
Online Appendices

This document contains the online appendices for the paper “Preferences for truth-telling”

by Johannes Abeler, Daniele Nosenzo and Collin Raymond.

• Appendix A contains further results of the meta study.

• Appendix B presents and derives predictions for those models listed in Table 2 of the

main body of the paper that were not discussed in the body of the paper.

• Appendix C discusses some prominent models that are discussed in the literature but

that cannot explain the findings of the meta study and are thus not discussed in the

main body of the paper.

• Appendix D contains the proofs for the predictions of the models presented in Section

2 in the main body of the paper.

• Appendix E explores how predictions would change if we altered the assumptions re-

garding the distribution H of individual-level parameters ~θ.

• Appendix F presents two additional sets of experiments that we conducted to test spe-

cific predictions of some of the models considered in the paper.

• Appendix G contains the instructions for the lab experiments.

• Appendix H explains the details of the calibrations in Section 4 in the body of the paper.
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A Further Results of the Meta Study

In this appendix, we discuss additional design details and results of the meta study including

hypotheses tests. Table A.1 provides descriptive statistics of the independent variables. Figure

A.1 marks all countries in which experiments were conducted. The world-wide coverage is

quite good, except for Africa and the Middle East.

A.1 Design

We searched in different ways for studies to include in the meta study, using Google Scholar

for direct search of all keywords used in the early papers in the literature and to trace who

cited those early papers, New Economic Papers (NEP) alerts and emails to professional email

lists. We include all studies using the FFH paradigm, i.e., in which subjects conduct a random

draw and then report their outcome of the draw, i.e., their state. This excludes sender-receiver

games as studied in Gneezy (2005) and the many subsequent papers which use this paradigm

or promise games as in Charness and M. Dufwenberg (2006). We require that the true state is

unknown to the experimenter but that the experimenter knows the distribution of the random

draw. The first requirement excludes studies in which the experimenter assigns the state to

the subjects (e.g., Gibson et al. 2013) or learns the state (e.g., Gneezy et al. 2013). The second

requirement excludes the many papers which use the matrix task introduced by Mazar et al.

(2008) and comparable real-effort reporting tasks, e.g., Ruedy and Schweitzer (2010). We

do include studies in which subjects report whether their prediction of a random draw was

correct or not (as in Jiang 2013). Moreover, we require that the payoff from reporting is

independent of the actions of other subjects. This excludes games like Conrads et al. (2014)

or d’Adda et al. (2017). We do allow that reporting has an effect on other subjects. We need

to know the expected payoff level, i.e., the nominal reward and the likelihood that a subject

actually receives this nominal reward. If the payoff is non-monetary, we translate the payoff

as accurately as possible into a monetary equivalent. We further require that the expected

payoff level is not constant, in particular not always zero, i.e., making different reports has

to lead to different consequences. We exclude studies in which subjects could self-select into

the reporting experiment after learning about the rules of the experiment. This excludes

the earliest examples of this class of experiments, Batson et al. (1997) and Batson et al.
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(1999). Finally, we exclude random draws with non-symmetric distributions, except if the

draw has only two potential states. We exclude such distributions since the average report

for asymmetric distributions with many states is difficult to compare to the average report of

symmetric distributions. This only excludes Cojoc and Stoian (2014), a treatment of Gneezy

et al. (2018) and two of our treatments reported in this paper.34

A.2 Influence of Treatment Variables

In this section, we further explore the effect of variables that differ between treatments and

test the statistical significance of those effects. For such treatment-level variables, we use

two complementary identification strategies. First, we can assume that the error term is

independent of the explanatory variables once we control for all observable variables. This

conditional-independence assumption allows us to interpret the regression coefficients as the

causal effects of the explanatory variables. While the conditional-independence assumption

is usually regarded as a quite strong assumption, it is less strong in our setting for several

reasons. Economics laboratory experiments are highly standardized and lab experiments are

run with very abstract framing, usually eschewing any context and just describing the rules

of the games. Both of these arguments mean that the importance of omitted variables is

likely to be limited. Moreover, researchers usually select the design of their experiments with

regard to the research question they are interested in and not with regard to characteristics of

the local subject pool. Reverse causality is thus also unlikely. Results are reported in Table

A.2, columns 1 and 2. We include all explanatory variables that vary across more than one

treatment.35

The second identification strategy we employ makes use of the random assignment of

subjects to treatments within study (and the few within-subject experiments). As long as we

control for study fixed effects and as long as treatments within a study only differ along one

dimension, this eliminates all omitted variables. This is thus a very clean form of identification.

The specifications with study fixed effects are in Table A.2, columns 3 to 8 (in column 9, we

also report the within-study difference for students vs. non-students even though being a
34We adjust the distribution of standardized reports of experiments with asymmetric distributions and two

states such that the average standardized report is comparable to the one of symmetric distributions.
35We restrict explanatory variables in this way since otherwise any treatment fixed effect could be an ex-

planatory variable. Given that we include 429 treatments this would become unwieldy.
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student is not randomly allocated).

Table A.1: Meta study: descriptive statistics

Mean # Subjects
Treatment-level variables

Maximal payoff from misreporting (in 2015 USD) 4.480 44390
1 if repeated 0.244 44390
1 if online/telephone 0.273 44390
1 if control rolls suggested 0.283 44390
1 if reporting about state of mind 0.167 44390
1 if info about behavior of other subjects available 0.011 44390
1 if report reduces payoff of another subject 0.032 44390
1 if student subjects 0.577 44390
Year experiment conducted 2013.460 44390
Author affiliation

1 if economics 0.758 44390
1 if psychology 0.212 44390
1 if sociology/anthropology 0.030 44390

Method of randomization
1 if coin toss 0.421 44390
1 if die roll 0.529 44390
1 if draw from urn 0.050 44390

True distribution
1 if two outcomes non-uniform 0.122 44390
1 if two outcomes uniform 0.358 44390
1 if other uniform 0.370 44390
1 if bell shaped 0.150 44390

Individual-level variables

1 if female 0.478 22944
Age 29.652 16205
Field of study

1 if economics/management student 0.242 5284
1 if psychology student 0.027 5284
1 if other student 0.731 5284

# Decisions 270616
# Subjects 44390
# Treatments 429
# Studies 90

Notes: The means are computed on subject level. The maximal payoff refers to the maximal nominal
payoff times the probability a subject is actually paid and is converted using PPP.
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Figure A.1: Average report by country

Notes: The figure depicts the average standardized report per country. The darker the color, the
higher the average report. For exact country averages see Figure A.4.

The two specifications could yield different estimates for three reasons: (i) cleaner iden-

tification in the within-study specification, (ii) publication bias, and (iii) treatment effect

heterogeneity. First, if there are important omitted variables in the between-study specifi-

cation, the estimated coefficients will be biased. Omitted variables are not an issue for the

within-study specification. Second, we would expect that studies that do not find a significant

treatment effect are less likely to get published and are thus less likely to be included in our

meta study. This will bias upwards the coefficient in the within-study specification. The

between-studies specification suffers much less from this publication bias as we collect infor-

mation about variables which the original authors did not use for their publication decision.

If publication bias is important, then our between-study specification should give a better

estimate of the true coefficient than the within-study specification. Third, the within-study

estimates only use data from studies that vary the parameter of interest directly, thus restrict-

ing the sample considerably. If there is treatment effect heterogeneity, we would expect the

within-study estimate to differ from the between-study estimate. For example, the incentive

level could have a stronger effect for student samples than for non-student samples. We find

that treatment effect heterogeneity could indeed explain the difference between within-study

and between-study coefficients.36 If one is only interested in the average treatment effect,
36Take the incentive level coefficient as example. The between-study coefficient is -0.005 (see below for details,

based on 429 treatments) and the within-study coefficient is 0.003 (based on 94 treatments). To test whether
treatment effect heterogeneity could explain this difference, we take the entire sample, draw 94 treatments at
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the between-study specification is thus preferable as it reports the average effect of a larger

sample. Taken together, since we do not know with certainty how important the three reasons

are, we can only say that both estimates are informative. We thus report results of regres-

sions using both identification strategies. It turns out that in Table A.2, only one coefficient

out of six is different from zero and has an opposite sign in the between- and within-study

regressions.

In the regressions, we cluster standard errors on each subject, thus treating repeated

decisions by the same subject as dependent but treating the decisions by different subjects

as independent. This is the usual assumption for experiments that study individual decision

making. This assumption is also made in basically all studies we include in the meta study.37

In the regressions relying on conditional independence, we also report a specification in column

2 which clusters on study to allow for dependencies within study. Independent of clustering,

we weight one decision as one observation in all regressions.38

random and run the between-study specification on this subsample. We repeat this process 10000 times. We
find that 28 percent of the between-study coefficients are larger than 0.003.

37In two studies, Diekmann et al. (2015) and Rauhut (2013), subjects are shown the reports of other subjects
in their matching group before making a decision. For these studies we cluster on matching group rather than
on individual.

38If we weight by subject, results are very similar. Only the overall average standardized report is then 0.321
instead of 0.234.
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Incentive level: Figure 1 showed that the level of incentives has only a very small

effect on the standardized report. The corresponding regressions are in Table A.2, columns

1 and 2. An increase of the potential payoff by 1 USD changes the standardized report

by -0.005. In column 3, we only use within-study variation for identification. We restrict

the sample to those studies which vary the payoff level between treatments. A couple of

studies vary payoff level and another variable independently. In the regression, we control

for those other variables and mark this as “Additional controls: Yes” in the table. If we

cannot properly control for within-study variation, we exclude the affected treatments (we do

the same in columns 4–9). The resulting coefficient of 0.003 is very similar to the coefficient

derived under the conditional-independence assumption. Even though the coefficients are very

small, given our large sample size, both are significantly different from zero. Taken together,

this provides converging evidence that the average amount of lying does not change much if

stakes are increased. This result is further corroborated by Figure A.2. This figure shows

the distribution of reports for experiments using a uniform distribution with six states (this

represents about a third of the data set). We collapse treatments by the potential payoff

from misreporting and show the distributions for the four quartiles (weighted by number

of subjects). The line marked by “1” is the distribution of the treatments with the lowest

payoffs while the line marked “4” represents the treatments with the highest payoffs. Overall,

distributions do not differ systematically by payoff level. In almost all cases, higher states are

reported more often than lower states, and the second highest state is always reported with

more than 1/6 probability. Overall, neither the average report nor the reporting pattern is

affected by the payoff level.
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Figure A.2: Distribution of reports by incentive level

Notes: The figure depicts the distribution of reports for treatments that use a uniform distribution
with six states and linear payoff increases. Treatments are collapsed into quartiles by the level of the
maximal payoff from misreporting. The line marked by “1” is the distribution of the treatments with
the lowest payoffs while the line marked “4” represents the treatments with the highest payoffs. The
dashed line indicates the truthful distribution at 1/6.

Repetition: The regressions in Table A.2, columns 1 and 2, show that experiments

with repeated reports induce on average markedly lower reports than one-shot experiments.

There are no studies which compare one-shot with repeated implementations directly. We

can still use within-study variation to estimate the effect of repetition by comparing reports

in early vs. late rounds. Figure A.3 plots the average standardized report by treatment and

round. One-shot treatments are shown as round 1. Visually, there is no strong trend over

rounds. Results of the corresponding regression analysis are reported in Table A.3, column

1. We control for treatment fixed effects and thus restrict the sample to repeated studies,

as only they have within-treatment variation in rounds. For those studies, round has a very

small, though significantly positive effect. Subjects in repeated experiments thus start lower

than subjects in one-shot experiments and then slowly gravitate towards the level of one-shot

behavior. This pattern contrasts strongly with, e.g., public goods games experiments in which

a strong convergence over time to the standard prediction can be observed (e.g., Herrmann
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et al. 2008).

Taken together, this shows that the overall low reports are robust to learning and experi-

ence. Moreover, this corroborates our theoretical approach to model each reporting decision

as separate and independent.

Figure A.3: Average standardized report by round

Notes: The figure plots standardized report over the rounds in the experiment. Standardized report is
on the y-axis. A value of 0 means that subjects realize as much payoff as a group of subjects who all
tell the truth. A value of 1 means that subjects all report the state that yields the highest payoff. The
round of the experiment is on the x-axis. One-shot experiments are shown as round 1. Each bubble
represents the average standardized report of one treatment in a given round and the size of a bubble
is proportional to the number of subjects in that treatment.

Reporting channel: While most experiments were conducted in a laboratory, about a

third of experiments were conducted remotely via telephone or an online survey. Since the

experimenter controls the entire environment of the lab, subjects might fear to be observed,

say, by secret cameras. Such an observation is impossible if reports are done by telephone

or an online survey since the (physical) random draw is done remotely and thus entirely

unobservable. The channel of reporting could also have a direct effect on reporting. We find

that reports done remotely do not differ from reports in the lab.
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Control rolls suggested: In about one in five experiments the experimenter suggested

explicitly that subjects use the randomization device (most often a die) several times in a

row. We find that suggesting control rolls increases reports significantly (columns 1 and 5).39

Reporting about state of mind: Following Jiang (2013) and Greene and Paxton

(2009), quite a few studies ask subjects to privately make a prediction about the outcome of

a random draw. The random draw is usually implemented on a computer and the outcome

is known to the experimenter. The report consists of the subject claiming whether their

prediction was correct or not. The overall structure is very similar to a standard coin-flip

experiment: whether the report is truthful cannot be judged individually by the experimenter,

but the experimenter knows the true distribution of states. The only difference is thus whether

the subject makes a report about a state of mind or a physical state of the world. The between-

study results in column 1 show that reporting about a state of mind leads to significantly

higher reports. The one study which tested this difference directly (Kajackaite and Gneezy

2017) also finds that reports about a state of mind are significantly higher (column 6).

Information about others’ behavior: In a few experiments, subjects were given in-

formation about the past behavior of other subjects in similar experiments. This does not

affect the average report significantly, except in column 2.

From whom payoff is taken: In most experiments, subjects take money from the

experimenter or the laboratory if they report higher states. In some treatments, subjects’

reports instead reduces the payoff of another subject, i.e., the total amount of payoff allocated

to two subjects is fixed and the report decides how much of that fixed amount goes to the

reporting subject. Columns 1 and 8 indicate that this leads to a significant reduction in

reports.

Subject pool: Student samples report significantly higher than samples taken from

the general population. Since the latter samples are likely to also include some current

students and many subjects who used to be students, these regressions likely underestimate
39This effect could be because subjects report the highest state of all rolls they did, even though they were

instructed that only the very first roll counted for the report (Shalvi et al. 2011, Gächter and Schulz 2016).
Similarly, the control rolls could provide an excuse or narrative for the subject to report a higher state without
feeling too bad about it. Obviously, even if experimenters did not suggest to roll several times, subjects could
have rolled several times and report the highest state anyway (or not roll at all and just report whatever they
wanted). Perhaps subjects did not have the idea to roll several times. Or the effect is more subtle, i.e., for a
valid narrative one needs an external person to suggest the control rolls.
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the difference between students and non-students. Students and non-students differ in many

respects. We show below that the student effect is partly due to age. In addition, cognitive

skills, socio-economic background, current income, etc. could all be part of it.

Year of experiment: Reports have decreased slowly over time but this effect is very

small, given that the earliest experiments were conducted in 2005.

Author affiliation: Studies conducted by economists yield slightly higher reports than

studies conducted by psychologists. The differences to sociologists’ experiments are not sig-

nificant.

Randomization method: Reports do not differ significantly when a die roll or a coin

toss is used. Studies using a draw from an urn yield lower reports.

True distribution: Reports for different uniform distributions do not differ significantly

(see also Figure A.7). Compared to uniform distributions, asymmetric distributions have

higher reports and bell-shaped distributions have lower reports.

Country: Behavior is surprisingly robust across countries. Figure A.4 plots average

standardized reports by country. The country average is marked by a cross. Some of the

cross-country variation comes from studies that run the same design across different countries

while some of the variation is coming from researchers using convenience samples of subjects

in different countries. For those countries for which we have a decent amount of data, the

average standardized report varies only little across countries, from about 0.1 to about 0.5.

Adding country fixed effects to the regression in Column 1 of Table A.2 increases the adjusted

R2 from 0.370 to 0.457. For detailed analyses of what drives cross-country differences, see,

e.g., Pascual-Ezama et al. (2015), Hugh-Jones (2016), Mann et al. (2016) or Gächter and

Schulz (2016).
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Figure A.4: Average standardized report by country

Notes: The figure plots standardized report against country. Standardized report is on the y-axis. A
value of 0 means that subjects realize as much payoff as a group of subjects who all tell the truth.
A value of 1 means that subjects all report the state that yields the highest payoff. Each bubble
represents the average standardized report of one treatment and the size of a bubble is proportional
to the number of subjects in that treatment. The cross is the average per country.

A.3 Heterogeneous Treatment Effects

So far, we have focused on variables that differed only on treatment level. For a subset of

studies we also have data on individual-level variables, namely gender, age and field of study.

Gender: Figure A.5 shows the effect of gender on reports. The majority of treatments is

below the 45° line, indicating that female subjects report lower numbers than male subjects.

However, there are also many treatments in which women report higher numbers than men.

We test the significance of this effect by regressing the report on a gender dummy and con-

trolling for treatment fixed effects. We thus only use within-treatment variation. The results

are presented in Table A.3, column 2: women’s standardized report is on average 0.057 lower

than men’s. This effect is highly significant. Figure A.6 shows the distribution by gender of

all treatments that use a uniform distribution with six states for which we have gender data.

Men are generally less likely to report lower states and more likely to report higher states.
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Figure A.5: Average standardized report by gender

Notes: The figure plots the average standardized report of male subjects (x-axis) vs. the average
standardized report by female subjects (y-axis). A standardized report of 0 means that subjects
realize as much payoff as a group of subjects who all tell the truth. A value of 1 means that subjects
all report the state that yields the highest payoff. Data is restricted to those treatments where male
and female subjects participated. The size of a bubble is proportional to the number of subjects in
that treatment.
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Figure A.6: Distribution of reports by gender

Notes: The figure depicts the distribution of reports for treatments that use a uniform distribution with
six states and linear payoff increases, collapsed by gender. The line marked “F” is the distribution of
female subjects and the line marked “M” is the distribution of male subjects. The dashed line indicates
the truthful distribution at 1/6.
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Table A.3: Regressions of individual-level variables

Dependent variable: Standardized report

(1) (2) (3) (4) (5)
Round 0.001

(0.000)
1 if female -0.057

(0.009)
Age -0.002 -0.003

(0.001) (0.003)
Age squared 0.000

(0.000)
1 if economics/management student 0.003

(0.022)
1 if psychology student -0.068

(0.078)
Treatment FE Yes Yes Yes Yes Yes
# Decisions 73582 88503 39828 39828 8335
# Subjects 4862 22172 15472 15472 4655
# Treatments 43 239 144 144 52
# Studies 11 47 33 33 9
# Clusters 4806 22116 15472 15472 4655

Notes: OLS regressions. Robust standard errors clustered on individual subjects are in parentheses.
The sample in each specification is restricted to those treatments in which the independent
variable(s) vary.

Age: Older subjects tend to report lower numbers. This effect is significant in a linear

regression but not significant when we add age squared (Table A.3, columns 3 and 4).

Field of study: While students in general make higher reports than non-students, we do

not find an effect of field of study (Table A.3, column 5).

A.4 Further Robustness Checks

Other uniform distributions: In Figure 2, we showed for uniform distributions with two

and six states that the distribution of reports is increasing and has support on more than
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one state (it actually has almost always full support). This finding generalizes to uniform

distributions with different number of states. Figure A.7 demonstrates that the distribution

of reports is actually quite similar for experiments with different numbers of states. We

observe over-reporting of non-maximal states for the six- and 10-state distributions. The

general pattern of reporting across the four distributions in the graph suggests that we should

expect such over-reporting to occur for any uniform distribution with more than three states.

Figure A.7: Distribution of reports (uniform true distributions)

Notes: The figure depicts the difference between the actual and the truthful distribution of reports for
treatments that use a uniform true distribution and linear payoff increases. Treatments are collapsed
by the number of states, 2, 3, 6, or 10. The dashed line at 0 indicates the truthful distribution. The
size of a bubble is proportional to the number of subjects in the treatments with a given number of
states.

Individual-level analysis: Up to here, we have shown that reporting is far from the

standard rational prediction of a standardized report of +1 in the entire sample and in all

sub-groups defined by observable characteristics, e.g., gender. However, maybe there is a

sub-group, which we cannot identify by observable variables, which does behave according to

the standard prediction. For this we would need to identify for each individual whether they

lied or not, which is not possible for the one-shot experiments. However, if we aggregate the

many reports of an individual subject in repeated experiments, we can test for each individual
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subject whether their sequence of reports could be generated by truth-telling. In particular,

it is increasingly unlikely to repeatedly draw the highest-payoff state. Note that we depart for

this analysis from our usual approach of treating each decision as separate and independent.

For example, if subjects care about being perceived as truthful, the predicted behavior depends

on whether subjects and the audience player treat each decision separately or not. In Figure

A.8 we focus on experiments in which subjects repeatedly report the state they drew of a

uniform distribution with two states and add up the number of times a subject reported the

high-payoff state. To make experiments with different numbers of rounds comparable, we

plot the share of the potential high-payoff reports on the x-axis and the difference between

the observed distribution and the truthful binomial distribution on the y-axis. Reporting

the highest-payoff state in each round is the standard rational prediction. This reporting

pattern could have resulted from truth-telling only with a minuscule chance of 1/210 to 1/240.

