuous. Let Ω =⋃
a1∈Ω1

⋃
a0∈Ω0(a1)

{a0� a1}.

THEOREM S1: For binary choice under general heterogeneity, the following two statements
are equivalent:

(I) The choice probabilities q(y� y − p) , defined above, satisfy that (A) q(·� y − p) is
nonincreasing, and q(y� ·) is nondecreasing; (B) q(·� ·) is continuous.

(II) There exists a pair of utility functions W0(·�η) and W1(·�η) , where the first argument
denotes the amount of numeraire, and ηdenotes unobserved heterogeneity, and a dis-
tribution G(·) of η such that for any (y−p) ∈ Ω1 and correspondingly y ∈ Ω0(y−p),

q(y� y −p)=
∫

1
{
W0(y�η) ≤W1(y −p�η)

}
dG(η)�

where (A’) for each fixed η, W0(·�η) and W1(·�η) are nondecreasing; (B’) for each
fixed η, W0(·�η) and W1(·�η)are continuous, and for any (a0� a1) ∈ Ω, it holds that∫

1{W0(a0�η) ≤W1(a1�η)}dG(η) is continuous in (a0� a1).

2The case where (P�Y) have a discrete support is handled in exactly the same way as in Theorem 1 with
two small modifications: (a) Step 3 in the construction immediately above is not required, and (b) continuity
of qc(·� ·) in the second argument is guaranteed by the construction in Step 2.
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Discussion of assumptions: Relative to Theorem 1, conditions (C/C’) are omitted, and
condition (B/B’) is strengthened to continuity in both arguments. Note that under mono-
tonicity in any one argument, the joint continuity of q(·� ·) is equivalent to coordinate wise
continuity; cf. Kruse and Deely (1969).

To prove Theorem S1, we will utilize several lemmas.

LEMMA S1—Apostol (1974, Ex 4.19): Suppose r(·) : [c�b] → R, is continuous on [c�b].
For x ∈ [c�b], define g(x) = sup{r(z) : x ≤ z ≤ b}, and h(x) = sup{r(z) : c ≤ z ≤ x}. Then
g(·) and h(·) are continuous on [c�b].

PROOF OF LEMMA S1: Fix any x ∈ [c�a1].
First, suppose g(x) > r(x). Choose ε = g(x) − r(x) > 0. Now by continuity of r(·),

there must exist δ > 0 s.t. for any z ∈ [x − δ�x + δ], we have that r(z) < r(x) + ε =
r(x) + g(x) − r(x) = g(x). Therefore, sup{r(z) : x − δ ≤ z ≤ x + δ} < g(x). Therefore,
g(x− δ)= g(x) = g(x+ δ), implying continuity of g(·) at x.

Next, suppose the sup is at x, i.e. g(x) = r(x). By continuity, for any ε > 0, there exists
δ > 0, s.t. for all u ∈ [x − δ�x + δ], we have that r(x) + ε ≥ r(u) ≥ r(x) − ε. For u ∈
[x�x+ δ], g(u) = sup{r(z) : u ≤ z ≤ a1} ≥ r(u) ≥ r(x)− ε = g(x)− ε, since g(x) = r(x),
by assumption. But g(u) ≤ g(x) by definition. Therefore, for all u ∈ [x�x + δ], we have
that g(x) ≥ g(u) > g(x) − ε. Next, for all u ∈ [x − δ�x], r(u) ≤ r(x) + ε = g(x) + ε
implying

g(u) = sup
{
r(z) : u≤ z ≤ a1

}
≤ sup

{
r(z) : x− δ ≤ z ≤ a1

}
= max

{
sup

{
r(z) : x− δ ≤ z ≤ x

}
︸ ︷︷ ︸

≤g(x)+ε

� sup
{
r(z) : x ≤ z ≤ a1

}
︸ ︷︷ ︸

g(x)

}

≤ g(x)+ ε�

Thus for all u ∈ [x− δ�x+ δ], we have that g(x)+ ε ≥ g(u) > g(x)− ε. Therefore, g(·)
is continuous at x.

