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APPENDIX C: ADDITIONAL FIGURES

FIGURE 16.—Various measures of micro-level risk. Notes: Data are shown in log deviations from their
long-run averages. The thick curve shows the idiosyncratic risk measure from Census data constructed by
Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012); the thin curve shows the cross-sectional dis-
persion of annual sales growth from Compustat; the dashed line represents the VIX measure constructed by
the CBOE. Shaded areas correspond to NBER recessions. See Appendix B for details.
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FIGURE 17.—Fit and imputed shocks for the counterfactual exercise. Notes: The black continuous line
presents the data detrended using a band-pass filter (6 to 32 quarters for quarterly data, 2 to 8 years for annual
data), the dotted black line is the data detrended using an HP filter (smoothing parameter 1600 quarterly, 100
annual), the blue continuous line corresponds to the model with productivity and volatility shocks, the green
dashed line is the model with productivity shocks only. Note that the large peak in the IQR series in 1996 is
an artifact of the Census data due to the change from SIC87 to NAICS classification in 1997, which biases the
measure upward by more than 5% as reported in Bloom et al. (2012).

FIGURE 18.—Response of the labor wedge to aggregate productivity and volatility shocks. Notes: The labor
wedge is the ratio between the marginal rate of substitution between consumption and leisure to the marginal
productivity of labor. Series presented in log deviation from their steady-state values when aggregate produc-
tivity and volatility are set to their means. The time period is a month and the shock hits at time t = 0.
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APPENDIX D: NUMERICAL IMPLEMENTATION

This section describes the implementation of the model that I use for the quantitative
exercises.

D.1. Description of the Problem

Under the stochastic processes chosen in Section 3, the aggregate state of nature is
s = (y� v). Since all the contracting aspects are absent from the joint surplus maximization
problem, it is more convenient to solve for the surplus (7) at the beginning of a period in
stage A instead of stage B. Define the surplus VA in stage A as follows:

VA(y� v� z�n)= max
ni�xi�τ

x�d∈{0�1}

nU(y� v)d+ (1 − d){nτU(y� v)− κ(y� v)ni

+ n(1 − τ)λp(θ(y� v�x))x+ ey+zF
(
n′)− kf

+βEVA
(
y ′� v′� z′� n′)}

(17)

subject to

n′ = n(1 − τ)(1 − λp(θ(y� v�x)))+ ni�
where n denotes the employment level reached at the end of the previous period.31 Note
that I have used the properties from Proposition 3 that x(j) is uniform across workers,
x(j)= x�∀j, and that the distribution of layoffs across workers is undetermined to impose
symmetry in the layoffs rates, τ(j)= τ�∀j. Notice also that I have used the definition of
(9) to substitute for the hiring cost κ(y� v). The hiring cost is implicitly defined by the
free-entry problem of (12),

ke =
∑
z∈Z

gz(z)
{

max
ne(y�v�z)�xe(y�v�z)�

de(y�v�z)∈{0�1}

(
1 − de(y� v� z)

)[
ey+zF
(
ne(y� v� z)

)− kf
− κ(y� v)ne(y� v� z)+βEVA

(
y ′� v′� z′� ne(y� v� z)

)]}
� ∀(y� v)�

(18)

The equilibrium market tightness implied by the free-entry condition is defined by com-
bining equations (10) and (11), so that

θ(y� v�x)=
⎧⎨
⎩q

−1

(
c

κ(y� v)− x
)

for active markets
(
x≤ κ(y� v)− c)�

0 for inactive markets
(
x > κ(y� v)− c)�

31Under this notation, surplus at stage A of a period (VA) and surplus at stage B (V) are related in the
following way:

V(y� v� z�n) = ey(s)+zF(n)− kf +βEVA
(
y ′� v′� z′�n

)
�

and

VA(y� v� z�n)= maxnU(y� v)d+ (1 − d){nτU(y� v)+ n(1 − τ)λp(θ(y� v�x))x
− κ(y� v)ni + V

(
y� v� z�n′)}�
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Finally, the value of unemployment is defined by (1),

U(y� v)= max
xu(s′)

b+βE[p(θ(s′�xu(s′)))xu(s′)+ (1 −p(θ(s′�xu(s′))))U(y ′� v′)]� (19)

D.2. Algorithm

The problems of (17), (18), and (19) define three nested fixed point problems that
we must solve to find a quasi-equilibrium. I describe below the algorithm that I use to
solve for them. The value functions are computed on a ny × nv× nz × nn grid (ny=21;
nv=15; nz=15; nn=30 in my baseline calibration).

1. Set k= 0. Guess a value function V (0)(y� v� z�n).
2. Using the free-entry condition, solve numerically for κ(k)(y� v) such that

ke =
∑
z

gz(z)
[

max
ne(y�v�z)

ey+zF
(
ne(y� v� z)

)− kf − κ(y� v)ne(z)

+βEV (k)
(
y ′� v′� z′� ne(y� v� z)

)]+
� ∀(y� v)�

The RHS of this equation being monotonic in κ, I use a quick bisection method for that
step. Save the decision rules ne(y� v� z) and de(y� v� z). Using this new value of κ(k)(y� v),
compute the equilibrium market tightness from (10) and (11):

θ(k)(y� v�x)=
⎧⎨
⎩q

−1

(
c

κ(k)(y� v)− x
)

for x≤ κ(k)(y� v)− c�
0 for x > κ(k)(y� v)− c�

3. By value function iteration, find the fixed point of the mapping,

U(k)(y� v)= max
x′
u(y

′�v′)
b+βE[p(θ(y ′� v′�xu

))
xu + (1 −p(θ(y ′� v′�xu

)))
U(k)
(
y ′� v′)]�

and save the corresponding decision rule xu(y ′� v′).
4. Compute one iteration of the mapping:

V (k+1)(y� v� z�n)= max
τ�x�ni

{
nτU(k)(y� v)+ n(1 − τ)λp(θ(k)(y� v�x))x

− κ(k)ni + ey+zF
(
n′)− kf +βEV (k)

(
y ′� v′� z′� n′)}+

s.t. n′ = n(1 − τ)(1 − λp(θ(k)(y� v�x)))+ ni
and save the corresponding decision rules n′(y� v� z�n), ni(y� v� z�n), x(y� v� z�n),
τ(y� v� z�n), and d(y� v� z�n).

5. Stop if ‖V (k+1) − V (k)‖ ≤ ε. Otherwise, go back to step 2 with k← k+ 1.

D.3. Additional Remarks

A number of remarks are in order:
• For the distribution of entrants gz , I pick the stationary distribution of z when volatil-

ity v is held constant, equal to its mean v̄.
• The choice over xu and x has to be computed very precisely:
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– in step 3, I use the first-order condition of the maximization problem and solve for
the value of xu(y ′� v′) using a bisection algorithm;

– in step 4, to simplify the maximization over (x� τ�ni), I proceed in two steps:
∗ for all pairs (n�n′) on the nn× nn grid, compute r = n′

n
. If r < 1, solve the sub-

problem

ω(y�v� r)= max
x�τ

τU(k)(y� v)+ (1 − τ)λp(θ(k)(y� v�x))x
s.t. (1 − τ)(1 − λp(θ(k)(y� v�x)))= r�

which yields the optimal mix of layoffs/quits for a given (n�n′). Save the decision rules
x(y� v� r), τ(y� v� r) and the value ω(y�v� r). If r ≥ 1, set τ(y� v� r) = 0, x(y� v� r) =
κ(k) − c, and ω(y�v� r) = 0. This problem can be solved quite accurately using its first-
order conditions;

∗ using this optimal mix, the maximization of step 4 can be turned into the simple
one-dimensional maximization problem:

V (k+1)(y� v� z�n)= max
n′

{
ey+zF
(
n′)− kf − κ(k)(n′ − n)+

+ nω
(
y� v�

n′

n

)
+βEV (k)

(
y ′� v′� z′� n′)}+

�

This procedure provides a very accurate and smooth solution. Because of the reduction
of the state-space, it also runs very quickly.

• I use two cubic splines in step 4 to smooth the choice of n′(y� v� z�n) over [0� n] and
[n� n̄].

• The whole algorithm takes about 20 minutes to converge for the baseline calibration
on my Dell Precision T7600.

D.4. Computing Wages

Section E.2 proposes a version of the model without commitment on the worker side
in which wages are uniquely determined. This subsection describes how one can easily
compute wages from the surplus maximizing allocation. In what follows, it is convenient
to use the timing introduced in Section D.1, expressing value functions and policies at the
beginning of a period (stage A).

We start by solving for the incentive constraint (21) described in Section E.2. For every
state (y� v� z�n), compute the promised utility W ′(y� v� z�n) such that

x(y� v� z�n)= argmax
x

p
(
θ(y� v�x)

)(
x−W ′(y� v� z�n)

)
�

Because of the monotonicity of the problem, this can be done efficiently using a bisection
method. It is then useful to write the utility of a worker employed by a firm (z�n) at the
beginning of a period (stage A). Define

WA(y� v� z�n)= d(y� v� z�n)U(y� v)+ (1 − d(y� v� z�n))[τ(y� v� z�n)U(y� v)
+ (1 − τ(y� v� z�n))λp(θ(y� v�x(y� v� z�n)))x(y� v� z�n)
+ (1 − τ(y� v� z�n))[1 − λp(θ(y� v�x(y� v� z�n)))]W ′(y� v� z�n)

]
�
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whereW ′(y� v� z�n) is the promised utility at the end of the period. It is now easy to solve
for wages. We can use the promise-keeping constraint (6) to derive their wages:

wincumbent(y� v� z�n)=W ′(y� v� z�n)−βE[WA
(
y ′� v′� z′� n′(y� v� z�n)

)]
�

Similarly, one can derive the wage of workers hired from unemployment with promised
utility xu(y� v):

wunemp(y� v� z�n)= xu(y� v)−βE[WA
(
y ′� v′� z′� n′(y� v� z�n)

)]
�

Finally, a worker successfully moving from a firm with state (z̃� ñ) to a firm with state
(z�n), hired with promised utility x(y� v� z̃� ñ), receives the wage

wj2j(y� v� z�n; z̃� ñ)= x(y� v� z̃� ñ)−βE[WA
(
y ′� v′� z′� n′(y� v� z�n)

)]
�

APPENDIX E: ADDITIONAL THEORETICAL RESULTS

E.1. Properties of the Optimal Contracts

This section characterizes various properties of the equilibrium contracts and, in partic-
ular, how different elements of the contracts (layoff probability τ, market for on-the-job
search x, etc.) vary across workers within a single firm.

