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Berry and Haile (2018) considered identification in a class of nonparametric simul-
taneous equations models, providing several combinations of sufficient conditions on
the joint density of structural errors and the support of instruments. We show here that,
even when the instruments vary only over a small open ball, the requirements on the
joint density may be viewed as mild in at least one formal sense.

S.1. INTRODUCTION

THE NOTATION AND MAINTAINED HYPOTHESES (Assumption 1) of the model are as given
in Berry and Haile (2018). Here we demonstrate that, if Y′ is the pre-image under r of
any bounded open connected subset of RJ , log densities satisfying the requirements of
Corollary 2 in Berry and Haile (2018) form a dense open subset of all log densities on
R

J that are twice continuously differentiable and possess a local maximum. This is true
even when instruments vary only over an arbitrarily small open ball. This implies a form
of generic identification of g on X and of r on Y

′.1
In the following section, we state and prove the genericity result (Theorem 4).2 Sec-

tion S.3 provides additional discussion of a perturbation function used in our proof.

S.2. GENERIC IDENTIFICATION

Let G =×j [gj(xj)� gj(xj)] ⊂ g(X) be a compact “square” in R
J with width wx = gj(xj)−

gj(xj) > 0 for all j.3 We form a tessellation of RJ using squares of width wx/2.4 Let σ =
(σ1� � � � �σJ) denote a J-vector of integers. For each σ ∈ Z

J , define the square

sqσ = ×j

[
2σj − 1

4
wx�

2σj + 1
4

wx

]
�

Then {sqσ}σ∈ZJ forms a regular tessellation of R
J such that, for every y ∈ Y, the set

{r(y)− G} (and therefore {r(y)− g(X)}) covers some square sqσ .

Steven T. Berry: steven.berry@yale.edu
Philip A. Haile: philip.haile@yale.edu
1Because r(Y′) may be arbitrarily large, the gap between generic identification on Y

′ and generic identifica-
tion on the pre-image of RJ (i.e., on Y) may be of little importance.

2For clarity, we number results by continuing the sequences begun in Berry and Haile (2018).
3Such a square must exist. Because X is open, it contains a rectangle X̂ = ×j(x

L
j �x

H
j ) with xH

j > xL
j ∀j. By

continuity and strict monotonicity of each gj , g(X̂ )= ×j(gj(x
L
j )� gj(x

H
j )), which contains a compact square.

4In three or more dimensions, a tessellation is also known as a honeycomb, and what we call a square is a
cube or hypercube. For simplicity, we use the language of the two-dimensional case.
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Given any open set S ⊂R
J that is bounded and connected, let YS denote the pre-image

of S under r. Because r is continuous, YS is open; and because r has continuous inverse
(see the proof of Lemma 1 in Berry and Haile (2018)), YS is connected. Boundedness of
S and G implies that there is a finite set ZS ⊂ Z

J such that⋃
σ∈ZS

sqq ⊃
⋃
y∈YS

{
r(y)− G

}
� (S.1)

Then, by construction, for every y ∈YS there exists σ ∈ ZS such that {r(y)− g(X)} covers
sqσ . So if Berry and Haile’s (2017) Assumption 1 and Condition M hold, the following is
sufficient for their Corollary 2 to apply, yielding identification of g on X and of r on YS .

CONDITION H: For every σ ∈ ZS , ∂2 ln f (u)/∂u∂uT is nonsingular at some u ∈ sqσ .

We show below that simultaneous satisfaction of Conditions M and H is generic in the
space of log densities on R

J that are twice continuously differentiable and possess a local
maximum. To define this space, first let C2(RJ) denote the space of twice continuously
differentiable real-valued functions on R

J . We define a topology on C2(RJ) using the C2

extended norm ‖ · ‖C2 , where

‖h‖C2 = sup
u∈RJ

∣∣h(u)∣∣ + max
j∈{1�����J}

sup
u∈RJ

∣∣∣∣∂h(u)∂uj

∣∣∣∣ + max
j�k∈{1�����J}

sup
u∈RJ

∣∣∣∣ ∂2h(u)

