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SUPPLEMENTARY APPENDIX: OMITTED PROOFS

THE OMITTED PROOFS rely on two simple lemmas, which are used to adjust the reward
functions to correct for unlikely errors in communication. Let M ⊂ N be a finite set, let
F ∈ R++, let f : M → [−F�F] be a function of mi ∈ M , and let m̃i ∈ M ∪ {0} be a random
variable such that, for each mi ∈ M , Pr(m̃i = mi|mi) = p(mi) and Pr(m̃i = 0|mi) = 1 −
p(mi). Applied to the remainder of the proof, M will be a message set, f will be a reward
function bounded by F , and p(mi) will be the probability that message mi is received
when message mi is sent.

LEMMA 24: With ε̂ = maxmi∈M
1−p(mi)

p(mi)
, there exists a function g : M ∪ {0} → [−(1 +

ε̂)F� (1 + ε̂)F] such that maxmi∈M |f (mi) − g(mi)| ≤ ε̂F , and E[g(m̃i)|mi] = f (mi) for all
mi ∈ M .

PROOF: Define g(0) = 0 and g(mi) = 1
p(mi)

f (mi) ∀mi ∈ M . The claims follow directly.
Q.E.D.

A similar result holds if we account for self-generation. For xi−1 ∈ {G�B}, recall that
sign(xi−1) = −1 if xi−1 = G and sign(xi−1) = 1 if xi−1 = B. For each xi−1 ∈ {G�B}, let
f xi−1 :M → [−F�F] be a function of mi ∈ M such that there exists c ≥ 0 satisfying

max
mi∈M�xi−1∈{G�B}

sign(xi−1)f
xi−1(mi)≥ −c� (75)

LEMMA 25: With ε̂ = maxmi∈M
1−p(mi)

p(mi)
, for all xi−1 ∈ {G�B}, there exists a function gxi−1 :

M ∪ {0} → [−(1 + 2ε̂)F� (1 + 2ε̂)F] such that
(i) maxxi−1∈{G�B}�mi∈M |f xi−1(mi)− gxi−1(mi)|< ε̂F ,

(ii) E[gxi−1(m̃i)|mi] = f xi−1(mi) for all mi ∈ M ,
(iii) minmi∈M sign(xi−1)g

xi−1(mi)≥ −(1 + ε̂)c − ε̂F , and
(iv) minmi∈M gxi−1(mi)≥ gxi−1(0).

Applied to the remainder of the proof, condition (iii) helps satisfy self-generation, and
condition (iv) helps satisfy the premises for the secure and verified modules.
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PROOF: Without loss, assume F ≥ (1 + ε̂)c (otherwise, F := (1 + ε̂)c).1 For xi−1 = G,
define

gxi−1(0)= −F and gxi−1(mi)= 1
p(mi)

f xi−1(mi)+ 1 −p(mi)

p(mi)
F ∀mi ∈ Mi�

Then, for all mi, we have (1) E[gxi−1(m̃i)|mi] = f xi−1(mi), (2) gxi−1
T (mi) ∈ [−(1+2ε̂)F� (1+

2ε̂)F], (3) |f xi−1(mi) − gxi−1(mi)| ≤ 2ε̂F , (4) sign(xi−1)g
xi−1(m̃i) ≥ −(1 + ε̂)c − ε̂F , and

(5) gxi−1(mi)− gxi−1(0)= 1
p(mi)

(f xi−1(mi)+ F)≥ 0.
For xi−1 = B, define

gxi−1(0)= −(1 + ε̂)c� and

gxi−1(mi)= 1
p(mi)

f xi−1(mi)+ 1 −p(mi)

p(mi)
(1 + ε̂)c ∀mi ∈ Mi�

Then, for all mi, we have (1) E[gxi−1(m̃i)|mi] = f xi−1(mi), (2) g
xi−1
T (mi) ∈ [−(1 +

2ε̂)F� (1 + 2ε̂)F], (3) |f xi−1(mi) − gxi−1(mi)| ≤ 2ε̂F , (4) sign(xi−1)g
xi−1(m̃i) ≥ −(1 + ε̂)c,

and (5) gxi−1(mi)− gxi−1(0)= 1
p(mi)

(f xi−1(mi)+ c)≥ 0 (the last inequality follows from the
condition (75)). Q.E.D.

S.1. Proof of Lemma 5

Let a1 ∈ AN be the action profile where player i plays a1 and all other players play a0.
Let a0 ∈AN be the action profile where all players play a0. Let T1st := ⋃b(Mi)

k=1 {2(k− 1)T +
1� � � � �2(k− 1)T +T } denote the set of periods in the first half of each interval. For n 	= i,
define

π̂n(hn−1)=
∑
t∈T

2K1{ωn−1�t=a0}
pn−1�n

+
∑
t∈T1st

1{ωn−1�t=a1}
(
1 − δT

)
δt−1

(
ûn

(
a0

) − ûn

(
a1

))
pn−1�i

and πn(xn−1�hn−1) = π̂n(hn−1) + vn(xn−1) − cn, where cn is a constant to be determined.
We will show that, for n 	= i, Claims 1 and 3 of the lemma hold for any cn, and that
E[∑t∈T δ

t−1ûn(at)+ π̂n(hn−1)] is a constant independent of mi.
Setting cn = E[∑t∈T δ

t−1ûn(at)+ π̂n(hn−1)] then implies that Claim 2 also holds.
For Claim 1, we require that playing a0 throughout the module is optimal with payoff

function (20). This follows immediately from the facts that K ≥ 2ū
ε̄

and maxh�h̃ |wn(h) −
wn(h̃)| < K, which imply that the first term of π̂n(hn−1) dominates any difference in∑

t∈T δ
t−1ûn(at) and wn(h). Claim 3 is also immediate.

To see that E[∑t∈T δ
t−1ûn(at)+ π̂n(hn−1)] is independent of mi, note that player i plays

a1 the same number of times regardless of mi. Therefore, E[∑t∈T
2K1{ωn−1�t=a0}

pn−1�n
] is indepen-

dent of mi. It remains to show that

∑
t∈T

δt−1ûn(at)+
∑
t∈T1st

E[1{ωn−1�t=a1}]
(
1 − δT

)
δt−1

(
ûn

(
a0

) − ûn

(
a1

))
pn−1�i

(76)

is independent of mi.