PROPOSITION 3: Under the conditions of Proposition 2, in a quasi-equilibrium with sur-
plus maximizing policy {{τj�xj}j∈[0�n]� d�ni� xi}, the following is true:

(i) If workers can commit, wages are not uniquely determined. In particular, the trans-
formation {wj + aΔ�τj�xj�W

′
j − Δ�d} leaves worker j and the firm indifferent, with a =

βE(1 − d)(1 − τj)(1 − λp(θ(s′�xj)))] and Δ ∈R.
(ii) The market for on-the-job search x is identical for all workers in the same firm.
(iii) Only the total number of layoffs

∫
τj dj is uniquely determined; the distribution of

layoffs {τj}j∈[0�n] over workers is not.

Proposition 3 first establishes that wages, w, and continuation values, W ′, are not
unique. There are two reasons behind this result: (i) workers and firms are risk neutral
and (ii) there is commitment from both workers and firms. Under these two conditions,
the timing of wages is irrelevant. Only the total discounted value of future wages upon
hiring is determined in equilibrium. This result shows the flexibility of the setup proposed
in this paper as it can accommodate various profiles of wages over the life-cycle. I pro-
pose one particular way to determine wages in Section E.2 by relaxing the commitment
assumption on the worker side. In that case, the incentive problem uniquely pins down
wages and I explore the quantitative properties of that particular assumption in Section F.

Second, this proposition shows that all workers within a firm search on the same labor
market segment. This result is due to the strict concavity of the search problem. Finally,
as was suggested in Proposition 1, the distribution of layoff probabilities across workers
of a given firm is not uniquely determined. As is evident from the definition of the joint
surplus, any permutation or convex combination of these probabilities across workers
leaves the surplus unchanged. However, the total number of layoffs at the firm level is
uniquely determined.
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E.2. Relaxing Commitment and Completeness

I present in this section an extension of the model in which I relax the assumption of
commitment on the worker side and the completeness of contracts. These assumptions
may seem, indeed, somewhat unrealistic. First, I show in this subsection that commit-
ment on the worker side is not required because firms have enough instruments to write
incentive-compatible contracts that implement the efficient allocation. Second, I prove
that firms may write down contracts that only specify {w�τ(s′� z′)�d(s′� z′)�W ′(s′� z′)}. In
particular, this means that firms do not have to specify the labor market segment x(s′� z′)
in which their workers should be searching on the job—arguably the most unrealistic fea-
ture of the form of contracts assumed so far. Under the incentive-compatible contracts,
firms can balance the current wage versus continuation utility in such a way that workers
choose to search in the optimal submarket.

Notice, however, that commitment on the firm side cannot be relaxed without losing
block recursivity. Indeed, as discussed in the main text, it is key for block recursivity to
obtain that firms stick to the contracts they advertise. Without commitment, firms would
pay wages to workers that make them indifferent between a new job and their current
situation. In particular, a firm would need to know the distribution of workers across
firms before making its hiring decision, thereby breaking our main tractability results.

If we relax the assumption of commitment on the worker side, two additional con-
straints arise in the design of the contract. When workers are employed, the firm is wor-
ried about two things: (1) either the worker does not want to stay in the firm and decides
to return to unemployment at the time when separations take place, or (2) the worker
would like to search on a different submarket than the one specified in the contract.
When designing a contract (w�τ(s′� z′)�x(s′� z′)�W ′(s′� z′)�d(s′� z′)), the firm must take
into consideration a participation constraint,

λp
(
θ
(
s′�x
))
x+ (1 − λp(θ(s′�x)))W ′(s′� z′)≥ U

(
s′
)
� ∀s′ (20)

which makes sure that the worker does not prefer to return to unemployment, and we
have the following incentive constraint:

x
(
s′� z′)= argmax

x̃

λp
(
θ
(
s′� x̃
))
x̃+ (1 − λp(θ(s′� x̃)))W ′(s′� z′)

⇔ x
(
s′� z′)= argmax

x̃

p
(
θ
(
s′� x̃
))(
x̃−W ′(s′� z′))� (21)

which verifies that the submarket x specified in the contract coincides with the one chosen
by the worker. I now show that for any given contract (w�τ�x�W ′� d), there is a unique
equivalent contract with wage wIC and future utility W ′

IC that satisfies the above incentive
and participation constraints and delivers the same promised utility to the worker.

PROPOSITION 4: For any optimal contract ω = {w�τ�x�W ′� d}, there exists a unique
equivalent incentive-compatible contract ωIC = {wIC� τIC�W

′
IC� dIC} such that ∀(s′� z′):

1. τIC(s
′� z′)= τ(s′� z′) and dIC(s

′� z′)= d(s′� z′),
2. λp(θ(s′�x(s′� z′)))x(s′� z′)+ (1 − λp(θ(s′�x′(s′� z′))))W ′

IC(s
′� z′)≥ U(s′),

3. x(s′� z′)= argmaxx̃ p(θ(s
′� x̃))(x̃−W ′

IC(s
′� z′)),

4. W(s� z�ω)= W(s� z�ωIC).

Proposition 4 tells us that the allocation that maximizes the worker-firm joint surplus
can be implemented by an incentive-compatible contract. In particular, the layoff and exit
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probabilities are the same: τIC = τ, dIC = d, and the submarket x chosen by the worker
coincides with the efficient one. The wage and future utility (wIC�W

′
IC) are the only ele-

ments that adjust to ensure that the two additional constraints (21) and (20) are satisfied.
In addition to being more realistic than complete contracts with full commitment, these
contracts offer the advantage of uniquely pinning down wages. They thus offer an alterna-
tive to other wage determination procedures. Appendix D.4 presents the few steps results
to numerically implement this procedure. Appendix F shows that the wages this proce-
dure implies match a number of empirical facts, such as a realistic wage dispersion and
size-wage differential.

APPENDIX F: WAGE PREDICTIONS

The use of optimal dynamic contracts in search models provides an alternative to the
standard assumptions of Nash or Stole and Zwiebel bargaining. However, as shown in
Proposition 3, wages are not uniquely pinned down if workers can commit to stay in the
firm and search on the optimal labor market while employed. In Section E.2 of the Ap-
pendix, I show how relaxing this commitment assumption yields a unique characterization
of wages and contracts, as employers have to design contracts that give the right incentives
for workers to stay/leave the firm and apply to the right labor market. Under this speci-
fication, wages could in principle vary substantially across workers belonging to the same
firm. I explore in this section the quantitative implications of this wage setting mecha-
nism. Because of a rich incentive structure, the model is able to predict an important
wage dispersion for observationally equivalent workers and accounts for larger fraction
of the empirical variation than standard search model. It also predicts a quantitatively
accurate size-wage differential.

F.1. Wage Dispersion and Elasticity

Hornstein, Krusell, and Violante (2011) reported that standard calibrations of search-
and-matching models without on-the-job search cannot generate much dispersion in
wages. In their basic calibration of a standard random search model, they obtained a
mean-min ratio of 1.036 for wages, while their preferred empirical estimate is about 1.70
with a corresponding coefficient of variation of only 1/12th of the variation in the data.
Using wage data from the 1990 Census with different sets of controls, they estimated an
empirical coefficient of variation of residual wages ranging from 0.35 to 0.49. I estimate
the same dispersion measure in my model by simulating over a large number of periods
and obtain an average coefficient of variation of 0.20, which explains between 41% and
57% of the observed residual dispersion in wages, outperforming standard search-and-
matching models.

Regarding the evolution of wages over the business cycle, the average wage appears
highly procyclical. The elasticity of wages with respect to productivity (output per person)
is close to 1 in my model, slightly higher than the elasticity of wages for new hires of 0.79
estimated in Haefke, Sonntag, and van Rens (2013) using CPS data. However, without
any explicit mechanism for wage stickiness, the model is unable to replicate the elasticity
for all the workers in the CPS, estimated at 0.24 by the same authors. An interesting
extension would be to introduce risk aversion for workers. Combined with the dynamic
contracting framework of the model, this extension would connect search theory to the
implicit contract literature and provide us with a theory of endogenous stickiness, in which
case this dimension could be significantly improved.
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Turning to earnings risk over the business cycle, Guvenen, Ozkan, and Song (2014) re-
ported, using administrative data, that the distribution of transitory shocks to log earnings
are negatively skewed with a skewness ranging between −0�08 and −0�23. Computing an-
nual growth im log earnings in my model, I find an average skewness of −0�04 that can
fall as low as −0�27 over long simulations. However, the model is unable to produce the
same cyclicality of earnings risk described by the same authors. They found substantial
evidence of countercyclical risk in the left-tail of earnings shocks. My model predicts a
non-negligible time-variation in earnings risk (8% standard deviation in the dispersion
of transitory log earnings shocks). Consistent with their findings, the right-tail risk, mea-
sured by the difference between the 90th percentile (P90) and the 50th percentile (P50) in
log earnings growth, is procyclical. However, the left-tail risk, measured by P50-P10 (10th
percentile), is not countercyclical, as the authors showed, but procylical in my model. The
reason behind this failure appears to stem from the feature of the model, shared by most
search models, that the value of earnings by unemployed workers, b in my notation, is
constant over the cycle. As a result, workers in the model face strong procyclical upside
risk due to the many opportunities to climb the job ladder in good times, but face little
downside risk in recessions as the value of unemployment bounds earnings losses from
below.

F.2. Size-Wage Differential

A common finding in the literature is that firm size can explain part of the variation
in wages. Brown and Medoff (1989) reported that, in a variety of data sets, a substantial
size-wage differential remains despite various controls for labor quality and institutions:
employees working at large firms earn higher wages than employees at small firms. To
investigate whether the model can reproduce this finding, I compute the wages in every
establishment at the aggregate steady state. I then run the following regression:

log(wage)= α+β log(employment)+ ε�
and evaluate by how much the wage of a worker varies with establishment size. I ob-
tain a coefficient β = 0�008, about half of the estimate of 0.014 reported in that paper.
Interestingly, this size-wage differential can be explained by a mechanism due to search
frictions quite different from standard explanations based on labor quality or institutions.
The mechanism at work in the model is due to the way firms deal with worker incen-
tives. In this economy, firms that want to expand prefer to retain their current workers
in order to save on hiring costs. To do so, they must promise them higher continuation
utility. Therefore, all other things being equal, firms that grow tend to offer higher wages
on average than firms that shrink. Turning back to firm size, large firms are those that
received high idiosyncratic shocks and have grown in the recent past. As a result, they
inherit high-paying contracts from the previous periods and tend to pay high wages. This
mechanism emphasizes establishment growth as a key determinant for wages. Schmieder
(2009) found supporting evidence in German matched employer-employee data that fast
growing establishment offer higher wages.