∂uj ∂uk

∣∣∣∣
for any h ∈ C2(RJ). Under the induced extended metric, two functions h and ĥ in C2(RJ)
are deemed to be “close” if these functions and their partial derivatives up to order 2 are
uniformly close.5 Let F ⊂ C2(RJ) denote the subspace (with subspace topology) of twice
continuously differentiable log densities on R

J that possess a local maximum. We say that
functions in a set H ⊂ F are generic in F if H is a dense open subset of F (see, e.g.,
Mas-Colell (1985)).6

THEOREM 4: Let Assumption 1 hold. Let S ⊂ R
J be bounded, open, and connected,

with pre-image YS under r. Let the finite set ZS ⊂ Z
J satisfy (S.1). Then the set F ∗

S =
{ln f ∈F : Conditions M and H hold} is dense and open in F .

To prove this result, define the following subsets of F :

FH
σ = {

ln f ∈F : ∂2 ln f (u)/∂u∂uT is nonsingular at some u ∈ sqσ

}
�

FH = {ln f ∈F : Condition H holds}�
FM = {ln f ∈F : Condition M holds}�

5A metric inducing the same topology is d̃(h′�h) = ‖h′−h‖
C2

1+‖h′−h‖
C2

. We work with the C2 extended metric to

simplify exposition. Genericity can also be shown under the (coarser) topology of compact convergence (of
sequences of functions in C2(RJ) and their partial derivatives up to order 2).

6A weaker notion of genericity is that of a residual set (countable intersection of dense open subsets). With
minor modification, our arguments below demonstrate that even the set F∗ ⊂ F∗

S (defined in (S.4)) is residual
in F . As discussed by Mas-Colell (1985), these topological definitions of genericity are standard in infinite-
dimensional spaces but fall short of fully satisfactory notions of “typical” (see also Hunt, Sauer, and Yorke
(1992), Anderson and Zame (2001), or Stinchcombe (2002)). Classification of our density conditions according
to alternative notions of genericity is a potentially interesting direction for future work.
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Then we have

FH =
⋂
σ∈ZS

FH
σ (S.2)

and

F ∗
S =FM ∩FH� (S.3)

Thus F ∗
S is a finite intersection of subsets of F . In Corollary 3 below (Section S.2.1), we

show that F ∗
S is dense in F . Lemmas 12 and 13 below (Section S.2.2) show that FM and

each FH
σ (for σ ∈ Z

J) is open in F . Theorem 4 then follows from (S.2) and (S.3).7

S.2.1. Dense

Let

F ∗ =FM ∩
{ ⋂
σ∈ZJ

FH
σ

}
� (S.4)

In this subsection, we prove the following result, whose corollary is immediate from the
fact that F ∗ ⊂F ∗

S .

LEMMA 10: F ∗ is dense in F .

COROLLARY 3: F ∗
S is dense in F .

Fix any ln f ∈ F and let u∗ be a point at which ln f has a local max. To prove
Lemma 10, it is sufficient to show that for any ε > 0, there exists ln f ∗ ∈ F ∗ such that
‖ ln f ∗ − ln f‖C2 < ε. Let wf > 0 be such that ln f (u∗) ≥ ln f (u) for all u in the square
×j[u∗

j − wf

2 �u∗
j + wf

2 ].8 Let s∗ be a closed square with center u∗ and width

w = min
{
wx

4
�wf

}
�

For all j, let u∗
j and u∗

j be defined such that s∗ = ×j[u∗
j � u

∗
j ].

