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This supplement contains: (i) a derivation of the MTR weights for the class of linear
IV estimands; (ii) a discussion of the computational advantages of the Bernstein poly-
nomials; (iii) an analysis of consistency for the estimator developed in Section 3.2; and
(iv) a discussion of how to construct the preliminary estimators used in Section 3.2.

S1. MTR WEIGHTS FOR LINEAR IV ESTIMANDS

IN THIS APPENDIX, we show that linear IV estimands are a special case of our notion of
an IV-like estimand. For the purpose of this discussion, we adopt some of the standard
textbook terminology regarding “endogenous variables” and “included” and “excluded”
instruments in the context of linear IV models without heterogeneity. Consider a linear
IV specification with endogenous variables X̃1, included instruments Z̃1, and excluded
instruments Z̃2. We let X̃ ≡ [X̃ ′

1� Z̃
′
1]′ and Z̃ ≡ [Z̃′

2� Z̃
′
1]′. We assume that both E[Z̃Z̃′] and

E[Z̃X̃ ′] have full rank.
The variables in X̃ and Z̃ can consist of any (measurable) functions of (D�Z), as long

as these two full rank conditions are satisfied. Usually, one would expect that X̃1 would
include D and possibly some interactions between D and other covariates X . The in-
struments, Z̃, would usually consist of functions of the vector Z, which contains X , by
notational convention. The included portion of Z̃, that is, Z̃1, would typically also include
a constant term as one of its components. However, whether Z̃ is actually “exogenous” in
the usual sense of the linear instrumental variables model is not relevant to our definition
of an IV-like estimand or the derivation of the weighting expression (9) given in the main
text. In particular, OLS is nested as a linear IV specification through the case in which
Z̃1 = [1�D]′ and both X̃1 and Z̃2 are empty vectors.

It may be the case that Z̃ has dimension larger than X̃ , as in “overidentified” linear
models. In such cases, a positive definite weighting matrix Π is used to generate instru-
ments ΠZ̃ that have the same dimension as X̃ . A common choice of Π is the two-stage
least squares weighting ΠTSLS ≡ E[X̃Z̃′]E[Z̃Z̃′]−1 which has as its rows the first-stage co-
efficients corresponding to linear regressions of each component of X̃ on the entire vec-
tor Z̃. We assume that Π is a known or identified non-stochastic matrix with full rank.
This covers ΠTSLS and the optimal weighting under heteroscedasticity (optimal GMM) as
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particular cases given standard regularity conditions. The instrumental variables estima-
tor that uses ΠZ̃ as an instrument for X̃ in a regression of Y on X̃ has corresponding
estimand

βIV�Π ≡ (
ΠE

[
Z̃X̃ ′])−1(

ΠE[Z̃Y ]) =E[(
ΠE

[
Z̃X̃ ′])−1

ΠZ̃Y
]
�

Each component of this vector is an IV-like estimand with s(d� z)≡ e′
j(ΠE[Z̃X̃ ′])−1Πz̃,

where ej is the vector whose jth coordinate equals 1, and all other coordinates equal zero.

S2. BERNSTEIN POLYNOMIALS

The kth Bernstein basis polynomial of degree K is a function bKk : [0�1] → R defined as

bKk (u)≡
(
K
k

)
uk(1 − u)K−k�

for k= 0�1� � � � �K. A degree K Bernstein polynomial B is a linear combination of these
K + 1 basis polynomials, that is,

B(u)≡
K∑
k=0

θkb
K
k (u)�

for some constants θ0� θ1� � � � � θK . As is well-known, any continuous function on [0�1] can
be uniformly well-approximated by a Bernstein polynomial of sufficiently high order.

The shape ofB can be constrained by imposing linear restrictions on θ0� θ1� � � � � θK . This
computationally appealing property of the Bernstein polynomials has been noted else-
where by Chak, Madras, and Smith (2005), Chang, Chien, Hsiung, Wen, and Wu (2007),
McKay and Ghosh (2011), and Chen, Tamer, and Torgovitsky (2011), among others. The
following constraints are especially useful in our framework. Derivations of these proper-
ties can be found in Chang et al. (2007) and McKay and Ghosh (2011).

Shape Constraints

S.1 Bounded below by 0: θk ≥ 0 for all k.
S.2 Bounded above by 1: θk ≤ 1 for all k.
S.3 Monotonically increasing: θ0 ≤ θ1 ≤ · · · ≤ θK .
S.4 Concave: θk − 2θk+1 + θk+2 ≤ 0 for k= 0� � � � �K − 2.

