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APPENDIX A: RE-EXAMINATION OF PRIOR PROSPECT THEORY ELICITATION DATA

EXPERIMENTS DESIGNED TO ELICIT PROSPECT THEORY PARAMETERS such as Tversky
and Kahneman (1992), Tversky and Fox (1995), and Gonzalez and Wu (1999) generally
have subjects provide certainty equivalents for binary lotteries. For example, Tversky and
Kahneman (1992) elicited certainty equivalents for a 10%, 50%, and 90% chance of re-
ceiving $50 with the alternative being zero, and also elicited certainty equivalents for a
10%, 50%, and 90% chance of receiving $50 with the alternative being $100.

One may wish to use such data to examine whether a given probability of receiving $50
is weighted differently depending on its rank. Note that binary lotteries generally do not
permit meaningful tests of the core axioms of comonotonic and non-comonotonic inde-
pendence in the vein of Wu (1994) and Wakker, Erev, and Weber (1994) because two
binary lotteries with a common outcome will have a dominance relation. Nonetheless,
parametric estimates using binary lottery data could, in principle, support an interpreta-
tion of rank dependence in probability weights.

For lotteries with a p-probability of receiving $50 and an alternative of $0, Tver-
sky and Kahneman (1992) reported median certainty equivalents for p ∈ {0�1�0�5�0�9}
of {$9�$21�$37}. For lotteries with a p-probability of receiving $50 and an alterna-
tive of $100, Tversky and Kahneman (1992) reported median certainty equivalents for
p ∈ {0�1�0�5�0�9} of {$83�$71�$59}.

Using these two data sets, one could estimate probability weighting and curvature under
the null hypothesis of rank independence and then test that null. That is, for each lottery,
one assumes the indifference condition

C = u−1
(
π(p)u(50)+π(1 −p)u(X)

) + ε

is satisfied, where X is either $0 or $100 depending on the lottery in question.1 Given the
two-parameter model and nonlinear estimation techniques described in Section 4.1, with
three observations we can estimate both the probability weighting parameter of π(·), γ,
and the utility curvature parameter of u(·), α, with one degree of freedom in each series.
Conducting such an exercise using the reported median data for lotteries between $50
and $0, we find γ = 0�64 and α = 0�98. Conducting such an exercise using the reported
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median data for lotteries between $50 and $100, we find γ = 0�55 and α = 1�99. Strictly
speaking, these point estimates are inconsistent with the null hypothesis of rank indepen-
dence. Consider a 90% chance of receiving $50 when the alternative is $0. With γ = 0�64,
π(0�9) = 0�74. Now consider a 90% chance of receiving $50 when the alternative is $100.
With γ = 0�55, π(0�9) = 0�66. Thus, the 90% chance of $50 receives either 74% or 66%
of the decision weight depending on whether the alternative is higher or lower than $50.
Setting aside the question of statistical precision, these estimates are inconsistent with the
null hypothesis of rank independence.2

Exercises such as the one described above suffer from a fundamental identification
problem. If one does not make specific functional assumptions about the shape of utility,
the same data are reconcilable with rank independence. Let wH(p) and wL(p) represent
the weight applied to a $50 payoff when it is higher than the alternative (i.e., $0) or lower
than the alternative (i.e., $100), respectively. The certainty equivalents for such prospects
are

wH(p)u(50)+wH(1 −p)u(0) = u(c1)�

wL(p)u(50)+wL(1 −p)u(100) = u(c2)�

The weighting function is rank-independent if wH(p)= wL(p)=w(p). In such a case,

w(1 −p)= u(c2)− u(c1)

u(100)− u(0)
�

Appropriate choice of utility function u(·) can rationalize the behavior c1 and c2 with a
rank-independent weighting function. For example, focusing on Kahneman and Tversky’s
data for p= 0�9, rationalization requires

w(1 − 0�9)= u(59)− u(37)
u(100)− u(0)

�

Thus, to rationalize all the data from Tversky and Kahneman (1992) with a rank-
independent weighting function, one need only find u(·) and w(·) such that

w(0�1) = u(59)− u(37)
u(100)− u(0)

�

w(0�5) = u(71)− u(21)
u(100)− u(0)

�

w(0�9) = u(83)− u(9)
u(100)− u(0)

�

This exercise demonstrates that interpreting data from binary lotteries as evidence for
(or against) rank dependence is problematic. Different assumptions about the shape of
utility can lead to qualitative differences in the extent of apparent rank dependence. One
clear benefit of our proposed test of rank dependence is that, at its core, it is free from
functional form assumptions both for the shape of utility and probability weighting.

2This conclusion is not altered (although the direction changes) if one imposes a common value of α = 0�98
across the two data sets. The estimated γ for the alternative of $100 becomes 0.70 and a 90% chance of $50
receives a decision weight of 78%.
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APPENDIX B: EXAMPLES OF CONFOUNDS AFFECTING EXISTING TESTS OF RANK
DEPENDENCE

In Section 2.3, we explained that existing tests of rank dependence are difficult to inter-
pret without a parametric model of noisy choice. In this appendix, we provide examples
to illustrate the conceptual points made in the text.