F.3. Relationship to Implicit Contract Literature

The contracting framework used in this paper is reminiscent of the implicit contract
literature initiated by Baily (1974) and Azariadis (1975). These articles considered the
optimal contractual arrangement between risk-neutral firms and risk-averse workers and
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determined conditions under which the optimal contract insulated workers from aggre-
gate labor market conditions by offering rigid wages. The question whether wages are set
by spot markets or implicit contracts inspired a large empirical literature led by Beaudry
and DiNardo (1991) that derived simple testable implications of both theories and applied
them on U.S. panel data. In particular, Beaudry and DiNardo (1991) showed that wages
determined on spot markets should solely adjust to current labor market conditions, while
wages determined by implicit contracts should display history dependence. Using the ag-
gregate unemployment rate as a proxy for labor market conditions, the authors designed
a simple empirical test by running panel regressions of log wages on current unemploy-
ment (spot market model), unemployment at the start of the job (contract model with
low mobility), and the minimum unemployment rate since the start of the job (contract
model with high mobility) in addition to a vector of individual characteristics. Their re-
sults showed a greater dependence of wages on past rather than current unemployment
rates, offering support to the contracting approach.

These results were later criticized by Hagedorn and Manovskii (2013) who argued that
such dependence of wages on past unemployment rates could be driven by selection and
was consistent with a search model where wages depended solely on current labor market
conditions. They showed, in particular, that past unemployment rates were a proxy for
match quality and that using better measures of match quality virtually eradicated the
dependence on past unemployment rates.

In this paper, wages are determined through long-term contracts. However, several fea-
tures distinguish this framework from the implicit contract literature. First, workers are
risk neutral, so that the motive for firms to insure their workers against income risk is
absent. Second, the frictions faced at the contracting stage are different: under lack of
commitment from workers, as considered in Sections E.2 and F, firms use wages to incen-
tivize workers to stay or direct their search on the job to some specific market segments.
In the resulting incentive-compatible contract, wages are uniquely determined and solely
depend on a firm’s state at the beginning of a period (s′� z′;n). Wages are, in particu-
lar, independent from past unemployment rates. In that sense, this paper is closer to the
search model of Hagedorn and Manovskii (2013) in which wages only depend on current
conditions, but in which the dynamic matching of workers with firms over the business
cycle leads to a dynamic selection of jobs consistent with the above results.

Simulating a population of workers from my model for a large number of periods, I first
replicate the results from Beaudry and DiNardo (1991) by running the same regressions
on simulated wages in Table VI. Consistent with their findings, I find a large negative,
significant impact of current and past unemployment rates on wages in columns 1 to 3.
Testing the three specifications at the same time in column 4, current, initial, and mini-
mum unemployment rates all preserve their negative, highly significant impact. However,
consistent with the findings of Hagedorn and Manovskii (2013), this dependence is largely
driven by spurious correlations and selection, to the extent that past unemployment rates
correlate with the distribution of existing jobs. Controlling for the aggregate state of the
economy as captured by the two shocks yt and vt , column 5 shows that the dependence on
the current unemployment rate vanishes. Next, controlling for a measure of productivity
for current existing jobs in column 6, output-per-person in the present case, cancels out
the dependence on the unemployment rate at the start of the job.32 Similarly, my find-

32Aggregate conditions in the past, as measured by the unemployment rate at the start of the job, have an
impact on the current distribution of jobs through the type and employment of firms that entered/exited in the
past. My result suggests that the initial unemployment rate proxies for the general productivity of matches in
the pool of of existing jobs.
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TABLE VI

RESULTS FROM SIMULATED WAGE REGRESSIONSa

(1) (2) (3) (4) (5) (6) (7)

Contemporaneous −4.332*** −3.535*** 0.010
unemployment rate (0.013) (0.030) (0.040)

Unemployment −3.917*** −0.063*** −0.020
at start of job (0.013) (0.034) (0.024)

Minimum unemployment −4.285*** −0.888*** 0.013
since start of job (0.014) (0.041) (0.030)

Aggregate productivity yt 1.171*** 0.957*** 0.986***
(0.008) (0.026) (0.026)

Volatility vt 0.241*** 0.201*** 0.211***
(0.003) (0.005) (0.005)

Output-per-person 0.078*** 0.071***
(0.009) (0.009)

Job tenure 0.002***
(2.9e−5)

Constant 0.769*** 0.753*** 0.755*** 0.772*** 0.445*** 0.294*** 0.285***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.018) (0.018)

aStandard errors are in parentheses. The dependent variable is the logarithm of monthly wages simulated from a population of
1000 workers for 1200 periods (100 years). Output-per-person is the aggregate output divided by employment in a given period. The
job tenure variable is the number of months less than a year that a worker has spent in the same job.

ings suggest that the minimum unemployment rate also proxies for match quality: a low
minimum unemployment rate, distinct from the current rate, proxies for a long tenure in
a given job. Long tenures indicate good matches and higher wages. Adding a control for
job tenure in column 7 eradicates the dependence on the minimum unemployment rate.

As a conclusion, this model is able to replicate the observation of history dependence of
wages from Beaudry and DiNardo (1991), but this dependence is driven by the dynamic
selection of jobs, consistent with the recent findings of Hagedorn and Manovskii (2013).

APPENDIX G: PROOFS

G.1. Proofs of Section 2.6

PROOF OF PROPOSITION 1: Let me first introduce some notation. For a generic firm
policy γ = {{ω(j)}j∈[0�n]� d(s′� z′)�ni(s′� z′)�xi(s′� z′)}, define J̃(s� z�n�γ) the value of a
firm evaluated at that policy in the current period:

J̃(s� z�n�γ)= ey(s)+zF(n)− kf −
∫ n

0
w(j)dj

+βE
{
(1 − d)

(
−ni c

q
(
θ
(
s′�xi
)) + J

(
s′� z′� n′�

{
Ŵ ′(s′� z′; j′)}

j′∈[0�n′]
))}

�

subject to (4) and (5). Define the corresponding surplus:

Ṽ(s� z�n�γ)≡ J(s� z�n�γ)+
∫ n

0
W
(
s� z�ω(j)

)
dj

= ey(s)+zF(n)− kf +βE
{
ndU
(
s′
)+ (1 − d)

[
U
(
s′
)∫ n

0
τ dj
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+
∫ n

0
(1 − τ)λp(θ(s′�x))xdj − ni c

q
(
θ
(
s′�xi
)) (22)

+ J
(
s′� z′� n′�

{
Ŵ ′(s′� z′; j′)}

j′∈[0�n′]
)

+
∫
(1 − τ)(1 − λp(θ(s′�x)))W dj

]}
�

Under this notation, for any optimal policy γ∗, we have J(s� z�n� {W (j)}j∈[0�n]) =
J̃(s� z�n�γ∗). The proof proceeds in the following steps: (a) I show that the promise-
keeping constraint for incumbent workers (6) must bind for any optimal policy γ∗,
(b) I show the equivalence between the maximization of J̃ and Ṽ, (c) I show how the
maximization of Ṽ can be equivalently written under the form of equation (7).

(a) We can write the firm’s problem as

J
(
s� z�n�

{
W (j)
}
j∈[0�n]
)= max

γ
J̃(s� z�n�γ)

subject to (4), (5) and

W (j)≤ W
(
s� z;ω(j))� ∀j ∈ [0� n]�

The wage w(j) only appears linearly in the term
∫ n

0 w(j)dj and in the promise-keeping
constraint. In particular, it does not affect the incentive structure of the problem. It is
therefore optimal to offer the lowest possible wage, so that the promise-keeping con-
straint binds with equality. For a given policy γ = {{w�τ�x�W ′}j∈[0�n]� d�ni� xi}, the optimal
wage w(j) is such that W (j)= W(s� z;ω(j)), that is,

w(j)=W (j)−βE[(d(s′� z′)+ (1 − d(s′� z′))τ(s′� z′; j))U(s′)
+ (1 − d(s′� z′))(1 − τ(s′� z′; j))λp(θ(s′�x(s′� z′; j)))x(s′� z′; j) (23)

+ (1 − d(s′� z′))(1 − τ(s′� z′; j))(1 − λp(θ(s′�x(s′� z′; j))))W ′(s′� z′; j)]� ∀j�
The firm’s problem is thus equivalent to

J
(
s� z�n�

{
W (j)
}
j∈[0�n]
)= max

{ω(j)}j∈[0�n]�d(s′�z′)�
ni(s

′�z′)�xi(s′�z′)

J̃
(
s� z�n�

{{
ω(j)
}
j∈[0�n]� d�xi� ni

})

subject to (4), (5), and (23).

(b) Let me now define the surplus maximization problem

V(s� z�n)= max
γ={{ω(j)}j∈[0�n]�

d�ni�xi}

Ṽ(s� z�n�γ)

subject to (4) and (5).

The surplus is invariant with the wage, so for any decision rules {{τ�x�W ′}j∈[0�n],d, ni, xi},
it is always possible to set the wagew(j) according to (23). In that case, from the definition
of the surplus (22),

Ṽ(s� z�n�γ)= J̃(s� z�n�γ)+
∫ n

0
W (j)dj�
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In this equation,
∫ n

0 W (j)dj is a predetermined constant. Therefore, it is absolutely equiv-
alent to maximize the left-hand side under constraints (4) and (5), as to maximize the
right-hand side under the same constraints with the addition of (23), which corresponds
to the firm’s problem according to step (i). We therefore conclude that

V(s� z�n)= J
(
s� z�n�

{
W (j)
}
j∈[0�n]
)+ ∫ n

0
W (j)dj�

Any policy that solves the firm’s problem must maximize the joint surplus. On the other
hand, for any policy γ = {{τ�x�W ′}j∈[0�n]� d�ni� xi} that maximizes the joint surplus, there
exists a wage (set according to (23)) that maximizes the firm’s profits.

(c) Because of the above equivalence, we may now write the surplus maximization prob-
lem as

V(s� z�n)= max
{τ�x�W ′}j∈[0�n]�

d�ni�xi

ey(s)+zF(n)− kf +βE
{
nU
(
s′
)
d

+ (1 − d)
[

U
(
s′
)∫ n

0
τ dj +

∫
(1 − τ)λp(θ(s′�x))xdj − ni c

q
(
θ
(
s′�xi
))

+ J
(
s′� z′� n′�

{
Ŵ ′(s′� z′; j′)}

j′∈[0�n′]
)+ ∫ (1 − τ)(1 − λp(θ(s′�x)))W ′ dj

]
︸ ︷︷ ︸

=V(s′�z′�n′)−nixi

}

(24)

= max
{τ�x�W ′}j∈[0�n]�

d�ni�xi

ey(s)+zF(n)− kf +βE
{
nU
(
s′
)
d+ (1 − d)

[
U
(
s′
)∫ n

0
τ dj

+
∫
(1 − τ)λp(θ(s′�x))xdj − ni

(
c

q
(
θ
(
s′�xi
)) + xi)+ V

(
s′� z′� n′)]}�

subject to (4).
This expression shows that the distribution of continuation utilities, {W ′(s′� z′; j)}j∈[0�n],

is irrelevant for the joint surplus. The joint surplus maximization problem may be equiv-
alently written as

V(s� z�n)= max
d(s′�z′)�ni(s′�z′)�xi(s′�z′)�
{τ(s′�z′;j)�x(s′�z′;j)}j∈[0�n]

ey(s)+zF(n)− kf +βE
{
ndU
(
s′
)

+ (1 − d)
[

U
(
s′
)∫ n

0
τ dj +

∫ n

0
(1 − τ)λp(θ(s′�x))xdj

−
(

c

q
(
θ
(
s′�xi
)) + xi)ni + V

(
s′� z′� n′)]}

subject to (4), which is the definition of the surplus in equation (7). Because the joint
surplus does not depend on the distribution of contracts, we can conclude, in particular,
that any combination of wages and continuation utilities {w(j)�W ′(s′� z′; j)} that satisfy
(6) with equality implement the allocation and maximize profits. In practice, any profile of
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future promised utilities {W ′(s′� z′; j)}j∈[0�n] may be implemented as long as wages are set
according to (23). There is thus a multiplicity of contracts that implement the allocation
and these contracts can easily be solved. Q.E.D.