As one can see in the figure, more subjects always report the high-payoff state than would

be expected under full truth-telling. However, the overall share of subjects at this point is

surprisingly small. Only 3.6 percent of subjects always report the high-payoff state and only

6.7 percent report it more than 80 percent of the time (the size of the bubbles is proportional

to the number of subjects making the respective report). Overall, this suggests that also

individually, people are far from the standard prediction.
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Figure A.8: Distribution of sum of reports (repeated reports of 2-state distributions)

Notes: The figure displays the distribution of the sum of standardized reports in experiments in which
subjects repeatedly report the state of a uniform distribution with two states. Each line represents
one treatment. The share of the potential high-payoff reports is on the x-axis. On the y-axis is the
difference between the actual and the truthful probability mass function. The size of a bubble is
proportional to the number of subjects in a given treatment at this share of high-payoff reports.
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B Additional Models

In this section we discuss the remaining models listed in Table 2. Proofs are provided imme-

diately after the relevant result. To prove predictions, we first consider binary states, then

generalize to n states. Some proofs refer to the proof of Proposition 2 which provides analog

results for the LC, the Conformity in LC and the Reputation for Honesty + LC models. Those

proofs can be found in Appendix D. Our results also rely on Lemma 1 in Appendix D which

states that the results on observability and lying down do not depend on the number of states

n.

B.1 Inequality Aversion

This model captures the widely discussed notion that individuals care about how their mone-

tary payoff compares to the payoff of others as in, e.g., Fehr and Schmidt (1999) or Bolton and

Ockenfels (2000). In our formal model we will build off the intuition of the latter, although

similar results hold for a model in line with the former. We suppose that individuals care not

just about their own payoff, but also the average payoff (and so our solution concept is the

standard Bayes Nash Equilibrium).40 Formally, utility is

φ(r, ς(r − r̄); θIA)

where r̄ is the mean report. ς is a function that maps the difference between an individual’s

payoff and the average payoff to a utility cost. It has a minimum when r− r̄ is 0 and is strictly

increasing in the absolute distance from 0 of its argument. The only element of ~θ that affects

utility is the scalar θIA which governs the weight that an individual applies to inequality

aversion. We suppose that φ is strictly increasing in its first argument and decreasing in

its second (strictly so when θIA>0), i.e., individuals like money and dislike inequality, and is

(weakly) decreasing in θIA; and that the cross partial of φ with respect to the second argument

and θIA is strictly negative, while other cross partials are 0. An equilibrium will exist because

of the continuity of φ and ς and the fact that r̄ is continuous in the distribution of reports.
40This model can also capture a notion of a preference for conformity in actions. In this model individuals

may gain utility from how closely their action matches others’ actions. Because, in this model, an action
directly maps to a monetary payoff, caring about the average action of others is the same as caring about the
average payoff of others.
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Because of the dependence of any given individual’s optimal report on others’ reports, there

may be multiple equilibria. For example, if all individuals face a sufficiently strong cost of

deviation from the mean report, then for any report r, everyone reporting r is an equilibrium.

Proposition 3 Suppose individuals have Inequality Aversion utility. For arbitrary n, we have

f -invariance, depending on parameters, we may have affinity, aversion or ĝ-invariance, we

have o-invariance and lying down when the state is unobserved or observed. For n = 2, the

Inequality Aversion model exhibits affinity.

Proof: We first consider n = 2. We will refer to the component of utility coming from

inequality aversion as the inequality aversion cost. Observe that utility does not depend

directly on the drawn state ω.

Claim 1: Fixing an equilibrium, either all types report r1, all types report r2 or there exists

one unique type that is indifferent between r1 and r2 and all types higher than that report r1,

and all others report r2.

Consider the case where some individuals give either report. Then by continuity there

must be at least one type, θ̄IA, which is indifferent between the two reports. Analogous

reasoning to the proof of the LC model-part of Proposition 2 (Appendix D) demonstrates

that this type must be unique. By assumption ∂2φ
∂ς∂θ < 0 and ∂2φ

∂r∂θ = 0. Therefore, since

φ(r2, ς(r2 − r̄); θ̄IA)− φ(r1, ς(r1 − r̄); θ̄IA) = 0, then for all θIA > θ̄IA, φ(r2, ς(r2 − r̄); θ̄IA)−

φ(r1, ς(r1 − r̄); θ̄IA) < 0 and for all θIA < θ̄IA, φ(r2, ς(r2 − r̄); θ̄IA)− φ(r1, ς(r1 − r̄); θ̄IA) > 0.

Thus the type must be unique.

Claim 2: An equilibrium exists.

An equilibrium will exist because of the continuity of φ and ς and the property that r̄ is

continuous in the threshold types (where the threshold is in θIA). However, the equilibrium

may not be unique.

Claim 3: We observe f -invariance.

By Claim 1, the indifferent type (if there is one) must be 0-mass. Since all other individuals

have a strict preference, and utility does not depend on the drawn state (and hence does not

depend on F ), the distribution of reports does not depend on F . Thus the set of equilibria

will not change with F .
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Claim 4: We observe affinity.

Although there may be multiple equilibria, because G enters in the the utility function

directly (because G has a one-to-one mapping with r̄) we can still make predictions regarding

the effect of Ĝ. ς has a minimum when r = r̄. Observe that r1 ≤ r̄ ≤ r2. Thus, when r̄

increases, |r1 − r̄| increases and |r2 − r̄| decreases. Thus ς(r1 − r̄) must rise, and ς(r2 − r̄)

must fall. Therefore, for all individuals the utility of reporting r2 increases, and the utility of

reporting r1 decreases, and so more individuals report r2.

Claim 5: The model exihibits o-invariance and will exhibit downwards lying regardless of

observability.

The distribution of reports will not depend on observability of the state since utility

does not depend on any inference of others and so the set of equilibria will not change with

observability. Moreover, in any equilibrium with full support on the reporting distribution, we

must have some individuals lying down. Since individuals’ utility only depends on their report

and not their drawn state, generically individuals (other than the zero mass of individuals who

are indifferent between reports) with the same parameter θIA must take the same action. Since

we have full support in the reporting distribution, there is some interval of types [θ̂IA, θ̃IA]

that strictly prefer to report r1 over all other reports. Because F features full support, at

least some individuals who have θIA ∈ [θ̂IA, θ̃IA] must have drawn ω > ω1.

Turning to n states, observe that the reasoning for the f -invariance result is exactly the

same (because the set of indifferent types is measure 0, and utility does not depend on the

drawn state).

Claim 6: Depending on parameters, we may have affinity, aversion or ĝ-invariance.

We’ve already presented an example of affinity for n = 2. We now present an example of

aversion.

Suppose n = 3, and r1 = ω1 = 0, r2 = ω2 = 1, r3 = ω3 = 2. Suppose that utility is equal

to r−θIAς(r− r̄). We now construct a cost function that is a continuous approximation of the

following function: ς(r− r̄) = 0 for |r− r̄| ≤ 0.6, ς(r− r̄) = 3 otherwise. Thus, we set ς(0) = 0.

Then ς increases (in a continuous fashion) so that for a very small δ, when |r − r̄| = 0.6− δ,

ς(r − r̄) = ε (for a very small ε). At that point ς increases to 3 at |r − r̄| = 0.6, and then ς

asymptotes to 3+ ε as |r− r̄| → ∞. Moreover, suppose that as a limit case 10% of individuals

have θIA = 0.5, and the rest have θIA = 1. Suppose ĜA is such that r̄ = 0.2. For small enough

22



ε and δ, the former type of individuals reports r3 = 2, the latter type reports r1 = 0 (since

reporting r1 = 0 gives a utility of approximately 0, reporting r2 = 1 gives approximately

1 − 3θIA, and reporting r3 = 2 gives approximately 2 − 3θIA). Now if we shift the beliefs

about the reporting distribution so that ĜB induces r̄ = 0.5, then the former type reports

r2 = 1 and the latter type reports r2 = 1 as well (since reporting r1 = 0 gives approximately

0, reporting r2 = 1 gives approximately 1, and reporting r3 = 2 gives approximately 2−3θIA).

This implies aversion. By continuity, we can also demonstrate ĝ-invariance. �

B.2 Inequality Aversion + LC

We extend the simple inequality aversion model we developed in Section B.1, so that indi-

viduals additionally care about the cost of lying (for an early version of such a model, see

Hurkens and Navin Kartik 2009). As solution concept we again consider the standard Bayes

Nash Equilibrium because utility only depends on the action profile of the individual and the

rest of the population. Formally, utility is

φ(r, ς(r − r̄), c(r, ω); θIA, θLC)

where r̄ is the mean report. The function ς has the same properties as in the Inequality

Aversion model. The function c has the same properties as in the LC model. The only

elements of ~θ that affect utility are the scalars θIA and θLC which govern the weight that

an individual applies to inequality aversion and lying costs. We suppose that φ is strictly

increasing in its first argument, decreasing in its second (strictly so when θIA > 0), decreasing

in its third (strictly so when θLC > 0), and is (weakly) decreasing in θIA and θLC . Moreover,

as before, the partial of φ with respect to ς and θIA is strictly negative and the partial with

respect to c and θLC is strictly negative, while other cross partials are 0. As in the Inequality

Aversion model, an equilibrium will exist because of the continuity of φ, c and ς and the

property that r̄ is continuous in the threshold types, but because of the dependence of utility

on others’ reports, there may be multiple equilibria.

Proposition 4 Suppose individuals have Inequality Aversion + LC utility. For arbitrary n,

depending on parameters, we may have drawing in, drawing out or f -invariance, we may have

affinity, aversion or ĝ-invariance, we have o-invariance and, depending on parameters, we may
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have lying down or not when the state is unobserved or observed. For n = 2, the Inequality

Aversion + LC model exhibits drawing in when the equilibrium is unique and affinity.

Proof: We first consider n = 2.

We can define a “threshold function” for each state τωi(θIA, θLC), which, given the equilib-

rium and an individual’s given type, gives the utility of reporting rj 6=i versus ri, conditional

on having drawn ωi. These are continuous functions. If τ is less than or equal to 0, the

individual will report their state, otherwise they will lie.

Claim 1: Fixing θIA and an equilibrium, φ(r2, ς(r2 − r̄), c(r2, ω1); θIA, θLC)− φ(r1, ς(r1 −

r̄), c(r1, ω1); θIA, θLC) is decreasing in θLC .

The monetary difference between reporting r1 or r2 is independent of θLC as is the in-

equality aversion cost. But the lying cost part does depend on it: Since c(r2, ω1) > c(r1, ω1),
∂φ
∂c < 0, ∂2φ

∂r∂θLC
= 0 and ∂2φ

∂c∂θLC
< 0, the result follows.

The analogous claim holds for those individuals who drew ω2.

Claim 2: Fixing θLC and an equilibrium, φ(r2, ς(r2 − r̄), c(r2, ω1); θIA, θLC)− φ(r1, ς(r1 −

r̄), c(r1, ω1); θIA, θLC) is either monotonically increasing or monotonically decreasing in θIA.

The reasoning is exactly analogous to Claim 1, except that whether we have increasing or

decreasing depends on whether ς(r1 − r̄) or ς(r2 − r̄) is larger.

Claim 3: Fixing θLC and an equilibrium, τωi(θIA, θLC) is equal to 0 for at most one value

of θIA. Similarly fixing θIA, τωi(θIA, θLC) is equal to 0 for at most one value of θLC .

This is immediately implied by the preceding claims.

We can think of the equilibrium as now being characterized by a set of combinations of

θLCs and θIAs, which conditional on a drawn state imply that decision makers with those

parameters are indifferent between the two reports (τωi(θIA, θLC)=0). We can think of this

set as being a function in the space θIA × θLC ; or graphically, a curve in two-dimensional

Euclidean space. The LC portion of costs never depends on the distribution of responses,

however the rest of the function can.

Because the LC portion of the cost function doesn’t depend on the reports of others, we

can also think of an equilibrium as the fixed point of the function ζ(r̄) which maps from an

aggregate average report to the optimal aggregate average report (given F and H). More

precisely, ζ is a function that gives the optimal aggregate average report if there exists one in
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the allowed range of r̄ (i.e. r1 to rn); gives rn if the threshold is above the range; and gives r1

if the threshold is below the range. This ensures ζ maps from [r1, rn] to itself. It also implies

that, with a unique equilibrium, the graph of ζ must cross the 45-degree line from above to

below.

Claim 4: An equilibrium exists.

An equilibrium will exist because of the continuity of φ, c, and ς and the property that r̄

is continuous in the threshold types.

Claim 5: Fixing a r̄, any individual who draws ω1 and reports r2 would also report r2 if

they drew ω2.

Observe that the utility gap between the two reports if ω1 is drawn is

φ(r2, ς(r2 − r̄), c(r2, ω1); θIA, θLC) − φ(r1, ς(r1 − r̄), c(r1, ω1); θIA, θLC). The gap if ω2 is

drawn is φ(r2, ς(r2−r̄), c(r2, ω2); θIA, θLC)−φ(r1, ς(r1−r̄), c(r1, ω2); θIA, θLC). By construction

the latter utility gap is larger than the former.

Claim 6: We observe drawing in.

Suppose the equilibrium is unique and that f(ω2) increases while fixing strategies. Con-

sider what happens to ζ(r̄). There are more individuals drawing the high state, and fewer

drawing the low state. Since individuals are more likely to report high after having drawn

the high state than the low state by Claim 5 (since the set of individuals who draw ω2 and

report r2 is a superset of those who would report r2 if they drew ω1), this implies an increase

in the optimal aggregate report r̄ (i.e., ζ(r̄)). This implies that ς(r2 − r̄) gets smaller and

ς(r1− r̄) gets larger, and so r2 becomes relatively more attractive to all individuals. This also

increases ζ(r̄). Thus, the increase in f(ω2) shifts ζ up and so the equilibrium level of r̄ in-

creases. Whenever r̄ increases, reporting r2 becomes relatively more attractive (since ς(r1− r̄)

increases and ς(r2 − r̄) falls, causing drawing in.

Although the equilibrium may not be unique, because G enters in the utility function

directly (through its one-to-one mapping with r̄) we can still make predictions regarding the

effect of Ĝ.

Claim 7: We observe affinity.

If ĝ(r2) increases, then the beliefs about r̄ increases. This implies that ς(r2−r̄) gets smaller

and ς(r1 − r̄) gets larger, and so r2 becomes relatively more attractive to all individuals.

Claim 8: The model exihibits o-invariance and may exhibit downwards lying or not re-
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gardless of observability.

Because this model nests the standard Inequality Aversion model, if individuals dislike

being too far ahead of others, they may lie down. But the model also nests the LC model

where individuals will never lie down. Moreover, as in the LC model and the Inequality

Aversion model individually, the distribution of reports does not depend on observability.

Now we turn to n states.

Claim 9: Depending on parameters, we may have drawing in, drawing out or f -invariance.

For n = 2, we have shown that drawing in will occur. We now provide an example for n = 3

that yields drawing out. Consider the limiting case where the vast majority of individuals

have just LC utility and some individuals have utility that takes into account only inequality

aversion costs, where the inequality aversion cost is a function of the absolute distance between

an individual’s report and the average report. Moreover, suppose the parameters of the LC

costs (for all individuals) are such that individuals who care only about LC costs are willing

to lie up two states, but no one is willing to lie up one state (e.g., because of fixed costs).

In contrast, we suppose that the inequality aversion costs are large enough so that those

individuals simply want to match as closely as possible the average report.

Thus, all individuals with only LC costs who drew ω1 will report r3 regardless of what

others do. Individuals with only LC costs who drew ω2 (ω3 respectively) will report r2 (r3

respectively). Suppose that we have a distribution where f(ω1) is close to 1; then r̄ is closer

to r3 than r2 regardless of what the inequality averse individuals do, and so those individuals

face a relatively strong incentive to lie up all the way to the highest state r3. Now suppose

we shift much of the weight of F from ω1 to ω2. Now those individuals facing only LC costs

who previously drew ω1 but now draw ω2 will report r2 instead of r3. This can shift r̄ closer

to r2 than r3 (regardless of what the inequality averse individuals do), and so now inequality

averse individuals will report r2. Thus, we get drawing out. By continuity, we can also have

f -invariance.

Claim 10: Depending on parameters, we may have affinity, aversion or ĝ-invariance.

Since this model nests the Inequality Aversion model as a limit case, and since that model

can generate affinity, aversion or ĝ-invariance, this model can too. �
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B.3 Censored Conformity in LC

This section presents a variation of the Conformity in LC model. One could imagine that

an individual does not normalize their lying cost by the average lying cost in society (as in

Conformity in LC), but only by the lying costs incurred by individuals who “could have”

lied profitably, i.e., those who did not receive the maximal draw. As in the Conformity in

LC model, utilities thus depend on the profile of joint state-report combinations across other

individuals, and so we solve for the Bayes Nash Equilibrium.

In this model, as in Conformity in LC, individuals will not want to lie downwards. We

denote, supressing extraneous notation, the average lying costs of all those who do not draw

the maximal state as c̄ω 6=ωn . The utility function is then:

φ(r, η(c(r, ω), c̄ω 6=ωn); θCCLC)

where η is the normalized cost function and has the same properties as in the Conformity

in LC model. φ is strictly increasing in the first argument, falling in the second (strictly when

θCCLC > 0), and (weakly) falling in θCCLC . Last, the cross partial of φ with respect to η and

θCCLC is strictly negative, while other cross partials are 0. An equilibrium will exist because

of the continuity of φ, η and c (and the continuity of c̄ω 6=ωn in the proportion of liars), but

because of the dependence of utility on others’ joint state-report combinations, it may not be

unique.

Proposition 5 Suppose individuals have Censored Conformity in LC utility. For arbitrary

n, depending on parameters, we may have drawing in, drawing out or f -invariance, we may

have affinity, aversion or ĝ-invariance, we have o-invariance and no lying down when the

state is unobserved or observed. For n = 2, we have f -invariance and affinity.

Proof: We first consider n = 2.

Claim 1: No individual lies down.

In doing so they would pay a weakly higher lying cost and receive a lower monetary payoff

than if they told the truth.

Claim 2: Fixing an equilibrium, conditional on drawing ω1 either all types report r1, all

types report r2 or there exists one unique type that is indifferent between r1 and r2 and all

types higher than that report r1, and all others report r2.
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Observe that since no one lies down, the fraction of individuals who lie among those who

could lie is simply the excess number of r2 reports compared to ω2 draws, divided by the

number of individuals drawing ω1: g(r2)−f(ω2)
f(ω1) . The actual lying cost, conditional on those

that could have lied, is proportional to this (for n = 2), a proportionality we can directly

model as part of φ. In the case that some types give one report and others the other, by

continuity there must be a type that conditional on drawing ω1 is indifferent between the two

reports. This type θ̄CCLC satisfies:

φ(r2, η(c(r2, ω1), g(r2)− f(ω2)
f(ω1) ); θ̄CCLC) = φ(r1, η(c(r1, ω1), g(r2)− f(ω2)

f(ω1) ); θ̄CCLC)

This threshold is unique for the analogous reasons to the LC and Conformity in LC models.

We can rewrite the indifference condition as

φ(r2, η(c(r2, ω1), H(θ̄CCLC)); θ̄CCLC) = φ(r1, η(c(r1, ω1), H(θ̄CCLC)); θ̄CCLC)

By construction H(θ̄CCLC) is the fraction of subjects who would report r2 if they drew ω1.

And so we have H(θ̄CCLC) = Prob(θ < θ̄CCLC) = f(ω1)
f(ω1)Prob(θ < θ̄CCLC) = g(r2)−f(ω2)

f(ω1) .

Claim 3: An equilibrium exists.

An equilibrium will exist given the continuity of φ and η and the property that the pro-

portion of liars is continuous in the cutoff θ̄CCLC

Claim 4: The model exhibits f -invariance.

The indifference condition in Claim 2 does not depend on F and we obtain f -invariance.

Claim 5: The model exhibits affinity.

As in the standard Conformity in LC model, the equilibrium reporting distribution may

not be unique. We can still make predictions regarding the effect of Ĝ since no one lies down.

Suppose we fix F and ĝ(r2) increases. Then there must be more liars who drew ω1 and said

r2 and so the second argument of the utility function must increase. Thus, the cost of lying

goes down. Previously indifferent type must strictly prefer to lie, which yields affinity.

Claim 6: The model exihibits o-invariance and no downwards lying regardless of observ-

ability.

Since no part of the utility function depends on observability, making the state observ-
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able does not change behavior. Individuals will not lie down for the same reason as in the

Conformity in LC model.

We now turn to n > 2.

Claim 7: Depending on parameters, we may have drawing in, drawing out or f -invariance.

Observe that the example of drawing in provided in Claim 12 of the Conformity in LC

model proof (Proposition 2 in Appendix D) relied on the aggregate lying costs going up for

those individuals who could lie. This implies that it works just as well in this model. We could

reverse the example to obtain drawing in. By continuity, we can also generate f -invariance.