As noted in Section 2.3, prior experiments in this domain have compared the frequen-
cies of comonotonic independence (CI) and non-comonotonic independence (NCI) vio-
lations. One first elicits a binary preference between two comonotonic lotteries, S and R,
that share a payoff event. One tests CI by replacing the shared payoff with another payoff
that does not alter the ranking of outcomes, and eliciting preferences between the new
options, S′ and R′. One tests NCI by replacing the shared payoff with another payoff that
does alter the ranking of outcomes, and eliciting preferences between the new options S′′

and R′′. For example, in one series of tasks, Wakker, Erev, and Weber (1994) considered
the comonotonic lotteries

S = ({0�55�0�25�0�2}; {0�5�6�0�7�0})� R = ({0�55�0�25�0�2}; {0�5�4�5�9�0})�
They replaced the common 55% chance of 0.50 with 3.50 to construct

S′ = ({0�55�0�25�0�2}; {3�5�6�0�7�0})� R′ = ({0�55�0�25�0�2}; {3�5�4�5�9�0})�
which preserves the ranking. They replaced the common 55% chance of 3.50 with 6.50 to
construct

S′′ = ({0�55�0�25�0�2}; {6�5�6�0�7�0})� R′′ = ({0�55�0�25�0�2}; {6�5�4�5�9�0})�
which alters the rankings. CPT requires a stable preference between (S�R) and (S′�R′),
an implication of CI, but permits preference reversals between (S′�R′) and (S′′�R′′), a
failure of NCI.

Given that rank-dependent models permit violations of NCI, but not CI, some have
used the relative frequency of CI and NCI violations in such environments as a measure
of empirical support for rank dependence. The predominant finding is that decisionmak-
ers violate both CI and NCI with high frequency, and at roughly the same rates.3 Some
interpret this finding as casting doubt on the validity of rank dependence.

Two features of these experiments preclude strong inferences and may have limited the
impact of these works.

First, as explained in the text, the premise of the approach—that violation frequen-
cies are necessarily higher for invalid axioms—is flawed. For reasonable models of noisy
choice, noise-induced violations of independence are more likely to occur when the pa-
rameters of the choice tasks place the decisionmaker closer to the point of indifference.
Existing approaches provide no way to ensure that the “distance from indifference” is
held constant when comparing CI and NCI violations. Accordingly, one has no way of
knowing whether the frequency of CI violations provides a valid benchmark for judging
whether and to what extent the frequency of NCI violations is elevated. It is potentially
an apples-to-oranges comparison.4

3Wakker, Erev, and Weber (1994) considered 12 CI tests and 6 NCI tests for each subject. The violation
rates for both CI and NCI are around 40%. Wu (1994) presented similar tests and found CI violation rates of
47–50% and NCI violation rates of 38–50%.

4To make formal comparisons, Wakker, Erev, and Weber (1994) explicitly assumed that noise produces the
same rate of violations for all choices. That assumption is obviously problematic, as one would expect violations
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The following simple example starkly illustrates the problems resulting from this first
point. We envision a CPT subject who obeys CI but not NCI. As noted above, we test CI
by comparing choices between lotteries S and R with choices between lotteries S′ and R′.
Assume the subject has a “true” strict preference between S and R, and necessarily the
same preference between S′ and R′, but because of (independent) noise chooses both S
and S′ with probability p. In that case, we will observe violations of CI with probability
2p(1 − p). Likewise, we test NCI by comparing choices between S′ and R′ with choices
between S′′ and R′′. Assume the resulting change in probability weighting yields a strong
preference, so that S′′ is chosen over R′′ with probability 1. In that case, the frequency
of observed NCI violations will be 1 − p. The difference between the frequency of NCI
and CI violations is then (1 − p)(1 − 2p). A couple of observations follow. First, if the
subject is initially close to indifference, so that p is close to 0.5, the observed differences
in violation frequencies will be close to zero. Second, if p> 0�5, one will actually observe
a higher frequency of violations for CI than for NCI, despite the fact that CPT is valid.

Second, even if one could control for “distance to indifference,” existing approaches
offer no basis for judging whether a given discrepancy between the frequencies of CI and
NCI violations is large or small relative to the implications of a reasonably parameterized
“noisy” CPT model. The following example illustrates how, even with constant “distance
to indifference,” one could find little or no difference between violation frequencies for
CI and NCI, even though the rank-dependent formulation is correct. Assume in particu-
lar that, when confronted with a choice between two lotteries, the decisionmaker behaves
according to the following noisy version of CPT: with probability p, she flips a coin; with
probability 1 −p, she picks the best alternative according to a stable CPT objective func-
tion. Now suppose the experimental tasks are inadvertently chosen so that the typical
subject is always far from indifference, with the unintended implication that rank rever-
sals have no effect on the optimal choice according to the CPT representation. In that
case, true rank dependence will not give rise to any NCI violations. Thus, the observed
frequencies of CI and NCI violations will be identical (p/2), even though CPT is the right
theory, subject to noise.

Our illustrations are admittedly extreme. However, our point is general: without having
a parameterized model of noisy choice and a method of gauging distance from indiffer-
ence, there is simply no way to judge whether the discrepancy between the frequencies of
CI and NCI violations is out of line with the implications of CPT.

APPENDIX C: EQUALIZING REDUCTIONS UNDER DIFFERENT REFERENCE POINT
FORMULATIONS

C.1. Fixed Referents

This section investigates the predictions of CPT decisionmaking under alternative lo-
cations of an exogenous reference point. Under CPT, the decisionmaker is assumed to
separate gains and losses and weight the corresponding probabilities separately. Gains
are weighted according to the cumulative distribution beginning with the best possible
outcome, while losses are weighted according to the decumulative distribution beginning
with the worst possible outcome. CPT also allows for differences in the extent of prob-
ability weighting for gains and losses, π+(·) and π−(·), and the shape of utility for gains
and losses, u+(·) and u−(·).

to be much more common for tasks that place the decisionmaker close to the point of indifference, which is
what we assume for our next illustration.
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In Section 2.2, we explained that CPT robustly implies a discontinuous change in de-
cision weights when X crosses Y or Z, and that the percentage change in equalizing
reduction robustly approximates the percentage change in relative decision weights. One
complication noted in the text is that for non-infinitesimal values of m, Y +m, Z − k, or
Z − k may cross the reference point.