Starting from s∗, form another tessellation of R
J using squares of width w. Let

τ = (τ1� � � � � τJ) denote a J-vector of integers. For each τ ∈ Z
J , define the square sτ =

×j[u∗
j + τjw�u∗

j + τjw]. Then {sτ}τ∈ZJ forms a regular tessellation of R
J .9 Let u̇τ =

(u̇τ1� � � � � u̇τJ) denote the center of square sτ. For τ = (0� � � � �0), we then have sτ = s∗

and u̇τ = u∗. For all u ∈R
J , let τ(u) ∈ Z

J denote the index of a square such that u ∈ sτ(u).10

Observe that every cell of the tessellation {sqσ}σ∈ZJ covers at least one cell of the tessel-
lation {sτ}τ∈ZJ . We prove Lemma 10 by constructing an arbitrarily small perturbation of

7Although we focus on genericity of the conditions required by Berry and Haile’s (2018, Corollary 2), Lem-
mas 10 and 12 below imply that FM is a dense open subset of F (see Corollary 1 in Berry and Haile (2018)).

8Such wf must exist since around any local max is an open ball on which ln f (u∗) is (at least weakly) maximal.
9Unlike the tessellation {sqσ }σ∈ZJ , this tessellation may vary with the choice of ln f through the choice of

the point u∗ and width w.
10There will be only one such square for almost all u. However, any u on the boundary of one square will

also be on the boundary of at least one other square. How the function τ(u) resolves this ambiguity does not
matter for what follows.
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ln f that (i) lies in F , (ii) has a nondegenerate local max at u∗, and (iii) has a nonsingular
Hessian matrix at the center of every square sτ.

Let f denote the probability density function associated with the fixed log density ln f
(i.e., f = exp(ln f )). For v ∈ R, define11

p(v) = 1
{|v| ≤ 1

}(
1 − v2

)3
�

Given any λ > 0 and {λτ ∈ (0�λ]}τ∈ZJ , for all u ∈ R
J let

fλ(u)= κf(u)exp

(
λτ(u)

J∏
j=1

p

(
uj − u̇τ(u)j

w/2

))
� (S.5)

with particular values of each λτ to be determined below. The scalar κ is chosen to ensure
that fλ(u) integrates to 1 on R

J , that is,

κ=
[∫

RJ

f (u)exp

(
λτ(u)

J∏
j=1

p

(
uj − u̇τ(u)j

w/2

))
du

]−1

� (S.6)

Because the term λτ(u)

∏J

j=1 p(
uj−u̇τ(u)j

w/2 ) takes only values between 0 and λτ(u) (see Sec-
tion S.3), κ must lie in the interval [exp(−λ)�1]. Thus, by construction the perturbed
function fλ is positive on R

J , integrates to 1, and (see Section S.3) is twice continuously
differentiable on R

J .
We first show that ln fλ is made arbitrarily close to ln f by setting λ sufficiently small.

CLAIM 1: For any ε > 0, there exists λ∗ > 0 such that, for any λ ∈ (0�λ∗) and any
{λτ ∈ (0�λ]}τ∈ZJ , ‖ ln fλ − ln f‖C2 < ε.

PROOF: Fix any ε > 0. From (S.5),

ln fλ(u)− ln f (u) = λτ(u)

∏
j

p

(
uj − u̇τ(u)j

w/2

)
+ lnκ� (S.7)

So because lnκ ∈ [−λ�0] and λτ(u)

∏
j p(

uj−u̇τ(u)j

w/2 ) ∈ [0�λ],

sup
u∈RJ

∣∣ln fλ(u)− ln f (u)
∣∣ ≤ λ� (S.8)

Further, differentiating (S.7) (see Section S.3), we have

∂ ln fλ(u)
∂uj

− ∂ ln f (u)
∂uj

= λτ(u)

[∏

�=j

p

(
u
 − u̇τ(u)


w/2

)]
p′

(
uj − u̇τ(u)j

w/2

)(
w

2

)−1

� (S.9)

∂2 ln fλ(u)
∂u2

j

− ∂2 ln f (u)

∂u2
j

= λτ(u)

[∏

�=j

p

(
u
 − u̇τ(u)


w/2

)]
p′′

(
uj − u̇τ(u)j

w/2

)(
w

2

)−2

� (S.10)

11The function p is proportional to a triweight kernel (see, e.g., Silverman (1986)). In Section S.3, we discuss
some relevant properties of p and of a log density perturbed on a square using this function as in (S.5).
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while for j �= k,

∂2 ln fλ(u)