Claim 8: Depending on parameters, we may have affinity, aversion or ĝ-invariance.

We demonstrated affinity already. The example for aversion provided in Claim 13 of the

Conformity in LC model works here as well. By continuity, we can also generate ĝ-invariance.

�

B.4 Reputation for Being Not Greedy

Individuals often want to signal to the audience about a particular characteristic they pos-

sess. We use as an inspiration the motivations provided in Bénabou and Tirole (2006) and

Fischbacher and Föllmi-Heusi (2013), and model an individual as wanting to signal to the

audience that they are not greedy, i.e., they place a relatively low value on money compared

to reputation. Thus, an individual’s utility will depend on the audience’s beliefs about their

type, the scalar θRNG (the only element of ~θ that affects utility), which is unobserved by

the audience. However, the belief can be conditioned on the report r itself. Because utility

depends on the audience’s beliefs, we must use the psychological game theory framework of

Battigalli and M. Dufwenberg (2009) to analyze the game. Since the audience player under-

stands the equilibrium strategies of all types, and correctly utilizes Bayesian updating, we can

simply describe their belief as E(θRNG|r). Given this, utility is:

φ(r, E(θRNG|r); θRNG)

We assume φ is increasing in the first element, i.e., individuals like money; but the partial of

φ with respect to the first element is equal to 0 when θRNG = κRNG, and otherwise strictly

positive for θRNG < κRNG. φ is also increasing in the second element, i.e., individuals like
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the audience to have a high belief about their θRNG; specifically the partial of φ with respect

to the second element is 0 when θRNG = 0 and is strictly positive for θRNG > 0. The cross

partial of φ with respect to the first element and θRNG is strictly negative. This captures the

property that individuals face both a higher benefit, and a higher marginal benefit, of the

monetary payoff when θRNG is smaller. Moreover, the cross partial of φ with respect to the

second element and θRNG is strictly positive. This captures the property that individuals with

higher θRNGs have both a higher benefit, and a higher marginal benefit, of being perceived as

having a higher expected θRNG. Other cross partials are 0. Intuitively our assumptions are

tantamount to supposing that less “greedy” individuals also care more about being thought

of as less greedy. Equilibrium will exist because of the continuity of φ and the expectations

operator, but may not be unique.

Proposition 6 Suppose individuals have Reputation for Being Not Greedy utility. For arbi-

trary n, we have f -invariance, depending on parameters, we may have affinity, aversion or

ĝ-invariance, we have o-invariance and lying down when the state is unobserved or observed.

Proof: We first consider n = 2.

Claim 1: Fixing an equilibrium, either all types report r1, all types report r2 or there exists

one unique type that is indifferent between r1 and r2 and all types higher than that report r1,

and all others report r2.

Consider the case where some individuals give either report. Then by continuity there must

be at least one type, θ̄RNG, which is indifferent between the two reports: φ(r2, E(θRNG|r2); θ̄RNG)−

φ(r1, E(θRNG|r1); θ̄RNG) = 0. With full support on G this implies that E(θRNG|r2) <

E(θRNG|r1). If not, then reporting r2 gives higher utility and so all types give report r2, a con-

tradiction. Then for all θRNG > θ̄RNG, φ(r2, E(θRNG|r2); θRNG)−φ(r1, E(θRNG|r1); θRNG) <

0 and for all θRNG < θ̄RNG, φ(r2, E(θRNG|r2); θRNG) − φ(r1, E(θRNG|r1); θRNG) > 0 by our

assumptions on the cross partials.

Claim 2: An equilibrium exists.

This is by standard continuity arguments.

Claim 3: We have f -invariance.

Observe that utility does not depend directly on the drawn state ω. With reasoning

analogous to that given in the Inequality Aversion model the reporting strategy thus also
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does not depend on ω for all but a 0-mass of individuals (those who are indifferent). Even

though there can be multiple equilibria, this implies that the distribution of reports does not

depend on F and so the set of equilibria will not change with F .

Claim 4: Depending on parameters, we may have affinity, aversion or ĝ-invariance.

The uniqueness of the equilibrium depends on H — because the construction of the indif-

ferent type depends on the relationship between the expectation of θRNG, conditional on it

being above the indifferent type, and the expectation of θRNG, conditional on it being below

the indifferent type. The actual shape of H can be such that there are multiple equilibria

or a unique equilibrium. Importantly though, recall that conditional on a particular equilib-

rium there is one unique indifferent type. The reason why we may get affinity, aversion or

ĝ-invariance is that a shift in Ĝ could be rationalized by different shifts in H that could lead

to either affinity or aversion. We provide an example.

Suppose the support for θRNG is [0, 1], that utility from report r is θRNGE[θRNG|r] + (1−

θRNG)r and there are binary states/reports (with payoffs of r2 = 1 and r1 = 0). As claimed

above, it is easy to verify that, in any equilibrium with full support, there is a single unique

indifferent type that satisfies θRNGE[θRNG|0] = θRNGE[θRNG|1] + (1 − θRNG) or θRNG(1 +

E[θRNG|0] − E[θRNG|1]) = 1. Moreover, also as claimed above, E[θRNG|0] − E[θRNG|1] > 0

in any equilibrium with full support.

Now, we show that we can either have affinity or aversion. Suppose that ĝ(r2) increases.

This implies there is a larger mass of individuals below the threshold than previously. This

could be rationalized by different shifts in H which induce different reactions. For example,

individuals could be less likely to draw a value just above the threshold, and more likely to

draw values far below the threshold. This implies that the value of θRNG, conditional on

reporting r1 = 0, has gone up, and the value of θRNG, conditional on reporting r2 = 1, has

gone down, implying that 1 + E[θRNG|0] − E[θRNG|1] has increased. Thus, the indifferent

type must fall.

However, another way to rationalize the shift in behavior is there are fewer individuals

with very high types (θRNG close to 1), and many more individuals with types just below the

threshold. This implies that the value of θRNG, conditional on reporting r1 = 0, has gone

down, and the value of θRNG, conditional on reporting r2 = 1, has gone up, implying that
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1 + E[θRNG|0] − E[θRNG|1] has decreased, thus the indifferent type must increase.41 Thus,

observing a higher ĝ(r2) could either increase or decrease the threshold. By continuity, we

can also generate ĝ-invariance.

Claim 5: The model exihibits o-invariance and will exhibit downwards lying regardless of

observability.

Some individuals will lie downwards in an equilibrium with full support since if a given

type (other than the indifferent type, which has 0 mass) prefers to report r1, conditional on

drawing ω1, the same type would want to report r1, conditional on drawing ω2. Although

reports are used to infer something about the individuals, it is not the probability of being a

liar (i.e. something that depends on the drawn state). Thus observing the state, as well as the

report, will not actually assist the audience player with inferring the type of the individual,

and again not change the set of possible equilibria and the predictions regarding downward

lying is the same under observability.

The previous predictions do not depend on the number of states, so they also apply for

arbitrary n states. �

B.5 LC-Reputation

Rather than caring about the reputation of having reported truthfully conditional on their

report, individuals may instead want to cultivate a reputation as a person who has high lying

costs, i.e., they like the audience to have a high belief about their θLC . Such a model is similar

to the one discussed in Frankel and Narvin Kartik (forthcoming). It is also similar in spirit,

although in an entirely different domain, to the models of fairness by Levine (1998), Bénabou

and Tirole (2006), Ellingsen and Johannesson (2008), Andreoni and Bernheim (2009), Tadelis

(2011), and Grossman (2015). In those models individuals like to be perceived as fair as well

as actually having preferences for fairness. Thus, an individual’s utility will depend on the

audience player’s beliefs about their lying cost type, the scalar θLC , which is unobserved.

However, the belief can be conditioned on the report r itself. Because utility depends on

the audience’s beliefs, we use the psychological game theory framework of Battigalli and M.

Dufwenberg (2009) to analyze the game. Since the audience understands the equilibrium

strategies of all types, and correctly utilizes Bayesian updating, we can simply describe their
41For similar reasons, 1 + E[θRNG|0]− E[θRNG|1] may be non-monotone in the threshold type.
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belief as E(θLC |r).

Utility is

φ(r, c(r, ω), E[θLC |r]; θLC , θRep) = u(r)− θLCc(r, ω) + θRepυ(E[θLC |r])

The only elements of ~θ that affect utility are θLC and θRep. u(r) is strictly inreasing in r. c and

θLC have the same interpretation as in the LC model, and the assumptions regarding them are

the same. θRep represents the weight that any given individual places on the audience’s belief

about θLC . υ is strictly increasing in its argument. The interpretation is that individuals

have a positive utility from others believing that they have high lying costs. An equilibrium

will exist because of the continuity of φ, c and the expectations operator, but may not be

unique because of the dependence of utility on others’ strategies (via the audience’s beliefs).

Proposition 7 Suppose individuals have LC-Reputation utility. For arbitrary n, depending

on parameters, we may have drawing in, drawing out or f -invariance, we may have affinity,

aversion or ĝ-invariance, we have o-shift and, depending on parameters, we may have lying

down or not when the state is unobserved or observed. For n = 2, the LC-Reputation model

predicts drawing in.

Proof: We first consider n = 2.

Claim 1: E[θLC |r1] ≥ E[θLC |r2] for all equilibria with full support.

To see this, suppose not. Then r2 has both a (strictly) higher reputation and (strictly)

higher monetary payoff. Fix a value of θRep. All those who drew ω2 will report r2. Ob-

serve that by reasoning analogous to the LC model itself, fixing θRep and an equilibrium,

φ(r2, c(r2, ω1), E[θLC |r2]; θLC , θRep)−φ(r1, c(r1, ω1), E[θLC |r1]; θLC , θRep) is decreasing in θLC .

Thus, of those who drew ω1, there will be a threshold type and all types with a higher

θLC will report r1, all those with a lower type will report r2. But this immediately im-

plies that E[θLC |r1, θ
Rep] ≥ E[θLC |r2, θ

Rep] and so, averaging over values of θRep, we obtain

E[θLC |r1] ≥ E[θLC |r2].

Claim 2: Fixing θLC and an equilibrium, φ(r2, c(r2, ω1), E[θLC |r2]; θLC , θRep)−φ(r1, c(r1, ω1), E[θLC |r1]; θLC , θRep)

is decreasing in θRep.
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This is immediately implied by the fact that the reputation is worse at r2 (as shown in

Claim 1), ∂φ
∂E[θLC ] > 0, ∂2φ

∂E[θLC ]∂θRep > 0 and the other cross partials with respect to θRep are

0 (by our assumption of additive separability).

As in the Reputation for Honesty + LC model (see proof of Proposition 2 in Appendix

D), we can construct a “threshold function” for each state τωi(θLC , θRep) which, given the

equilibrium and an individual’s type, gives the utility of reporting rj 6=i versus ri, conditional

on having drawn ωi.

Claim 3: Fixing θLC and an equilibrium, τωi(θLC , θRep) is equal to 0 for at most one value

of θRep. Similarly fixing θRep, τωi(θLC , θRep) is equal to 0 for at most one value of θLC .

This is immediately implied by the preceding claims.

If τ is less than or equal to 0, the individual will report their state, otherwise they will

lie. So, we can think of the equilibrium as being characterized by a set of combinations of

θLCs and θReps so that the threshold function equals 0. Thus the threshold diagram looks

qualitatively similar to Figure D.1 (including the linear threshold functions).

We can characterize the equilibrium in terms of the intercepts of the threshold func-

tion. Observe that given H and a utility function, E[θLC |ri] is characterized by the function

τωi(θLC , θRep) = 0. Since the τωi(θLC , θRep) = 0 equations are always linear in θLC and θRep

they can be characterized by its θLC intercept and its θRep intercept denoted θωiLC,T and θωiRep,T .

Moreover, since the LC portion of costs never depends on the distribution of responses, the

θωiLC,T intercept (i.e. the threshold value of θωiLC,T when θRep = 0) must always be the same.

Therefore, we can think of each of the threshold “lines” (one for each drawn state) as being

characterized by a single intercept: θωiRep,T . The thresholds θωiRep,T (one for each state), along

with H, induce a conditional (on each state) probability of giving either report. These, in

conjunction with F , define the estimated value of θLC at either report (as well as G).

To solve for an equilibrium we can consider a function ζ(θω1
Rep,T , θ

ω2
Rep,T ) which maps from

the thresholds that everyone is using into best response thresholds. The fixed points of this

function will characterize our equilibria. However, observe that because we are looking at

the θRep intercepts, the LC costs are 0. Thus, the actual drawn state does not enter the

utility function, and so players must behave the same regardless of which state they drew;

so θω1
Rep,T = θω2

Rep,T . Thus, our problem reduces to a single dimension; and we can consider a

function ζ(θRep,T ), and its fixed points characterize the equilibria. Thus, ζ is a function that
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gives the optimal threshold if there exists one in the allowed range of θRep; gives κRep if the

threshold is above the range; and gives 0 if the threshold is below the range. This ensures ζ

maps from [0, κRep] to itself. Moreover, if there is a unique equilibrium, the graph of ζ must

cross the 45-degree line from above to below.

Claim 4: An equilibrium exists.

Given our continuity assumptions, the threshold functions will be continuous in the condi-

tional expectations of θLC , and the conditional expectations will be continuous in the thresh-

old functions, so an equilibrium will exist. However, the equilibrium may not necessarily be

unique.

Claim 5: We observe drawing in.

Suppose there is a unique equilibrium. Recall that E[θLC |r1] ≥ E[θLC |r2]. Moreover,

observe that fixing θRep, E[θLC |r2, ω2, θ
Rep] ≥ E[θLC |r2, ω1,θ

Rep], since only those with low

θLC will lie from ω1 to r2. Thus the following is true averaging over θRep: E[θLC |r2, ω2] ≥

E[θLC |r2, ω1]. Analogous reasoning leads to E[θLC |r1, ω1] ≥ E[θLC |r1, ω2]. Now suppose that

f(ω2) increases. Fixing the input threshold θRep,T , this implies that the fraction of individuals,

conditional on reporting r2, who drew ω2, must increase. Similarly, the fraction of individuals,

conditional on reporting r1, who drew ω2, must increase. This increases the expected θLC at

r2 and decreases it at r1. This makes r2 relatively more attractive to individuals (compared

to r1). Thus the optimal threshold θRep (generated by ζ) must rise and we get drawing in.

Claim 6: Depending on parameters, we may observe affinity, aversion or ĝ-invariance.

Because the threshold characteristics look qualitatively similar to Figure D.1 we can again

see how a shift in ĝ(r2) can cause either affinity, aversion or ĝ-invariance even when the

equilibrium reporting distribution is unique. Consider the threshold θRep,T . It is defined as the

solution to the equation u(r2)+θRepυ(E[θLC |r2]) = u(r1)+θRepυ(E[θLC |r1]) or u(r2)−u(r1) =

θRep(υ(E[θLC |r1])− υ(E[θLC |r2])).

The Ĝ treatments do not pin down the new belief about H that subjects hold. Depending

on the H, we could get affinity or aversion. In particular, suppose we move from ĜA (associ-

ated with HA) to ĜB and that there are two Hs (HB and H̃B) that rationalize ĜB. It can

be the case that under HB the value υ(E[θLC |r1])−υ(E[θLC |r2]) is larger than under HA. In

contrast, under H̃B the difference is smaller than under HA. Then we get aversion if subjects

believe the new H is the former, and aversion if the latter.
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Formally, we show that two different changes in the exogenous distribution H can both

lead to an increase in ĝB(r2) (relative to ĝA(r2)). Then we show that they have the opposite

implications for υ(E[θLC |r1])− υ(E[θLC |r2]). As in the Reputation for Honesty + LC model

two different shifts of probability mass in H could lead to an increase in ĝB(r2) (relative to

ĝA(r2)). The first shifts mass from above τ(ω1) to below it (without altering the relative

weights above and below τ(ω2)). This, fixing the thresholds, doesn’t change the reporting

of individuals who drew ω2, but leads to a higher mass of individuals drawing ω1 reporting

r2. Since E[θLC |r2, ω2] ≥ E[θLC |r2, ω1] and E[θLC |r1, ω1] ≥ E[θLC |r1, ω2] this decreases

both E[θLC |r2] and E[θLC |r1], as well as increasing g(r2). Recall our fixed point operator

that defines the threshold which characterizes the equilibrium: ζ(θRep,T ). Recall that this,

taking as an input everyone else’s threshold, returns the optimal threshold. If υ(E[θLC |r1])−

υ(E[θLC |r2]) increases, this makes the high report less attractive, and so ζ decreases, reducing

the equilibrium level of θRep,T .42 This reduction will cause aversion. Thus, in order to generate

aversion we need that υ(E[θLC |r1])−υ(E[θLC |r2]) increases in response to this shift in weight,

and as in the Reputation for Honesty + LC model a simple restriction on the derivative of υ

at E[θLC |r1] and E[θLC |r2] will suffice.

The second shift moves mass from below τ(ω2) to above it (without altering the relative

weights above and below τ(ω1)). Fixing the thresholds, this doesn’t change the reporting

of individuals who drew ω1, but leads to a higher mass of individuals drawing ω2 reporting

r2. This increases the expected value of θLC at both reports. If υ(E[θLC |r1])− υ(E[θLC |r2])

decreases, this makes the high report more attractive, and so ζ increases. This increases the

equilibrium level of θRep,T , and causes affinity. Similarly to before, in order to generate affinity

we need that υ(E[θLC |r1])− υ(E[θLC |r2]) decreases in response to this shift in weight. This

again occurs with a simple restriction on the derivative of υ, as in the Reputation for Honesty

+ LC. Thus, we can get both affinity and aversion (and by continuity ĝ-invariance).

Claim 7: The model exhibits o-shift and can exhibit downwards lying or not regardless of

observability.

Individuals’ behavior should change if the state is observed. But this is for a very different

reason compared to the Reputation for Honesty + LC model. In that model, behavior changes
42An equilibrium threshold must fall in this situation (see the Reputation for Honesty + LC model for details

of why).
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because the probability of being a liar would either be 0 or 1. In the LC-Reputation model

observing both the state and the report can give a more precise estimate of θLC , as it can be

estimated using both ω and r, rather than just r.

Given the similarity to the Reputation for Honesty + LC model, it is clear why lying down-

wards may occur when states are not observed (and so solely private information). However,

lying downwards may still occur in equilibrium when states are observed. This is because

the inference is not done on the probability of being a liar, as in the Reputation for Honesty

+ LC model, but on θLC . It is possible to have a countersignalling equilibrium where the

highest and lowest θLC types pool on truth-telling and middle θLC types lie down. Of course,

if individuals care vary little about their reputation, then we will never observe lying down.

We now turn to n states.

Claim 8: Depending on parameters, we may have drawing in, drawing out or f -invariance.

We have shown drawing in for n = 2. We now provide an example for drawing out

analogous to that for the Reputation for Honesty + LC model. Suppose that n = 3. More-

over, suppose that the LC part of the utility function is such that individuals only lie one

state/report up. Now, move from FA to FB by keeping fA(ω1) constant and shifting weight

from ω2 to ω3. This has two effects. First, fixing strategies, it makes reporting r3 more

attractive (since some of the individuals drawing ω3 will still report r3) and so increases the

estimated value of θLC at r3. Second, by the same reasoning, it makes the middle state

less attractive. Thus, individuals who draw the lowest state will find reporting the middle

state less attractive, and more will simply report the truth which implies drawing out. By

continuity, the model can also generate f -invariance.

We know we have ambiguous predictions regarding shifts in Ĝ for even two states, and

this carries over to n states. �

B.6 Guilt Aversion

Guilt aversion (Charness and M. Dufwenberg 2006; Battigalli and M. Dufwenberg 2007, 2009)

posits that people like to live up to others’ expectations so as to avoid guilt. In applying guilt

aversion to our setting, we assume that subjects experience guilt (and so lower utility) to

the extent that they believe they disappointed the audience player (i.e., report more than
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expected), for example, the experimenter. Because beliefs are correct in equilibrium, the

audience expects the report to be the average report induced by the equilibrium G, which we

denote r̄ (each equilibrium will have an associated r̄). To keep notation simple, we suppress the

fact that r̄ is an equilibrium object that depends on F and H and the selected equilibrium.43

Because individuals’ utility depends on the beliefs of the audience, this model explicitly uses

the tools of psychological game theory (Battigalli and M. Dufwenberg 2007, 2009). Utility is:

φ(r, γ(r − r̄); θGA)

where γ is a function that maps the difference between any given individual’s report and

the average report to a utility cost. Given an equilibrium and associated r̄, if r ≤ r̄, then

γ(r− r̄) = 0. If r > r̄, then γ(r− r̄) is strictly increasing in r− r̄. The only element of ~θ that

affects utility is the scalar θGA which governs the weight that an individual applies to guilt.

We suppose that φ is strictly increasing in its first argument, decreasing in its second (strictly

so when θGA>0), (weakly) decreasing in θGA, and the cross partial of the second argument

and θGA is strictly negative, while other cross partials are 0.