1Wherever Lemma 25 is applied, we have F ≥ (1 + ε̂)c.
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We show that payoff (76) is independent of mi for each interval, that is, for each k ∈
{1� � � � � b(Mi)}, when the sums in (76) are restricted to τ ∈ {2(k− 1)T + 1� � � � �2kT }, they
are the same when player i plays a1 in the first half of the kth interval as when she plays
a1 in the second half. When player i plays a1 in the second half of the kth interval, (76)
equals

2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1ûn

(
a0

) +
2kT∑

τ=2(k−1)T+T+1

δτ−1ûn

(
a1

)
�

while when player i plays a1 in the first half of the kth interval, the payoff (76) equals

2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1ûn

(
a1

) +
2kT∑

τ=2(k−1)T+T+1

δτ−1ûn

(
a0

)

+ (
1 − δT

) 2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1
(
ûn

(
a0

) − ûn

(
a1

))

=
2(k−1)T+T∑

τ=2(k−1)T+1

δτ−1ûn

(
a1

) + δT

2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1ûn

(
a0

)

+ (
1 − δT

) 2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1
(
ûn

(
a0

) − ûn

(
a1

))

= δT

2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1ûn

(
a1

) +
2(k−1)T+T∑

τ=2(k−1)T+1

δτ−1ûn

(
a0

)

=
2(k−1)T+T∑

τ=2(k−1)T+1

δτ−1ûn

(
a0

) +
2kT∑

τ=2(k−1)T+T+1

δτ−1ûn

(
a1

)
�

Finally, for player i, define π̂i(hi−1) = ∑
t∈T

1
pi−1�i

(δt−11{ωi−1�t=a1}(ûi(a1) − ûi(a0)) +
1{ωi−1�t∈{a0�a1}}2ū). The first term in the sum makes player i indifferent between playing
a0 and a1, and the second term makes her not want to play a /∈ {a0� a1}. Since player i is
indifferent between a0 and a1, it follows that ci = E[∑t∈T δ

t−1ûi(at) + π̂i(hi−1)] is inde-
pendent of mi. Hence, letting πi�t(xi−1�hi−1)= π̂i�t(hi−1)+ vi(xi−1)− ci, Claims 1–3 of the
lemma hold for n = i.

S.2. Proof of Lemma 6

By Lemma 1, it suffices to show that, for sufficiently large δ < 1, there exist (σ∗∗
i (xi))i�xi ,

β∗∗, (v∗∗
i (xi−1))i�xi−1 , and (π∗∗

i (xi−1�h
T ∗∗
i−1))i�xi−1�h

T∗∗
i−1

such that (1)–(4) are satisfied in the T ∗∗-
period discounted repeated game.

Construction of σ∗∗
i (xi)

Play within the first T3 periods is given by (σ∗
i (xi))i∈I . Play from periods T3 + 1 to T ∗∗ is

given by the phase (final�4� i)i∈I strategies defined in Section E of the Appendix. Denote



4 J. DEB, T. SUGAYA, AND A. WOLITZKY

player i’s strategy for periods T3 + 1� � � � �T ∗∗ by σT ∗∗
i |

h
T3
i

(indicating its dependence on

h
T3
i ).
At the end of phase (final�4� i), for each n 	= i� i− 1, denote player i− 1’s inferences of

ti−1(n) and hn�ti−1(n) by ti−1(n)(i− 1) ∈ {0�1� � � � �T3} and hn�ti−1(n)(i− 1) ∈A2 ∪ {0}, respec-
tively. We say that communication succeeds if ti−1(n)(i − 1) = ti−1 and hn�ti−1(n)(i − 1) 	= 0
for all n 	= i� i− 1. Denote the event that communication succeeds (resp., fails) by si−1 = 1
(resp., si−1 = 0). Note that, if si−1 = 1 and all players follow σT ∗∗ |hT3 , then h−i�ti−1(i − 1) =
h−i�ti−1 .

Construction of β∗∗

As will be seen, for periods T3 + 1� � � � � T ∗∗, the equilibrium is belief-free. Hence, any
consistent beliefs suffice. For periods 1� � � � �T3, let β∗∗ = β∗.

Construction of π∗∗
i (xi−1�h

T ∗∗
i−1)

Since h−i�ti−1 uniquely identifies ai�ti−1 by Lemma 2, there exists π̃δ
i�t(ti−1�h−i�ti−1) such

that, for all at ∈ AN and t ∈ {1� � � � � T3},
π̃δ

i�t(ti−1�h−i�ti−1)= 1{ti−1=t}T3

(
1 − δt−1

)
ûi(at)� (77)

Note that

lim
δ→1

max
t�ti−1�h−i�ti−1

π̃δ
i�t(ti−1�h−i�ti−1)= 0� (78)

We use Lemma 24 to adjust π̃δ
i�t(ti−1�h−i�ti−1) to account for errors in communication.

CLAIM 1: There exist (πδ
i�t(ti−1� si−1�h−i�ti−1(i− 1)))i�t�ti−1�si−1�h−i�ti−1 (i−1) such that

1. For all i ∈ I, ti−1 ∈ {1� � � � �T3}, and hT3 ∈HT3 ,

E
[
πδ

i�t

(
ti−1� si−1�h−i�ti−1(i− 1)

)|hT3� ti−1

] = π̃δ
i�t(ti−1�h−i�ti−1)� (79)

2. limδ→1 maxi�t�ti−1�si−1�h−i�ti−1 (i−1) π
δ
i�t(ti−1� si−1�h−i�ti−1(i− 1))= 0.

PROOF: Let h̃−i�ti−1 = h−i�ti−1(i − 1) if si−1 = 1 and h̃−i�ti−1 = 0 otherwise. Since si−1 = 1
implies h−i�ti−1(i − 1) = h−i�ti−1 , we have Pr(h̃−i�ti−1 = h−i�ti−1 |ti−1)+ Pr(h̃−i�ti−1 = 0|ti−1) = 1.
Moreover, by Lemma 3, we have

Pr(h̃−i�ti−1 = h−i�ti−1 |ti−1)≥ 1 − (
b(T3)+ (N − 2)

(
b(T3 + 1)+ b

(
A2

)))
exp(−ε̄T0)�

The right-hand side is no less than 1/2 by the definition (17). Hence, the claim follows
from (77), (78), and Lemma 24 (with ε̂ ≤ 1). Q.E.D.

Given (77) and (79), since ti−1 is drawn uniformly at random from {1� � � � �T3}, we have

E

[
T3∑
t=1

πδ
i�t

(
ti−1� si−1�h−i�ti−1(i− 1)

)|hT3

]
=

T3∑
τ=1

(
1 − δt−1

)
ûi(at)� (80)

Let πδ
i (xi−1�h

T ∗∗
i−1) := ∑T3

t=1 π
δ
i�t(ti−1� si−1�h−i�ti−1(i − 1)). Let T(final�4) = ⋃

i∈I T(final�
4� i). Note that, for all j 	= i, πδ

j (xj−1�h
T ∗∗
j−1) does not depend on the outcome of phase
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(final�4� i). Hence, by Lemma 5, there exist (πt(h
T(final�4)
i−1 ))i∈I such that σT ∗∗ |hT3 is a BFE

in T(final�4) conditional on each realized hT3 , when payoffs are given by

E

[∑
n∈I

∑
t∈T(final�4�n)

δt−1ûi(at)+πδ
i

(
xi−1�h

T(final�4)
i−1

) +πt

(
hT(final�4)
i−1

)|hT3
i

]
� (81)

Moreover, since limδ→1 maxxi−1�h
T∗∗
i−1

|πδ
i (xi−1�h

T ∗∗
i−1)| = 0, we have

lim
δ→1

max
h
T(final�4)
i−1

∣∣πt

(
hT(final�4)
i−1

)∣∣ ≤
(
ū+ 2

ū

ε̄

)(
T ∗∗ − T3

) ≤ ε∗

2
T3� (82)

where the last inequality follows from (17). Finally, we define

π∗∗
i

(
xi−1�h

T ∗∗
i−1

) := π∗
i

(
xi−1�h

T3
i−1

) +πδ
i

(
xi−1�h

T(final�4)
i−1

) +πt

(
hT(final�4)
i−1

)
+ sign(xi−1)8ε∗T3� (83)

We now verify conditions (1)–(4).
[Sequential Rationality:] Ignoring sunk payoffs and the constant term sign(xi−1)8ε∗T3,

player i maximizes the payoff (81) in T(final�4). By construction of (πt(h
T(final�4)
i−1 ))i∈I , (1)

holds for all t ∈ T(final�4) for any consistent belief system, since by Lemma 5 the basic
protocol is a BFE.

