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THIS SUPPLEMENT CONTAINS sufficient conditions for several assumptions in Sections 3
and 4 and proofs of all results in the main text.

APPENDIX C: SOME SUFFICIENT CONDITIONS

This appendix presents sufficient conditions for Assumptions 3.3, 3.4(b), and 4.3 and
bounds for the terms ηn�k and η∗

n�k in display (23) and νn�k in display (37). Proofs of results
in this appendix are contained in the Online Appendix.

C.1. Sufficient Conditions for Assumptions 3.3 and 3.4(b)

We assume that the state process X = {Xt : t ∈ T } is either beta-mixing or rho-mixing.
The beta-mixing coefficient between two σ-algebras A and B is

2β(A�B)= sup
∑

(i�j)∈I×J

∣∣P(Ai ∩Bj)− P(Ai)P(Bj)
∣∣

with the supremum taken over all A-measurable finite partitions {Ai}i∈I and B-
measurable finite partitions {Bj}j∈J . The beta-mixing coefficients of X are defined as

βq = sup
t

β
(
σ(� � � �Xt−1�Xt)�σ(Xt+q�Xt+q+1� � � �)

)
�

We say thatX is exponentially beta-mixing if βq ≤ Ce−cq for some C�c > 0. The rho-mixing
coefficients of X are defined as

ρq = sup
ψ∈L2:E[ψ]=0�‖ψ‖=1

E
[
E
[
ψ(Xt+q)|Xt

]2]1/2
�

We say that X is exponentially rho-mixing if ρq ≤ e−cq for some c > 0.
We use the sequence ξk = supx ‖G−1/2bk(x)‖ to bound convergence rates. When X

has bounded rectangular support and Q has a density that is bounded away from 0 and
∞, ξk is known to be O(

√
k) for (tensor-product) spline, cosine, and certain wavelet

bases and O(k) for (tensor-product) polynomial series (see, e.g., Newey (1997), Chen
and Christensen (2015)). It is also possible to derive alternative sufficient conditions in
terms of higher moments of ‖G−1/2bk(Xt)‖ (instead of supx ‖G−1/2bk(x)‖) by extending
arguments in Hansen (2015) to accommodate weakly dependent data and asymmetric
matrices.
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C.1.1. Sufficient Conditions in Case 1

The first result below uses an exponential inequality for weakly dependent random
matrices from Chen and Christensen (2015). The second extends arguments from Gobet,
Hoffmann, and Reiß (2004).

LEMMA C.1: Let the following hold:
(a) X is exponentially beta-mixing,
(b) E[m(Xt�Xt+1)

r]<∞ for some r > 2,
(c) ξ2+4/r

k (logn)2/n= o(1).
Then:

(1) Assumption 3.3 holds.
(2) We may take ηn�k = η∗

n�k = ξ1+2/r
k (logn)/

√
n in display (23).

(3) If, in addition, ξ4+8/r
k (logn)4/n= o(1), then Assumption 3.4(b) holds.

LEMMA C.2: Let the following hold:
(a) X is exponentially rho-mixing,
(b) E[m(Xt�Xt+1)

r]<∞ for some r > 2,
(c) ξ2+4/r

k k/n= o(1).
Then:

(1) Assumption 3.3 holds.
(2) We may take ηn�k = η∗

n�k = ξ1+2/r
k /

√
n in display (23).

(3) If, in addition, ξ4+8/r
k k2/n= o(1), then Assumption 3.4(b) also holds.

C.1.2. Sufficient Conditions in Case 2 With Parametric First Stage

The following lemma presents one set of sufficient conditions for Assumptions 3.3 and
3.4(b) when α0 ∈A⊆R

dα is a finite-dimensional parameter.

LEMMA C.3: Let the conditions of Lemma C.1 hold for m(x0�x1) =m(x0�x1;α0), and
let:

(a) ‖α̂− α0‖ =Op(n−1/2),
(b) m(x0�x1;α) be continuously differentiable in α on a neighborhood N of α0 for all

(x0�x1) ∈X 2 and let there exist a function m̄ :X 2 → R with E[m̄(Xt�Xt+1)
2]<∞ such that

sup
α∈N

∥∥∥∥∂m(x0�x1;α)
∂α

∥∥∥∥ ≤ m̄(x0�x1) for all (x0�x1) ∈X 2.

Then:
(1) Assumption 3.3 holds.
(2) We may take ηn�k = η∗

n�k = ξ1+2/r
k (logn)/

√
n in display (23).

(3) If, in addition, ξ4+8/r
k (logn)4/n= o(1), then Assumption 3.4(b) holds.