Equilibrium existence follows from the continuity of φ and γ and r̄. However, there may

be multiple equilibria. For example, if the audience expects that the only report given is the

maximal report, then players do not believe that the audience will be disappointed when the

maximal report is made. Thus no one feels guilt when making the maximal report, and so

everyone makes that report. This forms an equilibrium. In contrast, if the audience expects

that the only report given is the minimal report, then the audience will be disappointed when

any other report is made. So long as individuals experience enough guilt, it can also be an

equilibrium for everyone to then make the minimal report. However, as we formalize below,

the set of equilibria doesn’t shift with F .44

43One might argue that guilt aversion is not appropriate for this subject-experimenter interaction (or more
generally, subject-audience interaction). We still include it in our list of models since it has been widely applied
and we want our study to be able to link to that literature. Moreover, in almost a dozen experiments surveyed
in the meta study (Appendix A), a higher report reduces the payoff of another subject (and not the budget of
the experimenter). In those treatments, guilt aversion could well be applied to the subject-subject interaction.
Average behavior in these treatments is not very far away from behavior in subject-experimenter treatments
(see Table A.2), so it could well be that similar motives play a role in the subject-experimenter interaction.

44Surprisingly, in our simple environment with our particular modeling assumptions, guilt aversion turns
out to predict the same as the inequality aversion model, albeit for very different underlying reasons. The
assumption about utilities when r ≤ r̄ is different but this does not affect the predictions.
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Proposition 8 Suppose individuals have Guilt Aversion utility. For arbitrary n, we have

f -invariance, depending on parameters, we may have affinity, aversion or ĝ-invariance, we

have o-invariance and lying down when the state is unobserved or observed. For n = 2, we

have affinity.

Proof: We first consider n = 2.

First, observe that utility does not depend directly on the drawn state ω.

Claim 1: Fixing an equilibrium, either all types report r1, all types report r2 or there exists

one unique type that is indifferent between r1 and r2 and all types higher than that report r1,

and all others report r2.

Consider the case where some individuals give either report. Then by continuity there

must be a unique type, θ̄GA, which is indifferent between the two reports. Analogous to the

previous proofs this type must be unique.

Claim 2: An equilibrium exists.

This is by standard continuity arguments.

Claim 3: We observe f -invariance.

By Claim 1, if we have a unique indifferent type, then it must be 0-mass. Since all other

individuals have strict preferences, and utility does not depend on the drawn state (and hence

does not depend on F ), the distribution of reports does not depend on F . Thus the set of

equilibria will not change with F .

Although there may be multiple equilibria, we can still make predictions regarding the

effect of Ĝ.

Claim 4:We observe affinity.

γ has a minimum when r = r̄. Suppose ĝ(r2) increases and so the induced r̄ increases.

Observe that r1 ≤ r̄ ≤ r2. Thus, when r̄ increases, |r1 − r̄| increases and |r2 − r̄| decreases.

So, γ(r2 − r̄) decreases, while γ(r1 − r̄) remains the same (and equal to 0). So the utility

from reporting r2 has increased, and the utility of reporting r1 stays the same for any given

individual. Therefore, more individuals will choose to report r2. Intuitively, if players believe

that there is a higher average report, then they will also believe that the audience will be less

disappointed by a higher report.
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Claim 5: The model exihibits o-invariance and will exhibit downwards lying regardless of

observability.

The distribution of reports will not depend on observability of the state since utility

does not depend on any inference of others and so the set of equilibria will not change with

observability. However, because individuals are concerned about disappointing the audience,

they may lie down (in order to avoid guilt). In fact, in any equilibrium with full support on the

reporting distribution, we must have some individuals lying down. Since individuals’ utility

only depends on their report and not their drawn state, generically individuals (other than the

zero mass of individuals who are indifferent between reports) with the same parameter θGA

must take the same action. Since we have full support in the reporting distribution, there

is some interval of types [θ̂GA, θ̃GA] that strictly prefer to report r1 over all other reports.

Because F features full support, at least some individuals who have θGA ∈ [θ̂GA, θ̃GA] must

have drawn ω > ω1.

Turning to n states, observe that the reasoning for the f -invariance result is exactly the

same (because the set of indifferent types is measure 0, and utility does not depend on the

drawn state).

Claim 6: Depending on parameters, we may have affinity, aversion or ĝ-invariance.

We’ve already presented an example of affinity for n = 2. We now present an example of

aversion. Suppose n = 3, and r1 = ω1 = 0, r2 = ω2 = 1, r3 = ω3 = 2.

Suppose that utility is equal to r − θGAγ(r − r̄). We now construct a cost function that

is a continuous and strictly increasing approximation of the following function: γ(r − r̄) = 0

for r − r̄ ≤ 0.6, γ(r − r̄) = 3 otherwise. Thus, we set γ(0) = 0. Then γ increases (in a

continuous fashion) so that for a very small δ, when r − r̄ = 0.6 − δ, γ(r − r̄) = ε (for a

very small ε). At that point ς increases to 3 at r − r̄ = 0.6, and then ς asymptotes to 3 + ε

as r − r̄ → ∞. Moreover, suppose that as a limit case 10% of individuals have θGA = 0.5,

and the rest have θGA = 1. Suppose ĜA is such that r̄ = 0.2. For small enough ε and δ

the former type of individuals reports r3 = 2, the latter type reports r1 = 0 (since reporting

r1 = 0 gives an utility of approximately 0, reporting r2 = 1 gives approximately 1 − 3θGA,

and reporting r3 = 2 gives approximately 2 − 3θGA). Now if we shift the beliefs about the

reporting distribution so that ĜB implies that r̄ = 0.5, then the former type reports r2 = 1

and the latter type reports r2 = 1 as well (since reporting r1 = 0 gives approximately 0,
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reporting r2 = 1 gives approximately 1, and reporting r3 = 2 gives approximately 2− 3θGA).

So we have aversion. By continuity, we can also have ĝ-invariance. �

B.7 Choice Error

One potential explanation for the observed pattern of non-maximal reports is that individuals’

utility function only incorporates material payoffs, but individuals simply make mistakes

when choosing, and so sometimes do not actually make the utility-maximizing report. The

related Luce (1959) and McFadden et al. (1973) models of discrete choice with errors are very

common specifications. This supposes that individuals have a standard utility function, but

make errors when taking their action. Specifically, the utility of report r is φ(r) where φ is

a positive function strictly increasing in r, i.e., every individual prefers to make the highest

report. However, individuals do not always choose the utility maximizing report. Instead,

the probability of choosing report ri is eφ(ri)θ
CE∑n

j=1 e
φ(rj)θCE . θCE is a parameter that governs the

amount of “randomness” for a given individual. As θCE goes to infinity, the individual always

chooses the utility maximizing report. As θCE goes to 0, reports are made with uniform

chance.45

Proposition 9 Suppose individuals’ choices follow the Choice Error model. For arbitrary n,

we have f -invariance, ĝ-invariance, o-invariance and lying down when the state is unobserved

or observed.

Proof: Observe that the chosen report does not depend on the drawn state, others’ reports,

or observability for any n, and we thus obtain f−, ĝ− and o−invariance. Moreover, all

individuals, conditional on a type, have the same distribution of reports regardless of the

drawn state, so we observe lying down.�

B.8 Kőszegi-Rabin + LC

Kőszegi and Rabin (2006) suggest a widely used model of expectations-based reference-

dependence in which the recent rational expectations serve as the reference point. We can
45To bring this model in line with our general theoretical framework outlined in Section 2, which is based

on error-free utility maximization, one could interpret the choice error as coming from a shock to φ(r) which
makes a subject prefer a particular non-maximal report. This shock would be distributed such that the choice
probabilities are as in the formula in the text.
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combine the intuition of the Kőszegi-Rabin model with the lying cost model. Garbarino et al.

(forthcoming), in a concurrent paper, suggest and test a related model. We suppose that

individuals face lying costs and experience gain-loss utility both over monetary outcomes,

and over the lying costs (possibly to different degrees). As before we will denote the cost of

reporting r if ω is the state as c(r, ω) which has the same properties as described under LC.

The utility of reporting r if ω is the state is then

φ(r, ω, a; θLC , θLAweight, θLAmoney, θLAcost) = φ̂(r, c(r, ω); θLC) +

θLAweight[∑k θ
LAmoneyI|(u(r)−u(a(ωk)))|f(ωk)+∑

k θ
LAcostI|(c(a(ωk), ωk)−c(a(ω), ω))|f(ωk)]

Four elements of ~θ affect utility in this model. θLC parameterizes the cost of lying.

θLAweight parametrizes the weight on gain-loss utility, and θLAmoney and θLAcost represent

the separate gain-loss parameters for money and lying costs. θLAmoneyI and θLAcostI are indi-

cator functions that take on values of 1 if the argument inside the attached absolute value is

positive, and θLAmoney or θLAcost respectively otherwise.

φ̂ takes on all the attributes that φ does in the LC model, and c has the exact same

properties. a(ωk) is the action that an individual expected to take, conditional on drawing

ωk. Our solution concept is the preferred personal equilibrium notion introduced in Kőszegi

and Rabin (2006). A personal equilibrium a is a mapping such that if a maps ω̂ to r̂, then the

argmax of φ(r, ω̂, a; θLC , θLAweight, θLAmoney, θLAcost) is r̂. A personal equilibrium will exist for

the reasons outlined in Kőszegi and Rabin (2006) and Kőszegi and Rabin (2007). As pointed

out by those papers, there may be multiple personal equilibria mappings a. However, there

will generically be a unique preferred personal equilibrium, i.e., an equilibrium mapping a that

gives the highest utility, among all possible equilibrium as for any given value of θLAmoney and

θLAcost. We will suppose, in line with Kőszegi and Rabin (2006) and Kőszegi and Rabin (2007),

that individuals choose the preferred personal equilibrium. Then the aggregate distribution

of reports is simply the set of reports generated by the distribution of states and as that each

individual uses.

Proposition 10 Suppose individuals have Kőszegi-Rabin + LC utility. For arbitrary n, de-

pending on parameters, we may have drawing in, drawing out or f -invariance, we have ĝ-

invariance, o-invariance and no lying down when the state is unobserved or observed.
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Proof: We first consider n = 2.

Claim 1: No individual lies down in any personal equilibria.

Doing so would incur lying costs and reduce monetary payoffs as well as weakly increase

loss utility (decrease gain utility).

Claim 2: Conditional on a personal equilibrium, either all types report r1, all types report

r2 or there exists a unique type that is indifferent between r1 and r2 and all types higher than

that report r1, and all others report r2.

The existence and uniqueness follow from the same reasoning as in the LC model.

Claim 3: A preferred personal equilibrium exists.

Kőszegi and Rabin (2006) footnote 13 (p. 1145) shows this must be true.

Claim 4: Depending on parameters, we may have drawing in, drawing out or f -invariance.

For example, suppose as a limit case that an individual exhibits only gain-loss utility in

the monetary dimension, but not in the lying cost dimension. Then an increase in f(ω2) will

increase expectations of monetary payoff, and so, conditional on drawing ω1, an individual

will be more likely to report r2. In contrast, if an individual exhibits gain-loss utility only in

the cost dimension, but not in the monetary dimension, the opposite intuition will be true.

By continuity, we can generate f -invariance.

Claim 4: The model exibits ĝ-invariance.

Any individual’s strategy, fixing F , will not depend on the distribution of reports in the

population: the set of equilibrium mappings is constant in G. Intuitively, it is the case

that an individual’s expectations of their draw, and their report, depends only on F , not on

G. Moreover, any individual’s expectations only depend on their draw, and the equilibrium

mapping a, but neither of these depends on G. Thus a itself cannot depend on G and thus

not on Ĝ. We thus obtain ĝ-invariance.

Claim 5: The model exihibits o-invariance and no downwards lying regardless of observ-

ability.

As in the LC model observability will not affect reports.

The ambiguous results on shifts in f clearly must hold for n states if it holds for two. The

result on ĝ-invariance also does not depend on the number of states. �
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C Models that do not Match the Findings of the Meta Study

C.1 Standard Model and Lexicographic Lying Costs

The typical assumption in economics is that in anonymous, one-shot interactions, individuals

will simply maximize material payoffs, so utility is only a function of r:

φ(r)

where utility is (strictly) increasing in r. This model cannot explain the findings of the

meta study.46

Proposition 11 Suppose individuals have standard utility. Then all individuals give the

highest report.

Proof: Since individuals maximizing utility implies maximizing the report, all individuals

always give the highest report.�

This proposition contradicts Finding 2 of the meta study. Several papers (e.g., Demichelis

and Weibull 2008, Ellingsen and Östling 2010, Navin Kartik et al. 2014) assume that indi-

viduals have weak (or lexicographic) preferences for truth-telling, i.e., individuals care about

r and receive an additional small utility ε > 0 when they report truthfully. Since reports in

our setup always yield different monetary payoffs, this model makes the same predictions as

the standard model.

C.2 Reputation for Honesty

Many authors have found it plausible that individuals care about some kind of reputation

that is linked to the belief of the audience player about whether the individual reported

truthfully, where the audience can only observe the report but not the true state. Individuals

suffer a disutility from the stigma of being perceived as a liar. One might imagine that this
46Moreover, the standard model predicts f -invariance, ĝ-invariance, o-invariance, and no lying down when

the state is unobserved or observed.
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“stigmatization aversion” is the sole reason motivating an aversion to lying. Thus, this type

of model is like the Reputation for Honesty + LC model described in the body of the paper,

but where θLC is always 0. Therefore, an aversion to lying is motivated solely by concerns

about the beliefs of the audience. As before, because the audience’s beliefs enter the utility

of subjects, understanding such a model requires using the framework of Battigalli and M.

Dufwenberg (2009). M. Dufwenberg and M. A. Dufwenberg (2018) introduce a similar model,

but where others’ beliefs about the degree of over-reporting matter for utility.

We find that such a model cannot explain the findings of the meta study. Formally, we

suppose that in a Reputation for Honesty model individuals’ utility is

φ(r,Λ(r); θRH)

Λ(r) is the fraction of liars and, as in the Reputation for Honesty + LC model, is the audience

player’s belief about whether an individual reporting r is a liar. The only element of ~θ that

affects utility is the scalar θRH which governs the weight that an individual applies to the

stigma of being perceived as a liar. We assume φ is strictly increasing in its first argument

and decreasing in the second argument; strictly when θRH > 0. These assumptions capture

the property that individuals prefer a higher monetary payoff but dislike being thought of as a

liar. Moreover, we suppose that φ is (weakly) decreasing in θRH fixing the first two arguments,

and that the cross partial of φ with respect to Λ(r) and θRH is strictly negative, while other

cross partials are 0. An equilibrium will exist because of standard continuity arguments, but

because of the dependence of utility on other’s strategies (via the audience’s beliefs) it may

not be unique.

One can show that with two states the fraction of liars at the high report is Λ(r2) =
H(θ̄RH)f(ω1)

H(θ̄RH)f(ω1)+H(θ̄RH)[1−f(ω1)] = f(ω1). Similarly, we can show that Λ(r1) = f(ω2). This implies

directly that if f(ω1) ≤ f(ω2) then in an equilibrium with full support the fraction of liars at

r2 would be weakly smaller than the fraction of liars at r1. And so by saying r2, individuals

would receive both a higher monetary payoff and a weakly lower reputational cost. Thus, all

individuals should say r2 and there cannot be an equilibrium with full support, contradicting

Finding 2 (when restricted to binary states) of the meta study. This result generalizes to a
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setting with many states as we show in the proof.47

Proposition 12 Suppose individuals have Reputation for Honesty utility and F is uniform.

Then all individuals give the same report.

Proof: We first show the result for binary states and then generalize to an arbitrary number

of states. Observe that utility does not depend directly on the drawn state ω.

Claim 1: Fixing an equilibrium, either all types report r1, all types report r2 or there exists

one unique type that is indifferent between r1 and r2 and all types higher than that report r1,

and all others report r2.

The reasoning is analogous to that provided for the Inequality Aversion model.

The optimal report of an individual does not depend on ω (other than for the 0-mass of

indifferent individuals)

Claim 2: An equilibrium exists.

An equilibrium will exist given the continuity of φ and the fact that Λ is continuous in

the cutoff θ̄RH (although it may be a corner equilibrium without full support on all reports).

By Claim 1, conditional on drawing a particular state, individuals will follow a threshold

rule — people with θRH ≥ θ̄RH will give one report, and everyone else a different report.

Suppose we have an equilibrium where a positive measure of individuals with state ω1 report

r1. This means that there exists a set of θRHs with positive measure that strictly prefer

reporting r1 conditional on drawing ω1. Thus the exact same set of θRHs strictly prefer

reporting r1 conditional on drawing ω2 (since the set of indifferent types must have 0 mass).

Since the threshold is independent of the drawn state for all but a 0-mass of individuals

it follows that

Λ(r2) = H(θ̄RH)f(ω1)
H(θ̄RH)f(ω1) +H(θ̄RH)[1− f(ω1)]

= f(ω1)

Thus the probability of a report of r2 being made by a liar is equal to the probability of having

drawn ω1. Similarly,

Λ(r1) = (1−H(θ̄RH))f(ω2)
(1−H(θ̄RH))f(ω2) + (1−H(θ̄RH))[1− f(ω2)]

= f(ω2) = 1− f(ω1)

47Moreover, the Reputation for Honesty model predicts (for n = 2) drawing in, ĝ-invariance, o-shift, lying
down when the state is unobserved, and no lying down when the state is observed.
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Thus the probability of a report of r1 being made by a liar is equal to the probability of having

drawn ω2.

Claim 3: The equilibrium is unique.

Because there must be only a single indifferent type the equilibrium is unique.

Claim 4: With a uniform distribution we cannot have an equilibrium with full support.

If f(ω1) ≤ 1 − f(ω1) then the equilibrium will not have full support, i.e., not all re-

ports occur with positive probability, since φ(r1, 1 − f(ω1); θ̄RH) < φ(r2, 1 − f(ω1); θ̄RH) <

φ(r2, f(ω1); θ̄RH) for any possible threshold. In other words, the utility from giving the low

report must be lower than the utility of reporting the high report for any threshold.

We now turn to considering n states.

First, observe that fixing an equilibrium for any pair of states n,m there will be a unique

threshold value θ̄RHn,m for the same reasoning as in Claim 1. Similarly, by continuity an equi-

librium must exist.

Consider two states, ω < ω′ along with corresponding reports r < r′ and suppose an

equilibrium exists where g(r) > 0 and g(r′) > 0. In this, denote Θr as the set of types willing

to report r. Observe that the proportion of liars at r is then

´
Θr h(θRH)dθRH − f(ω)

´
Θr h(θRH)dθRH´

Θr h(θRH)dθRH = 1− f(ω = r)

By analogous reasoning, the proportion of liars at r′ = ω′ is 1− f(ω′ = r′).

Claim 5: With a uniform distribution we cannot have an equilibrium with full support.

Whenever there is an ω < ω′ such that f(ω) ≤ f(ω′) this means that the proportion of

liars is smaller at r′. Thus the reputation cost is lower, and the monetary payoff is higher, so

no one will report r. Thus, with a uniform distribution, all individuals will make the same

report. Because the off-equilibrium beliefs are not restricted, this may not be the highest

report (i.e., everyone may report r1 in equilibrium). This may be, e.g., because the off-

equilibrium beliefs imply that the subject must be a liar if they make any other report, an

increase in the monetary payoff is not enough to compensate for the decreased reputation.�
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C.3 Audit Model

The Audit model builds on the intuition of the Reputation for Honesty model but with a

twist. Individuals’ utility depends on the beliefs of the audience about whether they are a

liar or not, but only in the circumstance that they actually lied up. The model captures the

intuition of audits: individuals fear to be “found out” as liars. The probability of being found

out depends on the report. Individuals who give a report where there are many liars are

more likely to be found out as a liar. This may be a concern about an actual audit or, our

preferred interpretation, a more metaphorical audit: individuals care about the belief of the

audience player about whether they reported truthfully – but only if they lied up. If they

were honest or lied down, they have a “clean conscience”, even though they won’t be able

to prove their honesty by showing their true state. If the audit is an actual concern about

the researcher, then one can alleviate such concerns, e.g., by conducting the experiment over

the phone. Our meta study, however, finds no difference in behavior when the experiment is

conducted remotely (see Table A.2). Townsend (1979) discusses wanting to avoid detection,

which could be motivated by not wanting to be in a category which is likely populated by many

liars. Kajackaite and Gneezy (2017) also discuss such an intuition for lying aversion. Because

utility (potentially) depends on the audience player’s belief we again use the framework of

Battigalli and M. Dufwenberg (2009). Moreover, because the audience’s beliefs in equilibrium

must be correct, we can represent them as Λ(r).

Using the audit intuition, individuals are “investigated” with a probability that is increas-

ing in the audience’s belief that they lied, which in equilibrium, is equal to Λ(r), i.e., the

proportion of liars that report the same r as the individual. If an individual is investigated,

and discovered to have been lying upwards they face a utility cost (we suppose here that it

is a fixed cost, but with binary states it is equivalent to supposing the cost depends on the

size of the lie). Individuals face no cost if they are discovered to have lied downwards or have

been honest. Individuals’ utility function is

φ(r, Ir>ωΛ(r); θAud)

where Ir>ω is an indicator function which equals 1 if the individual lied upwards, and

0 if the individual did not lie upwards. Λ(r) is the fraction of liars at r, which is in turn

the posterior belief of the audience about the probability the individual has lied. The only
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element of ~θ that affects utility is θAud which governs the weight that an individual applies to

the reputational cost. We assume that φ is strictly increasing in the first argument, decreasing

in the second argument, strictly so if θAud > 0, and (weakly) decreasing in θAud. Similarly to

previous models, the cross partial of the second argument and θAud is strictly negative, while

other cross partials are 0. An equilibrium will exist because of standard continuity arguments,

but because of the dependence of utility on others’ strategies (via the audience’s beliefs) it

may not be unique.