An exactly similar proof works for h(x) = sup{r(z) : c ≤ z ≤ x}. Q.E.D.

LEMMA S2—Taylor (1955), Chapter 15.7, Theorem VII: Suppose the function f :R2 →
R is continuous, and the function g(·) : R → R is continuous w.r.t. the L1-norm. Then the
function h :R → R defined as h(x) = f (g(x)�x) is continuous on R.

PROOF OF LEMMA S2: Pick any x0 ∈ R, and ε > 0. Continuity of f (·� ·) implies that
there exists δ > 0 s.t. |f (g(x)�x)−f (g(x0)�x0)| ≤ ε, whenever ‖(g(x)�x)−(g(x0)�x0)‖ ≤
δ. Now, continuity of g(·) implies that given the above δ > 0, there exists δ1 > 0 s.t.
|g(x) − g(x0)| ≤ δ/2 whenever |x − x0| ≤ δ1. Choose δ∗ = min{δ/2� δ1}. Then when-
ever |x − x0| ≤ δ∗, we have that |g(x) − g(x0)| ≤ δ/2 and |x − x0| ≤ δ/2, and thus
‖(g(x)�x)− (g(x0)�x0)‖ = |g(x)− g(x0)| + |x− x0| ≤ δ and, therefore,

∣∣h(x)− h(x0)
∣∣ = ∣∣f (

g(x)�x
) − f

(
g(x0)�x0

)∣∣< ε� Q.E.D.

Construction: The following construction will be used to prove the theorem. Pick a1 ∈
Ω1. Recall the definitions L(a1)≡ max{pl +a1� yl}, and U(a1)≡ min{pu +a1� yu}. Let a0L,
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a0H be any pair of real numbers satisfying a0L < yl and a0H > yu. For any a0 < L(a1) and
a0 >U(a1), respectively, define

H(a0� a1)= sup
{
q
(
L(x)�x

) :L(x) ∈ [
a0�L(a1)

]}
�

h(a0� a1)= inf
{
q
(
U(x)�x

) :U(x) ∈ [
U(a1)�a0

]}
�

Note that as a0 decreases with a1 fixed, or a1 increases with a0 fixed, the set [a0�L(a1)]
expands and, therefore, the sup over it weakly increases; thus H(·� a1) is nonincreasing
and H(a0� ·) is nondecreasing. Similarly, h(·� a1) is nonincreasing and h(a0� ·) is nonde-
creasing. Now, define the function Q(·� ·) : [a0L�a0H]→[0�1] as follows. For any a1 ∈ Ω1,

Q(a0� a1)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(yl� a1)+ (
1 −H(yl� a1)

) yl − a0

yl − a0L
if a0L ≤ a0 < yl�

H(a0� a1) if yl ≤ a0 <L(a1)�

q(a0� a1) if a0 ∈ [
L(a1)�U(a1)

]
�

h(a0� a1) if U(a1) < a0 ≤ yu�
a0H − a0

a0H − yu
h(yu�a1) if yu < a0 ≤ a0H�

(S5)

CLAIM S1: Suppose q(·� ·) satisfies (A) and (B) of Theorem S1. Then the function Q(·� ·)
defined in (S5) satisfies the following properties:

(1) Q(·� a1) is nonincreasing, and Q(a0� ·) is nondecreasing for all (a0� a1) ∈ [a0L�a0H] ×
Ω1

(2) Q(·� ·) is continuous in each argument, holding the other argument fixed.
(3) For any a1 ∈ Ω1, there exist real numbers a0L and a0H such that lima0↘a0L Q(a0� a1)= 1

and lima0↗a0H Q(a0� a1)= 0.

PROOF: Property (3) is obvious because Q(a0L�a1) = 1 and Q(a0H�a1) = 0, by con-
struction. To show (1) and (2), fix a1 ∈ Ω1. Since q(·� ·) satisfies (A) and (B) on a0 ∈
[L(a1)�U(a1)], we only need to establish the properties over the range a0 < L(a1) and
a0 >U(a1).