In order to examine the effect of crossing the reference point, Figure A1 provides sim-
ulations for k, k, and � log(k) for Z = $18, Y = $24, X = 23, and X = $30 at values
of the reference point, r ∈ (0�40) for each of our probability vectors. Following Tver-
sky and Kahneman (1992), we assume that gain and loss probability weighting functions
are identical, π−(p) = π+(p) = pγ/(pγ + (1 − p)γ)1/γ , with γ = 0�61. We also assume
a piecewise linear formulation for loss averse utility such that u−(−x) = −λu+(x) with
u+(x) = x. The value of λ varies across rows. In addition to predicted behavior, we also
provide estimates of � log(wY/wZ) for γ = 0�61 and the relevant probability vector for
each condition.

Provided r < Z − k�Z − k or r > Y + m, the values of � log(k) closely approximate
the change in weights � log(wY/wZ). Note, however, that because probability weighting
is reference dependent, the relevant theoretical benchmark shifts from log(π(p + q) −
π(p)) − log(π(q)) when r < Z − k�Z − k to log(π(1 − p) − π(1 − p − q)) − log(1 −
π(1 − q)) when r > Y +m.

Figure A1 also illustrates two regions of transition. The first region encompasses
r ∈ (Z−k�Z). In this region, log changes in behavior deviate from the theoretical bench-
mark. As r passes Z−k, k is determined both by loss aversion, λ, and the weight attached
to Z −k when it is considered a loss, π(1 −p− q). Once r passes Z −k, the same is true
of k. When Z − k�Z − k < r < Z, � log(k) �= log(π(p + q) − π(p))− log(π(q)). How-
ever, the simple difference,

(k− k)Z−k�Z−k<r<Z = π(p+ q)−π(p)−π(q)

λπ(1 −p− q)
m�

can be related to the prior difference when r < Z − k,

(k− k)r<Z−k = π(p+ q)−π(p)−π(q)

1 −π(p+ q)
m�

Whether the difference (k − k), and hence � log(k), grows or shrinks relative to this
prior case depends on the value of λ and the difference between π(1 − p − q) and 1 −
π(p + q). For our probability vectors, with γ = 0�61, π(1 − p − q) < 1 − π(p + q). As
such, reference-dependent probability distortions, alone, would lead to larger values of
� log(k) in this region, and more apparent evidence of rank dependence. The top panel
of Figure A1 illustrates this case with λ = 1. Values of λ > 1 counteract the force of
probability weighting in this region. It must be noted, however, that even with substantial
loss aversion of λ = 2, large negative values of � log(k) are still predicted. When r passes
Z, simulated behavior once again accords with the theoretical benchmark.

A second transition region arises for r ∈ (Y�Y + m). Because Y and Y + m are
treated asymmetrically, k and k are functions both of reference-dependent probability
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FIGURE A1.—Fixed referents and equalizing reductions.
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distortions, and loss aversion. Specifically,

k = π(q)

π(1 −p− q)λ
m+

[
π(q)− (

1 −π(1 − q)
)
λ
]

π(1 −p− q)λ
(Y − r)�

k =
(
π(p+ q)−π(p)

)
π(1 −p− q)λ

m

+
{[(

π(p+ q)−π(p)
)] − [(

π(1 −p)−π(1 −p− q)
)
λ
]}

π(1 −p− q)λ
(Y − r)�

in the transitional region. When r → Y ,

� log(k) → log
(
π(p+ q)−π(p)

) − log
(
π(q)

)
�

and when r → Y +m,

� log(k) → log
(
π(1 −p)−π(1 −p− q)

) − log
(
1 −π(1 − q)

)
�

exactly the theoretical benchmarks at the region end-points. Though reference-dependent
probability distortions determine the end-points of the transitional region, Figure A1 il-
lustrates that the value of λ governs the speed of transition.

An interesting implication of CPT, which we mention in the main text, is that the rela-
tive decision weights on Y and Z do not just depend on their relationship to X , but also
on the relationship of all three to the reference point. Examples of such effects are read-
ily observed in Figure A1. As r passes the key points of Z and Y , equalizing reductions
change abruptly, regardless of ranking information. This observation suggests a method
for empirically identifying reference points: look for values of X , Y , Z at which the equal-
ization reduction changes even though payoff ranks remain fixed.

These simulations show that CPT under standard parametric assumptions predicts siz-
able differences between k and k when the values of m and k are non-infinitesimal re-
gardless of the location of the reference point, and that the percentage change in the
equalizing reduction continues to approximate the percentage change in the relative de-
cision weights outside of narrow regions of transition.

C.2. Endogenous Referents

Section 2.2 also provided a discussion of endogenous reference-points as in the models
of disappointment aversion (DA) due to Bell (1985) and Loomes and Sugden (1986). In
DA, the reference point is taken to be the EU certainty equivalent of the lottery in ques-
tion, c. Here, we point out another feature of such models: even without rank-dependent
probability weighting, these models imply the existence of a discontinuity in the equaliz-
ing reduction when X crosses the certainty equivalent, c. By varying X over a range that
encompasses plausible values of c, one can therefore either identify the reference point
or, in failing to find a discontinuity (as in our data), reject the theory.