The model fails to capture the findings of the meta study because under some circum-

stances it predicts that only one report is made with positive probability in equilibrium,

contradicting Finding 2.48

Proposition 13 Suppose individuals have Audit utility. Then there exists a distribution in

F that induces a G in which only one state is reported.

Proof: Fix the value of the parameters of the Audit model and suppose there are only two

states/reports. For any value of θAud ≤ κAud there exists some finite fraction of liars at r2,

Λ∗(θAud)(r2), such that the value of being thought of as telling the truth and receiving r1 is

equal to the value of receiving r2 and being thought of as a liar with probability Λ∗(θAud)(r2):

φ(r1, 0; θAud) = φ(r2,Λ∗(θ
Aud)(r2); θAud). κAud is finite and so consider the fraction of liars

at r2 that would make the highest type indifferent between both reports: Λ∗(κ
Aud)

2 . Now, let

f(ω1) go to zero. There exists some f∗ such that for all f(ω1) < f∗, even if everyone who

draws the low state says the high state, Λ(r2) < Λ∗(κAud)(r2). This implies that all individuals

will find it optimal to report the higher state. �

48Moreover, the Audit model predicts (for n = 2) drawing in, aversion, o-shift, and no lying down when the
state is unobserved or observed.
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D Proofs for Results in Section 2 of the Main Paper

Proof of Proposition 1: There exists a parameterization of the LC model, the Conformity in

LC model, the Reputation for Honesty + LC model and of all other models listed in Appendix B

(i.e., Inequality Aversion; Inequality Aversion + LC; Censored Conformity in LC; Reputation

for Being Not Greedy; LC-Reputation; Guilt Aversion; Choice Error; and Kőszegi and Rabin

+ LC) which can explain Findings 1–4 for any number of states n and for any F ∈ F .

We first prove the proposition for the LC model.

LC Model: We will parameterize the LC model with the following function: r − CIr 6=ω −

(θLC+ε)(r−ω)2. r is the payoff from the report, C is a fixed cost of lying, Ir 6=ω is an indicator

function that takes on the value 0 if r = ω and 1 otherwise, ε is a positive constant, and θLC

is the individual’s aversion to lying. Thus, this functional form captures both a fixed and

convex cost of lying. We prove the results in a series of steps.

We will first suppose that individuals can lie to any real value, rather than only integer

values. As we will show, the results will not change when we consider the discrete (integer-

valued) case.

Claim 1: Regardless of the number of states or the distribution F over them, for any given

state ω there exists a cutoff type θ̃LC(ω) so that for all θLC > θ̃LC(ω) individuals will not lie.

Moreover, there exists an ε such that for any ω, θ̃LC(ω) > ε

For an individual who draws a given ω, the utility of not lying is ω. If they lie, their

optimal report is r∗ = ω + 1
2(θLC+ε) . This gives utility of ω + 1

4(θLC+ε) − C. Notice that
∂(ω+ 1

4(θLC+ε)
−C)

∂θLC
< 0. Moreover, as θLC goes to ∞, the maximum utility from lying goes to

ω−C, which is strictly less than the utility from not lying. Thus for a large enough κLC , there

must exist a θ̃LC(ω). Moreover, observe that the conditions just described do not depend on

ω, immediately implying the existence of ε.

Claim 2: The model generates Finding 1 and Finding 2.

By Claim 1, the fraction of truth-tellers at each state ω is strictly bounded away from

0. This proves that G will have positive support on all reports (implying Finding 2). It also

proves that the average payoff must be bounded away from the maximal payoff (Finding 1).

Moreover, if individuals cannot choose any report, but only integers, then the optimal utility
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from lying must be bounded above by ω + 1
4(θLC+ε) − C. Thus, the results carry over since

the result about the maximum utility obtained when θLC goes to ∞ still holds.

Moving on to proving that the model generates the other two findings, we explicitly

suppose reports must take on the values r1, ..., rn. Given a distribution over θLC and a draw

ω = ρm, we can consider the induced distribution over reports rm, rm+1, ...(as individuals

do not lie down in the LC model). Define g(%|ρ) as the probability, conditional on drawing

ρ, that % is the optimal report when n = ∞. For any finite n, define the probability that

an individual reports r, conditional on drawing ρm, as g̃n(r|ρm) (notice g̃∞(r|ρm) = g(r|ρ)).

The probability that any given report r is given is simply the sum of all the conditional

probabilities over all states lower than r: g(r) = ∑ρ=r
ρ=r1 g̃n(r|ρ).

Claim 3: Suppose n =∞. Consider two individuals who draw two different states; ρ and

ρ′. The probability of wanting to report ρ + k, conditional on drawing ρ, is the same as the

probability of wanting to report ρ′ + k, conditional on drawing ρ′: g(ρ+ k|ρ) = g(ρ′ + k|ρ′)

Observe that an individual who draws ρ will prefer ρ+ k1 to ρ+ k2 if and only if ρ+ k1−

CIk1 6=0− (θLC + ε)(k1)2 ≥ ρ+ k2−CIk2 6=0− (θLC + ε)(k2)2 or k1−CIk1 6=0− (θLC + ε)(k1)2 ≥

k2 − CIk2 6=0 − (θLC + ε)(k2)2. Moroever, an individual who draws ρ′ will prefer ρ′ + k1 to

ρ′ + k2 if and only if ρ′ + k1 −CIk1 6=0 − (θLC + ε)(k1)2 ≥ ρ′ + k2 −CIk2 6=0 − (θLC + ε)(k2)2 or

k1 −CIk1 6=0 − (θLC + ε)(k1)2 ≥ k2 −CIk2 6=0 − (θLC + ε)(k2)2. Thus, g(ρ+ k|ρ) = g(ρ′ + k|ρ′).

Claim 3 is not necessarily true when n is finite. The next claim considers what happens

for finite n. In doing so, we first want to highlight a useful fact. In the case where n is finite,

suppose ρ′ > ρ. If ρ+ k > rn and so an individual drawing ω = ρ can’t report k levels higher

(since this would exceed the highest available report), then they also can’t report k levels

higher when drawing ρ′ since ρ′ + k > rn.

Claim 4: Suppose ρ + k > rn and there are individuals who draw ρ who would want to

report ρ + k if n = ∞. In this case, these individuals (i) report rn or (ii) tell the truth.

Moreover, suppose an individual of a given type draws ρ and wants to report ρ+k but cannot,

and ends up telling the truth. If the same individual draws ρ′ > ρ and wants to report ρ′ + k

but cannot, they will also end up telling the truth.

We prove the first part of the claim in two steps. First, we want to establish that this

individual who wants to report ρ + k > rn must find that reporting rn gives a higher utility

than any other report r > ρ (recall that individuals will never report below their draw ρ). To
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do so, we simply show that utility, conditional on reporting more than ρ, is falling the farther

the report is from the optimal, but unavailable, report. Observe that the second derivative of

the utility function for all r > ρ is −2(θLC + ε). This is strictly negative. Suppose the optimal

report is r∗, and |r̂ − r∗| ≥ |r − r∗|, where both r̂ and r are larger than ρ. Then utility from

report r is larger than the utility of reporting r̂. In other words, the utility for an individual is

lower the farther a given report is from the optimal report. Then suppose the highest report

that is possible is rn < ∞, and r∗ > rn. Then, if an individual lies, they will report rn. Of

course, it may be optimal also not to lie, in which case ρ must give maximal utility.

We prove the second part of the claim now. To do this, we suppose that, above rn, reports

could (if they were allowed) take on any value (not just the integers). Suppose an individual

of a given type draws ρ and wants to report r∗ = ρ + k but cannot, and ends up telling the

truth. From Claim 3, this indiviudal would want to report r∗ = ρ′ + k if they drew ρ′. Given

an optimal report r∗(ρ) (it is a function of the drawn state, and we surpress the dependence

on the individual’s type) not equal to the drawn state, we know that the utility from reporting

r is r−C − (θLC + ε)(r− r∗(ρ) + 1
2(θLC+ε))2. Denote the difference between any given report

r and the optimum report as d(r, ρ) = r − r∗(ρ).

From the previous paragraph we know that this individual will either report rn or ρ when

drawing ρ. ρ is reported if and only if rn−C− (θLC + ε)(d(rn, ρ) + 1
2(θLC+ε))2 ≤ ρ. Moreover,

observe that d(rn, ρ) is negative, and the derivative of the utility function with respect to d,

so long as it is negative, is positive.

If the same individual draws ρ′ > ρ we know that this individual will either report rn or

ρ′ when drawing ρ′. d(rn, ρ′) is negative and it is more negative than d(rn, ρ): d(rn, ρ′) ≤

d(rn, ρ) ≤ 0. This implies that the utility of reporting rn, having drawn ρ′, rn − C − (θLC +

ε)(d(rn, ρ′) + 1
2(θLC+ε))2 must be less than the utility of reporting rn, having drawn ρ, rn −

C − (θLC + ε)(d(rn, ρ) + 1
2(θLC+ε))2. Moreover, the utility of reporting ρ′, having drawn ρ′, is

larger than the utility of reporting ρ, having drawn ρ. Thus ρ′ ≥ rn−C−(θLC +ε)(d(rn, ρ′)+
1

2(θLC+ε))2, and so this individual will want to report the truth.

Claim 5: The probability, conditional on drawing ρ, of telling the truth (i.e. reporting the

drawn state), is increasing in ρ.

To see this, consider the same individual who could have either drawn ρ or ρ′ > ρ. There

are two cases. First, suppose that for this individual the optimum, when n =∞, after drawing
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ρ is to say ρ+k. Moreover, ρ+k < rn. In this case, the individual actually reports ρ+k. We

showed above (Claim 3) that the individual would then like to report ρ′ + k when drawing

ρ′. If they are able to do so, then they will. But it is possible that ρ′ + k > rn. Therefore,

the unconstrained optimal report is not available. As shown in Claim 4, such individuals may

report rn, but may also report ρ′. Thus aggregating across individuals, in this case we observe

a higher chance of reporting ρ′, conditional on drawing ρ′ than reporting ρ, conditional on

drawing ρ.

In the second case, suppose the optimum ρ+k is greater than rn. Then, as we have shown

in the paragraph previous to the statement of Claim 5, there is a higher chance of telling the

truth conditional on drawing ρ′ > ρ (relative to drawing ρ).

The preceding two paragraphs imply that the outflow of individuals (i.e. individuals who

drew a state but do not give the corresponding report) is decreasing in the state ρ, conditional

on having drawn that state. Thus, if there is the same chance of drawing any given state, the

outflows must be decreasing in ρ.

Claim 6: The probability, conditional on drawing a state lower than r, that r is the optimal

report, is increasing in r.

Another way of stating Claim 6 is that conditional on drawing a state ω ≤ r, the fraction

of individuals who find r the optimal report is increasing in r. To see this, first consider some

r < rn. For any individual giving a report r who is lying, it has to be the case that they drew

ρ and r = ρ+k was the optimal report to give. We have previously shown (Claim 3) that this

implies that this same individual would report r−1 if they drew ρ−1. If ρ−1 ≥ ω1 then this

happens. But if ρ− 1 < ω1 then there are no individuals who could have drawn ρ− 1, and so

the set of people lying to r−1 must be smaller than the set of people lying to r, when r < rn.

Observe that this reasoning is also true for individuals who lie to rn, conditional on those

individuals having rn as the optimal report even if it were possible to report rn+ 1. However,

there are also individuals who are lying to rn because they cannot report any higher than rn.

Thus, the number of people lying at rn is larger than at rn−1. This implies that so long as

there was the same chance of drawing all states, the inflows of individuals (i.e. individuals

who give a report but did not draw the corresponding state) is increasing in the state ρ.

Claim 7: The model generates Finding 3.

Since for uniform distributions outflows are decreasing in the state (and corresponding
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report) but inflows are increasing, g(r) must be increasing (Finding 3).

Last we need to show that some state, other than the highest, is over-reported for all

allowable distributions with more than 3 states (Finding 4).

Claim 8: Over-reporting occurs for the second highest state when F is uniform.

First, calibrate the model so that no individuals are willing to report more than two

states/reports higher than what they drew. This means we find values of C and ε so that the

individuals with the lowest costs of lying are willing to lie up 2, but not 3 reports. In other

words, C and ε have values so that ρ+ 2−C − 4ε > ρ and ρ+ 3−C − 9ε < ρ or 2 > C + 4ε

and 3 < C + 9ε. Individuals who drew ωj will thus report either ωj , ωj+1 or ωj+2. Moreover,

individuals who desire to report ωj+2, but cannot (i.e. those individuals who drew ωn or

ωn−1), simply do not lie (because of the fixed cost). With more than 3 states and a uniform

distribution, the second highest state must be over-reported. To see this, observe that the

only people who may report the highest and second highest states are individuals who drew

one of the top four states. Moreover, g(rn|ωn−1) = g̃(rn|ωn−1) since those that drew ωn−1

and would like to report rn+1, but obviously cannot, end up reporting rn−1. This reasoning

extends, so that g(rn|ωn−1) = g(rn−1|ωn−2) = g(rn−2|ωn−3) = g̃(rn−1|ωn−2) = g̃(rn−2|ωn−3).

Moreover g(rn|ωn−2) = g(rn−1|ωn−3) = g̃(rn|ωn−2) = g̃(rn−1|ωn−3). Thus the inflows to rn−1

are 1
n ḡ(rn−1|ωn−2)+ 1

ng(rn−1|ωn−3). By construction the outflows from ωn−1 are 1
ng(rn|ωn−1).

This implies that the outflows are smaller than the inflows, so the state must be overreported.

Claim 9: Over-reporting occurs for the second highest state for any distribution in F .

Finally, consider any distribution in F with 3 or more states. Then the inflows to ωn−1 are

f(ωn−2)ḡ(rn−1|ωn−2) + f(ωn−3)g(rn−1|ωn−3) and the outflows are f(ωn−1)g(rn|ωn−1). Since

f(ωn−1) ≤ f(ωn−2) the inflows must exceed the outflows.

The series of claims thus proves the LC model can match Findings 1–4 of the meta study.

We next turn to the models that limit to the LC model: The Reputation for Honesty + LC

model, the LC-Reputation model, the Conformity in LC model, the Inequality Aversion + LC

model, the Censored Conformity in LC model and the Kőszegi-Rabin+LC model (for details

of these models, see Section 2 and Appendix B). Because of our construction of these models,

they do not formally nest the LC model. Instead, they limit to the LC model in various ways.

The Reputation for Honesty + LC model, the LC-Reputation model, the Inequality Aversion

+ LC model and the Kőszegi-Rabin + LC model limit to the LC model as the distribution on

54



the θ 6= θLC converges to 0. For these models, it is clear that as the other cost components

become negligible, behavior will be almost entirely governed by the LC cost component. The

Conformity in LC and Censored Conformity in LC models limit to the LC model as η becomes

a function that does not depend on its second argument. Again, this implies that individuals’

cost of lying no longer depends on others’ actions, giving us behavior arbitrarily close to the

LC model. Thus, they can also explain Findings 1–4.

We now turn to the remaining models.

The Inequality Aversion Model (see Appendix B.1): Suppose as a limiting case,

we have 60% of individuals who simply maximize monetary payoff and 40% who experience

an infinite loss of utility if they are above the mean report, but no loss if they are below.

Then for any number of reports/states there exists an equilibrium where 60% of individuals

report rn, and 40% report rn−1.

We show that this is an equilibrium in two steps. First, in any equilibrium the former type

of individuals always give the highest report. Second, in the equilibrium we are constructing,

observe that the mean report lies between rn−1 and rn. Thus, the second type of player

experiences an infinite loss of utility if they give report rn, but experience utility r if they

given any report r < rn, and so they report rn−1.

We show that this equilibrium has the desired properties. More than one report is given

with positive probability, the average payoff is bounded away from the maximum payoff, and

the histogram is (weakly) increasing. With any uniform F with more than 3 states, a non-

maximal report (the second highest report) is made more often than its true likelihood. The

equilibrium reporting distribution doesn’t depend on F , and any other allowable F places

lower weight on the second highest state than a uniform distribution and so we also have

over-reporting for all F ∈ F with more than 3 states. Of course there are also other potential

equilibria, but we just focus on the one with desired properties. Thus, this distribution of

reports matches Findings 1–4.

The Reputation for Being Not Greedy Model (see Appendix B.4): To prove that

the model can match the findings, assume that φ(r) = θRNGE[θRNG|r] + (1− θRNG)r and a

distribution of θRNG where in the limit there are two types. The first type has θRNG = 0, thus

cares nothing at all for reputation and only about material payoffs. They always report rn.

The second type has θRNG = −1
2 +

√
5

2 . We propose an equilibrium where this type reports
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rn−1. For any individual of the second type in this equilibrium the utility from reporting the

highest report is 0 + (1 − θRNGHigh )rn = (1 − θRNGHigh )rn, the utility of the second highest report

is θRNGHigh θ
RNG
High + (1 − θRNGHigh )rn−1. Setting these equal and solving the quadratic equation

0 = (θRNGHigh )2 + θRNGHigh − 1 gives θRNG = −1
2 +

√
5

2 . Thus the high types are indifferent between

reporting rn and rn−1 and we assume they report rn−1. Thus, this is an equilibrium. Suppose

the type that doesn’t care at all about reputation composes 60% of the population, and the

rest is the higher type. As described for the Inequality Aversion model above, this distribution

of reports matches Findings 1–4.

The Guilt Aversion Model (see Appendix B.6): To see that a model of guilt aversion

can match the meta-study findings, we do a construction analogous to the Inequality Aversion

model. Suppose as a limiting case that 60% of individuals simply maximize monetary payoff.

The remaining 40% of individuals experience an infinite loss of utility if they disappoint the

audience player. Then for any number of reports/states there exists an equilibrium where

60% of individuals report rn and 40% report rn−1. We show that this is an equilibrium in

two steps. First, in any equilibrium the former type of individuals always give the highest

report. Second, in the equilibrium we are constructing, observe that the audience expects a

report between rn−1 and rn. Thus, the second type of player experiences an infinite loss of

utility if they give report rn, but experiences utility r if they given any report r < rn, and so

they report rn−1. As described above, this distribution of reports matches Findings 1–4.

The Choice Error Model (see Appendix B.7): Since φ is always finite, so long at

θCE < ∞ the Choice Error model predicts that more than one report is made with positive

probability and that the payoffs are bounded away from the maximum payoff. Moreover g is

strictly increasing by construction. The last thing to prove is that we get over-reporting of a

non-maximal report when n > 3. We will construct a φ so that the second highest state is

always reported with probability more than 1
n which will satisfy this condition. To simplify

matters, assume a limit case: that all individuals have the same type θCE = 1. We denote

φ̂(r) = eθ
CEφ(r). Let φ̂(r1)→ 0 and allow for φ̂(r2) to be any particular value. We construct

our result inductively showing that we can generate over-reporting of a non-maximal report

for any n ≥ 3. If we have three outcomes, then we need: φ̂(r2)
φ̂(r1)+φ̂(r2)+φ̂(r3) >

1
3 ⇐⇒ 3φ̂(r2) >

φ̂(r1)+ φ̂(r2)+ φ̂(r3) ⇐⇒ 2φ̂(r2) > φ̂(r3). We can choose any value of φ̂(r3) that satisfies this

bound (and is greater than φ̂(r2)). If we consider instead four reports, then it must be that
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φ̂(r3)
φ̂(r1)+φ̂(r2)+φ̂(r3)+φ̂(r4) >

1
4 , or 4φ̂(r3) > φ̂(r1) + φ̂(r2) + φ̂(r3) + φ̂(r4) = φ̂(r2) + φ̂(r3) + φ̂(r4),

or 3φ̂(r3)− φ̂(r2) > φ̂(r4). We then choose a value of φ̂(r4) that satisfies this constraint, and

is greater than φ̂(r3). One can iterate the bounds inductively so that for the nth report, we

can choose a φ̂(rn) such that (n− 1)φ̂(rn−1)−∑n−2
j=1 φ̂(rj) > φ̂(rn) > φ̂(rn−1). Observe that

the reporting distribution generated in our construction doesn’t depend on F , and any other

allowable F places lower weight on the second highest state than a uniform distribution and

so we have over-reporting for all F ∈ F with more than 3 states. �

Proof of Proposition 2:

• Suppose individuals have LC utility. For an arbitrary number of states n, we have f -

invariance, ĝ-invariance, o-invariance and no lying down when the state is unobserved

or observed.

• Suppose individuals have Conformity in LC utility. For arbitrary n, depending on pa-

rameters, we may have drawing in, drawing out or f -invariance, we may have affinity,

aversion or ĝ-invariance, we have o-invariance and no lying down when the state is

unobserved or observed. For n = 2, we have drawing out when the equilibrium is unique

and we have affinity.