G.2. Proofs of Section 2.9

This section demonstrates all the proofs of existence, efficiency, and uniqueness.

G.2.1. Proposition 2(i): Existence

Let me first introduce a number of assumptions and definitions required to show the
existence of a solution to the free-entry condition and joint surplus maximization problem.
Denote Z = {z < · · ·< z}, y = maxs∈S y(s), and y = mins∈S y(s).

ASSUMPTION 1: F is bi-Lipschitz continuous, that is, there exists (αF�αF) such that

∀(n1� n2)� αF |n2 − n1| ≤
∣∣F(n2)− F(n1)

∣∣≤ αF |n2 − n1|�

ASSUMPTION 2: (i) p�q are twice continuously differentiable; (ii) p is strictly increasing
and strictly concave; q is strictly decreasing and strictly convex; (iii) p(0) = 0, q(0) = 1;
(iv) p ◦ q−1 is strictly concave.33

To prove the existence of a solution to the free-entry problem, I make one addi-
tional assumption about the distribution of idiosyncratic productivity of entrants. De-
note g′

z(s� z) the cross-sectional distribution of z′ one period after entry in state s, that
is, gz′(s� z′)=∑z∈Z gz(z)πz(z

′|s� z).

ASSUMPTION 3: For all s ∈ S , the distribution gz first-order stochastically dominates
gz′(s� z

′).

Assumption 3 is an assumption on the productivity process which guarantees that en-
trants are (weakly) more productive on average than incumbents. This is a key condition
to ensure that a nonzero measure of entrants hire a strictly positive number of workers
upon entry, so that the free-entry condition may effectively pin down the value of κ in
equilibrium.

To proceed with the proof of Proposition 2(i), I show that there exists a common so-
lution to the joint surplus maximization, free-entry condition, and unemployed workers’
problem. This establishes the behavior of variables ({τ(s′� z′; j)�x(s′� z′; j)}nj=0, d(s′� z′),
ni(s

′� z′), xi(s′� z′)) without the need to describe the set of contracts that implement the
efficient allocation. Contracts may then be solved following the proof of Proposition 1 or
using the refinement of Section E.2 in this appendix when the assumption of commitment
on the worker side is relaxed. Let us first define the set where our optimal surplus V lies
and introduce our last assumption on parameters. Let n be an arbitrary upper bound on
employment chosen sufficiently large so that it does not constrain the equilibrium.

DEFINITION 1: Let V be the set of value functions V : (s;z�n) ∈ S ×Z × [0� n] −→ R

(i) strictly increasing in n, (ii) satisfying ∀s�∑z gz(z)[V (s� z�0)]+ ≤ βke, (iii) bounded

33Part (iv) is a regularity condition ensuring that workers’ problem is well defined and concave.
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in [V �V ], (iv) bi-Lipschitz continuous in n such that

∀V ∈ V�∀(s� z)�∀n(1) ≥ n(2)�
αV
(
n(2) − n(1))≤ V (s� z�n(2))− V (s� z�n(1))≤ αV (n(2) − n(1))�

with

αV = ey+zαF +β(1 −β)−1b > 0�

αV = (1 −β)−1
(
ey+zαF +β(λx+ (1 −β)−1(b+βx)))�

V = −kf �
V = (1 −β)−1

[
ey+zF(n)− kf +βn(λx+ (1 −β)−1(b+βx))]�

ASSUMPTION 4: Assume n > α−1
V (ke + kf ).

Assumption 4 is a sufficient condition on parameters that guarantees that there is always
a solution to the free-entry problem. We can now establish the existence of a solution to
the free-entry problem.

LEMMA 1: Under Assumptions 1–4, for V ∈ V , s ∈ S , the free-entry problem (9)–(12)
admits a solution. There exists a unique hiring cost per worker κ(s), an optimal level of hiring
for entering firms nVe (s� z), and exit decision dVe (s� z) such that

1. submarket x is active ⇒ θV (s�x) > 0 ⇒ c/q(θ(s�x))+ x= κV (s),
2. for all s ∈ S ,

ke = max
ne(s�z)

∑
z

gz(z)
[
V
(
s� z�ne(s� z)

)− κV (s)ne(s� z)]+�
3.

θV (s�x)=
⎧⎨
⎩q

−1

(
c

κV (s)− x
)

for x≤ x≤ κV (s)− c�
0 for x≥ κV (s)− c�

PROOF: For V ∈ V , s ∈ S , and κ ∈ R, let us define the following auxiliary function:

ψs�V (κ)= max
0≤ns�Ve (z)≤n

∑
z

gz(z)
[
V
(
s� z�ns�Ve (z)

)− κns�Ve (z)]+�
The objective of this proof is to show that, for all s ∈ S , there exists a unique κV (s)
such that ke = ψs�V (κ(s)). Because V is continuous in n ∈ [0� n] and z has a finite sup-
port, ψs�V is a well-defined function for κ ∈ R. The Theorem of the Maximum tells us
that ψV is a continuous function of κ. Notice that V being increasing in n, ψs�V (0) =∑

z gz(z)[V (s� z�n)]+. Also, since V is bi-Lipschitz continuous with parameters (αV �αV ),
for κ≥ αV , the maximum is reached at ne = 0 and ψs�V (κ)=∑z gz(z)[V (s� z�0)]+. Let us
show that ψs�V is a decreasing function of κ. Take κ1 < κ2 and the corresponding ns�Ve�i (z),
i= 1�2, that solve the maximization problem. Denote Z s�V

i = {z ∈ Z|V s�V (s� z�ns�Ve�i (z))−
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κin
s�V
e�i (z)≥ 0}. Then we have

ψs�V (κ1)−ψs�V (κ2)=
∑
z

gz(z)
[
V
(
s� z�ns�Ve�1 (z)

)− κ1n
s�V
e�1 (z)
]+

−
∑
z

gz(z)
[
V
(
s� z�ns�Ve�2 (z)

)− κ2n
s�V
e�2 (z)
]+

≥
∑
z∈Zs�V

2

gz(z)
[
V
(
s� z�ns�Ve�2 (z)

)− κ1n
s�V
e�2 (z)
]

−
∑
z∈Zs�V

2

gz(z)
[
V
(
s� z�ns�Ve�2 (z)

)− κ2n
s�V
e�2 (z)
]

≥ (κ2 − κ1)
∑
z∈Zs�V

2

gz(z)n
s�V
e�2 (z)�

Symmetrically, we can establish that ψs�V (κ1)−ψs�V (κ2)≤ (κ2 − κ1)
∑

z∈Zs�V
1
gz(z)n

s�V
e�1 (z).

Thus ψV is decreasing. But this also tells us that if we denote κ the smallest κ such that
ψs�V (κ)=∑z gz(z)[ϕs�V (z�0)]+ (i.e., for which ne = 0 is optimal for all z), then we have
that ψV strictly decreases on [0�κ] from

∑
z gz(z)[V (s� z�n)]+ to

∑
z gz(z)[V (s� z�0)]+

and remains constant thereafter.
If
∑

z gz(z)[V (s� z�0)]+ < ke <∑z gz(z)[V (s� z�n)]+, the Intermediate Value Theorem
tells us that there exists a unique κV (s) such that ψs�V (κV (s)) = ke. This establishes the
existence of a solution to the free-entry problem. Part 1. of the proposition ensues:

θV (s�x) > 0 ⇔ c/q
(
θ(s�x)

)+ x= κV (s)�
Also, we have 2.: there exists a nVe (s� z)≥ 0 chosen by entering firms so that

ke =
∑
z

gz(z)
[
V
(
s� z�nVe (s� z)

)− κnVe (s� z)]+
and a corresponding exit decision de(s� z).

To conclude, we only need to check that∑
z

gz(z)
[
V (s� z�0)

]+
<ke <

∑
z

gz(z)
[
V (s� z�n)

]+
�

The left-hand side is guaranteed by the fact that V ∈ V . The right-hand side is guaranteed
by Assumption 4, as we have∑

z

gz(z)
[
V (s� z�n)

]+ ≥
∑
z

gz(z)V (s� z�n)≥
∑
z

gz(z)
(
V (s� z�0)+ αϕn

)
≥ −kf + αV n > ke�

because of Assumption 4.
3. The complementary slackness condition (10) implies that either

θ(s�x)= 0 or c/q
(
θ(s�x)

)+ x= κV (s)�
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For x > κV (s) − c, the second expression admits no solution, as the probability q must
remain below 1. So θ must be 0 in this region. For x ≤ κV (s) − c, it admits the unique
solution q−1( c

κV (s)−x). In this region, c/q(0) + x < κV , so ψs�V (c/q(0) + x) > ke. θ(s�x)
cannot be 0; otherwise, it would violate the free-entry condition (12). To summarize our
results:

θV (s�x)=
⎧⎨
⎩q

−1

(
c

κV (s�x)− x
)

for x≤ x≤ κV (s)− c�
0 for x≥ κV (s)− c� Q.E.D.

We now prove the main proposition that establishes the existence of a quasi-
equilibrium.

PROPOSITION 5: Under Assumptions 1–4, there exists a block-recursive solution to equa-
tions (1)–(12), that is, the mapping T : V −→ V such that

TV (s� z�n)= max
d(s′�z′)�ni(s′�z′)�xi(s′�z′)�
{τ(s′�z′;j)�x(s′�z′;j)}j∈[0�n]

ey(s)+zF(n)− kf +βE
{
ndUV
(
s′
)

+ (1 − d)
[

UV
(
s′
)∫ n

0
τ dj +

∫ n

0
(1 − τ)λp(θV (s′�x))xdj

− κV (s′)ni + V (s′� z′� n′)]}

with n′ = ∫ (1 − τ(j))(1 − λp(θV (s�x(j))))dj+ ni, (θV �κV ) solution to the free-entry prob-
lem (9)–(12), and UV solution to (1) admits a fixed point.