Consider lottery L, which yields X > Y > Z with corresponding probabilities p, q,
1 −p− q. Absent any additional probability weighting, the disappointment-averse repre-
sentation is

UDA(L) = pu(X|c)+ qu(Y |c)+ (1 −p− q)u(Z|c)�
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where

c = v−1
(
pv(X)+ qv(Y)+ (1 −p− q)v(Z)

)
�

The reference-dependent utility is formalized as

u(x|r) = v(x)+μ
(
v(x)− v(r)

)
�

Assume a piecewise-linear gain-loss utility function,

μ(y)=
{
η · y if y ≥ 0�
η · λ · y if y < 0�

}

where the parameter η captures sensitivity to gains and losses and λ represents the degree
of loss aversion.5 Note that this piecewise-linear form for reference dependence rules out
a possibility discussed in Section 2.2: non-constancy of the X versus k schedule within
regimes for which the ranks of X , Y , Z, and the reference point are fixed. Under this
formulation, for X treated as a gain, k/m remains an approximation for the marginal
rate of substitution between Y and Z:

MRSYZ(X >Y�c)

= [(
q+ηq−ηpq−ηq2 −ηλq(1 −p− q)

)
/
(
(1 −p− q)+ηλ(1 −p− q)−ηp(1 −p− q)

−ηq(1 −p− q)−ηλ(1 −p− q)2
)][v′(Y)

v′(Z)

]

≈ k

m
�

If one lowers X to X , but it remains treated as a gain relative to c, one predicts no
change in equalizing reduction. However, if X is low enough to be considered a loss

5Whether Y is a loss or a gain depends on the exact values, probabilities, and shape of the utility function.
Here, we analyze the case where Y is a gain and the addition of m and subtraction of k does not alter any
gain-loss comparisons. In this case,

UDA(L) = [
p+ηp−ηp2 −ηpq−ηλp(1 −p− q)

]
v(X)

+ [
q+ηq−ηpq−ηq2 −ηλq(1 −p− q)

]
v(Y)

+ [
(1 −p− q)+ηλ(1 −p− q)−ηp(1 −p− q)−ηq(1 −p− q)−ηλ(1 −p− q)2]v(Z)�

a formulation which ‘weights’ each outcome. If the addition of m to Y and subtraction of k from Z does not
alter any gain-loss comparisons, the weights are the same for the equivalent lottery, Le. As in our general
formulation, the equalizing reduction captures the relative weights for outcomes Y and Z.
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relative to c,6 one finds

MRSYZ(X <Y�c)

= [(
q+ηq−ηλpq−ηq2 −ηλq(1 −p− q)

)
/
(
(1 −p− q)+ηλ(1 −p− q)−ηλp(1 −p− q)

−ηq(1 −p− q)−ηλ(1 −p− q)2
)][v′(Y)

v′(Z)

]

≈ k

m

and

� log(k) = log
(

q+ηq−ηpq−ηq2 −ηλq(1 −p− q)

q+ηq−ηλpq−ηq2 −ηλq(1 −p− q)

)

+ log
((
(1 −p− q)+ηλ(1 −p− q)−ηλp(1 −p− q)

−ηq(1 −p− q)−ηλ(1 −p− q)2
)

/
(
(1 −p− q)+ηλ(1 −p− q)−ηp(1 −p− q)

−ηq(1 −p− q)−ηλ(1 −p− q)2
))

≈ � log(MRSYZ)�

The value of X crossing the endogenous reference point of c leads to a discontinuity
in the marginal rate of substitution and, hence, in equalizing reductions without explicit
distortions of probabilities.

C.3. Endogenous Reference Distributions

Koszegi and Rabin (2006, 2007) (KR) built upon DA by assuming that the referent is
dependent on the entire distribution of expected outcomes. An additional innovation of
Koszegi and Rabin (2006, 2007) is a rational expectations equilibrium concept, the Unac-
climating Personal Equilibrium (UPE). The objective of the UPE concept is to represent
the notion that a rational individual will employ a reference distribution that coincides
with the distribution of outcomes that will actually follow from her choices. The KR the-
ory also features two refinements, Preferred Personal Equilibrium (PPE) and Choice-
acclimating Personal Equilibrium (CPE).7 We apply CPE when deriving the predictions

6For X low enough to be considered a loss, one arrives at

UDA(L) = [
p+ηλp−ηλp2 −ηpq−ηλp(1 −p− q)

]
v(X)

+ [
q+ηq−ηλpq−ηq2 −ηλq(1 −p− q)

]
v(Y)

+ [
(1 −p− q)+ηλ(1 −p− q)−ηλp(1 −p− q)−ηq(1 −p− q)−ηλ(1 −p− q)2]v(Z)�

Note that the weights on both Y and Z have changed relative to the previous case. As before, the equalizing
reduction summarizes these new relative weights.

7Both concepts maintain that the choice with the highest ex ante expected utility is selected. The operational
distinction between the two concepts is that a CPE need not be a UPE, but a PPE must be a UPE.
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of KR. That is, we assume the equalizing reduction corresponds to the point where the
the decisionmaker switches from choosing L to Le in CPE.