• Suppose individuals have Reputation for Honesty + LC utility. For arbitrary n, depend-

ing on parameters, we may have drawing in, drawing out or f -invariance, we may have

affinity, aversion or ĝ-invariance, we have o-shift, depending on parameters, we may

have lying down or not when the state is unobserved, and we have no lying down when

the state is observed. For n = 2, we have drawing in when the equilibrium is unique.

We first prove an initial lemma.

Lemma 1 For all models, the results regarding o-shift/o-invariance and regarding lying down

do not depend on the number of states.
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Proof of Lemma 1: For models that have o-shift, the shift occurs because if the audience

player has information about the state, it changes their beliefs about the subject and this

affects the subject’s utility. This occurs regardless of the number of states. For models that

have o-invariance, the audience’s knowledge of the state does not change a player’s utility.

This again is unrelated to the number of states.

For models that can feature lying downward, there are three cases. First, in the Inequality

Aversion, Guilt Aversion, and Choice Error model, the report does not depend on the true

state and since there is full support on states and reports, we always have downwards lying

irrespective of the number of states.

Second, in the Reputation for Honesty + LC, LC-Reputation and Inequality Aversion +

LC models, there could be downwards lying or not for n = 2 and thus also for n > 2.

Third, for the remaining model that features lying down (Reputation for Not Being

Greedy), utility depends on the audience’s beliefs and lying down occurs because it can help

shift these beliefs. Regardless of whether the state is observed or not, there is an incentive to

possibly lie down for any number of states.

For models that do not feature lying downward (i.e., LC, Conformity in LC, Censored

Conformity in LC, and Kőszegi-Rabin + LC), this happens because lying down triggers a

weakly higher lying cost and leads to a lower monetary payoff relative to truth-telling. This

is independent of the number of states and observability. �

When proving our results regarding the comparative statics of shifts in F and Ĝ, we will

prove results for an equivalent, but simpler to work with, formulation of the shifts. Rather than

focusing on shifts of first order stochastic dominance which maintains the same set of support,

we focus on shifts where we move weight from a single lower state to a single higher state.

For example, when considering changes in F from a distribution FA to another distribution

FB, we suppose that fA(ωi) = fB(ωi) for all i = 1, 2, ..., j − 1, j + 1, ..., k − 1, k + 1, ..., n,

fB(ωk) = fA(ωk) + ε, and fB(ωj) = fA(ωj) − ε for some 0 < ε < fA(ωj). Any shift of

this kind induces first order stochastic dominance. Moreover, by the definition of first order

stochastic dominance we can decompose any shift in first order stochastic dominance on a

finite distribution into a finite number of these shifts. This works analogously for shifts in Ĝ.

Thus we get the following (equivalent) reformulations of our definitions:
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Definition 1’ Consider two pairs of distributions: FA, GA and FB, GB where Gj is the

reporting distribution associated with F j, and they all have full support. Suppose further that

fA(ωi) = fB(ωi) for all i = 1, 2, ..., j − 1, j + 1, ..., k − 1, k + 1, ..., n, fB(ωk) = fA(ωk) + ε,

and fB(ωj) = fA(ωj) − ε for some 0 < ε < fA(ωj). A model exhibits drawing in/drawing

out/f-invariance if 1− gB(r1)
fB(ω1) is larger than/smaller than/the same as 1− gA(r1)

fA(ω1) .

Definition 2’ Fix a distribution over states F and consider two pairs of distributions ĜA, GA

and ĜB, GB, where Gj is the reporting distribution induced by F and by the belief that others

will report according to Ĝj. Moreover, suppose that all exhibit full support and that ĝA(ri) =

ĝB(ri) for all i = 1, 2, ..., j − 1, j + 1, ..., k − 1, k + 1, ..., n, ĝB(rk) = ĝA(rk) + ε, and ĝB(rj) =

ĝA(rj)− ε for some 0 < ε < ĝA(rj). A model exhibits affinity/aversion/ĝ-invariance if gB(rn)

is larger than/smaller than/the same as gA(rn).

To prove the rest of the results we first prove the results for binary states/reports. We do

this because it allows for development of the intuitions underlying the proofs. We then prove

the results for an arbitrary number of states/reports. We consider each model in turn.

LC model: First we consider n = 2.

Claim 1: No individual lies down.

In doing so they would pay a weakly higher lying cost and receive a lower monetary payoff

than if they told the truth.

Claim 2: Conditional on drawing ω1 either all types report r1, all types report r2 or there

exists a unique type that is indifferent between r1 and r2 and all types higher than that report

r1, and all others report r2.

We show that if neither of the first two cases holds there needs to be a unique cutoff type.

Suppose that some individuals drawing ω1 report r1 and others report r2. By continuity of

the utility function there must be a type (cutoff type) θ̄LC , such that φ(r1, c(r1, ω1); θ̄LC) =

φ(r2, c(r2, ω1); θ̄LC). We can show this cutoff type will be unique. By construction ∂2φ
∂c∂θ < 0 and

∂2φ
∂r∂θ = 0. Therefore, since φ(r2, c(r2, ω1); θ̄LC) − φ(r1, c(r1, ω1); θ̄LC) = 0, then for all θLC >

θ̄LC , φ(r2, c(r2, ω1); θ̄LC)−φ(r1, c(r1, ω1); θ̄LC) < 0 and for all θLC < θ̄LC , φ(r2, c(r2, ω1); θ̄LC)−

φ(r1, c(r1, ω1); θ̄LC) > 0. Therefore, individuals with θLC < θ̄LC who draw ω1 will report r2.

Individuals with θLC > θ̄LC who draw ω1 will report r1.
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Claim 3: The model exibits f -invariance.

Given Claim 2, and the fact that no one would lie down (Claim 1), we can calculate our

test statistic: 1− g(r1)
f(ω1) = 1− (1−H(θ̄LC))f(ω1)

f(ω1) = 1− (1−H(θ̄LC)) = H(θ̄LC). This condition

does not depend on F .

Claim 4: The model exibits ĝ-invariance.

The fact that an individual’s utility does not depend on G in any way allows us to imme-

diately observe that it exhibits ĝ-invariance.

Claim 5: The model exihibits o-invariance and no downwards lying regardless of observ-

ability.

The lying costs in this model are internal costs and they do not depend on the inference

others are making about any given person. Thus, individuals do not care whether their state

was observed.

We next consider n states. We can generalize our results easily.

Observe that for each pair ri, rj of potential reports there is a state-conditional threshold

such that an individual with that threshold would be indifferent between that pair of reports

(such thresholds only exist where both reports ri and rj are both weakly larger than ω,

since no individuals lie down): denote it θ̄LCri,rj,ω: φ(ri, c(ri, ω); θ̄LCri,rj,ω) = φ(rj , c(rj , ω); θ̄LCri,rj,ω).

Clearly this is unique and does not depend on F as before. Denote θ̄LCω = minrj θ̄LCr=ω,rj,ω. This

is the highest type that will be willing to lie, and in fact this type will be indifferent between

telling the truth and lying (since it is the minimum of all the thresholds between reporting

the drawn state and reporting some other state). All lower types will lie to some other state.

Since no individuals lie down, then the probability of an individual giving the lowest report

is g(r1) = H(θ̄LCω1 )f(ω1). Thus, shifting the distribution above the lowest outcome doesn’t

change the conditional probability of someone reporting the lowest outcome. Thus we get

f -invariance. Since the thresholds do not depend on G shifts in Ĝ have no effect and so we

get ĝ-invariance.

Conformity in LC model: We first consider n = 2.

Claim 6: No individual lies down

In doing so they would pay a weakly higher lying cost and receive a lower monetary payoff

than if they told the truth.

Claim 7: Fixing an equilibrium, conditional on drawing ω1 either all types report r1, all
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types report r2 or there exists a unique type that is indifferent between r1 and r2 and all types

higher than that report r1, and all others report r2.

In the case that some types drawing ω1 give one report and others the other, by continuity

there must be a type that conditional on drawing ω1 is indifferent between the two reports, and

so satisfies the condition φ(r1, η(0, c̄); θ̄CLC) = φ(r2, η(c, c̄); θ̄CLC) where c denotes the cost

of lying to report r2 (given that ω1 was drawn). If no such type exists, then all indviduals

would give the same report. As with the LC model, this type will be unique for the exact

same reasoning (since fixing the equilibrium c̄, this model is the LC model). Of course, this

threshold may shift across different equilibria.

Claim 8: An equilibrium exists.

An equilibrium will exist given the continuity of φ and η and the fact that c̄ is continuous

in the cutoff θ̄CLC .

However, it may not be unique. Intuitively this is true because individuals’ lying behaviors

are complements. To find the set of equilibria consider the function ζ(θ̄CLC), which maps from

Θ to Θ: this will be the function whose fixed points will characterize the equilibria. Given

a threshold θ̄CLC that all other individuals are using, ζ(θ̄CLC) is a function that gives the

optimal threshold if there exists one in the allowed range of θCLC ; it returns κCLC (the upper

bound of the distribution of types) if the threshold is above the range; and gives 0 (the lower

bound of the distribution of types) if the threshold is below the range. This ensures ζ maps

from [0, κCLC ] to itself. It also implies, with a unique equilibrium, the graph of ζ must cross

the 45-degree line from above to below. Finding the fixed point(s) of ζ(θ̄CLC) characterizes

the equilibrium.

Claim 9: The model exhibits drawing out.

Suppose that the equilibrium is unique. Now let f(ω1) fall. For any θ̄CLC as f(ω1) falls

c̄ must fall. Thus ζ(θ̄CLC) must fall for all θ̄CLC . Thus the fixed point (which we supposed

was unique) must fall. Intuitively, the indifferent type must fall as well since lying becomes

more costly. So fewer people who draw ω1 report r2. Thus we observe drawing out.

Claim 10: The model exhibits affinity.

Since G enters in the utility function directly (because no one lies down and there are two

states and G has thus a one-to-one mapping with c̄) we can still make predictions regarding

the effect of Ĝ even though we may not have a unique equilibrium. To see that we observe
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affinity, notice that fixing F , increasing ĝ(r2) implies that the individual believes that there

are more liars. Thus the costs of lying fall, and so more individuals are willing to lie.

Claim 11: The model exihibits o-invariance and no downwards lying regardless of observ-

ability.

As with the LC model, our interpretation of these costs as internal costs means that they

do not depend on the inference others are making about any given person. Thus, individuals

do not care whether their state was observed. Thus the set of possible equilibria is not affected

by observability of the true state, and the prediction regarding lying downwards is the same

for observable or unobservable states.

We now turn to n states.

As mentioned for the binary world, fixing the level of lying in society, the model behaves

exactly like an LC model, where among the individuals who drew ω there will be a set of

thresholds that denote which state they should report. Since all types have zero measure,

this implies that conditional on a value of c̄, generically individuals have a unique best action

(conditional on any drawn state). Thus, we can think of the equilibrium as simply finding a

fixed point in the aggregate level of lying: ζ(c̄), which maps from the aggregate level of lying

to itself. Because of continuity an equilibrium will always exist.

Claim 12: Depending on parameters, we may observe drawing in, drawing out or f-

invariance.

We construct an example to demonstrate drawing in (since we have already shown drawing

out for n = 2). Suppose n = 4. Since no one lies down, no one drawing the highest state lies.

Moreover, suppose that the cost structure has two properties: (i) individuals, if they lie, lie up

at most one report, and (ii) the cost of lying up one state is increasing in the drawn state. Key

to the example is that there is a negligable mass of individuals who draw ω2 who are near the

threshold type (below which they report r3, above which they report r2). Instead, almost all

individuals who draw ω2 and lie have a strong preference for lying (i.e. the utility they obtain

from reporting r3 is much larger than the utility they obtain from reporting r2). To obtain

FB from FA, fix fA(ω1) and fA(ω4) and shift weight from ω2 to ω3. Shifting individuals to

ω3 increases their costs of lying (and reduces the benefits), but if their preference for lying up

was strong enough at ω2, then almost all of the individuals who now draw ω3 (instead of ω2)

will continue to want to lie. Thus, c̄ will increase. But this means that conditional on drawing
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ω1, individuals are more likely to lie, exhibiting drawing in, opposite to the prediction of the

two state/report case. By continuity, it is also possible to generate f -invariance.

Claim 13: Depending on parameters, we may observe affinity, aversion or ĝ-invariance.

We have shown affinity for n = 2. We now demonstrate an example for aversion. Suppose

that the shift in Ĝ induces a belief that c̄ has increased (as it does in the binary case). We

show that even if c̄ has risen we may observe aversion. Let n = 3. First, suppose as a

limit case all individuals are of the same type and utility is equal to u(r) − η(c, c̄). Suppose

u(r1) = 0, u(r2) = 2 and u(r3) = 4, and that the cost function is such that individuals

drawing ω2 and ω3 never want to lie. But c(r2, ω1) = 0.2 and c(r3, ω1) = 0.4. First, consider

an equilibrium where η(0.2, c̄) = 1 and η(0.4, c̄) = 2.8. All individuals drawing ω1 report

r3. Now suppose the average cost of lying rises to c̄′ and at the new value η(0.2, c̄′) = 0.2

and η(0.4, c̄′) = 2.4. Now all individuals drawing ω1 report r2. Conversely, this also means

that if c̄ falls we can either observe more reporting or less reporting of the highest report.

Thus, regardless of the shift in beliefs about c̄ we may observe either affinity or aversion. By

continuity, it is also possible to generate ĝ-invariance.

Reputation for Honesty + LC: We first consider n = 2.

Claim 14: In any equilibrium, r2 has to have more liars.

Suppose no one lies down. Then clearly r2 has more liars. Now suppose people do lie

down, and r2 has fewer liars than r1. In this case, consider the individuals whose state is ω2.

They would obtain a better reputation, lower lying costs and a higher monetary payoff, by

simply reporting r2. So, no one would lie down – a contradiction. Thus, r2 must have more

liars.

Claim 15: Fixing θLC and an equilibrium, φ(r2, c(r2, ω1),Λ(r2); θLC , θRH)−φ(r1, c(r1, ω1),Λ(r1); θLC , θRH)

is falling in θRH .

This is immediately implied by the fact that Λ(r2) > Λ(r1) (as shown in Claim 14), ∂φ∂Λ < 0,
∂2φ

∂r∂θRH
= 0 and ∂2φ

∂Λ∂θRH < 0 (by our assumption of additive separability).

Similarly, fixing θRH and an equilibrium, φ(r2, c(r2, ω1),Λ(r2); θLC , θRH)−φ(r1, c(r1, ω1),Λ(r1); θLC , θRH)

is decreasing in θLC . We can make the analogous statements about what happens conditioning

instead on ω2 being drawn.

We can define a “threshold function” for each state τωi(θLC , θRH), which, given the equilib-

rium and an individual’s given type, gives the utility of reporting ri 6=j versus ri, conditional
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on having drawn ωi. These are continuous functions. If τ is less than or equal to 0, the

individual will report their state, otherwise they will lie.

Claim 16: Fixing θLC and an equilibrium, τωi(θLC , θRH) is equal to 0 for at most one

value of θRH . Similarly fixing θRH , τωi(θLC , θRH) is equal to 0 for at most one value of θLC .

This is immediately implied by the preceding claims.

Thus, we can think of the set of indifferent individuals, i.e. the set of points where

τωi(θLC , θRH) = 0, as a function in the space θLC × θRH ; or graphically, given that utility is

linear in both θRH and θLC , a line in two-dimensional Euclidean space (see Figure D.1).

Figure D.1: Thresholds for Reputation for Honesty + LC Model
θLC
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θω2
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We know that fixing θRH , as θLC increases, individuals’ relative value of reporting what

they drew increases.

Claim 17: If an individual draws ω1 and reports r2 then an individual with the same

preference parameters, but with a draw ω2, must also report r2. Moreover, if an individual

draws ω2 and reports r1 then an individual with the same preference parameters, but with a

draw ω1 must also report r1.

This is because saying r2 gives the same reputational value and the same monetary payoff

to both individuals but the individual who drew ω1 pays an LC cost (analogous reasoning

works for the second statment).

We can characterize the equilibrium in terms of the intercepts of the threshold function,

rather than the probability of being a liar. Observe that given H and a utility function, the
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probability that, conditional on drawing a particular state, an individual lies is characterized

by τωi(θLC , θRH) = 0. Since the threshold functions τωi(θLC , θRH) = 0 are always linear in

θLC and θRH they can be characterized by their θLC intercept and their θRH intercept, denoted

θωiLC,T and θωiRH,T . Moreover, since the LC portion of costs never depends on the distribution of

responses, the θωiLC,T intercept (i.e. the threshold value of θωiLC,T when θRH = 0) must always

be the same. Therefore, we can think of each of the threshold “lines” (one for each drawn

state) as being characterized by a single intercept: θωiRH,T . The thresholds θ
ωi
RH,T (one for each

state), along with H, induce a conditional (on each state) probability of giving either report.

These, in conjunction with F , define the probability of being a liar at either report (as well

as G).

Thus, in order to solve for an equilibrium we can consider a function ζ(θω1
RH,T , θ

ω2
RH,T ), which

maps from the thresholds that everyone is using into best-response thresholds. This function’s

fixed points will characterize equilibria. Because we are looking at the θRH intercepts, the LC

costs are 0. Thus, the actual drawn state does not enter the utility function, and so players

must behave the same regardless of which state they drew; so θω1
RH,T = θω2

RH,T . Thus, our

problem reduces to a single dimension; and we can consider the function ζ(θRH,T ) and find

its fixed point. More precisely, ζ is a function that gives the optimal threshold if there exists

one in the allowed range of θRH ; gives κRH if the threshold is above the range; and gives 0

if the threshold is below the range. This ensures ζ maps from [0, κRH ] to itself. Moreover,

if there is a unique equilibrium, the graph of ζ must cross the 45-degree line from above to

below.

Claim 18: An equilibrium exists.

An equilibrium will exist given the continuity of φ and the fact that Λ is continuous in

the threshold sets.

However, the equilibrium reporting distribution is not necessarily unique. Recall that the

threshold θRH,T is defined as the solution to the equation u(r2) − θRHυ(Λ(r2)) = u(r1) −

θRHυ(Λ(r1)) or u(r2)− u(r1) = θRH(υ(Λ(r2))− υ(Λ(r1))). This describes an individual with

θLC = 0 and a θRH = θ̄RH so that the individual is indifferent between reporting r1 or

r2. If θRH = 0 the RHS of this equation is equal to 0. Thus, a sufficient condition for a

unique equilibrium is that the RHS is monotonically increasing in θRH,T (i.e. the value of

θRH that solves the indifference equation). Unfortunately we cannot guarantee this. As θRH,T

65



increases, the probability, conditional on drawing ω1, of reporting r1 increases. Similarly, the

probability, conditional on drawing ω2, of reporting r1 increases. Thus, at r1 (and similarly

r2) there are both more truth-tellers and more liars, making the change in the difference

υ(Λ(r2))− υ(Λ(r1)) ambiguous.

Claim 19: We observe drawing in.

Suppose there is a unique equilibrium and that f(ω2) increases. Fixing the input threshold

θRH,T , by Claim 17 the proportion of truth-tellers must increase at r2. Similarly, the propor-

tion of truth-tellers at r1 must fall. This makes r2 relatively more attractive to individuals

(compared to r1). Thus the optimal threshold θRH (generated by ζ) must rise and we get

drawing in.

Claim 20: The model exihibits o-shift and no downwards lying under observability, but

may exhibit downwards or not without observability.

Observability will matter as long as some individuals care about the reputation costs.

In particular, reputational concerns will imply that individuals would only state the truth

or the highest report with observability. We will observe no lying downwards at all under

observability of the state by the audience since doing so would incur an LC cost and a

reputational cost. Without observability of the state, we may either have lying downwards

or not – in the limit if individuals only have LC concerns, then they would never lie down,

but in the opposite direction, in the limit if individuals only have reputational concerns then

individuals’ actions will generically not depend on the drawn state, but only their type, causing

lying down..

Claim 21: Depending on parameters, we may observe affinity, aversion or ĝ-invariance.

Even if the equilibrium of the reporting distribution is unique, we could observe either

aversion, affinity or ĝ-invariance. To see the intuition, note that the Ĝ treatments do not pin

down the new belief about H that subjects hold. Depending on the H, we could get affinity

or aversion. In particular, suppose we move from ĜA (associated with HA) to ĜB (where

there are two Hs that rationalize ĜB). Imagine that under HB υ(Λ(r2))− υ(Λ(r1)) increases

compared to the difference under HA, while υ(Λ(r2))−υ(Λ(r1)) decreases under H̃Bcompared

to HA. Then we get aversion if subjects believe the new distribution over types is HB, and

we get affinity if subjects believe the new distribution over types is H̃B.