Property (1): First, we show that the shape restrictions hold for Q(·� ·). We have already
noted that H(·� a1) and h(·� a1) are both nonincreasing; further since H(yl� a1) ≤ 1 and
h(yu�a1) ≥ 0, we have that H(yl� a1) + (1 − H(yl� a1))

yl−a0
yl−a0L

is nonincreasing in a0 for
a0L ≤ a0 < yl, and a0H−a0

a0H−yu
h(yu�a1) is nonincreasing in a0 for yu < a0 ≤ a0H . Thus Q(a0� a1)

is nonincreasing in a0 for all a0 <L(a1) and a0 >U(a1).
Next, pick a0 ∈ [a0L�a0H], and consider monotonicity of Q(a0� ·). Let a1

1� a
2
1 ∈ Ω1 with

a1
1 < a2

1, implying L(a1
1) ≤ L(a2

1) and U(a1
1) ≤ U(a2

1). Now there are 10 cases to consider,
labeled (a)–(j) below, depending on the ordering of L(a2

1) and U(a1
1), and where a0 lies.

Case (a) a0L ≤ a0 < yl, then

Q
(
a0� a

1
1

) =H
(
a0� a

1
1

)
= yl − a0

yl − a0L
+H

(
yl� a

1
1

)a0 − a0L

yl − a0L

≤ yl − a0

yl − a0L
+H

(
yl� a

2
1

)a0 − a0L

yl − a0L
� since H(yl� ·) nondecreasing

=Q
(
a0� a

2
1

)
�
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Case (b) yl ≤ a0 ≤ L(a1
1), that is, [a0�L(a

1
1)] 
 [a0�L(a

2
1)], and so H(a0� a

1
1) ≤ H(a0� a

2
1)

and, therefore, Q(a0� a
1
1) = H(a0� a

1
1) ≤ H(a0� a

2
1) = Q(a0� a

2
1). Case (c): yu < a0 ≤ a0H ,

and Case (d) U(a2
1) < a0 ≤ yu, the proofs are exactly analogous to respectively (a) and (b)

above.
So we are left with the following cases, where Cases (e)–(g) correspond to U(a1

1) <
L(a2

1), and (h)–(j) to U(a1
1)≥L(a2

1).
For Case (e) L(a1

1) ≤ a0 ≤ U(a1
1) < L(a2

1), since L(a1
1) < a0 < L(a2

1), by continuity of
L(·) and the intermediate value theorem, there exists c ∈ [a1

1� a
2
1] s.t. a0 = L(c). There-

fore,

Q
(
a0� a

1
1

) = q
(
a0� a

1
1

) = q
(
L(c)�a1

1

)
(1)≤ q

(
L(c)� c

)
(2)≤ sup

{
q
(
L(x)�x

) :L(x) ∈ [
L(c)�L

(
a2

1

)]}
= sup

{
q
(
L(x)�x

) :L(x) ∈ [
a0�L

(
a2

1

)]}
� since a0 =L(c)

= Q
(
a0� a

2
1

)
�

where
(1)≤ holds because a1

1 ≤ c and condition (A) of Theorem 1, and
(2)≤ holds by definition

of sup. Next, suppose case (f) L(a1
1) ≤ U(a1

1) ≤ a0 < L(a2
1) ≤ U(a2

1), then by continuity
of L(·) and the intermediate value theorem, there exists c ∈ [a1

1� a
2
1] s.t. a0 = L(c); and

by continuity of U(·) and the intermediate value theorem, there exists d ∈ [a1
1� a

2
1] s.t.

a0 =U(d), with d ≤ c. Then

Q
(
a0� a

1
1

)
= inf

{
q
(
U(x)�x

) :U(
a1

1

) ≤U(x) ≤ a0

}
� by (S5)