Each Bernstein basis polynomial is itself an ordinary degree K polynomial. The coef-
ficients on this ordinary polynomial representation (i.e., the power basis representation)
can be computed by applying the binomial theorem:

bKk (u)=
K∑
i=k
(−1)i−k

(
K
i

)(
i
k

)
ui� (S1)

Representation (S1) is useful for computing the terms Γ �
d (bdk) and Γds(bdk) that appear

in the finite-dimensional program (22) in the main text. To see this, note for example that,
with d = 1,

Γ1s(b1k)≡E
[∫ 1

0
b1k(u�Z)ω1s(u�Z)du

]
=E

[
s(1�Z)

∫ p(Z)

0
b1k(u�Z)du

]
�
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If b1k(u�Z) = b1k(u) is a Bernstein basis polynomial, then
∫ p(Z)

0 b1k(u)du can be com-
puted analytically through elementary calculus using (S1). The result of this integral is a
known function of p(Z). The quantity Γ1s(b1k) is then simply the population average of
the product of this known function with s(1�Z), which is also known or identified. This
conclusion depends on the form of the weights, and may not hold for all target weights
ω�
d , although it holds for all of the parameters listed in Table I of the main text. When it

does not, one-dimensional numerical integration can be used instead.

S3. CONSISTENCY

We begin with some preliminary notation. In the following, we will view s �→ βs as
a function of s ∈ S and we denote this function as β. We assume that β is uniformly
bounded over S , that is, β ∈ 
∞(S). Similarly, for any fixedm ∈M, we view s �→ Γs(m) as
a function of s ∈ S , which we denote as Γ (m) and assume to also be an element of 
∞(S).
We assume that M is a subset of a Banach space M and we let Γ : M → 
∞(S) denote the
mapping that returns Γ (m) for each m ∈ M. We assume that we possess estimators β̂ for
β, Γ̂ for Γ , and Γ̂ � for Γ �. Construction of these estimators is discussed in Appendix S4
of this supplement.

As in the main text, we will limit consideration to the subset of M that comes within a
tolerance of minimizing the estimated counterpart of the observational equivalence con-
dition. In addition, because we allow M to potentially be infinite-dimensional, for com-
putational reasons we consider finite-dimensional subsets Mn ⊆ M that grow “dense”
in M. The set M̂S is then defined to equal

M̂S ≡
{
m ∈Mn :ψ(

rn
[
Γ̂ (m)− β̂]) ≤ inf

m∈Mn

ψ
(
rn

[
Γ̂ (m)− β̂]) + κn

}
� (S2)

where ψ : 
∞(S) → R+ is a convex loss function, rn ↑ ∞ is the rate of convergence of
Γ̂ and β̂ (e.g.,

√
n), and κn is a tolerance parameter that diverges to +∞ more slowly

than rn. Notice that in the main text, Mn = M, ψ(b)= ∑
s∈S |b(s)|, and there is a slight

difference in notation in that κn in the main text corresponds to κn/rn here, a simplifica-
tion which was possible because ψ in the main text is homogenous of degree one. This
definition generalizes the constraint in (27) of the main text by allowing for more general
loss functions, and by allowing S to have an infinite number of elements. Our estimators
β̂� and β̂� are defined as before by minimizing and maximizing Γ̂ � over M̂S , that is,

β̂� ≡ inf
m∈M̂S

Γ̂ �(m) and β̂� ≡ sup
m∈M̂S

Γ̂ �(m)� (S3)

These estimators of the endpoints provide a set estimator [β̂�� β̂�] of the identified set
[β��β�].

We establish consistency of the endpoint estimators (and hence consistency in the
Hausdorff metric of the implied set estimator) under the following assumptions.

ASSUMPTION 1:
(i) MS ≡ {m ∈M : Γ (m)= β} is not empty.

(ii) Γ � : M → R and Γ : M → 
∞(S) are continuous and linear. The set M⊂ M is com-
pact in the weak topology.
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(iii) ψ : 
∞(S)→ R+ is lower semicontinuous, convex, and satisfies ψ(b)= 0 if and only
if b= 0, and supb∈B ψ(b) <∞ for any bounded set B⊂ 
∞(S).