Let r represent a possible reference point drawn according to measure F . Let x be an
outcome drawn according to the same measure F . Then the KR CPE utility formulation
is the double integral

U(F |F)=
∫∫

u(x|r)dF(r)dF(x)

with u(x|r) as in DA. Under these preferences, the utility of lottery L, which yields X >
Y >Z with probabilities p, q, (1 −p− q), is

UKR(L|L) = p
(
p

[
v(X)

] + q
[
v(Y)+ηλ

(
v(Y)− v(X)

)]
+ (1 −p− q)

[
v(Z)+ηλ

(
v(Z)− v(X)

)])
+ q

(
p

[
v(X)+η

(
v(X)− v(Y)

)] + q
[
v(Y)

]
+ (1 −p− q)

[
v(Z)+ηλ

(
v(Z)− v(Y)

)])
+ (1 −p− q)

(
p

[
v(X)+η

(
v(X)− v(Z)

)]
+ q

[
v(Y)+η

(
v(Y)− v(Z)

)] + (1 −p− q)
[
v(Z)

])
�

As with other models, k/m remains an approximation for the marginal rate of substitution
between Y and Z, when X >Y :

MRSYZ(X > Y) =
[ (

q+pqη(λ− 1)+ q(1 −p− q)η(1 − λ)
)

(
(1 −p− q)+p(1 −p− q)η(λ− 1)+ q(1 −p− q)η(λ− 1)

)
]

×
[
v′(Y)

v′(Z)

]

≈ k

m
�

For X <Y , the gain-loss comparisons are altered relative to the prior case, and

MRSYZ(X < Y) =
[ (

q+pqη(1 − λ)+ q(1 −p− q)η(1 − λ)
)

(
(1 −p− q)+p(1 −p− q)η(λ− 1)+ q(1 −p− q)η(λ− 1)

)
]

×
[
v′(Y)

v′(Z)

]

≈ k

m
�

As X passes below Y , the marginal rate of substitution, and hence the equalizing re-
duction, changes discontinuously with

� log(k) = log
((

q+pqη(λ− 1)+ q(1 −p− q)η(1 − λ)
)

(
q+pqη(1 − λ)+ q(1 −p− q)η(1 − λ)

)
)

≈ � log(MRSYZ)�
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TABLE AI

KOSZEGI–RABIN PREFERENCESa

{p�q�1 −p− q}
η= 1, λ= 1�5 η= 1, λ= 2

k k � log(k) k k � log(k)

{0�6�0�3�0�1} 6.72 12�93 0.65 2.37 11�84 1.61

{0�4�0�3�0�3} 2.41 3�89 0.48 0.88 3�24 1.30

{0�1�0�3�0�6} 1.35 1�56 0.14 0.54 0�89 0.51

aSimulated values of k and k under Koszegi–Rabin preferences.

Even without explicit probability weighting, the KR theory carries implications of rank
dependence and can also be tested by comparing equalizing reductions at different
ranks.

To get a sense for magnitudes, Table AI simulates behavior under KR preferences in
our experiment with v(x) = x, η = 1 and λ = 1�5�2.8 These simulations show that under
the KR model, substantial discontinuities in equalizing reductions should be observed, in
contrast to our findings.9

APPENDIX D: RANDOM CHOICE

In Section 5.4, we addressed the possibility that we detect no rank dependence be-
cause our subjects ignore the parameters of their decision tasks (either in general, or X
in particular) and make their choices more or less randomly. In this appendix, we exam-
ine this possibility more formally by considering two explicit models. First, we consider
individuals who choose randomly in each row of each equalizing reduction task. Such in-
dividuals would be expected to exhibit patterns of multiple switching many times in our
experiment, which we do not observe. Standard practice in the experimental literature
has been to take the first switch point as the relevant decision for such subjects. We re-
produce our aggregate and individual graphs under this hypothesis in Figures A2 and A3.
We simulate 100 random subjects in our experimental design, choosing each option with
50% probability. Two patterns would be observed in our data if such random choice were
prevalent. First, in the aggregate data, equalizing reductions would generally be low (the
random first switch point would rarely stray above a few dollars) and would be insensitive
to variation in probabilities or ranks. Second, in individual data, a wide degree of hetero-
geneity would be observed in the log difference, � log(k), delivering apparent evidence of
substantial rank dependence for many subjects.10 These counterfactual predictions, along
with the implication for the frequency of multiple switching, rule this hypothesis out as a
plausible explanation of our data.

8For λ > 2, the CPE version of the KR model violates first-order stochastic dominance. As such, the case of
λ= 2 represents the most extreme loss aversion possible without generating such behavior.

9Notably, these differences are in the opposite direction of those predicted by our calibrated CPT models.
For our experimental values of q and p, π(q) > π(p+q)−π(p) under standard parameterizations of the CPT
model. Had we implemented our experiment with values of q and p for which this inequality was reversed at
standard CPT parameterizations, the two models’ predictions would have coincided.

10Where the simulated log difference exceeded the bounds of ±3, we put the value at the boundary, includ-
ing values of ±∞ when simulated as such.
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FIGURE A2.—Aggregate data with random response.

FIGURE A3.—Individual data with random response.
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Second, we consider the possibility that each subject chooses a random switch point in
each decision task. Simulated data for 100 such subjects appear in Figures A2 and A3. In
addition to exhibiting no rank dependence, the aggregate choices of these subjects would
be insensitive to probability distributions. At the individual level, we would again find
wide heterogeneity in the log difference, � log(k), providing apparent evidence of sub-
stantial rank dependence for many subjects. These implied patterns at the aggregate and
individual levels clearly differ from the observed data. Our subjects respond to changes in
probability distribution across tasks and exhibit subject-level log differences in equalizing
reductions tightly centered around zero.