Formally, we show that two different changes in the exogenous distribution H can both
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lead to an increase in ĝ(r2). Then we show that they have the opposite implications for

υ(Λ(r2))− υ(Λ(r1)). From Figure D.1 we can see that two different shifts of probability mass

in H could lead to an increase in ĝB(r2) (relative to ĝA(r2)). The first shifts mass from above

τ(ω1) to below it (without altering the relative weights above and below τ(ω2)) in Figure

D.1. This, fixing the thresholds, doesn’t change the reporting of individuals who drew ω2, but

leads to a higher mass of individuals drawing ω1 to report r2. This increases g(r2) but also

increases the number of liars at both r2 and r1. Recall our fixed point operator that defines the

threshold which characterizes the equilibrium: ζ(θRH,T ). Recall that this, taking as an input

everyone else’s threshold, returns the optimal threshold. If υ(Λ(r2))−υ(Λ(r1)) increases, this

makes the high report less attractive, and so ζ decreases, reducing the equilibrium level of

θRH,T .49 This reduction will cause aversion. Thus, in order to generate aversion we need that

υ(Λ(r2)) − υ(Λ(r1)) increases in response to this shift in weight. This can be accomplished

simply by ensuring that υ′(Λ(r2)) (the derivative of υ) is sufficiently larger than υ′(Λ(r1)).

The second shift moves mass from below τ(ω2) to above it (without altering the relative

weights above and below τ(ω1)). Fixing the thresholds, this doesn’t change the reporting of

individuals who drew ω1, but leads to a higher mass of individuals drawing ω2 to report r2.

This increases g(r2) but also decreases the number of liars at both r2 and r1. If υ(Λ(r2)) −

υ(Λ(r1)) decreases, this makes the high report more attractive, and so ζ increases. This

increases the equilibrium level of θRH,T , and causes affinity. Similarly to before, in order

to generate affinity we need that υ(Λ(r2)) − υ(Λ(r1)) decreases in response to this shift in

weight. This can be accomplished simply by ensuring that υ′(Λ(r2)) is sufficiently larger than

υ′(Λ(r1)).

Thus, we can get both affinity and aversion (and by continuity ĝ-invariance) when υ′(Λ(r2))

is sufficiently larger than υ′(Λ(r1)). Of course, we could get both affinity and aversion but

associated with the opposite shifts in weight if we supposed that υ′(Λ(r2)) is sufficiently

smaller than υ′(Λ(r1)). However, since there are more liars at the high report, a sufficiently

convex υ will naturally generate the result that υ′(Λ(r2)) is sufficiently larger than υ′(Λ(r1)),

which is what we focus on here. Another sufficient condition is that Λ(r2) responds more to
49An equilibrium threshold must fall in this situation. In the case of uniqueness, for any non-trivial param-

eterization (where at least some types are sometimes willing to lie) we know ζ(0) > 0 (since if no one lies
upwards, then it is optimal to best respond by lying upwards). This implies the equilibrium threshold must
fall.
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the shifts in probability weight than Λ(r1).

We now turn to n states.

Claim 22: Depending on parameters, we may observe drawing in, drawing out or f -

invariance.

We provide an example of drawing out (since we have shown drawing in for n = 2).

Suppose that n = 3. Moreover, suppose that individuals only lie one state/report up. Now,

move from FA to FB by keeping fA(ω1) constant and shifting weight from ω2 to ω3. This

has two effects. First, fixing strategies, it makes reporting r3 more attractive (since some of

the individuals drawing ω3 will still report r3). Second, by the same reasoning, it makes the

middle state less attractive. Thus, individuals who draw the lowest state will find reporting

the middle state less attractive, and more individuals will simply report the truth. This

implies drawing out.

For the Reputation for Honesty + LC model we have ambiguous predictions regarding

shifts in Ĝ even for two states, and this carries over to n states. �

68



E The Role of Distributional Assumptions

In the body of the paper we suppose that an individual’s type is private information, and

moreover, the ex-ante prior distribution about types H is non-atomic. In contrast, other

papers (M. Dufwenberg and M. A. Dufwenberg 2018, Khalmetski and Sliwka forthcoming,

Gneezy et al. 2018) have supposed that there is not necessarily incomplete information about

at least some of the dimensions of the type space, and that H has atoms. For example, M.

Dufwenberg and M. A. Dufwenberg (2018) consider a model that is related to our Reputation

for Honesty model (Appendix C.2), but where everyone has a single known type. Khalmetski

and Sliwka (forthcoming) and Gneezy et al. (2018) both consider utility functions that are

nested by our Reputation for Honesty + LC model. However, they suppose that there is

complete information about the reputational component (although incomplete information

about the LC portion of costs).

We made the assumption that H is non-atomic and an individual’s type is private infor-

mation in order to put the models we consider on equal footing, as some models explicitly

require a distribution of types and private information about the realized type to generate

plausible behavior, e.g., the Reputation for Not Being Greedy model. Recall that our goal of

the paper is to understand which types of model can and cannot rationalize the patterns of

lying observed in the data.50 In order to accomplish this, we have attempted to make minimal

assumptions on the structure of the utility function. Of course, however, our assumptions re-

garding private knowledge of types may be substantive, and it is important to understand, in

particular, whether it leads us to falsify a class of models which would not be falsified under

a different assumption.51

It turns out that supposing there is only a single realized type does not change the main

finding of our study. The predicted behavior of some models for some of our empirical tests

does change if we suppose that H is degenerate and each individual’s type is common knowl-

edge, instead of H being non-atomic and the type private knowledge. However, the set of
50This is different than the goal of papers whose impetus is to show how much behavior a given model could

potentially explain. In this case, making as strong as assumptions as possible, and showing that the behavior
one is interested in can still occur, is typically more interesting.

51In contrast, this is a lesser problem, given our goal, for those models which cannot be falsified with private
knowledge of types. Suppose that, for any of that set of models, common knowledge of types implies the model
can be falsified. But, given that the model is not falsified under private information, we should still consider
it as a plausible explanation.
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falsified models, which we take as our main finding, does not change.52 First, consider the set

of models which we describe as matching Findings 1–4 (listed in Table 2). It turns out that

the models that can be falsified by the new tests with binary states when H is non-atomic,

can also be falsified when H is degenerate. Six of the nine falsified models listed in Table 2

deliver the exact same prediction for binary states (with the assumption that the G exhibits

full support, i.e., we look at full support equilibria). The Reputation for Not Being Greedy

model generates different predictions (it now exhibits f -, g- and o-invariance) but is still not

in line with the data. The Inequality Aversion + LC and Conformity in LC model can now,

depending on parameters, predict drawing in, drawing out, or f -invariance, but otherwise

make the same predictions. Thus, supposing that H is degenerate does not lead to differ-

ent conclusions about how well these models can match the data. The following proposition

formalizes this.

Proposition 14 Suppose n = 2. Then all models listed in Table 2, that fail to match the

data of our four empirical tests when H is non-atomic and private information, also fail to

do so when H is degenerate and common knowledge.

Proof: For the LC model, because an individual engages in a simple one-person optimization

problem, the predictions of the model will not change, although all individuals drawing the low

state will generically take the same action (since generically individuals will not be indifferent

between the two states, and everyone drawing the low state has the same best response). The

same reasoning applies to the Choice Error model and the Kőszegi-Rabin + LC model.

In the Conformity in LC model, individuals will never lie down regardless of H. This

implies that to observe an equilibrium with full support individuals drawing the low state

must weakly prefer to report the low state, i.e., strictly prefer or be indifferent. Thus, we

have two cases to consider.

(i) First, suppose the former. If we shift weight in F from the ω1 to ω2, with the assumption

of a unique equilibrium, we observe f -invariance since no one was willing to lie up before, and

the shift in F hasn’t increased the aggregate lying costs.
52The two models which are not falsified (the Reputation for Honesty + LC model and the LC-Reputation

model) also generate different predictions. As explained before, since our goal is to identify models which, under
plausible assumptions, fail to match the data, and these models can match the data under some assumptions,
we do not focus on them here.
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(ii) Next, suppose the latter. Because the equilibrium is unique, there exists a unique

proportion of individuals that must be lying up in equilibrium so that individuals drawing

the low state are indifferent between reports. This particular proportion doesn’t depend on

F (it is a feature of the preferences). But, when we shift weight in F from the low to high

state, the total proportion of individuals drawing the low state falls. There are two subcases.

(a) If after the shift we still observe individuals drawing the low state and reporting the high

state, then those drawing the low state must still be indifferent between both report. Then

to keep the proportion of individuals lying constant, more individuals drawing the low state

need to lie, so we observe drawing in. (b) Alternatively, it could be that after the shift the

equilibrium does not feature anyone drawing the low state giving the high report. This would

happen if after the shift there are very few individuals who draw the low state, then even

if everyone else drawing the low state lies up, it is not a best reponse for someone drawing

the low state to give the high report (recall that lying costs are normalized by the average

amount of lying). Thus, since the equilibrium features no individuals drawing the low state

and giving the high report, we have drawing out. We observe affinity, o-invariance, and no

lying down for the same reasons as in the body of the paper.

We next consider Inequality Aversion. Because individuals’ utility does not depend on

their drawn state, to get full support it must be the case that all individuals are indifferent

between the two states. However, the set of equilibria will not vary with F , for the same

reason as in the body of the paper. The rest of the results do not change.

In the Inequality Aversion + LC model there are several possibilities.

(i) First, individuals drawing each state could strictly prefer to report their state (because

of the LC cost, it can never be the case that those drawing the low state strictly prefer

to report high and vice versa). In this case, increases inf(ω2) will increase the fraction of

individuals reporting r2, making the high state more attractive relative to the low state, and

so cause either f -invariance or drawing in.

(ii) The second possibility is that those drawing the high state strictly prefer to give the

high report and those drawing the low state are indifferent. There are three subcases. (a) If

after the increase in f(ω2) individuals drawing the low state are still indifferent in equilibrium,

the probability of reporting high, conditional on drawing the low state, must have fallen. This

implies we observe drawing out. (b) If we moved to an equilibrium without full support we
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could have drawing in, since after the shift, there are no longer enough individuals drawing

the low state and reporting the low state to maintain indifference. (c) The third case is that,

after the shift in F , those drawing the low state now strictly prefer to give the low report and

those drawing the high state are indifferent. This can generate either drawing in or drawing

out. The former could occur because individuals who draw the high state now are a high

enough fraction so that, if none of them lie down, they all prefer to give the high report. The

latter could occur because to maintain indifference between the two reports, the probability of

reporting low, conditional on drawing high, must increase. Thus, depending on parameters,

we can have drawing in, drawing out or f -invariance. We observe affinity, o-invariance, and,

depending on parameters, lying down or not for the same reasons as in the body of the paper.

In the Censored Conformity in LC model, individuals will never lie down regardless

of H. This implies that, to observe an equilibrium with full support, individuals drawing the

low state must weakly prefer to report the low state, i.e., strictly prefer or be indifferent. We

consider each case separately.

(i) In the former case, as in the Conformity in LC model described above, we will observe

f -invariance.

(ii) In the latter case, there is a unique proportion, conditional on drawing the low state,

that must report the high state, in order to ensure that individuals drawing the low state are

indifferent. This proportion doesn’t change with F . Recall that in the Censored Conformity

in LC model the LC costs are “normalized” by the average lying cost among those who

could lie, which is the average lying cost of those who drew the low state, or the proportion

of those drawing the low state and reporting the high state. Since, as just described, the

equilibrium value of this doesn’t change with F , we still observe f -invariance. We observe

affinity, o-invariance, and no lying down for the same reasons as in the body of the paper.

In the Reputation for Not Being Greedy model, individuals care about their mon-

etary payoff and their estimated type. If individuals’ types are known then the second mo-

tivation disappears, and individuals behave exactly as if they simply want to maximize their

monetary payoff; and so will exhibit f , ĝ and o-invariance and no lying down.

We next consider Guilt Aversion. Because individuals’ utility does not depend on their

drawn state, to get full support it must be the case that all individuals are indifferent between

the two states. However, the set of equilibria will not vary with F , for the same reason as in
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the body of the paper. Shifts in Ĝ also induce the same effects, observability does not change

behavior, and we wil observe lying down for the same reasons also. �

Second, consider the set of models that, given our assumption on H, fail to match Find-

ings 1–4 (discussed in Appendix C). These consist of the standard model, the Reputation

for Honesty model and the Audit model. As should be relatively clear from the previous

discussions, the standard model’s predictions do not depend on our assumptions regarding H

and the Audit model still fails to match the stylized findings, for the same reason as when

H is non-atomic. However, the predictions of the Reputation for Honesty model with a de-

generate H differ from the predictions in Appendix C. A degenerate H implies individuals

must be indifferent between all reports that are made with positive probability in equilib-

rium. Since individuals can randomize differently based on their drawn state, equilibria can

be constructed that have full support and thus Reputation for Honesty with degenerate H

can explain Findings 1–4. However, such a model fails to match the data from our new tests,

in particular the Ĝ treatments.

Proposition 15 Suppose subjects’ utility functions are as in the Reputation for Honesty

model but H is degenerate and common knowledge. Then, for n = 2, we have affinity.

Proof: A degenerate H implies individuals must be indifferent between all reports that are

made with positive probability in equilibrium (since if one subject had a strict preference for

one report, all subjects would exhibit the same strict preference). Given indifference, subjects

can randomize differently based on their drawn state. In the Ĝ treatments, Ĝ cannot provide

information about H since this is already common knowledge. It can only provide information

about which equilibrium (out of the multiple potential equilibria) is being selected. The

treatments induce a belief Ĝ about the equilibrium distribution of reports, and thus subjects’

equilibrium strategy generates a reporting distribution G = Ĝ.53 Thus, if a “higher” Ĝ (in

the sense of representing a higher average report) is induced, then a “higher” G will result.

This implies affinity. �
53If we only assume best-response behavior, then any behavior in the Ĝ treatments can be rationalized. This

is because all subjects play a mixed strategy and are thus indifferent between the different reports. However,
in order to support Ĝ as an equilibrium distribution, it has to be the case that subjects play G = Ĝ to preserve
the indifference of the other players.
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The prediction of affinity is not in line with the data from our Ĝ treatments.

Third, we can use a particular aspect of the OBSERVABLE treatment to further distin-

guish between models. In the OBSERVABLE treatment, we know the true state ω of subjects.

We find that subjects who drew the same state differ in their behavior. Some report honestly

(r = ω) and others lie up (r > ω) (see Figure 7). Such within-state heterogeneity can be

generated, in a robust way (in the sense explained below), by models with non-atomic H

(our maintained assumption outside this appendix) and that is a reason why we do not focus

on this behavioral regularity in the body of the text. In particular, it is straightforward to

show that this pattern of behavior can be robustly generated by the two models that our

empirical exercise cannot falsify, Reputation for Honesty + LC and LC-Reputation. How-

ever, this behavior is at odds with several of our models if we assume a degenerate H. In

particular, as the next proposition shows, this behavior cannot be generated in a way that is

robust to perturbations in θ. It can only occur for an isolated set of points in at least one

of the dimensions of Θ. In other words, suppose we begin with a situation where individuals

drawing the same state make different reports – if we peturbed individuals’ common θs then

all individuals drawing the same state would make the same report.

Proposition 16 Suppose H is degenerate and the drawn state is observed by the audience

as in our OBSERVABLE treatment. Then under the LC, Reputation for Honesty+LC, LC-

Reputation, Reputation for Being Not Greedy, Reputation for Honesty and Audit models we

observe individuals drawing the same state and making the same report only for a discrete

subset of at least one dimension of Θ.

Proof: Assume subjects have LC utility. Then r and r′ are both reported if and only if

φ(r, c(r, ω; θLC) = φ(r′, c(r′, ω; θLC). Observe that, for any θLC′ in a neighborhood around

θLC , by the assumptions on cross partials φ(r, c(r, ω; θLC′) 6= φ(r′, c(r′, ω; θLC′). Moreover,

we can always find a small enough neighborhood such that for all θLC′ no other indifferences

occur. This shows that that if we peturb θLC we break indifference and so any θLC generating

indifference must be isolated. The result follows by the definition of a discrete set.

The Reputation for Honesty+LC model reduces to the LC model plus an additional fixed cost

of lying if states are observed, and the previous result thus carries over. The LC-Reputation
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model reduces to (a monotone transformation of) the LC model if θLC is known, i.e., the

same result obtains. Under the Reputation for Being Not Greedy model, if θRNG is known,

then the model reduces to (a monotone transformation of) the standard model. This means

the result obtains (since we know the standard model generates a degenerate G).

The Reputation for Honesty model, under observability, reduces to an LC model with a fixed

cost of lying. The fixed cost is the same for all individuals with a degenerate H and so the

result above follows. The Audit model under observability reduces to an LC model with zero

cost of lying down and a fixed cost of lying up; thus the LC model result follows. �

In contrast, the other models we consider in our paper can generate within-state hetero-

geneity in the OBSERVABLE treatment robustly even if H is degenerate. The Choice Error

model generates a distribution of reports for any given single θCE < ∞. The Conformity

in LC, Censored Conformity in LC, Inequality Aversion, Inequality Aversion+LC and Guilt

Aversion models still feature non-trivial equilibrium considerations and thus allow for mixing

across reports. For example, consider the Conformity in LC model with n = 2. It could be

the case that given a particular θCLC , we observe individuals drawing the low state giving

both the low and high report. Fixing others’ behavior, adusting the preference parameter

slightly will break indifference. But equilibrium behavior can adjust to maintain overall in-

difference. Suppose, for example, θCLC increases slightly. Then more individuals could lie up

and under the new equilibrium indifference between making the low and high report could be

maintained.54 This can also occur in the Kőszegi-Rabin + LC model when a PPE may involve

randomization; the adjustments are made not to equilibrium strategies of other players as in

the Conformity in LC model, but rather by the individual themselves.

54This behavior is linked to the fact that there are multiple equilibria.
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F Additional Experiments

In this Appendix we present two additional sets of experiments that we conducted to test

specific predictions of some of the models considered in the paper.

Our first set of additional experiments test predictions of the LC model regarding specific

shifts in the distribution F for n states. We can show that if we change the distribution of

F , but only for the highest M states, then the LC models predicts that the distribution of

reports will not change for the lowest n−M states. Essentially, changes in F for the highest

states do not cause changes in G for lower states/reports.

Proposition 17 Under LC, consider two distributions FA and FB such that fA(ω̂) = fB(ω̂)

for all ω̂ ≤ ω∗. Then for all r̂ ≤ r∗ = ω∗: gA(r̂) = gB(r̂).

Proof: Recall no individuals lie down in the LC model. Moreover, the optimal report by an

individual is a function only of θLC and of ω. Thus, conditional on drawing an ω ≤ ω∗, any

decision-maker’s best response is the same under FA and FB (for a given θLC). Thus, the

distribution of reports for r̂ ≤ r∗ = ω∗ must be the same. �

To test this prediction, we use an experiment with 10-state distributions. The setup is

identical to that described in the main paper except that the tray contains chips numbered

1 to 10. In one treatment (F10_LOW) the tray contains 5 chips with each of the numbers

1–6, 17 chips with the number 7, and 1 chip with each of the numbers 8, 9 and 10. In the

other treatment (F10_HIGH) the tray contains 5 chips with each of the numbers 1–6, 1 chip

with each of the numbers 7, 8 and 9, and 17 chips with the number 10. Note that the left

tails of the distributions (i.e. the probabilities of numbers 1–6) are identical across the two

treatments. The two treatments differ in the right tail of the distribution and in particular in

the probability mass at 7 and 10. The LC model predicts that there will be no difference in the

fraction of subjects reporting numbers 1–6. These experiments were conducted in Nottingham

between May and June 2015 with a total of 284 subjects.

We find a significant difference in the distribution of reports of our F10 treatments. Figure

F.1 shows the distribution of reports across the two treatments. Fewer subjects report 1 to 6

in F10_HIGH than F10_LOW (14 percent vs. 24 percent, p= 0.045, OLS with robust SE;

p = 0.048, χ2 test). Thus, shifting the probability of high outcomes in the right tail of the
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distribution draws in subjects from the left tail of the distribution.

This finding is not in line with the predictions of the LC model. The concurrent papers

by Gneezy et al. (2018) and Garbarino et al. (forthcoming) also run FFH-type experiments

in which they vary the prior probability of the most profitable state. Similar to our findings

in the F10 treatments, Gneezy et al. observe an increase in the frequency of non-maximal

reports when the probability of the most profitable state decreases. Garbarino et al. find a

similar drawing-in effect as we do.

Figure F.1: Distribution of reports in F10_LOW and F10_HIGH

The second set of additional experiments tests some specific predictions of the Kőszegi-

Rabin + LC model regarding the role of expectations using a design that follows closely the

design of Abeler et al. (2011). Subjects report ten times the outcome of a coin flip. Their

earnings are equal to the number of tails they report in pounds. However, subjects’ reports

are only paid out with 50 percent probability, and with the other 50 percent subjects receive a

fixed payment which differed by treatment. In one treatment (KR_HIGH) the fixed payment

is £8, while in the other (KR_LOW) it is £4. The payment lottery is only resolved after

subjects made their report. Because the fixed payment enters expectations, the Kőszegi-

Rabin + LC model predicts that subjects will lie more if the fixed payment is higher. These

experiments were conducted in Oxford in October 2013 with a total of 155 subjects.

We find no significant difference between treatments. The average report is 6.49 in

77



KR_HIGH and 6.36 in KR_LOW, the difference is not statistically significant (p=0.676,

OLS with robust SE; p = 0.651, Wilcoxon rank-sum test).
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G Experimental Instructions

In this appendix we reproduce the instructions used in our experiments. We first present the

instructions and questionnaire used in the F_LOW treatment and highlight, using numbers

in square brackets, where and how the F_HIGH treatment instructions differ. We then

present the instructions for the G_LOW treatment and highlight the differences for G_HIGH.