(iv) (rn{Γ̂ −Γ }� rn{β̂−β}) d→ (GΓ �Gβ) in 
∞(M×S)× 
∞(S) as rn ↑ ∞ for some tight
stochastic processes (GΓ �Gβ). Also, Γ̂ � p→ Γ � in 
∞(M).

(v) Mn ⊆M and there exists aΠn :M→Mn such that Γ �◦Πn = Γ �+o(1) in 
∞(M),
and rn{Γ̂ ◦Πn − Γ̂ } = op(1) in 
∞(M× S).

Assumption 1(ii) requires M to be a compact subset of M, but only in the weak topol-
ogy. If M is reflexive, this only requires M to be closed and bounded. Assumption 1(iii)
places some requirements onψ, including that it is convex. A general specification ofψ al-
lows us to accommodate problems in which S is infinite, in which case one might chooseψ
to be some form of weighted integral. Assumption 1(iv) places some high-level conditions
on the preliminary estimators. In verifying Assumption 1(iv), recall that, by Proposition 3,
the IV-like estimands need not include parameters such as the LATE that are potentially
weakly identified. Typically, rn = √

n, even in certain nonparametric applications, but we
use rn since

√
n plays no special role in our analysis. We note in particular that Assump-

tion 1(iv) allows the stochastic processes (GΓ �Gβ) to be degenerate, so that rn could be

such that (rn{Γ̂ − Γ }� rn{β̂− β}) d→ (0�0). Assumption 1(v) requires the approximation
error introduced from employing Mn instead of M to vanish sufficiently quickly, that is,
the approximating model Mn should grow sufficiently quickly with the sample size n.

We now state and prove our consistency result. The proof relies on several auxiliary
lemmas, which are stated and proven afterwards.

THEOREM 1: If Assumption 1 holds, κn ↑ ∞, and κn/rn → 0, then β̂�
p→ β� and β̂�

p→ β�.

PROOF OF THEOREM 1: For any m ∈M, define Ĝn(m)� Ĝ
a
n(m) ∈ 
∞(S) as

Ĝn(m)≡ rn
[(
Γ̂ (m)− Γ (m)) − (β̂−β)]� (S4)

Ĝ
a
n(m)≡ rn

[(
Γ̂ (Πnm)− Γ (m)) − (β̂−β)]� (S5)

Notice that since MS is nonempty by Assumption 1(i) with Γ (m) = β for all m ∈ MS ,
one has, by the definition of M̂S ,

P
(
Πn(MS)⊆ M̂S

)
= P

(
sup
m∈MS

ψ
(
rn

[
Γ̂ (Πnm)− β̂]) ≤ inf

m∈Mn

ψ
(
rn

[
Γ̂ (m)− β̂]) + κn

)

≥ P
(

sup
m∈M

ψ
(
Ĝ

a
n(m)

) ≤ κn
)
�

(S6)

where the inequality follows because MS ⊆ M and ψ≥ 0. Together with Lemma 1, (S6)
implies that

lim inf
n→∞

P
(
Πn(MS)⊆ M̂S

) = 1 (S7)
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since κn ↑ ∞ by assumption. Using the definitions of β� and β�, Assumption 1(v) and (S7)
then imply that

β� ≡ sup
m∈MS

Γ �(m)= sup
m∈MS

Γ �(Πnm)+ o(1)≤ sup
m∈M̂S

Γ �(m)+ op(1) and

β� ≡ inf
m∈MS

Γ �(m)= inf
m∈MS

Γ �(Πnm)+ o(1)≥ inf
m∈M̂S

Γ �(m)+ op(1)�
(S8)

In the following, we assume that rn ≥ 2, which is without loss of generality since rn ↑ ∞.
Using the convexity of ψ : 
∞(S)→ R, we obtain

sup
m∈M̂S

ψ
(
Γ (m)−β) = sup

m∈M̂S

ψ

(
1
rn
rn

[
Γ̂ (m)− β̂] − (rn − 1)

rn

Ĝn(m)

(rn − 1)

)

≤ sup
m∈M̂S

1
rn
ψ

(
rn

[
Γ̂ (m)− β̂]) + (rn − 1)

rn
ψ

(−Ĝn(m)

rn − 1

)

≤ 1
rn

sup
m∈M̂S

ψ
(
rn

[
Γ̂ (m)− β̂]) +ψ(−Ĝn(m)

)

≤ κn

rn
+ 1
rn

(
sup
m∈M

ψ
(
Ĝ

a
n(m)