The conditions on k and bounds for ηn�k and η∗
n�k are the same as Lemma C.1. There-

fore, here first-stage estimation of α does not reduce the convergence rates of Ĝ and M̂
relative to Case 1.
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C.1.3. Sufficient Conditions in Case 2 With Semi/Nonparametric First Stage

We now present one set of sufficient conditions for Assumptions 3.3 and 3.4(b) when
α0 ∈ A ⊆ A is an infinite-dimensional parameter and the parameter space is A ⊆ A (a
Banach space) equipped with a norm ‖ ·‖A. This includes the case in which α is a function,
that is, α= h with A = H a function space, and the case in which α consists of both finite-
dimensional and function parts, that is, α= (θ�h) with A=Θ×H where Θ⊆R

dim(θ).
For each α ∈ A, we define M

(α) as the operator M(α)ψ(x)= E[m(Xt�Xt+1;α)ψ(Xt+1)|
Xt = x] with the understanding that M(α0) = M. Let M = {m(x0�x1;α)−m(x0�x1;α0) :
α ∈ A}. We say M has an envelope function E if there exists some measurable E :X 2 →
[1�∞) such that |m(x0�x1)| ≤ E(x0�x1) for every (x0�x1) ∈ X and m ∈ M. Let M∗ =
{m/E :m ∈ M}. The functions in M∗ are clearly bounded by ±1. Let N[ ](u�M∗�‖ · ‖p)
denote the entropy with bracketing of M∗ with respect to the Lp norm ‖ · ‖p. Finally, let
�∗(α)= ‖M(α) −M‖ and observe that �∗(α0)= 0.

LEMMA C.4: Let the conditions of Lemma C.1 hold for m(x0�x1) =m(x0�x1;α0), and
let:

(a) M have envelope function E with ‖E‖4s <∞ for some s > 1,
(b) logN[ ](u�M∗�‖ · ‖ 4sv

2s−v
) ≤ C[ ]u−2ζ for some constants C[ ] > 0, ζ ∈ (0�1) and v ∈

(1�2s),
(c) �∗(α) is pathwise differentiable at α0 with |�∗(α) − �∗(α0) − �̇∗

α0
[α − α0]| = O(‖α −

α0‖2
A), ‖α̂− α0‖A = op(n−1/4), and

√
n�̇∗

α0
[α̂− α0] =Op(1),

(d) ξ4− 2s−v
sv

k (k logk)/n= o(1), ξζ 2s−v
2sv

k =O(√k logk), and (logn)=O(ξ1/3
k ).

Then:
(1) Assumption 3.3 holds.

(2) We may take ηn�k = η∗
n�k = ξ1+2/r

k (logn)/
√
n+ ξ2− 2s−v

2sv
k

√
(k logk)/n in display (23).

(3) If, in addition, [ξ4+8/r
k (logn)4 + ξ8− 4s−2v

sv
k (k logk)2]/n= o(1), then Assumption 3.4(b)

holds.

Note that the condition ξ
ζ 2s−v

2sv
k =O(√k logk) is trivially satisfied when ξk =O(√k).

C.2. Sufficient Conditions for Assumption 4.3

The following is one set of sufficient conditions for Assumption 4.3 assuming beta-
mixing. Recall that ξk = supx ‖G−1/2bk(x)‖.

LEMMA C.5: Let the following hold:
(a) X is exponentially beta-mixing,
(b) E[(G1−γ

t+1 )
2s]<∞ for some s > 1,

(c) [ξ2
k(logn)2 + ξ2+2β

k k]/n= o(1) and (logn)
2s−1
s−1 k/n= o(1).

Then:
(1) Assumption 4.3 holds.
(2) We may take νn�k = ξ1+β

k

√
k/n+ ξk(logn)/

√
n in display (37).

APPENDIX D: PROOFS OF RESULTS IN THE MAIN TEXT

Notation: For v ∈R
k, define

‖v‖2
G = v′Gkv�
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or equivalently, ‖v‖G = ‖G1/2
k v‖. For any matrix A ∈ R

k×k, we define

‖A‖G = sup
{‖Av‖G : v ∈ R

k�‖v‖G = 1
}
�

We also define the inner product weighted by Gk, namely, 〈u�v〉G = u′Gkv. The inner
product 〈·� ·〉G and its norm ‖ · ‖G are germane for studying convergence of the matrix
estimators, as (Rk� 〈·� ·〉G) is isometrically isomorphic to (Bk� 〈·� ·〉). The notation an � bn
for two positive sequences an and bn means that there exists a finite positive constant C
such that an ≤ Cbn for all n sufficiently large; an � bn means an � bn and bn � an.