Then we present the instructions for the OBSERVABLE and UNOBSERVABLE treatments.

Finally, a photo of the lab setup.

G.1 Instructions for F_LOW

Welcome and thank you for taking part in this study. The study is run by the “Centre for

Decision Research and Experimental Economics” and has been financed by various research

foundations. During the experiment, we request that you turn off your mobile phone, remain

quiet, and do not attempt to communicate with other participants.

In this study we ask you to complete a questionnaire, which you can find on your desk.

For completing the questionnaire you will receive an amount of money. To determine how

much money you will be paid, we ask you to randomly draw a chip from an envelope after

completing the questionnaire. The envelope will contain 50 chips with the numbers 4 or 10

on them. The composition of the envelope is shown in the figure below. You can also see the

chips on the tray in front of you.

[1]

[2] The envelope will contain 45 chips with the number 4; and 5 chips with the number 10.

The number represents the amount of money that you will be paid for this study if you draw

a chip with that number. If you draw a chip with a 4, you will be paid £4; if you draw a chip

with a 10, you will be paid £10. This payment already includes your show-up fee.

When you have finished the questionnaire, click the CONTINUE button that will appear on

your computer screen. On the next screen you will find instructions for how to perform the
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draw that will determine your payment.

After the draw, turn off your computer using the power button. Write down the number of

your chip on the PAYMENT SHEET that is on your desk. Then bring the questionnaire and

payment sheet to the experimenter who will be waiting outside the lab.

If you have a question now, please raise your hand and the experimenter will come to your

desk to answer it.

The on-screen instructions about how to perform the draw were as follows:

When you have finished your questionnaire click the CONTINUE button to proceed to the

next screen where you will find instructions for how to perform the draw that will determine

your payment.

On your desk you find a tray containing 50 chips with the numbers 4 or 10 on them.

Place all the chips into the brown envelope that is also placed on your desk. Shake the

envelope a few times and then, without looking, randomly draw a chip from the envelope.

Your payment in £ is equal to the number of the chip you have drawn from the envelope.

After observing the outcome of the draw, place the chip back into the envelope.

When you have finished click the OK button to proceed to the next screen.

Please now turn off your computer using the power button and write down the number of

your chip on your payment sheet.

Then bring the questionnaire and the payment sheet to the experimenter who is waiting

outside.

G.2 Instructions for F_HIGH

The instructions for F_HIGH are identical to the ones for F_LOW except in two places:
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[1]

[2] The envelope will contain 20 chips with the number 4; and 30 chips with the number 10.

G.3 Questionnaire Used in the F_LOW and F_HIGH Experiments

QUESTIONNAIRE

This is a questionnaire consisting of 22 questions.

Please complete this questionnaire as clearly and accurately as possible. All your responses

will be completely confidential. Please leave blank any questions you do not feel comfortable

answering.

Thank you in advance for your cooperation.

QUESTIONS

1. What is your gender? Answ: Female Male

2. What is your age? Answ: ____ years

3. What is your nationality? (Open answer)

4. Are you currently: Married; Living together as married; Separated; Widowed; Single

5. What is your major area of study? Answ: Engineering; Economics; Law; Business eco-

nomics; Political economics; Other Social sciences; Humanities; Health-related sciences; Nat-

ural sciences; Other (please specify) __________________________

6. Which of the following ethnic groups is appropriate to indicate your cultural background?

Answ: White; Mixed; Asian or Asian British; Black or Black British; Chinese; Other ethnic

group (please specify) ___________________________

7. How important is religion to you? Answ: Very important; Moderately important; Mildly

important; Not important
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8. How would you rate your money management? (the way you handle your finances) Answ:

Poor; Average; Good; Excellent

9. How would you rate your knowledge of financial products such as ISAs, credit cards, loans

and mortgages? Answ: Poor; Average; Good; Excellent

10. Whilst growing up, were your parents/guardians open to discussing financial matters

within the home? Answ: YES NO

11. Since becoming a student & receiving maintenance loans/grants, would you say that you

budget effectively or that you struggle to purchase basic necessities? (Necessities meaning

food, toiletries and standard living costs - not eating out) Answ: I’ve always known how to

budget; I’ve had to learn to budget whilst at University; I struggle to purchase necessities; I

can afford everything but I don’t budget

12. If you struggle to purchase necessities, what would you put this down to? Answ: Not

budgeting; Cost of necessities too expensive; Too care-free with money; Other priorities such

as shopping & nightlife take a priority; I don’t struggle, I’m good with budgeting; I have no

idea

13. What are your top five spending priorities? (Open Answer)

14. Do you regularly know how much money you have in your bank account? Answ: YES

NO

15. Do you keep track of your spending? Answ: YES NO

16. Do you have money set aside for an emergency? Answ: YES NO

17. Are you in debt? Answ: YES NO

18. Do you shop around to get the best deal when selecting financial products such as

insurance and mobile phones? Answ: YES NO

19. Do you have a job to provide extra income whilst at University? Answ: YES NO

20. If you needed financial advice tomorrow, who would you turn to? Answ: Student Union;

Parents; Friends; Bank; Financial adviser; Other (please specify) _________________________

21. What benefits would you expect from being able to better manage your money? (Open

Answer)

22. Is there anything which would help you to better manage your money? (Open Answer)

***
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Thank you for completing this questionnaire.

Please now follow the instructions on your computer screen to determine your payment for

completing the questionnaire.

G.4 Instructions for G_LOW

Welcome and thank you for taking part in this study.

The study is run by the “Centre for Decision Research and Experimental Economics” and

has been financed by various research foundations. During the study, we request that you

turn off your mobile phone, remain quiet, and do not attempt to communicate with other

participants.

In this study we ask you to read a short description of a potential experiment, to imagine

two possible outcomes of this experiment, and then to answer several questions about these

outcomes.

Please turn over to the next page to read the description of the experiment.

DESCRIPTION OF THE POTENTIAL EXPERIMENT

Imagine that we would run the following experiment here in this lab with 50 participants.

Participants are invited by email and asked to complete a questionnaire about their money

management. Participants receive an amount of money for completing the questionnaire. To

determine how much money they are paid, participants are asked to randomly draw a chip

from an envelope after completing the questionnaire. The envelope contains 50 chips with the

numbers 4 or 10 on them. The composition of the envelope is shown in the figure below. You

can also see the chips on the tray in front of you.
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The envelope contains 45 chips with the number 4; and 5 chips with the number 10. The

number represents the amount of money that participants are paid if they draw a chip with

that number. If they draw a chip with a 4, they are paid £4; if they draw a chip with a

10, they are paid £10. When they have finished the questionnaire, participants are asked to

place all the chips into a brown envelope that is placed on their desk (you can also see this

envelope on your desk). Participants are asked to shake the envelope a few times and then,

without looking, randomly draw a chip from the envelope. They are told to place the chip

back into the envelope after having observed the outcome of the draw, and to write down the

number of their chip on a PAYMENT SHEET and then bring the questionnaire and payment

sheet to the experimenter who has been waiting outside the lab for the whole time.

POSSIBLE OUTCOMES OF THE EXPERIMENT

Imagine that the results of the experiment would be as follows.

[3] Of the 50 participants, 35 report to have drawn a 4 and 15 report to have drawn a 10.

This outcome is shown in the figure below.

[4]

We now ask you to answer a number of questions about this imagined outcome of the exper-

iment. Please consider each question carefully before answering it.

1) Each participant had an envelope containing 45 chips with the number 4 and 5 chips with

the number 10. What are the chances that a participant randomly draws a 10 from the

envelope? Your answer: ______________

[5] 2) 15 out of 50 participants reported to have drawn a 10. How many of the participants

who have reported to have drawn 10 do you think have truly drawn a 10? Your answer:

_______________
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3) Some of the participants who drew a 4 actually reported 10. Can you imagine why they

would do that? Your answer:_______________

4) Some of the participants who drew a 4 actually reported 4. Can you imagine why they

would do that? Your answer:_______________

5) How satisfied do you think that the participants who reported a 4 will be? Your answer:

very dissatisfied _____________ very satisfied

6) How satisfied do you think that the participants who reported a 10 will be? Your answer:

very dissatisfied _____________ very satisfied

Now imagine that the results of the experiment would be as follows.

[6] Of the 50 participants, 40 report to have drawn a 4 and 10 report to have drawn a 10.

This outcome is shown in the figure below.

[7]

[8] 7) 10 out of 50 participants reported to have drawn a 10. How many of the participants

who have reported to have drawn 10 do you think have truly drawn a 10? Your answer:

______________

8) How satisfied do you think that the participants who reported a 4 will be? Your answer:

very dissatisfied _____________ very satisfied

9) How satisfied do you think that the participants who reported a 10 will be? Your answer:

very dissatisfied _____________ very satisfied

[9] 10) Which of the two imagined outcomes described above do you think is more realistic?

Your answer: The outcome where 15 out of 50 participants reported a 10; The outcome where

10 out of 50 participants reported a 10

Last year we actually ran the experiment that we just described to you here in

this lab.
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Please estimate the fraction (in percent) of participants in the previous experiment who

reported to have drawn a 10. If your estimate is accurate with an error of at most +/- 3

percentage points we will pay you £3 at the end of this experiment.

Your answer: ____________ out of 100

SOME QUESTIONS ABOUT YOURSELF

1. What is your gender? Female Male

2. What is your age? ________ years

3. What is your nationality? ________________

4. What is your major area of study? Engineering; Economics; Law; Business economics; Po-

litical economics; Other Social sciences; Humanities; Health-related sciences; Natural sciences;

Other (please specify) __________________________

YOUR PAYMENT FOR TAKING PART IN TODAY’S STUDY

On top of the money that you may earn if you have answered the question above correctly,

we will pay you an additional sum of money for having taken part in this study.

To determine how much money you will be paid we ask you to randomly draw a chip from

an envelope, as the participants in the experiment that we described before. Please place all

the chips that are displayed in the tray in front of you into the brown envelope that is placed

on your desk. The envelope will thus contain 45 chips with the number 4 and 5 chips with

the number 10. Shake the envelope a few times and then, without looking, randomly draw a

chip from the envelope. Your payment in GBP is equal to the number of the chip you have

drawn from the envelope.

After observing the outcome of the draw, place the chip back into the envelope. Write down

the number of your chip on the first page of this document. Then bring the document to the

experimenter who is waiting outside the lab.

G.5 Instructions for G_HIGH

The instructions for G_HIGH are identical to the ones for G_LOW except in the following

places:
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[3] Of the 50 participants, 15 report to have drawn a 4 and 35 report to have drawn a 10.

This outcome is shown in the figure below.

[4]

[5] 2) 35 out of 50 participants reported to have drawn a 10. How many of the participants

who have reported to have drawn 10 do you think have truly drawn a 10?

[6] Of the 50 participants, 10 report to have drawn a 4 and 40 report to have drawn a 10.

This outcome is shown in the figure below.

[7]

[8] 7) 40 out of 50 participants reported to have drawn a 10. How many of the participants

who have reported to have drawn 10 do you think have truly drawn a 10?

[9] 10) Which of the two imagined outcomes described above do you think is more realistic?

Your answer: The outcome where 35 out of 50 participants reported a 10; The outcome where

40 out of 50 participants reported a 10

G.6 Instructions for UNOBSERVABLE

Welcome and thank you for taking part in this study. The study is run by the “Centre for

Decision Research and Experimental Economics” and has been financed by various research

foundations. During the experiment, we request that you turn off your mobile phone, remain

quiet, and do not attempt to communicate with other participants.
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In this study we ask you to complete a questionnaire, which you can find on your desk.

For completing the questionnaire you will receive an amount of money. To determine how

much money you will be paid, we ask you to randomly draw a chip from an envelope after

completing the questionnaire. The envelope will contain 50 chips with the numbers 1, 2, 3,

4, 5, 6, 7, 8, 9 or 10 on them. The composition of the envelope is shown in the figure below.

You can also see the chips on the tray in front of you.

The envelope will contain exactly 5 chips of each number.

The number represents the amount of money that you will be paid for this study if you draw

a chip with that number. For instance, if you draw a chip with a 1, you will be paid £1; if

you draw a chip with a 2, you will be paid £2; and so on; if you draw a chip with a 10, you

will be paid £10.

When you have finished the questionnaire, click the CONTINUE button that will appear on

your computer screen. On the next screen you will find instructions for how to perform the

draw that will determine your payment.

After the draw, turn off your computer using the power button. Write down the number of

your chip on the PAYMENT SHEET that is on your desk. Then bring the questionnaire and

payment sheet to the experimenter who will be waiting outside the lab.

If you have a question now, please raise your hand and the experimenter will come to your

desk to answer it.

The on-screen instructions about how to perform the draw were as follows:

When you have finished your questionnaire click the CONTINUE button to proceed to the

next screen where you will find instructions for how to perform the draw that will determine

your payment.
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On your desk you find a tray containing 50 chips with the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 or

10 on them.

Place all the chips into the brown envelope that is also placed on your desk. Shake the

envelope a few times and then, without looking, randomly draw a chip from the envelope.

Your payment in £ is equal to the number of the chip you have drawn from the envelope.

After observing the outcome of the draw, place the chip back into the envelope.

When you have finished click the OK button to proceed to the next screen.

Please now turn off your computer using the power button and write down the number of

your chip on your payment sheet.

Then bring the questionnaire and the payment sheet to the experimenter who is waiting

outside.

G.7 Instructions for OBSERVABLE

Welcome and thank you for taking part in this study. The study is run by the “Centre for

Decision Research and Experimental Economics” and has been financed by various research

foundations. During the experiment, we request that you turn off your mobile phone, remain

quiet, and do not attempt to communicate with other participants.

In this study we ask you to complete a questionnaire, which you can find on your desk.

For completing the questionnaire you will receive an amount of money. To determine how

much money you will be paid, we ask you to randomly draw a chip from an envelope after

completing the questionnaire. The envelope will contain 50 chips with the numbers 1, 2, 3, 4,

5, 6, 7, 8, 9 or 10 on them. The composition of the envelope is shown in the figure below.

The envelope will contain exactly 5 chips of each number.

The number represents the amount of money that you will be paid for this study if you draw

a chip with that number. For instance, if you draw a chip with a 1, you will be paid £1; if
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you draw a chip with a 2, you will be paid £2; and so on; if you draw a chip with a 10, you

will be paid £10.

When you have finished the questionnaire, click the CONTINUE button that will appear on

your computer screen. On the next screen you will find instructions for how to perform the

draw that will determine your payment.

After the draw, open the brown envelope that is placed on your desk. The envelope contains

10 coins of £1 each. Take as many coins as the number of the chip you have drawn. Then turn

off your computer using the power button and quietly exit the lab leaving these instructions,

your questionnaire, and the brown envelope on the desk. (Note: you do not have to sign a

receipt for this experiment).

If you have a question now, please raise your hand and the experimenter will come to your

desk to answer it.

The on-screen instructions about how to perform the draw were as follows:

When you have finished your questionnaire click the CONTINUE button to proceed to the

next screen where you will find instructions for how to perform the draw that will determine

your payment.

Click the START button to shake the envelope. One of the chips will fall out of the envelope.

Your payment in £ is equal to the number on the chip that falls out of the envelope.
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Please now open the brown envelope that you can find on your desk. The envelope contains

10 coins of £1 each. Take as many coins as the number of the chip you have drawn.

Then turn off your computer using the power button (click only once and then release) and

quietly leave the lab, leaving all material on your desk. (Note: you do not have to sign a

receipt for this experiment.)
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G.8 Laboratory Setup
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H Calibration Details

H.1 Details of the Conformity in LC Calibration

This section describes the details of the calibration of the Conformity in LC model presented

in Section 4. We calibrate the Conformity in LC model in order to understand the potential

size of the Ĝ treatment effect. For the calibration, we make a number of assumptions. First,

we assume that utility takes the form r−θCLC c(r,ω)
c̄ . c(r, ω) takes on the value 0 if r = ω, and 1

if r 6= ω. Recall c̄ is the average cost of lying in society, and so here is equivalent to the fraction

of liars. Moreover, since no individuals lie down in the Conformity in LC model, this simply

represents the fraction of people who drew ω1 but report r2. We normalize r1 = −1 and r2 = 1

in line with our normalized payoffs in the meta study. Moreover, we will suppose that θCLC

is uniformly distributed on [0, κCLC ]. Given an equilibrium with full support the threshold

type (who draws the low state) must satisfy the condition 1− θ̄CLC 1
c̄ = −1 or θ̄CLC = 2c̄. We

can calibrate the threshold by observing that the proportion of high reports was 0.45 in the

F_LOW treatment, and so 35 percent of the population lied. Thus θ̄CLC = 0.7. Moreover,

the fraction of liars, conditional on drawing the low state (which in the F_LOW treatment

happened with probability equal to 0.9), is equal to θ̄CLC

κCLC
= .7

κCLC
= 0.35

0.9 . In other words

κCLC = 1.8. Given this, suppose that f(ω1) = 0.9 and that c̄ shifts from 0.31 to 0.52 which

is the shift implied by the average change in beliefs in our Ĝ treatment, since our treatment

shifted beliefs about the proportion of high reports from 0.41 to 0.62. Then the threshold

type shifts from 0.62
1.8 = 0.344 to 1.08

1.8 = 0.578, implying that 21 percent of subjects (since 90

percent of subjects draw the low state) will increase their report across treatments.

More broadly, if social comparison models are calibrated so as to fit other facets of our data

(i.e., full support or drawing in), social comparisons must be a reasonably large component

of utility. Given this, and the assumption that the marginal types (and types close to them)

are drawn with “reasonable” frequency, it must be the case that a relatively large fraction of

subjects should respond to shifts in beliefs about G.

H.2 Details of the Reputation for Honesty + LC Calibration

This section describes the details of the calibration of the Reputation for Honesty + LC model

presented in Section 4. When there are six states, observe that because the fixed cost is 3,
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individuals who draw ω3 and above will never want to lie. Moreover, individuals who draw ω1

will never lie to below r5 and individuals who draw ω2 will only lie to r6. This immediately

implies there are no liars at r1, r2, r3 and r4. In constructing the equilibrium we suppose that

there are some individuals who drew ω1 who want to report r5, and some who want to report

r6. Similarly, we suppose there are some individuals who are willing to lie to r6 conditional

on drawing ω2. We then verify this is the case.

The threshold type, conditional on drawing ω1, that is indifferent between reporting r1

and r5 is defined by θ1
1,5 = 4−c

Λ(r5) . The threshold, conditional on drawing ω1, between reporting

r5 and r6 is θ1
5,6 = 1−c

Λ(r6)−Λ(r5) . Similarly, the threshold type, conditional on drawing ω2, that

is indifferent between reporting r2 and r6 is θ2
2,6 = 4−c

Λ(r6) . Using these thresholds, we find

that Λ(r5) =
1

6k (θ1
1,5−θ

1
5,6)

1
6k (θ1

1,5−θ
1
5,6)+ 1

6
and Λ(r6) =

1
6k (θ1

5,6+θ2
2,6)

1
6k (θ1

5,6+θ2
2,6)+ 1

6
. We then find the fixed point, i.e.,

the equilibrium. In addition to the values highlighted in the text, it is also the case that

θ1
1,5 ≈ 6.67, θ1

5,6 ≈ 4.5 and θ2
2,6 ≈ 2.7. We thus verify our assumptions on the structure

of the equilibrium made in the previous paragraph (i.e., the thresholds are in line with our

assumptions).

In the case with two states (remember that they pay 1 and 6), and no lying down in

equilibrium, we have a single threshold type for those drawing the low state θ1 = 5−c
Λ(r6) . The

fraction of liars at the high report is Λ(r6) = f(ω1) 1
k
θ1

f(ω1) 1
k
θ1+(1−f(ω1)) . For f(ω1) = 0.4 we find

θ1 ≈ 7.1, and for f(ω1) = 0.9 we find θ1 ≈ 2.9.

When we allow for lying down in equilibrium we now have two thresholds, one for each

state: θ1 = 5−c
Λ(r6)−Λ(r1) and θ6 = 5+c

Λ(r6)−Λ(r1) . The fraction of liars at each report is Λ(r6) =
f(ω1) 1

k
θ1

f(ω1) 1
k
θ1+(1−f(ω1)) 1

k
θ6 and Λ(r1) = (1−f(ω1)) 1

k
(k−θ6)

f(ω1) 1
k

(k−θ1)+(1−f(ω1)) 1
k

(k−θ6) . No equilibrium of this type

exists when f(ω1) = 0.4, but when f(ω1) = 0.9 we find θ1 ≈ 2.5 and θ2 ≈ 9.9.

We last show that given our calibration, for the equilibrium induced by f = 0.9 that

features lying down, the derivative of Λ(r6) is larger than the derivative of Λ(r1) with respect

to the shifts in H that Ĝ could induce. As shown in the proof for the Reputation for Honesty

+ LC model in Proposition 2, this implies shifting probability mass of H from above θ1 (but

not above θ6) to below it will cause aversion, and shifting weight from below θ6 (but above

θ1) to above it will cause affinity. However, both will cause an increase in ĝ(r6). Simple

calculation indeed verifies that for both shifts in weight (in H) the derivative of Λ(r6) is

larger than the derivative of Λ(r1).
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