Next, by Lemma 5, the expected payoff E[∑t∈T1
δt−1ûi(at)+ πt(h

T(final�4)
i−1 )|hT3] does not

depend on hT3 . Therefore, in period t ≤ T3, player i maximizes

E

[
T3∑
τ=1

δt−1ûi(aτ)+π∗
i

(
xi−1�h

T3
i−1

) +πδ
i

(
xi−1�h

T(final�4)
i−1

)|ht−1
i

]

= E

[
T3∑
τ=1

δt−1ûi(aτ)+π∗
i

(
xi−1�h

T3
i−1

) +E
[
πδ

i

(
xi−1�h

T(final�4)
i−1

)|hT3
]|ht−1

i

]

= E

[
T3∑
τ=1

ûi(aτ)+π∗
i

(
xi−1�h

T(final�4)
i−1

)|ht−1
i

]
� (84)

where the first equality follows by iterated expectation, and the second follows from (80).
Since (84) equals the objective in (22), (22) implies (1).

[Promise Keeping:] Equation (2) is satisfied with v∗∗
i (xi−1) defined by

v∗∗
i (xi−1) = 1 − δ

1 − δT1
E

[
T1∑
t=1

δt−1ûi(at)+π∗
i

(
xi−1�h

T3
i−1

) +πδ
i

(
xi−1�h

T(final�4)
i−1

)

+πt

(
hT(final�4)
i−1

) + sign(xi−1)8ε∗T3

]
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= 1 − δ

1 − δT1
E

[
T3∑
t=1

ûi(at)+
T4∑

t=T3+1

vi(xi−1)

+π∗
i

(
xi−1�h

T3
i−1

) + sign(xi−1)8ε∗T3

]
(85)

for xi−1 ∈ {G�B}, where we have used the fact that the expected value of
∑T4

t=T3+1 δ
t−1 ×

ûi(at)+πt(h
T(final�4)
i−1 ) equals

∑T4
t=T3+1 vi(xi−1), by Lemma 5.

[Self-Generation:] Since limδ→1 max
xi−1�h

T(final�4)
i−1

|πδ
i (xi−1�h

T(final�4)
i−1 )| = 0, we have

lim
δ→1

sign(xi−1)
(
π∗

i

(
xi−1�h

T3
i−1

) +πδ
i

(
xi−1�h

T(final�4)
i−1

) +πt

(
hT(final�4)
i−1

) + sign(xi−1)8ε∗T3

)
≥ sign(xi−1)π

∗
i

(
xi−1�h

T3
i−1

) − lim
δ→1

∣∣πt

(
hT(final�4)
i−1

)∣∣ + 8ε∗T3 > 0�

where the first inequality follows by (21), and the second by (24) and (82). Hence, for
sufficiently large δ, (3) holds.

[Full Dimensionality:] Since 1−δ

1−δT
∗∗ → 1

T ∗∗ as δ→ 1 and T ∗∗ > T3, (85) implies

lim
δ→1

v∗∗
i (xi−1) → 1

T ∗∗E

[
T3∑
t=1

ûi(at)+π∗
i

(
xi−1�h

T3
i−1

) + sign(xi−1)8ε∗T3

]
⎧⎪⎨
⎪⎩

≥ T3

T ∗∗ vi(xi−1)− 8ε∗ if xi−1 =G�

≤ T3

T ∗∗ vi(xi−1)+ 8ε∗ if xi−1 = B�⎧⎪⎨
⎪⎩

≥ vi(xi−1)− T ∗∗ − T3

T ∗∗ 2ū− 8ε∗ if xi−1 =G�

≤ vi(xi−1)+ T ∗∗ − T3

T ∗∗ 2ū+ 8ε∗ if xi−1 = B�

The second line follows from (23), and the third follows from ū ≥ maxa∈AN |û(a)| and
v(x) ∈ F∗. By (5), we have vi(B)+ 9ε∗ < vi < vi(G)− 9ε∗. With (17), the last line implies

lim
δ→1

v∗∗
i (xi−1)

{
≥ vi(xi−1)− 9ε∗ if xi−1 =G�

≤ vi(xi−1)+ 9ε∗ if xi−1 = B�

Hence, for sufficiently large δ, we have v∗∗
i (B) < vi < v∗∗

i (G).

S.3. Proof of Lemma 7

By Lemma 6, it suffices to show that there exist (σ∗∗
i (xi))i�xi , β

∗∗, (v∗∗
i (xi−1))i�xi−1 , and

(π∗∗
i (xi−1�h

T3
i−1))i�xi−1�h

T3
i−1

such that Conditions (22)–(24) are satisfied in the T3-period dis-

counted repeated game.
Construction of σ∗∗

i (xi)

Play within the first T2 periods is given by (σ∗
i (xi))i∈I . Play from periods T2 + 1 to T3

is given by the phase (final�3� i)i∈I strategies defined in Section E. Denote player i − 1’s
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inference of (an�t�ωn�t)t∈⋃
j∈I T(final�2�j) by (an�t(i− 1)�ωn�t(i− 1))t∈⋃

j∈I T(final�2�j). Note that, by
(17) and Lemma 3, for each t ∈ ⋃

j∈I T(final�2� j), we have

Pr
((
an�t(i− 1)�ωn�t(i− 1)

)
n	=i�i−1

= (an�t�ωn�t)n	=i�i−1|(an�t�ωn�t)n	=i�i−1

) ≥ 1
2
� (86)

Construction of β∗∗

As will be seen, for periods T2 + 1� � � � � T3, the equilibrium is belief-free. Hence, any
consistent beliefs suffice. For periods 1� � � � �T2, let β∗∗ = β∗.

Construction of π∗∗
i (xi−1�h

T3
i−1)

Since (a−i�t �ω−i�t) uniquely identifies ai�t by Lemma 2, there exists π̃i�t(a−i�t�ω−i�t) such
that, for all at ∈ AN and t ∈ ⋃

n∈I T(final�2� n),

π̃i�t(xi−1� a−i�t�ω−i�t)=
{
vi(xi−1)− ûi(at) if t /∈ T(final�2� n)�
vi(xi−1)− ûi(at)− 1{ai�t 	=a0} if t ∈ T(final�2� n)�

We use Lemma 24 to adjust π̃i�t(xi−1� a−i�t�ω−i�t) to account for errors in communica-
tion.

CLAIM 2: There exist (πi�t(xi−1� a−i�t(i−1)�ω−i�t(i−1)))i�t∈⋃
n∈IT(final�2�n)�xi−1�a−i�t (i−1)�ω−i�t (i−1)

such that
1. For all i ∈ I, t ∈ ⋃

n∈I T(final�2� n), xi−1, and hT2 ∈ HT2 ,

E
[
πi�t

(
xi−1� a−i�t(i− 1)�ω−i�t(i− 1)

)|xi−1�h
T2

] = π̃i�t(xi−1� a−i�t �ω−i�t)� (87)

2. maxi�t�a−i�t (i−1)�ω−i�t (i−1) |πi�t(xi−1� a−i�t(i− 1)�ω−i�t(i− 1))| ≤ 2(ū+ 1).