∂uk ∂uj

− ∂2 ln f (u)
∂uk ∂uj

= λτ(u)

[∏

�=j�k

p

(
u
 − u̇τ(u)


w/2

)]
p′

(
uk − u̇τ(u)k

w/2

)
p′

(
uj − u̇τ(u)j

w/2

)(
w

2

)−2

�

(S.11)

The function p is bounded, as are its first and second derivatives (see Section S.3). So
because λτ(u) ∈ (0�λ] , (S.8)–(S.11) demonstrate that

sup
u∈RJ

∣∣ln fλ(u)− ln f (u)
∣∣ + max

j∈{1�����J}
sup
u∈RJ

∣∣∣∣∂ ln fλ(u)
∂uj

− ∂ ln f (u)
∂uj

∣∣∣∣
+ max

j�k∈{1�����J}
sup
u∈RJ

∣∣∣∣∂2 ln fλ(u)

∂uj ∂uk

− ∂2 ln f (u)
∂uj ∂uk

∣∣∣∣< ε

for all sufficiently small λ > 0. Q.E.D.

To complete the proof of Lemma 10, we show that, given any λ > 0, the scaling param-
eters {λτ}τ∈ZJ can be chosen to ensure that ln fλ ∈F ∗.

CLAIM 2: For any λ > 0, there exist {λτ ∈ (0�λ]}τ∈ZJ such that ln fλ ∈F ∗.

PROOF: Fix any λ > 0. We first show that there exist {λτ ∈ (0�λ]}τ∈ZJ such that, for
all σ ∈ Z

J , ∂2 ln fλ(u)/∂u∂uT is nonsingular at some u ∈ sqσ . Because every square sqσ

covers the square sτ for some τ ∈ Z
J , it is sufficient that, for each τ and some λτ ∈ (0�λ],

∂2 ln fλ(u)/∂u∂u
T is nonsingular at u= u̇τ. Take any τ ∈ Z

J . Equations (S.9)–(S.11) imply
(see the values of p(0), p′(0) and p′′(0) given in Section S.3)

∂2 ln fλ(u̇τ)

∂u∂uT = ∂2 ln f (u̇τ)

∂u∂uT −
(

24λτ

w2

)
IJ�

where IJ is the identity matrix. The eigenvalues of ∂2 ln fλ(u̇τ)/∂u∂u
T are therefore equal

to those of ∂2 ln f (u̇τ)/∂u∂u
T minus 24λτ

w2 . So for almost all values of λτ ∈ (0�λ], all
eigenvalues of ∂2 ln fλ(u̇τ)/∂u∂u

T are nonzero, ensuring that ln fλ ∈ FH .12 Fixing any
such {λτ ∈ (0�λ]}τ∈ZJ , we then complete the proof by showing that ln fλ ∈ FM . By our
choice of the point u∗ and square s∗, u∗ ∈ arg maxu∈s∗ ln f (u). And because u∗ = u̇τ for
τ = (0� � � � �0), u∗ = arg maxu∈s∗ [ln fλ(u) − ln f (u)]. Thus, u∗ is a local maximum of ln fλ
and, by the choice of λτ above for τ = (0� � � � �0), ∂2 ln fλ(u∗)/∂u∂uT is nonsingular. Q.E.D.

S.2.2. Open

To prove the required openness results, we begin with a result from the literature on
Morse functions.13 Given any compact K ⊂ R

J , let C2(K) denote the space of twice con-

12Since we needed only one such λτ , we have shown more than necessary. Thus the “abundance” of pertur-
bations lying in F∗ is even greater than required by the notion of C2-denseness.

13See, for example, Lemma 5.32 in Banyaga and Hurtubise (2004). We provide a proof here for complete-
ness.
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tinuously differentiable real-valued functions on K. For h ∈C2(K), let

‖h‖C2
K

= sup
u∈K

∣∣h(u)∣∣ + max
j∈{1�����J}

sup
u∈K

∣∣∣∣∂h(u)∂uj

∣∣∣∣ + max
j�k∈{1�����J}

sup
u∈K

∣∣∣∣ ∂2h(u)

∂uj ∂uk

∣∣∣∣�
LEMMA 11: Suppose that f ∈ C2(K) has no degenerate critical point. Then there exists

ε > 0 such that any g ∈ C2(K) satisfying ‖f− g‖C2
K
< ε has no degenerate critical point.