D.1. Proofs of Results in Sections 2, 3, and 4

PROOF OF PROPOSITION 2.1: Theorem V.6.6 of Schaefer (1974) implies, in view of As-
sumption 2.1, that ρ := r(M) > 0 and that M has a unique positive eigenfunction φ ∈ L2

corresponding to ρ. Applying the result to M
∗ in place of M guarantees existence of

φ∗ ∈ L2. This proves part (a). Theorem V.6.6 of Schaefer (1974) also implies that ρ is
isolated and the largest eigenvalue of M. Theorem V.5.2(iii) of Schaefer (1974), in turn,
implies that ρ is simple, completing the proof of part (c). Theorem V.5.2(iv) of Schaefer
(1974) implies that φ is the unique positive solution to (6). The same result applied to
M

∗ guarantees uniqueness of φ∗, proving part (b). Part (d) follows from Proposition F.3
in the Online Appendix. Q.E.D.

PROOF OF THEOREM 3.1: Immediate from Lemmas A.2 and A.4. Q.E.D.

PROOF OF COROLLARY 3.1: We first verify Assumption 3.2. By Theorem 12.8 of
Schumaker (2007) and (ii)–(iv), for each ψ ∈L2 there exists a hk(Mψ) ∈ Bk such that∥∥Mψ− hk(Mψ)

∥∥ � k−p̄/d‖Mψ‖W p̄ � k−p̄/d‖ψ‖�

Therefore,

‖Mψ−ΠkMψ‖ = ∥∥Mψ− hk(Mψ)+Πk

(
hk(Mψ)−Mψ

)∥∥
≤ 2

∥∥Mψ− hk(Mψ)
∥∥ � k−p̄/d‖ψ‖�

and so ‖M−ΠkM‖ =O(k−p̄/d)= o(1) as required.
Similar arguments yield δk =O(k−p/d) and δ∗

k =O(k−p/d).
By Lemma C.2, conditions (iv)–(vii) are sufficient for Assumption 3.3 and we may take

ηn�k = η∗
n�k = k(r+2)/(2r)/

√
n. Choosing k� n rd

2rp+(2+r)d balances bias and variance terms and
we obtain the convergence rates as stated. Q.E.D.

PROOF OF REMARK 3.1: First observe that Mφ = ∑∞
n=1μn〈φ�ϕn〉gn. Taking the in-

ner product of both sides of Mφ= ρφ with gn, we obtain μn〈φ�ϕn〉 = ρ〈φ�gn〉 for each
n ∈ N. By Parseval’s identity, ‖φ‖2 = ∑

n∈N〈φ�ϕn〉2 ≥ ρ2
∑

n∈N:μn>0μ
−2
n 〈φ�gn〉2. Similarly,

‖φ∗‖2 ≥ ρ2
∑

n∈N:μn>0μ
−2
n 〈φ∗�ϕn〉2. Note that 〈φ�gn〉 = 0 and 〈φ∗�ϕn〉 = 0 if μn = 0.
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As Bk spans the linear subspace in L2 generated by {gn}kn=1, we have φk := ∑k

n=1〈φ�
gn〉gn ∈ Bk. Therefore, assuming μk+1 > 0 (else the result is trivially true):

‖φ−φk‖2 =
∑
n≥k+1

〈φ�gn〉2 = μ2
k+1

∑
n≥k+1

〈φ�gn〉2

μ2
k+1

≤ μ2
k+1

∑
n≥k+1:μn>0

〈φ�gn〉2

μ2
n

≤ μ2
k+1

‖φ‖2

ρ2 �

It follows that

δk = ‖φ−Πkφ‖ = ∥∥φ−φk +Πk(φk −φ)∥∥ ≤ 2‖φ−φk‖ =O(μk+1)�

A similar argument gives δ∗
k =O(μk+1). Q.E.D.

Before proving Theorem 3.2, we first present a lemma that controls higher-order bias
terms involving φk and φ∗

k. Define

ψk�ρ(x0�x1)=φ∗
k(x0)m(x0�x1)φk(x1)− ρkφ∗

k(x0)φk(x0)

with φk and φ∗
k normalized so that ‖φk‖ = 1 and 〈φk�φ∗

k〉 = 1, and

Δψ�n�k = 1
n

n−1∑
t=0

(
ψρ�k(Xt�Xt+1)−ψρ(Xt�Xt+1)

)
�

where ψρ is from display (25).
To simplify notation, let φt =φ(Xt), φ∗

t =φ∗(Xt), φk�t =φk(Xt), and φ∗
k�t =φ∗

k(Xt).