PROOF: We construct πi�t from π̃i�t as we constructed πδ
i�t from π̃δ

i�t in Claim 1. The
bound (86) and Lemma 24 imply the result. Q.E.D.

Let πT3
i (xi−1�h

T3
i−1) := ∑

t∈⋃
n∈I T(final�2�n) πi�t(xi−1� a−i�t(i − 1)�ω−i�t(i − 1)). Let T(final�3)

be the set of periods in (final�3� i)i∈I . Note that, for all j 	= i, the reward π
T3
j (xj−1�h

T3
j−1)

does not depend on the outcome in phase (final�3� i). Hence, by Lemma 5, there
exist (πt(h

T(final�3)
i−1 ))i∈I such that σT3 is a BFE in T(final�3) when payoffs are given

by

E

[ ∑
t∈T(final�3)

ûi(at)+π
T3
i

(
xi−1�h

T3
i−1

) +πi

(
hT(final�3)
i−1

)|hT2
i

]
� (88)

Moreover, since the reward π
T3
i is additively separable across t ∈ ⋃

n∈I T(final�2� n), we
have

max
i�h

T(final�3)
i−1

∣∣πi

(
hT(final�3)
i−1

)∣∣ ≤ 2
ū+ 2(ū+ 1)

ε̄
(T3 − T2)�
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Together with Claim 2, we have

max
i�h

T3
i−1

∣∣πT3
i

(
xi−1�h

T3
i−1

)∣∣ + max
i�h

T(final�3)
i−1

∣∣πi

(
hT(final�3)
i−1

)∣∣
≤ 2(ū+ 1)(T2 − T1)+ 2

ū+ 2(ū+ 1)
ε̄

(T3 − T2)≤ ε∗T3� (89)

where the last inequality follows from (17).
Finally, we define

π∗∗
i

(
xi−1�h

T3
i−1

) := π∗
i

(
xi−1�h

T2
i−1

) +π
T3
i

(
xi−1�h

T3
i−1

) +πi

(
hT(final�3)
i−1

) + sign(xi−1)7ε∗T3�

The verification of Conditions (1)–(4) is now the same as in Lemma 6.

S.4. Proof of Lemma 9

We construct strategies σ∗∗
i (xi), beliefs β∗∗, and reward functions π∗∗

i (xi−1�h
T2
i−1) in the

T2-period game that satisfy the premise of Lemma 7.
Construction of σ∗∗

i (xi)

Play within the first T1 periods is given by (σ∗
i (xi))i∈I . Play from periods T1 + 1 to T2

is given by the phase (final�2� i)i∈I strategies defined in Section E, with Ijam = {i − 1} in
phase (final�2� i). For each i ∈ I and n 	= i� i−1, denote player i−1’s inference of mi−1(n)
by mi−1(n)(i − 1). If mi−1(n)(i − 1) = 0 for some n 	= i� i − 1, or if player i − 1 plays
JAM during a round where she receives a message via the secure protocol, let si−1 = 0
(“communication fails”). Otherwise, si−1 = 1 (“communication succeeds”).

Construction of β∗∗

For periods T1 + 1� � � � �T2, specify beliefs as in Lemma 8 given the sender’s equilibrium
message. For periods 1� � � � �T1, let β∗∗ = β∗.

Construction of π∗∗
i (xi−1�h

T2
i−1)

Fix xi−1 ∈ {G�B} arbitrarily. If si−1 = 1, denote player i − 1’s inference of player n’s
message during phase (final�2� i) by (xn(i − 1)�hT

′′
n (i − 1)). We first construct a function

π̃∗
i (x−i(i − 1)�hT ∗

i−1�h
T

′′
−i (i − 1)) as follows: Define (x̃−i� h̃

T
′′

−i ) = (x−i(i − 1)�hT
′′

−i (i − 1)) if
si−1 = 1 and (x̃−i� h̃

T
′′

−i )= 0 otherwise. Note that (i) (10) implies

min
x−i�h

T′′
−i

Pr
(
si−1 = 1|x−i� h

T
′′

−i

) ≥ 1 −Nb
(
2|A|2(T1−L(T0)

3)
)(

exp(−ε̄T0)+ 2 exp
(−(T0)

1
2
))
� (90)

(ii) si−1 = 1 implies (x−i(i− 1)�hT
′′

−i (i − 1)) = (x−i� h
T

′′
−i ), and (iii) π∗

i satisfies (37). Hence,
in the notation of Lemma 25,

ε̂ = Nb
(
2|A|2(T1−L(T0)

3)
)(

exp(−ε̄T0)+ 2 exp
(−(T0)

1
2
))

1 −Nb
(
2|A|2(T1−L(T0)

3)
)(

exp(−ε̄T0)+ 2 exp
(−(T0)

1
2
)) �

F = max
x̃−i�h

T∗
i−1�h̃

T′′
−i

∣∣π∗
i

(
x̃−i� h

T ∗
i−1� h̃

T
′′

−i

)∣∣ ≤by (34) 8ūT1� c = 5ε∗T1�
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Lemma 25 implies that there exists π̃∗
i (x̃−i� h

T ∗
i−1� h̃

T
′′

−i ) such that

max
x̃−i�h

T∗
i−1�h̃

T′′
−i

∣∣π̃∗
i

(
x̃−i� h

T ∗
i−1� h̃

T
′′

−i

)∣∣ ≤ (1 + 2ε̂)F� (91)

E
[
π̃∗

i

(
x̃−i� h

T ∗
i−1� h̃

T
′′

−i

)|x−i� h
T ∗
i−1�h

T
′′

−i

] = π∗
i

(
x−i� h

T ∗
i−1�h

T
′′

−i

)
� (92)

sign(xi−1)π̃
∗
i

(
x̃−i� h

T ∗
i−1� h̃

T
′′

−i

) ≥ −(1 + ε̂)c − ε̂F� and (93)

π̃∗
i

(
x̃−i� h

T ∗
i−1� h̃

T
′′

−i

)
is minimized when si−1 = 0� (94)

Finally, we define the reward function π∗∗
i (xi−1�h

T2
i−1) = π̃∗∗

i (xi−1�h
T2
i−1). It remains to

verify the premise of Lemma 7.
[Sequential Rationality:] We verify (22) for all t = 1� � � � �T2 by backward induction. In

phase (final�2� i), player i maximizes the conditional expectation of

−
∑

t∈T(final�2�i)

1{ai�t 	=a0} + π̃∗
i

(
x̃−i� h

T ∗
i−1� h̃

T
′′

−i

)
�

Given (91) and (94), the premise for secure communication with magnitude (1+2ε̂)F for
player i is satisfied, for each x ∈ {G�B}N . Moreover, (32) holds by inequalities (17) and
(34). Hence, Lemma 8 implies (27) for t = T1 + 1� � � � �T2.