APPENDIX E: ADDITIONAL TABLES AND FIGURES

The following tables and figures are referenced in the main text and Supplemental
Material Appendix F.

TABLE AII

CERTAINTY EQUIVALENTSa

Certainty Equivalents Risk Premia
(1) (2)

p = 0�05 2.88 1.63
(0.19) (0.19)

p = 0�10 3.83 1.33
(0.19) (0.19)

p = 0�25 6.45 0.20
(0.17) (0.17)

p = 0�50 10.72 −1�78
(0.23) (0.23)

p = 0�75 15.44 −3�31
(0.31) (0.31)

p = 0�90 19.83 −2�67
(0.29) (0.29)

p = 0�95 21.63 −2�12
(0.24) (0.24)

aCoefficients for certainty equivalents and risk premia calcu-
lated from interval regression of certainty equivalent on indica-
tors for probability. Standard errors clustered on individual level
in parentheses.
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TABLE AIII

EQUALIZING REDUCTIONS WITHIN AND BETWEEN SUBJECTSa

(1) (2) (3) (4) (5) (6)

{p�q�1 −p− q} =
{0�4�0�3�0�3}

−4�72 −4�72 −5�03 −5�13 −5�13 −5�13
(0.31) (0.17) (0.60) (0.60) (0.60) (0.60)

{p�q�1 −p− q} =
{0�1�0�3�0�6}

−6�40 −6�40 −6�65 −6�77 −6�77 −6�77
(0.37) (0.18) (0.68) (0.68) (0.68) (0.68)

(X > Y)
0.26 0.26 −1�10 −0�93 −0�64 −0�74

(0.17) (0.22) (0.85) (0.87) (0.83) (0.83)

(X > Y)× {0�4�3�0�3} −0�22 −0�22 0.73 0.60 0.60 0.60
(0.16) (0.24) (0.75) (0.76) (0.76) (0.76)

(X > Y)× {0�1�3�0�6} −0�33 −0�33 0.82 0.71 0.71 0.71
(0.18) (0.26) (0.88) (0.89) (0.89) (0.89)

19 < Age < 22 −0�10 −0�24
(0.41) (0.43)

Age ≥ 22 −0�33 −0�46
(0.45) (0.46)

Male 0.89 0.98
(0.39) (0.39)

Cognitve Reflect Test 0.41 0.40
(0.17) (0.17)

Avg. Certainty Equivalent 0.19
(0.08)

Constant 9.02 7.44 9.81 9.92 6.37 8.73
(0.39) (0.59) (0.65) (0.65) (1.17) (0.77)

Predicted {0�6�3�0�1} 9.02 9.02 9.81 9.92 9.77 9.82
(0.39) (0.16) (0.65) (0.65) (0.60) (0.60)

H0: No Rank Dependence χ2(3) = 4�50 χ2(3) = 1�82 χ2(3) = 3�76 χ2(3)= 2�50 χ2(3) = 0�64 χ2(3) = 0�86
(p= 0�21) (p = 0�61) (p = 0�29) (p = 0�47) (p = 0�89) (p = 0�84)

Fixed Effects No Yes No No No No
First Block of Tasks Only No No Yes Yes Yes Yes
Demographic Controls No No No No Yes Yes
# Observations 2574 2574 429 405 405 405
# Subjects 143 143 143 135 135 135
Log-Likelihood −8891�80 −8191�34 −1481�49 −1393�60 −1379�56 −1382�05

aCoefficients from interval regression of equalizing reduction on indicators for probability series {p�q�1 − p − q} and order of
outcome X >Y . Standard errors clustered at individual level in columns (1), (3), (4), (5), (6). Robust standard errors in parentheses
in column (2). Column (4) restricts column (3) sample to 135 individuals with full control information. Constant, omitted category, is
{p�q�1 − p − q} = {0�6�3�0�1} with X < Y . Predicted average for {p�q�1 − p − q} = {0�6�3�0�1} in (2), (5), (6) calculated as average
of fixed effects or at the average level of controls. Tested null hypothesis of no rank dependence corresponds to test that coefficients
(X > Y), (X > Y)× {0�4�3�0�3}, (X > Y)× {0�1�3�0�6} all equal zero.
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TABLE AIV

EQUALIZING REDUCTIONS FOR ALL CONDITIONSa

{p�q�1 −p− q}

k k

(1) (2) (3) (4) (5) (6) (7) (8)
X = 19 X = 21 X = 23 X <Y X = 30 X = 32 X = 34 X >Y

{0�6�0�3�0�1} 9.03 9.03 9.02 9.02 9.24 9.44 9.17 9.28
(0.41) (0.40) (0.42) (0.39) (0.41) (0.42) (0.40) (0.38)

{0�4�0�3�0�3} 4.33 4.22 4.37 4.31 4.30 4.34 4.38 4.34
(0.14) (0.13) (0.14) (0.12) (0.14) (0.15) (0.13) (0.12)

{0�1�0�3�0�6} 2.65 2.60 2.64 2.63 2.58 2.52 2.57 2.56
(0.09) (0.11) (0.11) (0.08) (0.08) (0.08) (0.09) (0.07)

aCoefficients calculated from interval regression of equalizing reduction on indicators for probability vector, value of X/X , and all
interactions. Standard errors clustered on individual level in parentheses. Columns (4) and (8) provide estimated averages for k and
k for columns (1)–(3) and (5)–(7), respectively.