PROOF: For any h ∈ C2(K) and u ∈ K, define ρh(u)= ∑
j | ∂h(u)∂uj

|+ |det( ∂2h(u)
∂u∂uT )|. A func-

tion h ∈ C2(K) has no degenerate critical point on K if and only if ρh(u) > 0 for all u ∈ K.
So by the hypothesis of the lemma, ρf(u) > 0 for all u ∈ K. Because K is compact and ρf

is continuous, there must exist δ > 0 such that ρf(u) > δ for all u ∈ K. If ‖f − g‖C2
K
< ε,

then for all u ∈K, ∣∣∣∣∂f(u)∂uj

− ∂g(u)

∂uj

∣∣∣∣ < ε ∀j�
∣∣∣∣ ∂2f(u)

∂uj ∂uk

− ∂2g(u)

∂uj ∂uk

∣∣∣∣ < ε ∀j�k�

For sufficiently small ε > 0, these inequalities imply

∑
j

∣∣∣∣
∣∣∣∣∂f(u)∂uj

∣∣∣∣ −
∣∣∣∣∂g(u)∂uj

∣∣∣∣
∣∣∣∣ < δ

2
�

∣∣∣∣
∣∣∣∣det

(
∂2f(x)

∂x∂xT

)∣∣∣∣ −
∣∣∣∣det

(
∂2g(u)

∂u∂uT

)∣∣∣∣
∣∣∣∣ < δ

2

for all u ∈ K, which require

∑
j

∣∣∣∣∂g(u)∂uj

∣∣∣∣ > ∑
j

∣∣∣∣∂f(u)∂uj

∣∣∣∣ − δ

2
� (S.12)

∣∣∣∣det
(
∂2g(u)

∂u∂uT

)∣∣∣∣ >
∣∣∣∣det

(
∂2f(x)

∂x∂xT

)∣∣∣∣ − δ

2
� (S.13)

Summing (S.12) and (S.13), for all u ∈K we have ρg(u) > ρf(u)− δ > 0. Q.E.D.

Next we show that FM is an open subset of F .

LEMMA 12: For every ln f ∈ FM , there exists ε > 0 such that if ln f̂ ∈ F and
‖ ln f̂ − ln f‖C2 < ε, then ln f̂ ∈FM .

PROOF: Take any ln f ∈ FM and let u∗ denote a point at which it has a nondegener-
ate local maximum. The proof of Lemma 5 in Berry and Haile (2018) showed that, for
some compact set Σ with nonempty interior, there exists c such that (i) the upper con-
tour set A(c�Σ) = {u ∈ Σ : ln f (u) ≥ c} lies in the interior of Σ and (ii) the restriction
of ln f to A(c�Σ) attains a maximum c̄ = ln f (u∗) > c at its unique critical point. Let
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K = A(c�Σ). Because ln f is continuous, A(c�Σ) is closed in R
J . And because A(c�Σ)

lies on the interior of the compact set Σ, A(c�Σ) is bounded. Thus K is compact, and ln f
has no degenerate critical point on K. So by Lemma 11, for all sufficiently small ε > 0,
‖ ln f̂ − ln f‖C2 < ε (which implies ‖ ln f̂ − ln f‖C2

K
< ε) ensures that ln f̂ also has no degen-

erate critical point on K. To complete the proof, it suffices to show that, for all sufficiently
small ε > 0, ‖ ln f̂ − ln f‖C2 < ε ensures that the restriction of ln f̂ to K has a maximum
on the interior of K. By continuity of ln f , ln f (u) = c for all u on the boundary of K. So
when ‖ ln f̂ − ln f‖C2 < ε, ln f̂ must take values no more than c + ε on the boundary of K
and no less than c̄ − ε at u∗. For sufficiently small ε > 0, we have c + ε < c̄ − ε, requiring
that the restriction of ln f̂ to K have an interior maximum. Q.E.D.