= inf
{
q
(
U(x)�x

) :U(
a1

1

) ≤U(x) ≤U(d)
}
� by a0 =U(d)

≤ q
(
U(d)�d

)
� since d ∈ {

x :U(
a1

1

) ≤U(x) ≤U(d)
}

≤ q
(
L(c)� c

)
� by (Aii) since U(d) = a0 =L(c) and d ≤ c

≤ sup
{
q
(
L(x)�x

) :L(c)≤L(x) ≤L
(
a2

1

)}
� since c ∈ {

x :L(c)≤L(x) ≤L
(
a2

1

)}
= sup

{
q
(
L(x)�x

) : a0 ≤L(x) ≤L
(
a2

1

)}
� since a0 =L(c)

=Q
(
a0� a

2
1

)
� by definition (S5).

Next, for case (g) L(a1
1) ≤ U(a1

1) < L(a2
1) ≤ a0 ≤ U(a2

1), using continuity of U(·) and
the intermediate value theorem, we have a0 = U(c) for some c ∈ [a1

1� a
2
1] so that

Q
(
a0� a

2
1

) =Q
(
U(c)�a2

1

)
= q

(
U(c)�a2

1

)
� since a0 =U(c) ∈ [

L
(
a2

1

)
�U

(
a2

1

)]
≥ q

(
U(c)� c

)
� since c ≤ a2

1 and condition (A)

≥ inf
{
q
(
U(x)�x

) :U(
a1

1

) ≤U(x) ≤U(c)
}

=Q
(
U(c)�a1

1

)
� by (S5)
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=Q
(
a0� a

1
1

)
�

Next, consider case (h) L(a1
1) ≤ a0 ≤L(a2

1) ≤U(a1
1). Since L(a1

1) ≤ a0 ≤L(a2
1), by con-

tinuity and the intermediate value theorem, we have that a0 = L(c) for some c ∈ [a1
1� a

2
1],

whence we have

Q
(
a0� a

1
1

) = q
(
a0� a

1
1

) = q
(
L(c)�a1

1

)
≤ q

(
L(c)� c

)
� since c ≥ a1

1

≤ sup
{
q
(
L(x)�x

) :L(c)≤ L(x) ≤L
(
a2

1

)}
=Q

(
L(c)�a2

1

)
=Q

(
a0� a

2
1

)
�

Next, if case (i) L(a1
1) ≤ L(a2

1) ≤ a0 ≤ U(a1
1), we have that Q(a0� a

1
1) = q(a0� a

1
1) ≤

q(a0� a
2
1)=Q(a0� a

2
1).

Finally, for the Case (j) L(a1
1) ≤ L(a2

1) ≤ U(a1
1) ≤ a0 ≤ U(a2

1), the same argument as in
(g) applies.

This establishes the requisite shape restrictions, that is, Property (1).
Property (2): First, consider continuity of Q(·� a1). Note that H(yl� a1)+(1−H(yl� a1))×

yl−a0
yl−a0L

is obviously continuous at a0 for a0L ≤ a0 < yl; next, at a0 = yl, Q(a0� a1) =
H(yl� a1)+ (1 −H(yl� a1))

yl−yl
yl−a0L

=H(yl� a1), while at a0 =L(a1) > yl,

Q(a0� a1)= sup
{
q
(
L(x)�x

) :L(x) ∈ [
L(a1)�L(a1)

]} = q
(
L(a1)�a1

)
�

and thus Q(·� a1) is continuous at a0 = yl and at a0 = L(a1). Finally, if a0 ∈ (yl�L(a1)),
then we can have L(x) ∈ [a0�L(a1)] only if L(x) > yl in which case L(x) = x + pl and
thus q(L(x)�x) = q(x+pl�x) implying

Q(a0� a1) = sup
{
q
(
L(x)�x

) : a0 ≤L(x) ≤ L(a1)
}

= sup
{
q(x+pl�x) : x+pl ∈

[
a0�L(a1)

]}
= sup

{
q(x+pl�x) : x ∈ [

a0 −pl�L(a1)−pl

]}
� (S6)

By Lemma S3, q(x + pl�x) is continuous in x, and therefore, by Lemma S2, Q(a0� a1)
is continuous in a0 for fixed a1. Thus we have that Q(·� a1) is continuous on all of
[a0L�U(a1)]. An exactly analogous argument works for a0 >U(a1).