TABLE AV

EQUALIZING REDUCTIONS WITH FIXED EFFECTSa

{p�q�1 −p− q} k k

̂

� log( wYwZ
)

[95% Conf.]

{0�6�0�3�0�1} 9.02 (0.16) 9.28 (0.16) 0.03 (0.02)
[−0�02�0�08]

{0�4�0�3�0�3} 4.31 (0.07) 4.34 (0.07) 0.01 (0.02)
[−0�04�0�05]

{0�1�0�3�0�6} 2.63 (0.09) 2.56 (0.09) −0�03 (0.05)
[−0�12�0�07]

aMean behavior for k and k estimated from interval regression (Stewart (1983))
of experimental response on indicators for probability vector interacted with indica-
tor for whether X >Y with individual fixed effects. Constant taken as mean of fixed
effects. Robust standard errors in parentheses.

TABLE AVI

EQUALIZING REDUCTIONS BETWEEN SUBJECTS ALTERNATE CONTROLSa

{p�q�1 −p− q}

Panel A: First Task Block (without Controls) Panel B: First Task Block (with Alternate Controls)

k k

̂

� log( wYwZ
)

k k

̂

� log( wYwZ
)

[95% Conf.] [95% Conf.]

{0�6�0�3�0�1} 9.81 (0.65) 8.71 (0.56) −0�12 (0.09) 9.82 (0.60) 9.09 (0.56) −0�08 (0.09)
[−0�30�0�06] [−0�25�0�09]

{0�4�0�3�0�3} 4.78 (0.19) 4.41 (0.19) −0�08 (0.06) 4.70 (0.22) 4.56 (0.20) −0�03 (0.07)
[−0�20�0�04] [−0�16�0�10]

{0�1�0�3�0�6} 3.16 (0.16) 2.88 (0.12) −0�09 (0.07) 3.06 (0.19) 3.03 (0.15) −0�01 (0.08)
[−0�22�0�04] [−0�17�0�15]

aMean behavior for k and k estimated from interval regression (Stewart (1983)) of experimental response on indicators for proba-

bility vector interacted with indicator for whether X >Y . Estimated change in relative decision weights, ̂� log(wY /wZ), calculated as
� log(k). Standard errors clustered at individual level and calculated using the delta method, in parentheses. See Appendix Table AIII,
columns (3) and (5) for detail. Panel A: No controls; 143 total subjects. Panel B: controls include age, gender, Cognitive Reflection
Task score; 135 total subjects.
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TABLE AVII

EQUALIZING REDUCTIONS WITH MULTIPLE SWITCHERSa

{p�q�1 −p− q}

k k

(1) (2) (3) (4) (5) (6) (7) (8)
X = 19 X = 21 X = 23 X <Y X = 30 X = 32 X = 34 X >Y

{0�6�0�3�0�1} 8.72 8.78 8.69 8.73 8.92 9.09 8.76 8.93
(0.41) (0.38) (0.41) (0.38) (0.40) (0.42) (0.40) (0.38)

{0�4�0�3�0�3} 4.31 4.17 4.29 4.26 4.24 4.32 4.28 4.28
(0.14) (0.12) (0.14) (0.12) (0.14) (0.15) (0.14) (0.12)

{0�1�0�3�0�6} 2.62 2.56 2.58 2.59 2.59 2.55 2.59 2.58
(0.09) (0.11) (0.11) (0.08) (0.09) (0.08) (0.09) (0.07)

aCoefficients calculated from interval regression of equalizing reduction on indicators for probability vector, value of X/X , and all
interactions. Standard errors clustered on individual level in parentheses. Columns (4) and (8) provide estimated averages for k and
k for columns (1)–(3) and (5)–(7), respectively.

TABLE AVIII

EQUALIZING REDUCTIONS FIRST/LAST TASK BLOCKa

{p�q�1 −p− q}

k k

(1) (2) (3) (4) (5) (6) (7) (8)
X = 19 X = 21 X = 23 X <Y X = 30 X = 32 X = 34 X >Y

Panel A: First Task Block

{0�6�0�3�0�1} 11.10 8.01 10.49 9.81 7.87 9.39 8.85 8.71
(1.14) (0.99) (1.13) (0.65) (1.12) (1.21) (0.72) (0.56)

{0�4�0�3�0�3} 4.89 4.24 5.27 4.78 4.02 4.61 4.54 4.41
(0.32) (0.34) (0.30) (0.19) (0.48) (0.29) (0.24) (0.19)

{0�1�0�3�0�6} 3.17 3.08 3.24 3.16 2.62 2.89 3.03 2.88
(0.25) (0.25) (0.35) (0.16) (0.20) (0.11) (0.20) (0.12)

Panel B: Last Task Block

{0�6�0�3�0�1} 9.46 11.37 6.85 9.12 8.09 8.53 9.72 8.75
(0.77) (0.93) (0.95) (0.54) (0.93) (1.11) (1.24) (0.64)

{0�4�0�3�0�3} 4.27 4.59 3.84 4.22 4.07 4.15 4.16 4.13
(0.25) (0.31) (0.31) (0.17) (0.24) (0.51) (0.42) (0.23)

