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This supplement to “Deep Neural Networks for Estimation and Inference” contains
results from a simulation study of the finite sample properties of deep neural networks
and their use in semiparametric causal inference. The code (in Python/Tensorflow) used
for the simulation exercise is available.

S.1. SET UP

WE STUDY inference on the average treatment effect, 7 =E[Y (0) — Y (1)], under differ-
ent data generating processes (DGPs). In all cases, the data generating process obeys the
ignorability and unconfoundedness assumptions stated in the main text. In each DGP, we
take n = 10,000 i.i.d. samples and use 1000 replications. For either dim(X) = d = 20 or
100, X includes a constant term and d independent uniform random variables, ¢/ (0, 1).
Treatment assignment is Bernoulli with probability p(x), where p(x) is the propensity
score. We consider both (i) randomized treatments with p(x) = 0.5 and (ii) observational
data with p(x) = (1 + exp(—a’px))*l, where a,; =0.09 and the remainder are drawn
once as U(—0.55,0.55), and then fixed for the replications. For d = 100, we maintain
lee,llo = 20 for the simplicity. These generate propensities with an approximate range of
approximately (0.30, 0.75) and mean roughly 0.5.
Given covariates and treatment assignment, the outcomes are generated according to

Yi = mo(x;) + 7(x)t + &, po(x) = a,x + B, e(x), 7(x;) = e, x + BLo(x),

where &; ~ N (0, 1) and ¢(x) are second-degree polynomials including pairwise interac-
tions. For uq(x) and 7(x), we consider two cases: linear and nonlinear models. In both
cases, the intercepts are «,; = 0.09 and «,; = —0.05 and slopes are drawn (once) as
a,r ~N(0.3,0.7) and a,  ~U(0.1,0.22), k =2, ...,d + 1. The linear models set B,=
B, = 0 while the nonlinear models take B, ~ N'(0.01,0.3) and B, ~ U(—0.05,0.06).
Altogether this yields eight designs: d = 20 or 100, p(x) constant or not, and outcome
models linear or nonlinear.

For each DGP, we consider a variety of network architectures, all of which are multi-
layer perceptrons (MLPs) with the rectified linear unit (ReLU) activation function, fol-
lowing the theoretical results in the main paper. These architectures are variants of those
used in the empirical application, reported in the main paper. All networks vary in their
depth and width, which are listed in Table S.I.
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TABLE S.I
MONTE CARLO ARCHITECTURES EXPLORED

Architecture Structure

{20, 15, 5}
{60, 30, 20}
{80, 80, 80}
{20, 15, 10, 5}
{60, 30, 20, 10}
{80, 80, 80, 80}
{20, 15, 15, 10, 10, 5}
{60, 30, 20, 20, 10, 5}
{80, 80, 80, 80, 80, 80}
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S.2. RESULTS

Tables S.II and S.IIT show the results for all eight DGPs. Table S.II shows DGPs with
constant propensity score, that is, randomized experiments, while Table S.III shows re-
sults mimicking observational data. Overall, the results reported show excellent perfor-
mance of deep learning based semiparametric inference. The bias is minimal (and in most
cases is likely dominated by monte carlo error) and the coverage is quite accurate, while
the interval length is under control. Notice that most architectures yield similar results
with no architecture dominating the others. Further, the coverage and interval length are
fairly similar with the more complex architecture not exhibiting any systematic patterns
of length inflation. None of these results employ regularization. Our own preliminary ex-
ploration of dropout and other forms of regularization found expected departures from

TABLE S.II
SIMULATIONS RESULTS—CONSTANT PROPENSITY SCORE

20 Covariates 100 Covariates

Model Architecture Bias IL Coverage Bias IL Coverage

Linear 1 0.00027 0.079 0.947 0.00067 0.080 0.946
2 —0.00032 0.079 0.951 0.00012 0.080 0.958
3 —0.00025 0.079 0.955 —0.00167 0.080 0.939
4 —0.00068 0.079 0.949 0.00038 0.080 0.949
5 0.00008 0.079 0.945 —0.00219 0.080 0.929
6 0.00007 0.079 0.955 —0.00010 0.080 0.946
7 0.00128 0.079 0.952 —0.00041 0.080 0.944
8 0.00108 0.079 0.949 —0.00088 0.080 0.941
9 0.00021 0.078 0.948 —0.00080 0.081 0.953

Nonlinear 1 0.00087 0.081 0.946 —0.00067 0.163 0.940
2 0.00015 0.079 0.954 0.00093 0.153 0.927
3 —0.00072 0.079 0.940 0.00245 0.148 0.926
4 0.00101 0.080 0.945 —0.00087 0.165 0.956
5 0.00027 0.079 0.935 —0.00190 0.154 0.923
6 —0.00025 0.079 0.929 —0.00117 0.146 0.902
7 —0.00052 0.080 0.947 0.00091 0.165 0.941
8 0.00077 0.079 0.938 0.00201 0.153 0.927
9 —0.00013 0.079 0.940 0.00049 0.154 0.936
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TABLE S.II1
SIMULATIONS RESULTS—NONCONSTANT PROPENSITY SCORE

20 Covariates 100 Covariates

Model Architecture Bias IL Coverage Bias IL Coverage

Linear 1 —0.00202 0.080 0.948 0.0009 0.081 0.955
2 0.00011 0.079 0.946 0.0007 0.081 0.945
3 —0.00130 0.079 0.964 —0.0001 0.081 0.937
4 —0.00106 0.079 0.945 0.0002 0.081 0.933
5 —0.00083 0.079 0.951 —0.0004 0.081 0.944
6 —0.00068 0.079 0.955 0.0001 0.081 0.924
7 —0.00119 0.079 0.953 —0.0001 0.081 0.942
8 —0.00056 0.079 0.952 —0.0008 0.081 0.939
9 —0.00096 0.079 0.948 —0.0007 0.081 0.952

Nonlinear 1 —0.00076 0.081 0.946 —0.00279 0.164 0.937
2 —0.00122 0.080 0.939 0.00020 0.155 0.941
3 —0.00074 0.080 0.926 —0.00080 0.148 0.914
4 —0.00171 0.081 0.940 —0.00184 0.166 0.938
5 —0.00135 0.080 0.952 —0.00103 0.154 0.912
6 —0.00075 0.080 0.950 —0.00174 0.147 0.905
7 —0.00153 0.081 0.928 —0.00377 0.165 0.929
8 0.00082 0.080 0.953 0.00031 0.154 0.919
9 —0.00127 0.080 0.931 —0.00094 0.156 0.917

nonregularized models. In most, but not all, cases the coverage remained accurate, but
with increased bias and interval length compared to Tables S.II and S.III. The results
preach caution when applying regularization in applications.
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