PROOF: To prove the existence, I will proceed in four steps: (1) establish existence,
uniqueness, and boundedness of UV (s) given some V ∈ V , (2) show that T is a well-
defined mapping from V to V , (3) T is a continuous mapping, (4) T(V) is an equicontinu-
ous family. Since V is closed, bounded, and convex, using Schauder’s Fixed Point Theorem
as stated in Stokey, Lucas, and Prescott (1989, Theorem 17.4, p. 520), this will establish
the existence of a solution V in V to Bellman equation (7).

Step 1. For V ∈ V , Lemma 1 gives the existence and uniqueness of functions κV , nVe ,
dVe , and θV . We are going to show that the following mapping MV that defines UV is a
contraction from the space of functions U : S −→ R, bounded between some U and U ,
to be defined later:

MVU(s)= max
xu(s′)

b+βE{p(θV (s′�xu))xu + (1 −p(θV (s′�xu)))U(s′)}�
Applying Blackwell’s sufficient conditions for a contraction mapping, check discounting:

for a≥ 0,

MV (U + a)= max
xu(s′)

b+βE{p(θV (s′�xu))xu + (1 −p(θV (s′�xu)))(U(s′)+ a)}
≤MVU +βa�
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Check monotonicity: for U1 ≤U2, and corresponding optimal choices x(i)u , for i= 1�2,

MV (U2)−MV (U1)

≥ (1 −p(θV (s�x(2)u )))βE(U2

(
s′
)−U1

(
s′
))≥ 0�

It is easy to show now that if U ≤U ≤U , then

b+βU ≤MVU ≤ b+β(x+U)�
The unique fixed point of MV is therefore bounded between U = (1 − β)−1b and U =
(1 −β)−1(b+βx).

Step 2. Let us now check that T is a well-defined mapping from V to V . For what follows,
it is useful to denote some policy γ = {{τ(s′� z′; j)�x(s′� z′; j)}j∈[0�n]� d(s′� z′)�ni(s′� z′)�
xi(s

′� z′)}, and define

ΦV (s� z�n�γ)= ey(s)+zF(n)− kf +βE
{
ndUV
(
s′
)+ (1 − d)

[
UV
(
s′
)∫ n

0
τ dj

+
∫ n

0
(1 − τ)λp(θV (s′�x))xdj − κV (s′)ni + V (s′� z′� n′)]}�

ΦV denotes the current joint surplus evaluated at some arbitrary policy γ.
(i) If V ∈ V , then TV is strictly increasing in n. Take n(1) < n(2) and the corresponding

optimal policies γ(1) and γ(2):

TV
(
s� z�n(2)

)− TV (s� z�n(1))=Φ(s� z�n(2)� γ(2))−Φ(s� z�n(1)� γ(1))
≥Φ(s� z�n(2)� γ̃)−Φ(s� z�n(1)� γ(1))

with a suboptimal policy γ̃ = {{τ̃(s′� z′; j)� x̃(s′� z′; j)}j∈[0�n(2)]� d̃� ñi� x̃i} such that x̃(j) =
x(j)(1), d̃ = d(1), ñi = n(1)i , x̃i = x(1)i , and τ̃(j) = τ(j)(1) for j ∈ [0� n(1)] and 1 for j ∈
[n(1)� n(2)]. In that case, we have ñ= n(1), and many terms cancel to yield the desired result
that TV is strictly increasing in n:

TV
(
s� z�n(2)

)− TV (s� z�n(1))≥Φ(s� z�n(2)� γ̃)−Φ(s� z�n(1)� γ1

)
≥ ey(s)+z

(
F
(
n(2)
)− F(n(1)))+βE[(n(2) − n(1))UV

(
s′
)]
> 0�

(ii) If V ∈ V , then ∀s ∈ S�∑z∈Z gz(z)TV (s� z�0)+ ≤ βke. Recall that

TV (s� z�0)= max
d�ni�xi

−kf +βE{(1 − d)[−κV (s)ni +βEV (s′� z′� ni
)]}
�

Since κV is the solution to the free-entry condition and because of Assumption 3, we have

TV (s� z�0)≤ − kf +βke�
Since TV (s� z�0)≥ −kf , we have

TV (s� z�0)+ = max
{
TV (s� z�0)�0

}≤ max
{
TV (s� z�0)+ kf �0

}
≤ TV (s� z�0)+ kf ≤ βke�

and therefore
∑

z∈Z gz(z)TV (s� z�0)+ ≤ βke.
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(iii) If V ∈ V , then TV is bounded in [V �V ] with V = 0 and V = (1 −β)−1[ey+zF(n)−
kf +βn(λx+ (1 −β)−1(b+βx))]:

TV (s� z�n)≤ ey+zF(n)− kf +β(nU + nλx+ V )≤ V �
Now, for the lower bound:

TV (s� z�n)≥Φ(s� z�n� γ̃)
≥ ey+zF(n)− kf +βnU ≥ −kf = V

with suboptimal policy γ̃ such that d̃ = 1.
(iv) If V ∈ V , then

∀(s� z)�∀n2 ≥ n1� αV (n2 − n1)≤ TV (s� z�n2)− TV (s� z�n1)≤ αV (n2 − n1)�

Take n2 ≥ n1 and corresponding optimal policies γi, i= 1�2. Choose a suboptimal policy
γ̃ such that d̃ = d2, x̃(s′� z′; j)= x2(s

′� z′; j), ñi = ni2, x̃i = xi2, τ̃(s′� z′; j)= τ2(s
′� z′; j) for

j ∈ [0� n1]:
TV (s� z�n2)− TV (s� z�n1)=Φ(s� z�n2�γ2)−Φ(s� z�n1�γ1)

≤Φ(s� z�n2�γ2)−Φ(s� z�n1� γ̃)

≤ ey+z
(
F(n2)− F(n1)

)+βE{(n2 − n1)d2UV
(
s′
)

+ (1 − d2)

(
UV
(
s′
)∫ n2

n1

τ2 dj+

+
∫ n2

n1

(1 − τ2)λp
V (x2)x2 dj + V (s� z�n′

2

)− V (s� z� ñ′
1

))}
≤ [ey+zαF +β(U + +λx+ αV )

]
(n2 − n1)= αV (n2 − n1)�

Proceed similarly for the other side and choose a policy γ̃ such that d̃ = d1, x̃(s′� z′; j)=
x1(s

′� z′; j), ñi = ni1, x̃i = xi1, τ̃(s′� z′; j)= τ1(s
′� z′; j) for j ∈ [0� n1] and 1 for j ∈ [n1� n2]:

TV (s� z�n2)− TV (s� z�n1)=Φ(s� z�n2�γ2)−Φ(s� z�n1�γ1)

≥Φ(s� z�n2� γ̃)−Φ(s� z�n1�γ1)

≥ ey+z
(
F(n2)− F(n1)

)+βE{(n2 − n1)d1UV
(
s′
)

+ (1 − d1)(n2 − n1)UV
(
s′
)}

≥ [ey+zαF +βU](n2 − n1)= αV (n2 − n1)�

Therefore, TV is bi-Lipschitz continuous with the desired coefficients.
Step 3. We are now going to show that T : V −→ V is a continuous mapping.

Denote by ‖ · ‖ the infinite norm, that is, ‖V ‖ = sup(s�z�n)∈S×Z×[0�n] V (s� z�n). Take
V1� V2 ∈ V . For (s� z�n) fixed, denote by γk, k = 1�2, the corresponding optimal poli-
cies. Denote γ̃ the policy exactly equal to γ1 except that x̃(s′� z′; j) is chosen such that
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p(θV1(s′�x′
1)) = p(θV2(s′� x̃′)). This means, in particular, that x̃(s′� z′; j) = x1(s

′� z′; j) +
κV2(s′)− κV1(s′)�∀(s′� z′):

TV1(s� z�n)− TV2(s� z�n)=ΦV1(s� z�n�γ1)−ΦV2(s� z�n�γ2)

≤ΦV1(s� z�n�γ1)−ΦV2(s� z�n� γ̃)

≤ βE
{
d1n
(
UV1
(
s′
)− UV2

(
s′
))

+ (1 − d1)

((
UV1
(
s′
)− UV2

(
s′
))∫

τ1 dj

− (κV1
(
s′
)− κV2

(
s′
))
ni1

+
∫
(1 − τ1)λp

(
θV1
(
s′�x1

))
(x1 − x̃)dj

+ V1

(
s′� z′� n′

1

)− V2

(
s′� z′� n′

1

))}
≤ β[n∥∥UV1 − UV2

∥∥+ n∥∥κV1 − κV2
∥∥

+ nλ∥∥κV1 − κV2
∥∥+ ‖V1 − V2‖

]
�

According to Lemma 2 below, we can control each term:

TV1(y� s� z�n)− TV2(y� s� z�n)≤ β[nαU + n(1 + λ)ακ + 1
]‖V1 − V2‖�

which can be made arbitrarily small as ‖V1 −V2‖ gets smaller. Therefore, T is a continuous
mapping.

LEMMA 2: If V1� V2 ∈ V , then
1. ‖κV1 − κV2‖ ≤ ακ‖V1 − V2‖, with ακ = β

nmin
,

2. ‖θV1 − θV2‖ ≤ αθ‖V1 − V2‖, with αθ = β

c|q′(θmax)|nmin
,

3. ‖UV1 − UV2‖ ≤ αU‖V1 − V2‖, with αU = (1 −β)−1βακ.