LEMMA D.1: Assumptions 3.1 and 3.2 hold. Then Δψ�n�k =Op(δk + δ∗
k).

PROOF OF LEMMA D.1: First write

Δψ�n�k = 1
n

n−1∑
t=0

(
φ∗
k�t −φ∗

t

)
m(Xt�Xt+1)φk�t+1 + 1

n

n−1∑
t=0

φ∗
t m(Xt�Xt+1)(φk�t+1 −φt+1)

− (ρk − ρ)1
n

n−1∑
t=0

φ∗
k�tφk�t − ρ

1
n

n−1∑
t=0

(
φ∗
k�tφk�t −φ∗

t φt
)

=: T̂1 + T̂2 + T̂3 + T̂4�

By iterated expectations,

E
[∣∣(φ∗

k�t −φ∗
t

)
m(Xt�Xt+1)φk�t+1

∣∣] = 〈∣∣φ∗
k −φ∗∣∣�M(|φk|)〉

≤ ∥∥φ∗
k −φ∗∥∥‖M‖‖φk‖ =O(

δ∗
k

)
using Cauchy–Schwarz, boundedness of M (Assumption 3.1), and Lemma A.2 (note that
the normalizations 〈φ∗

k�φk〉 = 1 and 〈φ�φ∗〉 = 1 instead of ‖φ∗
k‖ = 1 and ‖φ∗‖ = 1 do

not affect the conclusions of Lemma A.2). Markov’s inequality then implies T̂1 =Op(δ∗
k).
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Similarly,

E
[∣∣φ∗

t m(Xt�Xt+1)(φk�t+1 −φt+1)
∣∣] = 〈

φ∗�M
(|φk −φ|)〉 ≤ ∥∥φ∗∥∥‖M‖‖φk −φ‖ =O(δk)

and so T̂2 =Op(δk).
Since ρk − ρ = O(δk) by Lemma A.2(a) and 1

n

∑n−1
t=0 φ

∗
k�tφk�t = Op(1) follows from

Lemma A.2(b),(c), we obtain T̂3 =Op(δk). Finally,

E
[∣∣φ∗

k�tφk�t −φ∗
t φt

∣∣] ≤ ∥∥φ∗
k −φ∗∥∥‖φk‖ + ∥∥φ∗∥∥‖φk −φ‖ =O(

δk + δ∗
k

)
again by Cauchy–Schwarz and Lemma A.2. Therefore, T̂4 =Op(δk + δ∗

k). Q.E.D.

PROOF OF THEOREM 3.2: First note that
√
n(ρ̂− ρ)= √

n(ρ̂− ρk)+ √
n(ρk − ρ)

= √
n(ρ̂− ρk)+ o(1)

= √
nc∗′

k (M̂ − ρkĜ)ck + op(1)�
(S.1)

where the second line is by Assumption 3.4(a) and the third line is by Lemma B.1 and
Assumption 3.4(b) (under the normalizations ‖Gck‖ = 1 and c∗′

k Gck = 1). By identity, we
may write the first term on the right-hand side of display (S.1) as

√
nc∗′

k (M̂ − ρkĜ)ck = 1√
n

n−1∑
t=0

ψρ(Xt�Xt+1)+ √
n×Δψ�n�k

= 1√
n

n−1∑
t=0

ψρ(Xt�Xt+1)+ op(1)�
(S.2)

where the second line is by Lemma D.1 and Assumption 3.4(a). The result follows by
substituting (S.2) into (S.1) and applying a CLT for stationary and ergodic martingale
differences (e.g., Billingsley (1961)), which is valid in view of Assumption 3.4(c). Q.E.D.

PROOF OF THEOREM 3.3: This is a consequence of Theorem B.1 in Appendix B. Q.E.D.

PROOF OF THEOREM 3.4: Let mt(α) = m(Xt�Xt+1;α). By Assumption 3.4(a), Lem-
ma B.1, and Assumption 3.4(b),

√
n(ρ̂− ρ)= 1√

n

n−1∑
t=0

(
φ∗
k�tφk�t+1m(Xt�Xt+1� α̂)− ρkφ∗

k�tφk�t
) + op(1)

= 1√
n

n−1∑
t=0

ψρ(Xt�Xt+1)+ 1√
n

n−1∑
t=0

φ∗
k�tφk�t+1

(
mt(α̂)−mt(α0)

) + op(1)�
(S.3)

where the second equality is by Lemma D.1.
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We decompose the second term on the right-hand side of (S.3) as

1√
n

n−1∑
t=0

φ∗
k�tφk�t+1

(
mt(α̂)−mt(α0)

)
= 1√

n

n−1∑
t=0

φ∗
t φt+1

∂mt(α0)