) + sup
m∈M

ψ
(−Ĝn(m)

))
�

(S9)

where the second inequality also used the assumption that ψ(0) = 0,1 and the third in-
equality used the definition of M̂S and Πn(MS) ⊆ Mn. Since κn/rn → 0 and rn → ∞,
and the second term of (S9) is op(1) by Lemma 1, we conclude that

sup
m∈M̂S

ψ
(
Γ (m)−β) = op(1)� (S11)

Defining the set MS(δ) ≡ {m ∈ M : ψ(Γ (m) − β) ≤ δ} for any δ ≥ 0, it follows from
(S11) that there exists a sequence of constants δn ↓ 0 such that

lim inf
n→∞

P
(
M̂S ⊆MS(δn)

) = 1� (S12)

We view δ �→MS(δ) as a correspondence, and we denote its graph by

Gr
(
MS(·)

) ≡ {
(m�δ) ∈M× R+ s.t. m ∈MS(δ)

}
� (S13)

In Lemma 2, we show that Gr(MS(·)) is closed in M × R+ when M and R+ are en-
dowed with the weak and Euclidean topologies, respectively. Since M is compact in the
weak topology by Assumption 1(ii), and MS(δ)⊆M for all δ ∈ R+, the correspondence
δ �→ MS(δ) is upper hemicontinuous; see, for example, Theorem 17.11 of Aliprantis

1In particular, the second inequality follows because with rn ≥ 2, convexity implies

ψ

( −1
rn − 1

Ĝn(m)+ rn − 2
rn − 1

× 0
)

≤
(

1
rn − 1

)
ψ

(−Ĝn(m)
) +

(
rn − 2
rn − 1

)
ψ(0)� (S10)
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and Border (2006). As a consequence, the maximum of any continuous linear functional
Γ̃ : M → R over MS(δ) will be upper semicontinuous as a function of δ, that is,

lim sup
n→∞

sup
m∈MS (δn)

Γ̃ (m)≤ sup
m∈MS

Γ̃ (m); (S14)

see, for example, Lemma 17.30 of Aliprantis and Border (2006). The same function will
also be lower semicontinuous in δ because MS ⊆MS(δn), so that

sup
m∈MS

Γ̃ (m)≤ lim inf
n→∞

sup
m∈MS (δn)

Γ̃ (m)� (S15)

The upper and lower semicontinuity in (S14) and (S15) imply continuity, that is,

lim
n→∞

sup
m∈MS (δn)

Γ̃ (m)= sup
m∈MS

Γ̃ (m)� (S16)

Applying (S16) with Γ̃ = Γ � and Γ̃ = −Γ � yields

β̄� ≡ sup
m∈MS

Γ �(m)= lim
n→∞

sup
m∈MS (δn)

Γ �(m) and

β� ≡ − sup
m∈MS

−Γ �(m)= − lim
n→∞

sup
m∈MS (δn)

−Γ �(m)= lim
n→∞

inf
m∈MS (δn)

Γ �(m)�
(S17)

Combined with (S12), this implies that

sup
m∈M̂S

Γ �(m)≤ sup
m∈MS (δn)

Γ �(m)+ op(1)= β̄� + op(1) and

inf
m∈M̂S

Γ �(m)≥ inf
m∈MS (δn)

Γ �(m)+ op(1)= β� + op(1)�
(S18)

To conclude, recall the definitions of β̂�� β̂�, and observe that M̂S ⊆ M together with
Assumption 1(iv) imply∣∣∣ sup

m∈M̂S

Γ �(m)− β̂�
∣∣∣ ≤ sup

m∈M

∣∣Γ̂ �(m)− Γ �(m)
∣∣ = op(1)�

∣∣∣ inf
m∈M̂S

Γ �(m)− β̂�
∣∣∣ ≤ sup

m∈M

∣∣Γ̂ �(m)− Γ �(m)
∣∣ = op(1)�

(S19)

Applying the triangle inequality to (S8), (S18), and (S19) yields the claimed consistency

of β̂� and β̂� for β� and β�. Q.E.D.