PROOF: To prove the lemma, we first need to establish the following two results. Let us
prove that there exists θmax > 0 such that

∀V ∈ V� θV (·)≤ θmax�

and there exists nmin > 0 such that

∀V ∈ V�
∑
z

gz(z)n
V
e (s� z)≥ nmin�

The first result can be established by the fact that κV ≤ αV as we showed in Lemma 1.
Then for some x ∈ [x�x],

c/q
(
θV (s�x)

)+ x≤ αV ⇒ q
(
θV (s�x)

)≥ c(αV − x)−1

⇒ θV (s�x)≤ q−1
[
c(αV − x)−1

]
�

Setting θmax = q−1[c(αV − x)−1] yields the desired result.
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Now, for the second result, remember the free-entry condition:

ke =
∑

gz(z)
[
V
(
s� z�ns�Ve (z)

)− κV (s)ns�Ve (z)]+�
Then, using the fact that V is bi-Lipschitz,

ke ≤
∑

gz(z)
[
V
(
s� z�ns�Ve (z)

)]+ ≤
∑

gz(z)
[
V (s� z�0)+ αV ns�Ve (z)

]+
≤ αV
∑

gz(z)n
s�V
e (z)+

∑
gz(z)
[−kf +βEV (s′� z′�0

)]+
�

Since
∑
gz(z)[−kf +βEV (s′� z′�0)]+ ≤ βke as we argued before, we have

Egzn
V
e ≥ α−1

V (1 −β)ke ≡ nmin�

(i) The free-entry condition gives us, for i= 1�2,

ke =
∑
z

gz(z)
[
V
(
s� z�ns�Vie (z)

)− κVi(s)ns�Vie (z)
]+
�

Denote Zi = {z ∈Z|V (s� z�ns�Vie (z))− κVins�Vie (z)≥ 0}� i= 1�2. Subtracting both:

0 =
∑
z

gz(z)
[
V
(
s� z�ns�V1

e (z)
)− κV1(s)ns�V1

e (z)
]+

−
∑
z

gz(z)
[
V
(
s� z�ns�V2

e (z)
)− κV2(s)ns�V2

e (z)
]+

≥
∑
z∈Z2

gz(z)
[(
κV2(s)− κV1(s)

)
ns�V2
e (z)

+βE[V1

(
s� z�ns�V2

e (z)
)− V2

(
s� z�ns�V2

e (z)
)]]
�

which yields

κV2(s)− κV1(s)≤ β

nmin
‖V1 − V2‖�

Symmetrically, establish that κV1(s)−κV2(s)≤ β

nmin
‖V1 −V2‖, which establishes the desired

result for ακ = β/nmin.
(ii) Pick an s ∈ S and x ∈ [x�x], consider the case in which submarket x is open under

value functions V1 and V2. In that case, we know that

κVi(s)= c

q
(
θVi(s�x)

) + x�
therefore

c

q
(
θV1(s�x)

) − c

q
(
θV2(s�x)

) = κV1(s)− κV2(s)�

so that

q
(
θV2(s�x)

)− q(θV1(s�x)
)= c−1q

(
θV1(s�x)

)
q
(
θV2(s�x)

)(
κV1(s)− κV2(s)

)
�
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and we can easily conclude that

∣∣θV2(s�x)− θV1(s�x)
∣∣≤ 1

c
∣∣q′(θmax)

∣∣ (κV1(s)− κV2(s)
)≤ β

c
∣∣q′(θmax)

∣∣nmin
‖V1 − V2‖�

Now consider the case in which submarket x is active under value V2, but not under
value V1. We have

κV2(s)= c

q
(
θV2(s�x)

) + x�
κV1(s) ≤ c

q
(
θV1(s�x)

) + x�
but also θV1(s�x)= 0 and θV2(s�x) > 0 from the complementary slackness condition. We
can still derive the inequality

c

q
(
θV2(s�x)

) − c

q
(
θV1(s�x)

) ≤ κV2(s)− κV1(s)�

so that

0 ≤ θV2(s�x)− θV1(s�x)≤ β

c
∣∣q′(θmax)

∣∣nmin
‖V1 − V2‖�

Finally, the case in which submarket x is closed for both value functions is trivial,
θV1(s�x)= θV2(s�x)= 0.

(iii) Fix s. Denote by xuk�k = 1�2, the corresponding optimal choices for un-
employed workers. Pick the suboptimal policy x̃u(s

′) such that p(θV1(s′�xu1(s
′))) =

p(θV2(s′� x̃u(s′))), that is, x̃u(s′)= xu1(s
′)+ κV2(s′)− κV1(s′)�∀(s′� z′):

UV1(s)−UV2(s)

= βE[p(θV1
(
s′�xu1(s)

))
xu1

(
s′
)+ (1 −p(θV1

(
s′�xu1(s)

)))
UV1
(
s′
)]

−βE[p(θV2
(
s′�xu2(s)

))
xu2

(
s′
)+ (1 −p(θV1

(
s′�xu2(s)

)))
UV2
(
s′
)]

≤ βE[p(θV1
(
s′�xu1

(
s′
)))(

xu1

(
s′
)− x̃u(s′))

+ (1 −p(θV1
(
s′�xu1

(
s′
))))(

UV1
(
s′
)−UV2

(
s′
))]

≤ βE[p(θV1
(
s′�xu1

(
s′
)))(

κV1
(
s′
)− κV2

(
s′
))

+ (1 −p(θV1
(
s′�xu1

(
s′
))))(

UV1
(
s′
)−UV2

(
s′
))]

≤ βακ‖V1 − V2‖ +β∥∥UV1 −UV2
∥∥�

We can now conclude that∥∥UV1 −UV2
∥∥≤ (1 −β)−1ακ‖V1 − V2‖� Q.E.D.

Step 4. We can now proceed to the last step of the proof of Proposition 5. We must
show that the family T(V) is equicontinuous, that is, ∀ε > 0, there exists δ > 0 such that
for ξk = (sk� zk�nk), k= 1�2,

‖ξ1 − ξ2‖< δ ⇒ ∣∣TV (ξ1)− TV (ξ2)
∣∣< ε� ∀V ∈ V �
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Fix ε > 0 and denote ⎧⎨
⎩
ηs = min

s1 �=s2∈S
|s1 − s2|�

ηz = min
z1 �=z2∈Z

|z1 − z2|�
Choose δ <min(ηs�ηz� ε/αV ). Take (ξ1� ξ2) such that ‖ξ1 − ξ2‖ < δ. Therefore, s1 = s2

and z1 = z2. Take V ∈ V . Using the fact that V is bi-Lipschitz,∣∣TV (ξ1)− TV (ξ2)
∣∣≤ αV |n1 − n2| ≤ αV ‖ξ1 − ξ2‖< ε�

Conclusion: T(V) is equicontinuous. Schauder’s Fixed Point Theorem applies and tells
us that there exists a fixed point V to the mapping T . All other equilibrium objects U,
W, J, θ, κ and optimal policy functions are then well defined. This achieves the proof of
Proposition 5 which corresponds to Proposition 2(i) in the text. Q.E.D.

G.2.2. Proposition 2(ii): Efficiency

PROOF: To study efficiency, I now introduce the planning problem of this economy.
I proceed in four steps. First, I define the planning problem. In step 2, I simplify one
important constraint in the planner’s problem and provide an equivalent formulation.
In step 3, I show that the planner’s problem is a well-defined pseudo-concave problem
subject to quasi-concave constraints, so that the first-order conditions of the Lagrangian
problem are sufficient for optimality. Finally, I show in step 4 that a block-recursive allo-
cation, when it exists, satisfies the first-order conditions of the planner’s problem and is
therefore efficient.

Step 1. Using the same convention as in Section 2.8, I denote ut and gt(zt� nt) the un-
employment rate and distribution of firms at stage B of period t when production takes
place. For notational simplicity, I also introduce distribution gAt (zt� nt−1) which is the dis-
tribution of firms at the beginning of the period in stage A. The two distributions are
related in the following way:

gAt (zt� nt−1)=
∑
zt−1

πz(zt | st−1� zt−1)gt−1(zt−1� nt−1)�

gt(zt� nt)=
∑
nt−1

1
{
n′(st� zt;nt−1)= nt

}
gAt (zt� nt−1)

+me�t1
{
ne(st� zt)= nt

}
gz(zt)�

Since the planner can freely allocate workers between firms without respect to any
promised utility, the only relevant information concerning each labor market segment
is its tightness. Let us therefore label each submarket by its tightness, θ, instead of its cor-
responding contract, x. Denote by (θx�θi� θu) the markets chosen respectively by firms for
on-the-job search, for hirings, and the one chosen by unemployed workers to search. Fur-
thermore, all workers are identical in the eyes of the planner. Given the strict concavity of
the problem in θx�t , I focus directly on allocations in which θx�t is the same across workers
within a same firm. Similarly, as Proposition 3 will make clear, only the total number of
layoffs at the firm level is determined in equilibrium, whereas the exact distribution of
layoffs across workers in the same firm is not. I thus focus directly on allocations in which
τt is the same across workers, so that the total number of layoffs is nt−1τt . It should be
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understood that transformations of τt across workers that leave the total number of lay-
offs unchanged are also solutions of the planning problem. All decisions at time t depend
implicitly on the entire history of past aggregate shocks st = {st� st−1� � � �}. The planner’s
objective is to maximize the total welfare in the economy,

max
ut �g

A
t+1�θu�t �dt �nt �τt �

ni�t �θi�t �de�t �ne�t �θe�t

E

∑
t

βt
{
utb+

∑
zt �nt−1

gAt (zt� nt−1)
(
1 − dt(zt� nt−1)

)× · · ·

×
(

ey(st )+zt F
(
nt(zt� nt−1)

)− kf − c

q
(
θi�t(zt� nt−1)

)ni�t(zt� nt−1)

)

+me�t

[
−ke +

∑
zt

gz(zt)
(
1 − de�t(zt)

)× · · ·

×
(

ey(st )+zt F
(
ne�t(zt)

)− kf − c

q
(
θe�t(zt)

)ne�t(zt))]}�

(25)

which is the discounted sum of production net of operating cost kf and vacancy posting
cost c over all existing firms, minus total entry costs for new firms me�t every period, plus
home production b of unemployed agents. The planner is subject to the laws of motion of
the unemployment rate,

ut =
(
1 −p(θu�t)

)
ut−1 + · · ·

+
∑
zt �nt−1

nt−1

[
dt(zt� nt−1)+ (1 − dt(zt� nt−1)

)
τt(zt� nt−1)

]
gAt (zt� nt−1)�

(26)

the level employment for every firm, ∀(zt� nt−1)

nt(zt� nt−1)= nt−1

(
1 − τt(zt� nt−1)

)(
1 − λp(θx�t)

)+ ni�t(zt� nt−1)� (27)

and the distribution of firms, ∀(zt� nt−1)

gAt+1(zt+1� nt)=
∑

(zt �nt−1)|nt (zt �nt−1)=nt

(
1 − dt(zt� nt−1)

)
πz(zt+1 | st� zt)gAt (zt� nt−1)+ · · ·

+me�t

∑
zt |ne�t (zt )=nt

(
1 − de�t(zt)

)
πz(zt+1 | st� zt)gz(zt)�

(28)

In addition, the planner is subject to two additional types of constraints: a non-negativity
constraint for entry, and a constraint verifying that each labor market segment is in equi-
librium, that is, that the number of workers finding a job is equal to the number of suc-
cessful job openings on a given submarket. More precisely, in every period, the planner is
subject to

me�t ≥ 0� (29)

JFwt (θ)+ JFut (θ)= JCf
t (θ)+ JCe

t (θ)� ∀θ� (30)
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where JFWt (θ) is the total number of jobs found by incumbent workers, equal to the num-
ber of successful job-to-job transitions,

JFWt (θ)=
∑

(zt �nt−1)|θx�t (zt �nt−1)=θ
gAt (zt� nt−1)

(
1 − dt(zt� nt−1)

)× · · ·

× nt−1

(
1 − τt(zt� nt−1)

)
λp
(
θx�t(zt� nt−1)

)
�

JFUt (θ) is the number of jobs found for unemployed, equal to the number of successful
unemployed candidates,