Finally, we show that for every σ ∈ Z
J , FH

σ is an open subset of F .

LEMMA 13: For any σ ∈ Z
J and ln f ∈ FH

σ , there exists ε > 0 such that if ln f̂ ∈ F and
‖ ln f̂ − ln f‖C2 < ε, ln f̂ ∈FH

σ .

PROOF: Fix σ ∈ Z
J and ln f ∈ FH

σ , the latter implying that, for some δ > 0
and some û ∈ sqσ , |det(∂2 ln f (û)/∂u∂uT)| > δ. Recall that ‖h‖C2 < ε requires
maxj�k∈{1�����J} supu∈sqσ | ∂2h(u)

∂uj ∂uk
| < ε. So for sufficiently small ε > 0, ‖ ln f − ln f̂‖C2 < ε

implies |det( ∂2 ln f (û)
∂u∂uT )− det( ∂2 ln f̂ (û)

∂u∂uT )| < δ, ensuring that |det( ∂2 ln f̂ (û)
∂u∂uT )| > 0. Q.E.D.

S.3. TRIWEIGHT PERTURBATION ON A SQUARE

The proof of Lemma 10 uses a particular perturbation of a log density on squares in R
J .

Here we provide some additional discussion of this perturbation and derive some elemen-
tary properties referenced in the proof.

Recall that for v ∈ R we defined

p(v)= 1
{|v| ≤ 1

}(
1 − v2

)3
�

The function p(v) is equal to zero at −1 and 1, strictly increasing for v ∈ (−1�0), and
strictly decreasing for v ∈ (0�1). It attains a maximum (of 1) at v = 0. For v ∈ [−1�1], its
first and second derivatives are given by

p′(v)= −6v
(
1 − v2

)2
�

p′′(v)= 24v2
(
1 − v2

) − 6
(
1 − v2

)2
�

which are continuous and bounded. The first and second derivatives of p at −1, 0, and 1
are given in Table S.I.

Let s denote a square ×j[uj�uj] in R
J , with uj − uj = w̄ > 0 for all j = 1� � � � � J. Let

u̇s = (u1+u1
2 � � � � � uJ+uJ

2 ) denote the center of this square. Let ln f be a twice continuously
differentiable log density defined on R

J , with f = exp(ln f ) its associated probability den-
sity function. Given any finite scalar λs > 0 and κ > 0, let

fλs (u)= κf(u)exp

[
λs

J∏
j=1

p

(
uj − u̇sj

w̄/2

)]
� u ∈ s�
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TABLE S.I

SOME VALUES OF p(v) AND ITS DERIVATIVES

v p(v) p′(v) p′′(v)

−1 0 0 0
0 1 0 −6
1 0 0 0

Then, on the square s, ln fλs is equal to the sum of ln f , the rescaled multivariate tri-
weight function λs

∏J

j=1 p(
uj−u̇sj

w̄/2 ), and the constant ln(κ). Observe that λs

∏J

j=1 p(
uj−u̇sj

w̄/2 )

takes values in the interval [0�λs], attaining λs only at the center of the square. Figure S.1
illustrates the scaled multivariate triweight function for the case J = 2 with λs = 1.

Recalling Table S.I, observe that, regardless of λs , for any u on the boundary of the
square s, we have

ln fλs (u) = ln f (u)+ ln(κ)�

∂

∂uj

ln fλs (u) = ∂

∂uj

ln f (u) ∀j�

∂2

∂uj ∂uk

ln fλs (u) = ∂2

∂uj ∂uk

ln f (u) ∀j�k�

FIGURE S.1.—Plot of a scaled bivariate triweight function.



NONPARAMETRIC SIMULTANEOUS EQUATIONS MODELS 9

These properties ensure that when we perturb ln f on adjacent squares—potentially with
different scaling factors λs for each square (but the same κ for all squares)—the perturbed
log density function will remain twice continuously differentiable, even on the boundaries
of the squares.
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