Finally, consider continuity in a1 for fixed a0. If (a) a1 ≤ yl − pl, then L(a1) = yl and,
therefore,

H(a0� a1)= sup
{
q
(
L(x)�x

) :L(x) ∈ [a0� yl]
}
� (S7)

which does not depend on a1 and, therefore, trivially continuous in a1. So consider (b)
a1 > yl −pl, so that L(a1)= a1 +pl. Therefore, at a0 = yl, H(a0� a1)= H(yl� a1) equals

sup
{
q
(
L(x)�x

) : a0 ≤L(x) ≤L(a1)
}

= sup
{
q
(
L(x)�x

) :L(x) ∈ [yl� a1 +pl]
}

(2)= sup
{
q
(
L(x)�x

) : x ∈ [yl −pu�a1]
}
� (S8)
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The last equality (2)= follows because L(x)︸ ︷︷ ︸
=max{pl+x�yl}

∈ [yl� a1 +pl] if and only if x ∈ [yl −pu�a1].

Now, since L(·) is continuous, and so is q(·� ·), the function x �→ q(L(x)�x) is con-
tinuous in x (see Lemma S3 above), and therefore, it follows from Lemma S2 that
sup{q(L(x)�x) : x ∈ [yl − pu�a1]} is continuous in a1. In particular, as a1 ↘ (yl − pl)+,
L(a1) approaches yl and so (S8) tends to (S7).

Finally, for any a0 > yl, (recall a1 > yl −pl, so that L(a1)= a1 +pl), we have that

H(a0� a1)= sup
{
q
(
L(x)�x

) :L(x) ∈ [a0� a1 +pl]
}

= sup
{
q
(
L(x)�x

) : x ∈ [a0 −pl�a1]
}
�

which is continuous in a1 by Lemmas S2 and S3. Exactly analogous arguments hold for (a’)
a1 ≥ yu −pu and (b’) a1 < yu −pu, respectively. Thus, we have that Q(a0� ·) is continuous
at each a0. Q.E.D.

LEMMA S3: Suppose the function Q(·� ·) : [a0L�a0H] × Ω1 
 R
2 → [0�1] satisfies on its

domain that (1) Q(·� a1) is nonincreasing, and Q(a0� ·) is nondecreasing; (2) Q(·� a1) is
continuous, and (3) for any a1 ∈ Ω1, lima0↘a0L Q(a0� a1) = 1 and lima0↗a0H Q(a0� a1) = 0.
For any fixed a1 ∈Ω1, define for each u ∈ [0�1],

Q−1(u�a1)
def= sup

{
a0 ∈ [a0L�a0H] : Q(a0� a1)≥ u

}
� (S9)

Then we must have that Q(Q−1(v�a1)�a1)= v, for any v ∈ [0�1].

PROOF OF LEMMA S3: Since Q(·� ·) satisfies the same properties as q(·� ·) of Theo-
rem 1(A)–(C), the proof of this lemma is identical to the proof of Claim (i) used to prove
Theorem 1 in the main paper. Q.E.D.

PROOF OF THEOREM S1: That (II) implies (I) is straightforward, since

q(y� y −p)=
∫

1
{
W0(y�η)≤ W1(y −p�η)

}
dG(η)

whence (B’) implies (B), and (A’) implies (A).
We now show that (I) implies (II). To do so, recall the definition of Q−1(v�a1) in

(S9). Now, consider a random variable V � Uniform(0�1). Define W0(a0� V )
defn= a0 and

W1(a1� V )
defn= Q−1(V �a1). We will now show that for y − p ∈ Ω1 and correspondingly,

y ∈ [L(y − p)�U(y − p)], the functions W0(y�V ) and W1(y − p�V ) will rationalize the
choice-probabilities q(y� y −p).