JFut (θ)= 1(θu�t = θ)p(θu�t)ut−1�

JCf
t (θ) is the number of jobs created by incumbent firms on market θ,

JCf
t (θ)=

∑
(zt �nt−1)|θi�t (zt �nt−1)=θ

gAt (zt� nt−1)
(
1 − dt(zt� nt−1)

)
ni�t(zt� nt−1)�

and JCe
t (θ) that of entering firms,

JCe
t (θ)=me�t

∑
z|θe�t (z)=θ

gz(z)
(
1 − de�t(z)

)
ne�t(z)�

As a summary, the planner’s problem is to maximize (25) subject to constraints (26)–(30).
Step 2. The constraints defined in (30) are difficult to handle in practice. We now pro-

vide an easier equivalent formulation of the problem. Notice first that under constraint
(30), we have the following equality:∑

zt �nt−1

gAt (zt� nt−1)(1 − dt) c

q(θi�t)
ni�t +me�t

∑
zt

gz(zt)(1 − de�t) c

q(θe�t)
ne�t

= c
∑
zt �nt−1

gAt (zt� nt−1)(1 − dt)(1 − τt)λnt−1θx�t + θu�tut−1�
(31)

where I have used the identity p(θ)= θq(θ). Substituting (31) into the objective function
(25), we notice that the markets for hiring θi�t and θe�t do not affect the objective function:

max
ut �g

A
t+1�θu�t �dt �nt �

τt �ni�t �de�t �ne�t

E

∑
t

βt
{
utb+

∑
zt �nt−1

gAt (zt� nt−1)(1 − dt)
(
ey(st )+zt F(nt)− kf

)

+me�t

[
−ke +

∑
zt

gz(zt)(1 − de�t)
(
ey(st )+ztF(ne�t)− kf

)]

− c
(
θu�tut−1 +

∑
zt �nt−1

gt(zt� nt−1)nt−1λ(1 − dt)(1 − τt)θx�t
)}
�

(32)

This means that, as long as constraint (30) is satisfied, variables (θi�t� θe�t) leave aggre-
gate welfare unchanged. This result echoes our finding in the competitive equilibrium
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that firms are indifferent between markets. What this means is that we can replace con-
straint (30) by an easier one. Summing over all the submarkets, constraint (30) gives an
expression for the measure of entrants:

me�t =
(∑

zt

gz(zt)(1 − de�t)ne�t
)−1

×
[ ∑
zt �nt−1

gt(zt� nt−1)(1 − dt)
(
λnt−1p(θx�t)− ni�t

)+p(θu�t)ut−1

]
�

(33)

Because θi�t and θe�t do not affect welfare under constraint (30), it is equivalent to max-
imize (25) under constraint (30) as to maximize (32) under constraint (33). Indeed, as
long as (33) is satisfied, we can always arbitrarily distribute incumbent and entering firms
across markets so that (30) is satisfied for all active submarket.

Step 3. We now show that the planner’s problem is a well-behaved pseudo-concave
problem. To show this, I rewrite the maximization of (32) under constraints (26), (27),
(28), and (33) in such a way that the objective function is pseudo-concave and all con-
straints are quasi-concave. In that purpose, it is useful to write the summation over distri-
bution gAt (zt� nt−1) as a summation over firms’ indices, so that we can ignore the law of mo-
tion of gAt . Every firm is indexed by the period it was born, t0, and a firm-specific index, j,
among that cohort. Let me also introduce the variables ξu�t = p(θu�t) and ξ(t0�j)x�t = p(θ(t0�j)u�t )
which are useful to turn the problem concave along some dimensions. The planning prob-
lem may be equivalently written:

max
ut �θu�t �ξu�tht �vt �

{d(t0�j)t �n
(t0�j)
t �τ

(t0�j)
t �n

(t0�j)
i�t �θ

(t0�j)
x�t �ξ

(t0�j)
x�t }(t�t0�j)

E

∑
t

βt

[
t∑

t0=−∞

∫ t∏
l=t0

(
1 − d(t0�j)l

)

× (ey(st )+z(t0�j)t F
(
n
(t0�j)
t

)− kf )dj + · · ·

+ utb− cvt −me�tke

]
(34)

subject to

n
(t0�j)
t−1

(
1 − τ(t0�j)t

)(
1 − λξ(t0�j)x�t

)+ n(t0�j)i�t − n(t0�j)t = 0� (35)

t∑
t0=−∞

∫ [ t−1∏
l=t0

(
1 − d(t0�j)l

)](
1 − d(t0�j)t

)(
1 − τ(t0�j)t

)
λn

(t0�j)
t−1 θ

(t0�j)
x�t dj + · · ·

+ θu�tut−1 − vt = 0�

(36)

(1 − ξu�t)ut−1 +
t∑

t0=−∞

∫ [ t−1∏
l=t0

(
1 − d(t0�j)l

)]
n
(t0�j)
t−1

(
d
(t0j)
t + (1 − d(t0�j)t

)
τ
(t0�j)
t

)− ut = 0� (37)
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t∑
t0=−∞

∫ [ t−1∏
l=t0

(
1 − d(t0�j)l

)](
1 − d(t0�j)t

)[
n
(j)
t−1

(
1 − τ(t0�j)t

)
λξ

(t0�j)
x�t − n(t0�j)i�t

]
dj + · · ·

+ ξu�tut−1 = 0�

(38)

∫ (
1 − d(t�j)t

)
dj −me�t = 0� (39)

p(θu�t)− ξu�t = 0 and p
(
θ
(t0�j)
x�t

)− ξ(t0�j)x�t = 0� (40)

The objective function is concave and non-stationary. It is therefore pseudo-concave. The
constraints are all sums of linear and positive cross-product terms and are therefore quasi-
concave. We may then conclude that the first-order conditions of the Lagrangian problem
are sufficient to guarantee optimality.

Step 4. I will now show that a block-recursive equilibrium solves the planner’s first-order
conditions. For that purpose, let us write the Lagrangian of version (25) of the planner’s
problem, summing over firms’ indices. Write μt the Lagrange multiplier on constraint
(26) and ηt(θ) the one for each submarket equilibrium (30):

L= E

∑
t

βt

{
t∑

t0=−∞

∫ [ t−1∏
l=t0

(
1 − d(t0�j)l

)][(
1 − d(t0�j)t

)(
ey(st )+zt (t0�j)F

(
n
(t0�j)
t

)− kf − · · ·

− c

q
(
θ
(t0�j)
i�t

)n(t0�j)i�t −ηt
(
θ
(t0�j)
i�t

)
n
(t0�j)
i�t +ηt

(
θ
(t0�j)
x�t

)
n
(t0�j)
t−1

(
1 − τ(t0�j)t

)
λp
(
θ
(t0�j)
x�t

))+ · · ·

+μtn(t0�j)t−1

(
d
(t0�j)
t + (1 − d(t0�j)t

)
τ
(t0�j)
t

)]− · · ·

−me�tke + utb−μt
(
ut − ut−1

(
1 −p(θu�t)

))+ηt(θu�t)ut−1p(θu�t)

}
�

(41)

where constraint (27) is implicitly substituted. To complete the proof, I am now going
to show that a block-recursive competitive equilibrium (with non-negative entry) satis-
fies the first-order conditions of the planner. Pick a block-recursive equilibrium by {V�U�
κ∗(s)�θ∗(s�x)}. Guess the following Lagrange multipliers:

μt
(
st
)= U(st)�

ηt
(
st� θ
)= x(st� θ) s.t. x(st� θ)= θ∗−1(st� θ)�

In particular, notice that the Lagrange multipliers only depend on the current aggregate
state of the economy, st , and not on its entire history. One may worry here about the
invertibility of the equilibrium function θ∗, but we know, thanks to Lemma 1, that there
always exists a corresponding promised utility x for all values of θ in [0�∞) given by
x= κ(s)− c/q(θ).34 Given this guess, we can now recognize that the planner’s objective is
to sum the joint-surplus V of incumbent and entering firms and the utility of unemployed
workers U. Each of these problems can be solved independently and we know that the

34The bounds [x�x] are chosen so that the optimal x lies in the interior, so that we are not constraining the
equilibrium.
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policies obtained in the competitive equilibrium maximize each of them. To see this, let
us have a look at the parts of the Lagrangian corresponding to a single existing firm given
our choice of Lagrange multipliers:

max
{τt �θx�t �dt �ni�t �θit }t

E

∑
t

βt

[
t−1∏
l=−∞

(1 − dl)
]

×
[
(1 − dt)

(
ey(st )+zt F(nt)− kf −

(
c

q(θi�t)
+ x(st� θi�t)

)
ni�t + · · ·

+ nt−1(1 − τt)λp(θx�t)x(st� θx�t)
)

+ nt−1

(
dt + (1 − dt)τt

)
U(st)
]
�

which is the sequential formulation of the surplus maximization problem in the competi-
tive equilibrium. Turning to firms entering at date t:

max
{τt′ �θx�t′ �dt′ �ni�t′ �θi�t′ }t′≥t

me�t

{
−ke +E

∑
gz(zt)× · · · ×

∞∑
t′=t
βt

′−t
[
t′−1∏
l=t
(1 − dl)

]

×
[
(1 − dt′)

(
ey(st′ )+zt′F(nt′)− kf −

(
c

q(θi�t′)
+ x(st′� θi�t′)

)
ni�t

+ nt′−1(1 − τt′)λp(θx�t′)x(st′� θx�t′)
)

+ nt′−1

(
dt′ + (1 − dt′)τt′

)
U(st′)
]}
�

This is the sequential formulation of the free-entry problem solved in the competitive
equilibrium. The planner increases the number of entrants me�t as long as the expected
surplus from entering is equal to the entry cost ke. Now, let us examine the part of the
Lagrangian related to unemployed workers:

max
{θu�t �ut }t

∑
t

βt
[
utb− U(st)

(
ut − ut−1

(
1 −p(θut)

))+ ut−1p(θu�t)x(st� θu�t)
]
�

The first-order conditions with respect to ut+1 and θut are equal to

[ut] b− U(st)+βE[(1 −p(θut+1)
)
U(st+1)+p(θut+1)x(st+1� θut+1)

]= 0�

[θu�t] −ut−1p
′(θut)U(st)+ ut−1p

′(θut)x(st� θut)+ ut−1p(θu�t)xθ(st� θu�t)= 0�

We recognize in the first equation the Bellman equation faced by unemployed workers
and, in the second equation, the first-order condition corresponding to their problem.
Therefore, the policies obtained from the competitive equilibrium maximize the planner’s
problem given our choice of Lagrange multipliers. The first-order conditions are thus
satisfied. Block-recursive equilibria are thus efficient. Q.E.D.