Since (92) implies that π∗
i and π̃∗

i are equal in expectation given x̃−i, hT ∗
i−1, h̃T

′′
−i (assuming

players follow σ∗∗ in phases (final�3� i)i∈I , as we have shown is optimal), (35) implies (27).
[Promise Keeping:] Let

v̂i(xi−1) := 1
T2

E
σ∗(x)

[
T1∑
t=1

ûi(at)+
T2∑

t=T1+1

vi(xi−1)−
∑

t∈T(final�2�i)

1{ai�t 	=a0} + π̃∗∗
i

(
x−i� h

T2
i−1

)]
�

Equation (36) implies v̂i(xi−1)= vi(xi−1).
[Self-Generation:] By (17), (93) implies (29).

S.5. Proof of Lemma 11

Claim 1: If susp(hn) = 1 for some n 	= j, then (ii) holds. If θj(h−j� ζ� j
′) = E for some

j′ ∈ I, then (iii) holds. So assume otherwise.
In light of the definition of FAIL, this implies that, for each j′ 	= j and n 	= j′, player n

observes a1 in each half-interval in T(j′) where player j′ plays a1. For n = j, since play-
ers −j follow the equilibrium strategy and take REG, we have (aj′�t(j)�ωj′�t(j))t∈T(msg) =
(aj′�t �ωj′�t)t∈T(msg). Moreover, for each player n 	= j� j′, since susp(hn) = 0, she does not
observe a1 in any other half-interval in T(j′) than those in which player j′ takes a1.
Hence, (aj′�t(n)�ωj′�t(n))t∈T(msg) = (aj′�t�ωj′�t)t∈T(msg). Combining these observations, we
have (aj′�t(n)�ωj′�t(n))t∈T(msg) = (aj′�t �ωj′�t)t∈T(msg) for each j′� n ∈ I. Therefore, mi(n) =
mi(n

′) for all n ∈ I. Finally, as player i follows the protocol, this message must equal mi.
For the last part of the claim, consider each event that induces susp(hj) = 1: If

(an�t(j)�ωn�t(j))t∈T(msg) = 0 for some n 	= j, then (an�t(j)�ωn�t(j))t∈T(msg) 	= (an�t�
ωn�t)t∈T(msg). Hence, either some player j′ 	= n� j played JAM or player j did not match
with player n in a half-interval in T(n) where player n played a1. In either case,
θj(h−j� ζ�n)= E. If (aj�t(n)�ωj�t(n))t∈T(msg)�j∈I is not feasible, then again there exists n 	= j
with (an�t(j)�ωn�t(j))t∈T(msg) 	= (an�t�ωn�t)t∈T(msg).
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Claim 2: Same as Claim 1, except that the commonly inferred m̂i may differ from mi.
Claim 3: Follows from Claim 3 of Lemma 10.
Claim 4: Given Claim 3, it suffices to show Prσ

∗�mi
(θj(h−j� ζ) = E) ≤ exp(−T

1
3 ). For

each j′ ∈ I, if no one plays JAM in T(j′), then θj(h−j� ζ� j
′) = E only if some player n 	= j′

fails to observe a1 in a half-interval in T(j′) where player j′ plays a1. By Lemma 3, this
event occurs with probability at most (N−1)b(A4b(Mi))exp(−ε̄T ). In total, θj(h−j� ζ)=E
occurs with probability at most

2N(N − 1)b
(
A4b(Mi)

)
exp

(−T
1
2
)︸ ︷︷ ︸

∃j′∈I�n	=j: player n plays JAM in T(j′)

+N(N − 1)b
(
A4b(Mi)

)
exp(−ε̄T )︸ ︷︷ ︸

∃j′∈I�n	=i:n fails to observe a1 in T(j′)

� (95)

By (38), this sum is at most exp(−T
1
3 ).

Claim 5: Follows from Claim 1 of Lemma 10.

S.6. Proof of Lemma 13

We prove the first part of the lemma by backward induction. We assume throughout
that ζj = reg; if instead ζj = jam, then (42) equals wj(h�ζ) and θj(h−j� ζ) = E, so player
j is indifferent over all protocol strategies by Condition 1 of the premise for communica-
tion.

Final Checking Round

Let j′ be the index of the final checking round. Fix h ∈ H<j′ . The following lemma
verifies the receivers’ incentives, since both ûj(aτ)− 1{aj�τ 	=a0} and ûj(aτ)− 1{aj�τ 	=a∗

j�τ(h−j )} for
τ /∈ T(j′) are sunk.

LEMMA 26: Assume j 	= j′ and ζj = reg. For every history h<j′ ∈ H<j′ and ht−1
j with t ∈

T(j′), and every action aj�t ∈A, when player j follows her optimal continuation strategy after
taking action aj�t , we have

E

[
−

∑
τ∈T(j′)

1{aj�τ 	=a0} +wj(h�ζ)|h<j′�ht−1
j � aj�t = a0

]

≥ E

[
−

∑
τ∈T(j′)

1{aj�τ 	=a0} +wj(h�ζ)|h<j′�ht−1
j � aj�t 	= a0

]
� (96)

PROOF: If θj(h−j� ζ� j
′′) = E for some j′′ 	= j′, the result follows immediately from

(8) and (42), given ζj = reg. So suppose θj(h−j� ζ� j
′′) = R for all j′′ 	= j′. Since a de-

viation by any player j′′ 	= j induces θj(h−j� ζ) = E, we also assume players −j follow
σ∗

−j in every checking round. Hence, θj(h−j� ζ� j
′) = E if and only if (i) some player

n 	= j′ does not observe a1 in a half-interval where player j′ plays a1 or (ii) some player
n 	= j� j′ plays JAM in T(j′). In particular, let Rj′�−j denote the event that each player
n 	= j� j′ is matched with player j′ in every half-interval where player j′ takes a1. Then
Pr(θj(h−j� ζ� j

′)= E|Rj′�−j� h
<j′�ht−1

j ) is independent of σj .
With i replaced by j′, i∗ replaced with j, T replaced with T(j′), and Lemma 4 replaced

with Lemma 12, by the same argument as for Lemma 8, with probability at least

1 −Nb
(
A4b(Mi)

)
exp

(−η̄T + 2T
1
2
)
� (97)
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conditional on (aj�τ�ωj�τ)τ∈T(j′), either θj(h−j� ζ� j
′) = E or [for each n 	= j, (aj′�t(n)�

ωj′�t(n))t∈T(msg) ∈ {(aj′�t�ωj′�t)t∈T(msg)�0}, and (aj′�t(n)�ωj′�t(n))t∈T(msg) = (aj′�t �ωj′�t)t∈T(msg) if
and only if aj�τ = a0 for each τ ∈ T such that μτ(j) = n and τ is in a half-interval where
player j′ plays a0]. The latter event implies Rj′�−j .

Since Pr(θj(h−j� ζ� j
′) = E|Rj′�−j� h

<j′�ht−1
j ) is independent of σj and (aj′�t(n)�

ωj′�t(n))t∈T(msg) = 0 induces suspn(hn) = 1, playing aj�τ = a0 for each τ ≥ t maximizes
wj(h�ζ) with probability at least (97). Together with (44), this implies that the reward
term −1{aj�t 	=a0} outweighs any possible benefit to player j from playing a 	= a0 in an at-
tempt to manipulate (aj′�t(n)�ωj′�t(n))t∈T(msg)�n	=j . Q.E.D.