{0�1�0�3�0�6} 2.63 2.37 2.60 2.55 2.51 2.56 2.37 2.48
(0.19) (0.23) (0.28) (0.13) (0.14) (0.34) (0.17) (0.14)

aCoefficients calculated from interval regression of equalizing reduction on indicators for probability vector, value of X/X , and all
interactions. Standard errors clustered on individual level in parentheses. Columns (4) and (8) provide estimated averages for k and
k for columns (1)–(3) and (5)–(7), respectively.
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FIGURE A4.—Equalizing reductions with alternate benchmarks. Notes: Both panels: mean behavior for k
estimated from interval regression of experimental response on indicators for probability vectors interacted
with indicators for value of X . Standard errors clustered at individual level to provide 95% confidence inter-
val. Supplemental Material Appendix Table AIV provides corresponding estimates. Dashed line corresponds
to predicted values of equation (3) for CPT decisionmaker with risk preference parameters estimated from be-
havior. Panel A: predictions based on tasks with Y >X >Z, α = 0�911 (clustered s�e� = 0�063), and γ = 0�784
(0.020). Panel B: predictions based on tasks with X > Y > Z, α = 1�024 (0.082) and γ = 0�830 (0.022). Delta
method used to provide 95% prediction confidence interval.
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FIGURE A5.—Sample modified equalizing reduction.
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FIGURE A6.—Modified equalizing reductions with alternate benchmarks. Notes: All Panels: Mean behavior
for modified equalizing reduction estimated from interval regression of experimental response on indicators
for probability vectors interacted with indicators for value of X . Standard errors clustered at individual level
to provide 95% confidence interval. Dashed line corresponds to predicted equalizing reductions for CPT deci-
sionmaker with risk preference parameters estimated from behavior. Panel A: risk preferences estimated from
tasks with X > Y > Z, α = 0�844, and γ = 0�785. Panel B: risk preferences estimated from conditions with
Y >X ′ >Z, α= 0�437, and γ = 0�863. Panel C: risk preferences estimated from conditions with Y >Z >X ′′,
α = 1�066. and γ = 0�741.

APPENDIX F: ADDITIONAL ROBUSTNESS EXERCISES

F.1. Alternative CPT Formulations

Up to this point, we have focused exclusively on the Tversky and Kahneman (1992)
parameterization of CPT. Others have proposed alternative functional forms. One leading
alternative is due to Prelec (1998), who posited a probability weighting function of the
form

π(p)= exp
(−(− ln(p)

)γ)
�

To explore whether our conclusions are sensitive to functional form, we repeat our anal-
ysis for Prelec’s specification. Using our data on certainty equivalents for binary lot-
teries, we arrive at the following estimates: weighting parameter γ = 0�665 (clustered
s�e� = 0�021) and utility parameter α = 0�928 (0.019). We then use the parameterized
model to predict k and k as before. Results appear in Table AIX, Panel A. For conve-
nience, we reproduce our results for Tversky and Kahneman’s specification in Panel B.
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Note that the predicted discontinuities are even larger, and hence less consistent with
actual behavior, with the Prelec specification.

F.2. Using Explicit Rank Changes

The last task block in each session featured X = $25 and Y = $24, so that adding
m = $5 to Y changes its rank. Using the estimated aggregate CPT parameter values, one
predicts equalizing reductions of 7.28, 3.71, and 2.49 for {p�q�1 −p−q} = {0�6�0�3�0�1},
{0�4�0�3�0�3}, and {0�1�0�3�0�6}, respectively. Note that these values are close to the CPT
predictions of k reported in Table III, Panel B and are substantially higher than those
of k.

For {p�q�1 − p− q} = {0�6�0�3�0�1}, the mean equalizing reduction is 8.94 (clustered
s�e�= 0�41). This value is statistically indistinguishable from the actual value of k for X ′ <
Y reported in Table III, Panel A, χ2(1) = 0�27 (p = 0�61), and is significantly lower than
the value of k for X >Y , χ2(1) = 3�44 (p = 0�06). For {p�q�1 −p− q} = {0�4�0�3�0�3},
the mean equalizing reduction is 4.12 (0.13), significantly lower than the values of both k

and k reported in Table III, Panel A, χ2(1)= 4�19 (p= 0�04) and χ2(1)= 5�36 (p= 0�02),
respectively. For {p�q�1 −p− q} = {0�1�0�3�0�6}, the mean equalizing reduction is 2.34
(0.08), significantly lower than the values of both k and k reported in Table III, Panel A,
χ2(1)= 18�82 (p< 0�01) and χ2(1)= 11�55 (p< 0�01), respectively.

The pattern described in the previous paragraph is, on its face, somewhat puzzling.
If the equalizing reduction does not depend on the ranking of the payoff Y , it is dif-
ficult to see why it should be systematically lower in the transitional region. Certainly,
that implication is inconsistent not only with CPT, but also with PT and EU. A possible
explanation is that the X = 25 task block always comes last, and equalizing reductions
decline as the experiment progresses from the first task block to the last (see Table AVIII,
Panel B). Consistent with this hypothesis, the equalizing reductions in the X = $25 tasks
are quite close to the values reported for those for the last task block (see Table AVIII,
Panel B).

F.3. Multiple Switching

Our main results are derived from the choices of 143 subjects who did not exhibit multi-
ple switching in any task. For Table AX, we include the remaining subjects, each of whom
exhibited multiple switching at least once. The results are qualitatively unchanged. As in
Table III, we predict substantial differences between k and k but observe none.11 Thus,
our conclusions are robust with respect to the inclusion or exclusion of potentially con-
fused subjects.

11Supplemental Material Appendix Table AVII provides estimates of equalizing reductions for each value
of X and X ′, and demonstrates the stability of equalizing reductions across these values.
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