G.3. Proofs of Appendix E

PROOF OF PROPOSITION 3: (i) Pick a contract ω = {w�τ�x�W ′� d} that imple-
ments the firm’s optimal policy. Consider now the modified contract ω̃ = {w + aΔ�τ�
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x�W ′ −Δ�d} where a= βE[(1 − d)(1 − τ)(1 − λp(θ(s′�x)))]. The worker’s utility under
this new contract is

W(s� z� ω̃)=w+ aΔ+βE[(d+ (1 − d)τ)U(s′)+ (1 − d)(1 − τ)λp(θ(s′�x))x+ · · ·
+ (1 − d)(1 − τ)(1 − λp(θ(s′�x)))(W ′ −Δ)]

= W(s� z�ω)�

The worker’s utility is unchanged. His promise-keeping constraint is thus still satisfied.
Turning to the firm’s profits:

J
(
s� z�n�

{
W (j)
}
j∈[0�n]
)= ey(s)+zF(n)− kf −

∫ n

0
w(j)dj

+βE
[(

1 − d′)(−n′
i

c

q
(
θ
(
s′�x′

i

)) + J
(
s′� z′� n′�

{
Ŵ ′}))]

= ey(s)+zF(n)− kf −
∫ n

0
w(j)dj

+βE
[(

1 − d′)(V
(
s′� z′� n′)− ∫ n

0
(1 − τ)(1 − λp(θ(s′�x)))W ′ dj

− n′
i

(
c/q
(
θ
(
s′�xi
))+ xi))]�

Under the new contract ω̃, we have

−
∫ n

0
w̃(j)dj +βE

∫ n

0
(1 − d)(1 − τ)(1 − λp(θ(s′�x)))W̃ ′(s′� z′; j)dj

= −
∫ n

0
w(j)dj +βE

∫ n

0
(1 − d)(1 − τ)(1 − λp(θ(s′�x)))W ′(s′� z′; j)dj�

so the firm’s profit is unchanged. The new contract leaves the firm and workers indifferent
and implements the firm’s optimal policy as well.

(ii) It is useful to rewrite the surplus maximization problem as a two-step problem

V(s� z�n)= max
d�n

ey(s)+zF(n)− kf +βE{dnU
(
s′
)+ (1 − d)[v(s′� z′� n�n′)

+ V
(
s′� z′� n′)]}

with

v
(
s� z�n�n′)= max

ni�xi�{τ(j)�x(j)}
U(s)
∫ n

0
τ(j)dj +

∫ n

0

(
1 − τ(j))λp(θ(s�x(j)))x(j)dj

−
(

c

q
(
θ(s�xi)

) + xi)ni
subject to n′ =

∫ n

0
(1 − τ)(1 − λp(θ(s�x)))dj + ni�
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First, it is easy to show that if n′ ≥ n, then it is optimal to set ni = n′ − n, τ = 0, and
x = κ(s)− c so that p(θ(s�x)) = 0. Indeed, since it is costly to hire workers, it is never
optimal to lay off or let any worker leave for another firm if it wants to expand. Let us
now focus on the case in which n′ < n. Again, it is easy to show in this case that ni = 0.
However, the firm must solve a trade-off between layoffs and job-to-job transitions which
we can write as

max
{τ(j)�x(j)}

U(s)
∫ n

0
τ(j)dj +

∫ n

0

(
1 − τ(j))λp(θ(s�x(j)))x(j)dj

subject to n′ =
∫ n

0
(1 − τ)(1 − λp(θ(s�x)))dj�

Proceeding with the change of variables θ(j) = q−1(c/(κ(s) − x(j))), the problem be-
comes strictly concave in θ(j). Taking the first-order conditions with respect to x(j),(

κ(s)+μ)p′(θ(j))= c�
where μ is the Lagrange multiplier on the constraint. We thus conclude that θ(j) and thus
x(j) are identical across workers within a given firm.

(iii) Imposing that x(j) = x�∀j ∈ [0� n], it is trivial to see that any permutation of the
τ’s between workers or any transformation that leaves the total mass of layoffs unchanged
does not affect the objective function. The total number of layoffs, though, is uniquely
determined using the constraint

∫ n
0 τ(s

′� z′; j)dj = n− (1 − λp(θ))−1n′. Q.E.D.

PROOF OF PROPOSITION 4: I will prove the result in two steps. I will first show
that if the firm can choose any continuing utility W ′(s′� z′), it is possible to find a
schedule W ′(s′� z′;x′) that makes the worker choose x exactly. We will then show that
this continuing utility must satisfy the participation constraint, that is, λp(θ(s′�x))x +
(1 − λp(θ(s′�x)))W ′(s′� z′;x′)≥ U(s′).

Step 1. Fix (s′� z′). Recall that workers solve the problem35

x= argmax
x̃∈[x�κ(s′)−c]

p
(
θ
(
s′� x̃
))(
x̃−W ′(s′� z′))�

Define

D̃
(
x�W ′)= p(θ(s′�x))(x−W ′) and

⎧⎨
⎩
D
(
s′�W ′)= max

x∈[x�κ(s)−c]
D̃
(
x�W ′)�

C
(
s′�W ′)= argmax

x̃∈[x�κ(s′)−c]
D̃
(
x�W ′)�

D̃ is a continuous function of x and W ′. It reaches a non-negative maximum in x on
[W ′�κ(s′)− c]. Assumption 2 guarantees that D̃ is strictly concave in x on [W ′�κ(s′)− c].
The Theorem of the Maximum tells us, therefore, that D(W ′) and C(W ′) are continuous
functions of W ′. Thus, p being strictly positive over [x�κ(s′)− c), D is strictly decreasing
on [−∞�κ(s′)− c]. Therefore, C is strictly increasing on [−∞�κ(s′)− c], as can be seen
from the following: take W1 < W2 ≤ κ(s′) − c. Denote xk = C(Wk)�k = 1�2. Then the
following is true:

p
(
θ
(
s′�x1

))(
x1 −W ′

1

)−p(θ(s′�x2

))(
x2 −W ′

2

)
<p
(
θ
(
s′�x1

))(
W ′

2 −W ′
1

)
�

35Remember that x= κ(s)− c is the highest active submarket in equilibrium. It satisfies θ(s�x)= 0.
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and

p
(
θ
(
s′�x1

))(
x1 −W ′

1

)−p(θ(s′�x2

))(
x2 −W ′

2

)
>p
(
θ
(
s′�x2

))(
W ′

2 −W ′
1

)
�

Therefore, θ(s′�x1) > θ(s
′�x2), and since in equilibrium θ(s′�x) = q−1(c/(κ(s′) − x)) is

decreasing in x, we have x2 > x1 and C is strictly increasing.
Now, let us show that C reaches x and κ(s)− c. For W ′ = κ(s)− c, function D̃ trivially

reaches its maximum at x =W ′ = κ(s′)− c. Does it reach x? Rewrite the maximization
problem of the worker over θ:

D̃= max
θ∈[0�θ(s�x)]

p(θ)
(
x̃(θ)−W ′)

= max
θ∈[0�θ(s�x)]

p(θ)
(
κ
(
s′
)−W ′)− cθ�

where I have used the equilibrium relationship: κ(s) = x + c/q(θ(s�x)). This is a well-
defined strictly concave maximization problem and its derivative with respect to θ is

p′(θ)
(
κ
(
s′
)−W ′)− c�

so that θ= (p′)−1(c/(κ(s′)−W ′)). Therefore, setting W ′ to equal κ(s′)− c/p′(θ(s′�x)),
the optimum is reached at θ(s′�x) and the worker chooses to search in submarket x.
C(W ′) is thus a continuous, strictly increasing function that reaches x and κ(s′)− c. By
the Intermediate Value Theorem, for any x ∈ [x�κ(s′)− c], there exists a unique W ′

IC(x
′)

such that maxx̃ D̃(x̃�W ′
IC(x)) is reached at x exactly. In other words, there exists a unique

continuation utility W ′
IC ∈ [−∞�κ(s′) − c] that makes the worker choose exactly x. To

finish this first step, we must choose the rest of the contract. Set τIC = τ and dIC = d. Now,
in an optimal allocation, wIC must be chosen so that the promise-keeping constraint is
binding. The worker’s expected utility is

W
(
s� z�
{
w�τ�x�d�W ′})=w+βE[(1 − d)(1 − τ)λp(θ(s′�x))x

+ (d+ (1 − d)τ)U(s′)+ (1 − d)(1 − τ)(1 − λp(θ(s′�x)))W ′]�
Given {τIC�xIC� dIC�W

′
IC}, there exists a unique wage wIC that matches exactly the

promised utility. This does not affect the joint surplus, which is maximized by assump-
tion. From Proposition 1, the firm’s profit is maximized when the level of promised utility
is exactly achieved. We have thus found a contract that implements the optimal alloca-
tion.

Step 2. I will now proceed to the second step of the proof and show that the participa-
tion constraint is satisfied by W ′(s′� z′;x). Let us first have a look at the problem faced
by the worker choosing whether or not to leave the firm at the time of separation. The
participation constraint is satisfied if

max
x
λp
(
θ
(
s′�x
))
x+ (1 − λp(θ(s′�x)))W ′(s′� z′;x)≥ U(s)�

Abusing notation slightly, denote p(s′�x)≡ p(θ(s′�x)); we can derive the first-order con-
dition for the worker:

λp′(s′�x)(x−W ′)+ λp(s′�x)= 0�
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Turning back to the joint surplus maximization, the terms related to x and τ are

U
(
s′
)∫ n

0
τ dj + λp(s′�x)x∫ n

0
(1 − τ)dj

+ V
(
s′� z′�
∫ n

0

(
1 − λp(s′�x))(1 − τ)dj + ni

)
�

To simplify the notation, write nT = ∫ n0 τ dj, T being the total fraction of layoffs. We can
rewrite the above term as

nTU
(
s′
)+ n(1 − T)λp(s′�x)x+ V

(
s′� z′� n(1 − T)(1 − λp(s′�x))+ ni)�

The first-order condition with respect to x is

n(1 − T)λp′(s′�x)(x− Vn

(
s′� z′� n(1 − T)(1 − λp(s′�x))+ ni))+ n(1 − T)λp(s′�x)= 0�

Notice that it is possible to identify W ′ from the two first-order conditions. The incentive-
compatible contract must be such that

W ′(s′� z′)= Vn

(
s′� z′� n(1 − T)(1 − λp(s′�x))+ ni)�

To verify whether the participation constraint is satisfied, it is informative to look at the
first-order condition with respect to T (ignoring the irrelevant case where T = 1):

nU
(
s′
)− n(λp(s′�x)x+ (1 − λp(s′�x))Vn

)≤ 0�

which is exactly equivalent to the participation constraint

λp
(
s′�x
)
x+ (1 − λp(s′�x))W ′(s′� z′;x)≥ U

(
s′
)
�

The incentive-compatible contract therefore satisfies the participation constraint. Q.E.D.
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