To prove this, note that for any v ∈ [0�1], and (a0� a1) ∈ Ω,

a0 ≤ Q−1(v�a1)
by Q(·�a1)non↑=⇒ Q(a0� a1)≥Q

(
Q−1(v�a1)�a1

)
︸ ︷︷ ︸

=v� by Lemma S3

=⇒ Q(a0� a1)≥ v�

(S10)
Also, by definition of Q−1(·� a1) as the supremum in (S9), we have that

Q(a0� a1)≥ v =⇒ a0 ≤Q−1(v�a1)� (S11)
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Therefore, by (S10) and (S11), we have that Q(a0� a1)≥ v ⇐⇒ a0 ≤Q−1(v�a1). Thus, for
V �U(0�1), it follows that

Pr
(
Q−1(V �a1)≥ a0

) = Pr
(
V ≤ Q(a0� a1)

) =Q(a0� a1)� (S12)

Recall that for y − p ∈ Ω1 and correspondingly y ∈ [L(y − p)�U(y − p)], we have
that Q(y� y − p) = q(y� y − p) by definition. Therefore, it follows from (S12) that the
utility functions W0(y�V ) ≡ y and W1(y −p�V )≡ Q−1(V � y −p) with heterogeneity V �
Uniform(0�1) rationalize the choice probability function q(·� ·) on its domain.

Next, note that Q−1(v�a′
1) ≤ Q−1(v�a1) whenever a′

1 < a1. To see this, suppose a1 >
a′

1 and yet Q−1(v�a1) < Q−1(v�a′
1). Choose c s.t. Q−1(v�a1) < c < Q−1(v�a′

1). Then by
conclusion (i) of the previous lemma and by definition (S9) of Q−1(v� ·), we must have
Q(c�a1) < v ≤Q(c�a′

1). But since a1 > a′
1, this contradicts conclusion (1) of the Claim S1.

Next, it follows from (A) and (B) that Q−1(v� ·) is continuous. To see this, fix v ∈ [0�1],
and suppose to the contrary that Q−1(v� ·) is discontinuous at a1; suppose there exists ε >
0 such that for any δ > 0, Q−1(v�a1) > Q−1(v�a′

1)+ε for all a′
1 satisfying a′

1 < a1 < a′
1 +δ.

For any such a′
1 satisfying Q−1(v�a1) > Q−1(v�a′

1) + ε, it follows from the definition of
Q−1(·� a′

1) that there exists ε′ = ε′(ε) > 0 s.t.

Q
(
Q−1(v�a1)�a

′
1

) (1)≤ Q
(
Q−1

(
v�a′

1

)
� a′

1

) − ε′ by Lemma S3= v− ε′

by Lemma S3= Q
(
Q−1(v�a1)�a1

) − ε′� (S13)

Inequality (1) follows because Q(Q−1(v�a′
1)�a

′
1) ≤ Q(Q−1(v�a1)�a

′
1) since Q−1(v�a1) >

Q−1(v�a′
1), and if Q(Q−1(v�a′

1)�a
′
1)=Q(Q−1(v�a1)�a

′
1) with Q−1(v�a1) > Q−1(v�a′

1)+ε,
then that contradicts the definition of Q−1(v�a′

1) as the sup. Therefore, it follows from
(S13) that

Q
(
Q−1(v�a1)�a1

) −Q
(
Q−1(v�a1)�a

′
1

) ≥ ε′�

which contradicts that Q(·� ·) is continuous in its second argument for fixed value of its
first argument (see property (2) in Claim S1 above), since a′

1 can be made arbitrarily close
to a1 by choosing δ small enough.

Finally, W0(y�η)= y is obviously continuous and strictly increasing in y , thus (A’) holds.
Finally, (B) ensures that (B’) is satisfied. Q.E.D.
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