LEMMA 1: Under Assumptions 1(iii), 1(iv), and 1(v), it follows that

sup
m∈M

ψ
(
rn

[(
Γ̂ (m)− Γ (m)) − (β̂−β)]) =Op(1)� (S20)

sup
m∈M

ψ
(
rn

[(
Γ̂ (Πnm)− Γ (m)) − (β̂−β)]) =Op(1)� (S21)



USING INSTRUMENTAL VARIABLES FOR INFERENCE 7

PROOF OF LEMMA 1: Fix an arbitrary ε > 0, and note that since (GΓ �Gβ) are tight by
Assumption 1(iv), there exist compact sets KΓ ∈ 
∞(M× S) and Kβ ∈ 
∞(S) with

P
(
(GΓ �Gβ) ∈KΓ ×Kβ

) ≥ 1 − ε� (S22)

Since KΓ and Kβ are compact, the set{
f ∈ 
∞(S) : f = gΓ (m� ·)− gβ for some m ∈M and (gΓ �gβ) ∈KΓ ×Kβ

}
(S23)

is norm bounded in 
∞(S), and so also

c ≡ sup
(gΓ �gβ)∈KΓ ×Kβ

sup
m∈M

ψ
(
gΓ (m� ·)− gβ

)
<∞� (S24)

given Assumption 1(iii). Moreover, from (S22) and (S24), we can conclude

P
(

sup
m∈M

ψ
(
GΓ (m� ·)−Gβ

)
> c

)
≤ ε� (S25)

For any constant c ≥ 0, let G(c) be the subset of 
∞(M× S)× 
∞(S) defined as

G(c)≡
{
(gΓ � gβ) ∈ 
∞(M× S)× 
∞(S) : sup

m∈M
ψ

(
gΓ (m� ·)− gβ

) ≥ c
}
� (S26)

Let c be any value for which G(c) is not empty, and consider any convergent se-
quence (gΓ�n� gβ�n) ∈ G(c) with limit (gΓ�0� gβ�0) ∈ 
∞(M×S)× 
∞(S). Then let �n(m)≡
(gΓ�n(m� ·)− gβ�n)− (gΓ�0(m� ·)− gβ�0) and observe that, for some sequence mn ∈M and
any sequence λn ∈ [0�1],

c ≤ lim inf
n→∞

sup
m∈M

ψ
(
gΓ�n(m� ·)− gβ�n

)
= lim inf

n→∞
ψ

(
gΓ�n(mn� ·)− gβ�n

)
= lim inf

n→∞
ψ

(
(1 − λn)

(
gΓ�0(mn� ·)− gβ�0

)
+ 1[λn > 0]λn

[
gΓ�0(mn� ·)− gβ�0 + �n(mn)

λn

]
+ 1[λn = 0]�n(mn)

)
�

(S27)

In particular, we set λn = min{‖�n(mn)‖∞�1}, which tends to 0, since ‖�n(mn)‖∞ → 0.
Applying the convexity of ψ in (S27), we have

c ≤ lim inf
n→∞

[
(1 − λn)ψ

(
gΓ�0(mn� ·)− gβ�0

)
+ 1[λn > 0]λnψ

(
gΓ�0(mn� ·)− gβ�0 + �n(mn)

λn

)]
(S28)

≤ sup
m∈M

ψ
(
gΓ�0(m� ·)− gβ�0

) + lim inf
n→∞

λn sup
b∈
∞(S) s.t.

‖b‖∞≤‖gΓ�0‖∞+‖gβ�0‖∞+1

ψ(b)�

where the second inequality follows because ψ≥ 0,mn ∈M, λn ≥ 0, and ‖�n(mn)‖∞ = λn
for n sufficiently large. Since (gΓ�0� gβ�0) ∈ 
∞(M× S)× 
∞(S), it follows that ‖gΓ�0‖∞ +
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‖gβ�0‖∞ <∞ and hence the supremum in the second term of (S28) is finite by Assump-
tion 1(iii). Therefore, given that λn → 0, we can conclude that

c ≤ sup
m∈M

ψ
(
gΓ�0(m� ·)− gβ�0

)
� (S29)

which in turn implies that G(c) is closed for any c ≥ 0 for which it is not empty. In par-
ticular, since G(2c) is either the empty set, or nonempty and closed, Assumption 1(iv)
together with the Portmanteau Theorem (e.g., Theorem 1.3.4(iii) of van der Vaart and
Wellner (1996)) imply that

lim sup
n→∞

P
(

sup
m∈M

ψ
(
rn

[
(Γ̂ − Γ )(m)− (β̂−β)]) ≥ 2c

)

≤ P
(

sup
m∈M

ψ
(
GΓ (m)−Gβ

) ≥ 2c
)

(S30)

≤ P
(

sup
m∈M

ψ
(
GΓ (m)−Gβ

)
> c

)
≤ ε�

where the final inequality was shown in (S25). Since ε > 0 was arbitrary, result (S30)
establishes (S20). Result (S21) follows from identical arguments after observing that

Assumptions 1(iv) and 1(v) together imply (rn{Γ̂ ◦ Πn − Γ }� rn{β̂ − β}) d→ (GΓ �Gβ) in

∞(M× S)× 
∞(S). Q.E.D.