We next verify the sender’s incentive:

LEMMA 27: Assume ζj′ = reg. For every history h<j′ ∈ H<j′ and ht−1
j′ with t ∈ T(j′), and

every action aj′�t ∈ A, when player j′ follows her optimal continuation strategy after taking
action aj′�t , we have

E

[
−

∑
τ∈T(j′)

1{aj′�τ 	=a∗
j′�τ(h−j′ )} +wj′(h�ζ)|h<j′�ht−1

j′ � aj′�t = a∗
j′�t(h−j′)

]

≥ E

[
−

∑
τ∈T(j′)

1{aj′�τ 	=a∗
j′�τ(h−j′ )} +wj′(h�ζ)|h<j′�ht−1

j′ � aj′�t 	= a∗
j′�t(h−j′)

]
�

PROOF: Again, we assume θj′(h−j′� ζ� j
′′) = R for all j′′ 	= j′ and players −j′ follow σ∗

−j′
in all checking rounds. In addition, assume REGj′�−j′ , as otherwise θj′(h−j′� ζ� j

′)=E.
Given the reward −1{aj′�t 	=a∗

j′�t (h−j′ )}, it suffices to show that following σ∗
j′ maximizes

wj′(h�ζ).
By Claims 4 and 5 of Lemma 10, for each j′′ 	= j′, since we have assumed θj′(h−j′� ζ� j

′′) =
R, we have (aj′′�t(n)�ωj′′�t(n))t∈T(msg) ∈ {(aj′′�t �ωj′′�t)t∈T(msg)�0} for all n ∈ I.

Fix t ∈ T(j′), h<j′ , and ht−1
j′ . If (aj′′�t(n)�ωj′′�t(n))t∈T(msg) = 0 for some j′′ 	= j′ and n ∈ I,

then Claim 1 of Lemma 11 implies that suspn′(hn′)= 1 for some n′ 	= j. Hence, maximizing
wj′(h�ζ) is equivalent to maximizing the probability that θj(h−j� ζ� j

′) = E. If player j′

followed σ∗
j′ until period t − 1 within T(j′), then following σ∗

j′ maximizes θj′(h−j′� ζ� j
′) =

E, by Claim 1 of Lemma 10. Otherwise, θj′(h−j′� ζ� j
′)=R given REGj′�−j′ and any strategy

maximizes wj′(h�ζ). In total, it is optimal to follow σ∗
j′ .

Now suppose (aj′′�t(n)�ωj′′�t(n))t∈T(msg) = (aj′′�t �ωj′′�t)t∈T(msg) for each j′′ 	= j′ and n ∈ I.
Suppose player j′ followed σ∗

j′ until period t − 1 within T(j′). On the one hand,
if player j′ deviates from σ∗

j′ in period t, then θj′(h−j′� ζ� j
′) = R given REGj′�−j′ .

Since (aj′�t(n)�ωj′�t(n))t∈T(msg) 	= (aj′�t�ωj′�t)t∈T(msg) for some n 	= j′ induces susp(hn) = 1,
player j′’s payoff is P(σj′ |h<j′�ht−1

j′ )v
mi
j′ + (1 − P(σj′ |h<j′�ht−1

j′ ))v0
j′ , where mi corresponds

to (ai�t)t∈T(msg) and P(σj′ |h<j′�ht−1
j′ ) is the probability that (aj′�t(n)�ωj′�t(n))t∈T(msg) =

(aj′�t �ωj′�t)t∈T(msg) for all n 	= j′. On the other hand, if player j′ follows σ∗
j′ in period

t, then her equilibrium payoff is P(σ∗
j′ |h<j′�ht−1

j′ )v
mi
j′ + (1 − P(σ∗

j′ |h<j′�ht−1
j′ ))vEj′ , since

(aj′�t(n)�ωj′�t(n))t∈T(msg) 	= (aj′�t �ωj′�t)t∈T(msg) implies θj′(h−j′� ζ� j
′) = E. As min{vmi

j′ � v
E
j′ } ≥

v0
j′ by premise and P(σ∗

j′ |h<j′�ht−1
j′ ) ≥ P(σj′ |h<j′�ht−1

j′ ) by definition, it is optimal to play
σ∗

j′ .



12 J. DEB, T. SUGAYA, AND A. WOLITZKY

Suppose instead player j′ deviated from σ∗
j within T(j′) before period t − 1. Then

θj′(h−j′� ζ� j
′) = R given REGj′�−j′ , so her payoff is P(σj′ |h<j′�ht−1

j′ )v
mi
j′ + (1 − P(σj′ |h<j′�

ht−1
j′ ))v0

j′ . Again, following σ∗
j′ for the rest of the round maximizes P(σj′ |h<j′�ht−1

j′ ). Q.E.D.

Backward Induction: Given that players will follow σ∗ in subsequent rounds and Claim 1
of Lemma 10, we can assume θj(h−j� ζ� j

′′) = R for each j′′ for which the j′′-checking
round follows the current round. Hence, the same proof as for Lemmas 26 and 27 estab-
lishes each player’s incentive to follow σ∗ after any history.

Message Round: Again, given that players will follow σ∗ in the checking rounds and
Claim 1 of Lemma 10, we can assume θj(h−j� ζ� j

′) = R for each j′ ∈ I, and therefore as-
sume (aj′�t(n)�ωj′�t(n))t∈T(msg) = (aj′�t �ωj′�t)t∈T(msg) and suspn(hn)= 0 for all n� j′ ∈ I. Given
this, the strategy of each player j 	= i does not affect wj(h�ζ), so incentives are satisfied.
For player i, given (aj′�t(n)�ωj′�t(n))t∈T(msg) = (aj′�t �ωj′�t)t∈T(msg) for all n� j′ ∈ I, mi(n) will
equal m̂i if player i plays (ai�t)t∈T(msg) corresponding to the binary expansion of m̂i (with
the interpretation that, if (ai�t)t∈T(msg) does not correspond to the binary expansion of any
m̂i ∈ Mi, then mi(n)= 1). Hence, σ

∗�m∗
i

i is optimal after any history.

i∗-QBFE: The last part of the lemma is immediate: Since vEj = v
mi
j = v

punish
j for each

mi ∈ Mi and j 	= i∗, players −i∗’s incentives are satisfied. For player i∗, the proof of the
first part of the lemma applies.

S.7. Proof of Lemma 14

We construct strategies (σ∗∗
i (xi))i�xi and reward functions (π∗∗

i (x−i� h
T

′
−i))i�x−i�h

T′
−i

in the
T1-period game that satisfy the premise of Lemma 9.

Construction of σ∗∗
i (xi)

Play for the first T ∗ periods is given by (σ∗
i (xi))i. Play from periods T ∗ + 1 to T1 is given

by the phase (final�1� i)i∈I strategies outlined in Section E. More precisely:
• Player i− 1 (mod N) sends ti−1(1)� � � � � ti−1(L) using the verified protocol with rep-

etition T0 and Ijam = −i. Each player n ∈ I infers a message (ti−1(1)(n)� � � � � ti−1(L)(n)).
• Sequentially, each player n 	= i� i − 1 sends hn�ti−1(l)(n) = (an�ti−1(l)(n)�ωn�ti−1(l)(n))l=1�����L

and χn ∈ {0�1} using the secure protocol with repetition T0 and Ijam = {i − 1}. For each
n 	= i� i− 1, player i− 1 infers a message (hn�ti−1(l)(n)(i− 1)�χn(i− 1)).

• If there exists a player n 	= i with susp(hn)= 1 or θi(h−i)=E in the verified protocol,
or if player i − 1 infers 0 or plays JAM during a round where she receives a message in
the secure protocol, let si−1 = 0 (“communication fails”). Otherwise, si−1 = 1 (“communi-
cation succeeds”). Note that si−1 is a function of hT

′
−i. Here, ζn is assumed to equal jam for

each n 	= i and reg for i, and so is omitted from θi.
Construction of β∗∗

In periods where player n sends a message via the secure protocol, specify trembles
as in Lemma 8. In periods where players use the verified protocol, any consistent belief
system suffices. For periods 1� � � � �T ∗, let β∗∗ = β∗.

Construction of π∗∗
i (x−i� h

T
′

−i)

Fix xi−1 arbitrarily. If si−1 = 1, we denote player i − 1’s inference of player n’s message
during phase (final�1� i) by h

Li−1
n (i − 1) and χn(i − 1). As in the proof of Lemma 9, de-

fine h̃
Li−1
−i = h

Li−1
−i (i − 1) and χ̃−i = χ−i(i − 1) if si−1 = 1, and define h̃

Li−1
−i = 0 and χ̃−i = 0
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otherwise. Since Mi = {1� � � � � (T0)
3}L for the verified communication, Condition (17) im-

plies (38), and therefore Claim 4 of Lemma 11 holds for verified communication. In ad-
dition, (10) implies that the secure communication is successful with probability at least
(N − 2)b(2A2L)(exp(−T0)+ 2 exp(−(T0)

1
2 )). In total, we have

min
h
Li−1
−i

Pr
(
si−1 = 1|hLi−1

−i

) ≥ 1 − exp
(−(T0)

1
3
) − (N − 2)b

(
2A2L

)(
exp(−T0)+ 2 exp

(−(T0)
1
2
))

:= 1 −p1
error(T0)� (98)

Moreover, the event si−1 = 1 implies h
Li−1
−i (i − 1) = h

Li−1
−i and χ−i(i − 1) = χ−i, and the

reward π∗
i satisfies the condition (49). Hence, in the notation of Lemma 25,

ε̂ = p1
error(T0)

1 −p1
error(T0)

� and

F = max
x−i�h

T′
−i�h̃

Li−1
−i

∣∣π∗
i

(
x−i� h

T
′

−i� h
Li−1
−i �χ−i

)∣∣ ≤by (46) 7ūT ∗� c = 2ε∗T ∗�
(99)

Therefore, Lemma 25 implies that there exists π̃∗
i (x−i� h

T
′

−i� h̃
Li−1
−i � χ̃−i) such that

max
x−i�h

T′
−i�h̃

Li−1
−i

∣∣π̃∗
i

(
x−i� h

T
′

−i� h̃
Li−1
−i � χ̃−i

)∣∣ ≤ (1 + 2ε̂)F� (100)

E
[
π̃∗

i

(
x−i� h

T
′

−i� h̃
Li−1
−i � χ̃−i

)|x−i� h
T

′
−i� h

Li−1
−i χ−i

] = π∗
i

(
x−i� h

T
′

−i� h
Li−1
−i χ−i

)
� (101)

sign(xi−1)π̃
∗
i

(
x−i� h

T
′

−i� h̃
Li−1
−i � χ̃−i

)
≥ −(1 + ε̂)c + ε̂F ∀x−i� h

T
′

−i� h̃
Li−1
−i � χ̃−i� and (102)

π̃∗
i

(
x−i� h

T
′

−i� h̃
Li−1
−i � χ̃−i

)
is minimized when si−1 = 0� (103)

We define the reward function

π∗∗
i

(
x−i� h

T
′′

−i

) = π̃∗
i

(
x−i� h

T
′

−i� h̃
Li−1
−i � χ̃−i

) +
∑

t=1�����T1
t /∈⋃L

l=1 T(main(l))

π̃cancel
i (xi−1� a−i�t�ω−i�t)

+
∑

t∈T(final�1�i):
verified protocol

π
verify
i

(
hT

′′
−i

) +
∑

t∈T(final�1�i):
secure protocol

πsecure
i

(
hT

′′
−i

)
�

Here, the rewards π
verify
i (hT

′′
−i ) and πsecure

i (hT
′′

−i ) are defined analogously to (42) and (30)
for the periods where players −i communicate by the verified and secure communication
modules in phase (final�1� i). Note that these rewards depend only on the history in phase
(final�1� i), and the per-period reward is bounded by 1. Also, π̃cancel

i is bounded by [−ū� ū].
So, we have ∣∣π∗∗

i

(
x−i� h

T
′′

−i

)∣∣ ≤ ∣∣T′′∣∣(1 + ū)+ (1 + 2ε̂)7ūT ∗ ≤by (17) 8ūT ∗� (104)

Since π∗∗
i (x−i� h

T
′′

−i ) satisfies (37) (given (104)), it remains to verify the other three condi-
tions of Lemma 9.



14 J. DEB, T. SUGAYA, AND A. WOLITZKY

[Sequential Rationality:] We verify (35) for t = 1� � � � �T1 by backward induction. Given
π̃cancel

i , for periods t ′ = T ∗ + 1� � � � �T1, player i maximizes the conditional expectation of

π̃∗
i

(
x−i� h

T
′

−i� h̃
Li−1
−i � χ̃−i

) +
∑

t∈T(final�1�i):
verified

π
verify
i

(
hT

′′
−i

) +
∑

t∈T(final�1�i):
secure

πsecure
i

(
hT

′′
−i

)
�

Since the reward π̃∗
i (x−i� h

T
′

−i� h̃
Li−1
−i � χ̃−i) depends only on the histories in T(final�1� i),

player i follows the equilibrium strategy in phases (final�1� j)j 	=i.
For phase (final�1� i), given (100) and (103), the premise for secure communication

with magnitude (1 + 2ε̂)F for player i is satisfied for all x ∈ {G�B}N . In addition, as
vEi = v0

i = [value of π̃∗
i given si−1 = 0], the premise for verified communication with mag-

nitude (1 + 2ε̂)F for player i is satisfied for all x ∈ {G�B}N . Since Ijam = −i for verified
communication, Condition (17) implies Conditions (38), (43), and (44) (for verified com-
munication), as well as Condition (32) (for secure communication). In total, Lemmas 8
and 13 imply sequential rationality for t ′ ∈ T(final�1� i). Finally, since π∗

i and π̃∗
i are equal

in expectation given x−i, hT
′

−i, h
Li−1
−i , χ−i, (47) implies (35) for t = 1� � � � �T ∗.

[Promise Keeping:] Since π∗
i and π̃∗

i are equal in expectation given x−i, hT
′

−i, h
Li−1
−i , (48)

holds.
[Self Generation:] By (17) and (102), sign(xi−1)π̃

∗
i (x−i� h

T
′

−i� h̃
Li−1
−i � χ̃−i) ≥ −3ūT ∗. Other

terms in π∗∗
i (x−i� h

T
′′

−i ) are bounded by (1 + ū)|T′′| + 2ε∗L(T0)
3 ≤by (17) −2ūT ∗. So, (37)

holds.