LEMMA 2: Under Assumptions 1(ii) and 1(iii), the set

A≡ {
(m�δ) ∈M× R+ :ψ(

Γ (m)−β) ≤ δ}
is closed in M × R+ with respect to the product of the weak and Euclidean topologies.

PROOF OF LEMMA 2: Our proof will show that M × R+ \ A is open. To this end, take
any (m0� δ0) ∈ M × R+ such that (m0� δ0) /∈ A, and consider two mutually exclusive and
exhaustive cases.

Case I: Suppose m0 /∈ M. Since M is assumed to be compact in the weak topology
under Assumption 1(ii), Lemma 2.32 in Aliprantis and Border (2006) implies that M \M
is open in the weak topology. As a consequence, there exists an open neighborhood N of
(m0� δ0) in M×R+ such thatm /∈M—and hence (m�δ) /∈A—for every (m�δ) ∈N . This
establishes the claim for this case.

Case II: Suppose m0 ∈M. If (m0� δ0) /∈A, then it must be the case that

ψ
(
Γ (m0)−β)

> δ0� (S31)

Let η> 0 be sufficiently small so that ψ(Γ (m0)−β) > δ0 +η, and define the set

N (m0)≡ {
m ∈ M :ψ(

Γ (m)−β)
> δ0 +η}

� (S32)

We first establish that N (m0) is open. To see this, first note that under the conditions on
ψ in Assumption 1(iii), the set {b ∈ 
∞(S) : ψ(b) ≤ δ0 + η} is norm closed and convex,
and therefore also closed in the weak topology (see, e.g., Zeidler (1986, p. 782)). The
set {b ∈ 
∞(S) : ψ(b) > δ0 + η} is its complement, and so is open in the weak topology
of 
∞(S). Also, since Γ : M → 
∞(S) is linear and norm continuous, it follows that Γ
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remains continuous when M and 
∞(S) are endowed with their weak topologies instead.
Since Γ is weakly continuous, these two observations together imply that N (m0) is weakly
open. Now let

N ≡N (m0)× (
(δ0 −η�δ0 +η)∩ R+

)
�

which is an open set. Moreover, ψ(Γ (m)− β) > δ0 + η > δ for any (m�δ) ∈ N , which
implies that N ⊆ M × R+ \A. This establishes the claim for this case. Q.E.D.

S4. FIRST STEP ESTIMATORS

We consider the finite-dimensional problem as in (22) of the main text. Suppose that
we have a sample of data denoted as {Yi�Di�Zi}ni=1 with Zi = [X ′

i �Z
′
0i]′. Let Γ̂ �

d (bdk) and
Γ̂ds(bdk) denote estimators of Γ �

d (bdk) and Γds(bdk), respectively. For the latter terms,
natural estimators are

Γ̂ds(bdk)≡ 1
n

n∑
i=1

∫ 1

0
bdk(u�Xi)ω̂ds(u�Zi)dμ

�(u)�

where ω̂0s(u� z)≡ ŝ(0� z)1[
u > p̂(z)

]
and ω̂1s(u� z)≡ ŝ(1� z)1[

u≤ p̂(z)]�
(S33)

where ŝ is an estimator of s, and p̂ is an estimator of the propensity score. An estimator
of Γ̂ �

d (bdk) can be constructed similarly as

Γ̂ �(bdk)≡ 1
n

n∑
i=1

∫ 1

0
bdk(u�Xi)ω̂

�
d(u�Zi)dμ

�(u)� (S34)

where ω̂�
d is an estimator of ω�

d , the form of which will depend on the form of the target
parameter. Depending on the choices of basis and target parameter, the integrals in (S33)
and (S34) can often be evaluated analytically, as discussed in Section S2. Estimators of βs
can be formed from ŝ as

β̂s ≡ 1
n

n∑
i=1

ŝ(Di�Zi)Yi�
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