S.8. Proof of Lemma 15

Compared to Lemma 14, we introduce (50) and replace (46) with (51) (a more restric-
tive condition), (47) with (52) (less restrictive), and (48) with (53) (less restrictive). We
show that the third replacement is without loss, and then show the same for the second.
Given (52), let v̂i(x−i) := 1

L(T0)
3 E

σ∗(x)[∑t∈⋃L
l=1 T(main(l)) ûi(at)+π∗

i (x−i� h
T

′
−i� h

Li−1
−i �χ−i)].

Since vi(xi−1) ∈ [−ū� ū], Conditions (49) and (53) imply

v̂i(x−i)− (
vi(xi−1)+ 2 sign(xi−1)ε

∗) ∈ [−2ū�2ū]� (105)

Define π̃∗
i (x−i� h

T
′

−i� h
Li−1
−i �χ−i) = π∗

i (x−i� h
T

′
−i� h

Li−1
−i �χ−i) − (v̂i(x−i) − (vi(xi−1)

+ 2 sign(xi−1)ε
∗))T ∗. Note that changing the reward function from π∗

i to π̃∗
i only sub-

tracts a constant and thus does not affect sequential rationality. In addition, since
sign(xi−1)(v̂i(x−i)− (vi(xi−1)+ sign(xi−1)2ε∗))≥ 0 by (53), (49) implies sign(xi−1)π̃

∗
i (x−i�

hT
′

−i� h
Li−1
−i �χ−i) ≥ −2ε∗T ∗. Hence, self-generation also holds with reward function π̃∗

i . Fi-
nally, since (v̂i(x−i) − (vi(xi−1) + 2 sign(xi−1)ε

∗))T ∗ is bounded by 2ūT ∗ by (105), (51)
implies

sup
x−i�h

T′
−i�h

Li−1
−i �χ−i

∣∣π̃∗
i

(
x−i� h

T
′

−i� h
Li−1
−i �χ−i

)∣∣ ≤ 7ε∗T ∗�

Hence, (46) also holds with reward function π̃∗
i . Therefore, the premise of Lemma 14

holds. We now show that it is also without loss to replace (47) with (52). We as-
sume that, before the end of main phase l, player i believes that ti−1(l) is uniformly
distributed over T(main(l)).2 Define π̃cancel

i (xi−1� a−i�ω−i) := πcancel
i (xi−1� a−i�ω−i) +

2This belief results if trembles in periods t = 1� � � � �T ∗ are independent of (Li� h
t−1
i ), and thus is consistent.
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sign(xi−1)maxx̃i−1�ã−i�ω̃−i
πcancel

i (x̃i−1� ã−i� ω̃−i). We have π̃cancel
i (xi−1� a−i�ω−i) ∈ [−2ū�2ū],

by (7). Note that

E
[
ûi(a)+πcancel

i (xi−1� a−i�ω−i)|a
]

= vi(xi−1)+ sign(xi−1) max
x̃i−1�ã−i�ω̃−i

πcancel
i (x̃i−1� ã−i� ω̃−i) (106)

and sign(xi−1)π̃
cancel
i (xi−1� a−i�ω−i)≥ 0. Since T ∗ ∈ T

′, we can define

π̃∗
i

(
x−i� h

T
′

−i� h
Li−1
−i �χ−i

)

:=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π∗
i

(
x−i� h

T
′

−i� h
Li−1
−i

)
if χn = 0 for all n 	= i�∑

t∈T′
π̃cancel

i (xi−1� a−i�ω−i)

+ (T0)
3

L∑
l=1

π̃cancel
i (xi−1� a−i�ti−1(l)�ω−i�ti−1(l)) if χn = 1 for some n 	= i�

The (T0)
3 term cancels the probability that ti−1(l)= t for each t ∈ T(main(l)), so with this

reward function player i is indifferent over all action profiles when χn = 1 for some n 	= i.
Given reward function π̃∗

i , (47) and (49) hold. Moreover, given (51) for π∗
i (x−i� h

T
′

−i�

h
Li−1
−i ),

sup
x−i�h

T′
−i�h

Li−1
−i �χ−i

∣∣π̃∗
i

(
x−i� h

T
′

−i� h
Li−1
−i �χ−i

)∣∣ ≤ max
{
7ūT ∗�2ūT ∗} ≤ 7ūT ∗�

Therefore, the premise of Lemma 14 holds.

S.9. Proof of Lemma 17

Definition of the Reward Function

We must define π indiff
i�t (h−i). Given h−i, fix hi uniquely identified from h−i by Lemma 2.

Let H0
i be the set of histories for player i with ωi�1 	= a1 and ωi�2 	= a1. Given the resulting

profile h = (hi�h−i), for t = 2, we define �vi�t(h−i) as follows:
1. If ωi�t−1 = a1, then �vi�t(h−i) := 0.
2. Otherwise, define Pr(Ijam \ {i}|ht−1�H0

i � ai) as the conditional probability that the
realized set of jamming players other than i at the end of the protocol equals Ijam \ {i},
given that players −i follow the protocol, hi ∈H0

i , and player i plays ai in period t. Let

�vi�t(h−i)=
∑

Ijam\{i}

(
Pr

(
Ijam \ {i}|ht−1�H0

i � a
1
) − Pr

(
Ijam \ {i}|ht−1�H0

i � a
0
))
vi

(
Ijam \ {i})�

Note that |�vi�t(h−i)| ≤K, by the bound (63).
Finally, for t = 2, we define

π indiff
i�t (h−i)= −1{ai�t=a1}�vi�t(h−i)� (107)

For t = 1, define Pr(Ijam \ {i}|ht−1�H0
i � ai) as the conditional probability that the realized

set of jamming players other than i at the end of the protocol equals Ijam \ {i}, given that
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players −i follow the protocol, hi ∈ H0
i , and player i plays ai in period t and a0 in period

t + 1. The resulting definitions of �vi�t(h−i) and π indiff
i�t (h−i) are the same as for t = 2.

Note that |π indiff
i�t (h−i)| ≤K for t = 1�2. Hence, condition (i) holds.

Incentive Compatibility

We show that, for every player i and period t = 1�2, it is optimal to follow the protocol
in period t given that she will follow the protocol in every later period.

Recall that Pr(hi ∈ H0
i ) is independent of player i’s strategy, and Condition 2 of the

premise implies that wi(h) = wi(h̃) for all h and h̃ satisfying hi /∈ H0
i and h̃i /∈ H0

i . More-
over, wi(h)= vi(Ijam \ {i}) if hi ∈ H0

i . Hence, player i maximizes her payoff by maximizing∑2
t=1 π

indiff
i�t (h−i)+ vi(Ijam \ {i}) conditional on hi ∈ H0

i .
For t = 2, ignoring sunk payoffs, player i maximizes π indiff

i�t (h−i) + vi(Ijam \ {i}) condi-
tional on hi ∈ H0

i . By (107), player i is indifferent between a0 and a1. Moreover, she is
also indifferent between a0 and any a /∈ {a0� a1}, since (i) the distribution of Ijam \ {i} is the
same whether she takes a0 or a /∈ {a0� a1}, and (ii) (107), π indiff

i (h−i) is the same as well.
For t = 1, noting that her period 1 action does not affect the distribution of anyone’s

action in period 2, player i again maximizes payoff π indiff
i�t (h−i) + vi(Ijam \ {i}) conditional

on hi ∈ H0
i . Again, (107) implies she is indifferent among all actions.
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