∂α′ (α̂− α0)

+ 1√
n

n−1∑
t=0

φ∗
t φt+1

(
mt(α̂)−mt(α0)− ∂mt(α0)

∂α′ (α̂− α0)

)

+ 1√
n

n−1∑
t=0

(
φ∗
k�tφk�t+1 −φ∗

t φt+1

)(
mt(α̂)−mt(α0)

)
=: 1√

n

n−1∑
t=0

φ∗
t φt+1

∂mt(α0)

∂α′ (α̂− α0)+ T̂1 + T̂2�

(S.4)

For term T̂1, whenever α̂ ∈N (which it is wpa1), we may take a mean value expansion to
obtain

T̂1 = 1
n

n−1∑
t=0

φ∗
t φt+1

(
∂mt(α̃)

∂α′ − ∂mt(α0)

∂α′

)
× √

n(α̂− α0)�

where α̃ is in the segment between α̂ and α0. It follows by routine arguments (e.g.,
Lemma 4.3 of Newey and McFadden (1994), replacing the law of large numbers by the
ergodic theorem) that

1
n

n−1∑
t=0

φ∗
t φt+1

(
∂mt(α̃)

∂α
− ∂mt(α0)

∂α

)
= op(1) (S.5)

holds under Assumption 3.5(c),(d). Moreover,
√
n(α̂ − α0) = Op(1) by Assump-

tion 3.5(a),(b). Therefore, T̂1 = op(1).
For term T̂2, observe that by Assumption 3.5(c), whenever α̂ ∈N (which it is wpa1), we

have ∣∣mt(α̂)−mt(α0)
∣∣ ≤ m̄(Xt�Xt+1)× ‖α̂− α0‖�

where max0≤t≤n−1 |m̄(Xt�Xt+1)| = op(n
1/s) because E[m̄(Xt�Xt+1)

s] < ∞. Therefore,
wpa1, we have

T̂2 ≤ √
n× 1

n

n−1∑
t=0

∣∣φ∗
k�tφk�t+1 −φ∗

t φt+1

∣∣ × max
0≤t≤n−1

∣∣m̄(Xt�Xt+1)
∣∣ × ‖α̂− α0‖

= 1
n

n−1∑
t=0

∣∣φ∗
k�tφk�t+1 −φ∗

t φt+1

∣∣ × op
(
n1/s

) =Op
(
δk + δ∗

k

) × op
(
n1/s

)
by similar arguments to the proof of Lemma D.1. Finally, observe that n1/s(δk+δ∗

k)= o(1)
by Assumption 3.4(a) and the condition s ≥ 2. Therefore, T̂2 = op(1).
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Since T̂1 and T̂2 in display (S.4) are both op(1), we have

1√
n

n−1∑
t=0

φ∗
k�tφk�t+1

(
mt(α̂)−mt(α0)

)
=

(
1
n

n−1∑
t=0

φ∗
t φt+1

∂mt(α0)

∂α′

)√
n(α̂− α0)+ op(1)

= E

[
φ∗(Xt)φ(Xt+1)

∂m(Xt�Xt+1;α0)

∂α′

]√
n(α̂− α0)+ op(1)�

Substituting into (S.3) and using Assumption 3.5(a):

√
n(ρ̂− ρ)= 1√

n

n−1∑
t=0

h′
[2a]

(
ψρ�t
ψα�t

)
+ op(1)

and the result follows by Assumption 3.5(b). Q.E.D.

PROOF OF THEOREM 3.5: We follow similar arguments to the proof of Theorem 3.4.
Here, we can decompose the second term on the right-hand side of display (S.3) as

1√
n

n−1∑
t=0

φ∗
k�tφk�t+1

(
mt(α̂)−mt(α0)

) = √
n
(
�(α̂)− �(α0)

) + T̂1 + T̂2

= 1√
n

n−1∑
t=0

ψ��t + op(1)+ T̂1 + T̂2�

where the second line is by Assumption 3.6(b),(c), with

T̂1 = 1√
n

n−1∑
t=0

(
φ∗
t φt+1

(
mt(α̂)−mt(α0)

) − (
�(α̂)− �(α0)

))
�

T̂2 = 1√
n

n−1∑
t=0

(
φ∗
k�tφk�t+1 −φ∗

t φt+1

)(
mt(α̂)−mt(α0)

)
�

The result will follow by Assumption 3.6(c),(d) provided T̂1 and T̂2 are both op(1).
For term T̂1, notice that T̂1 = Zn(gα̂) where Zn denotes the centered empirical process

on G. We have K(gα̂� gα̂) = op(1) by Assumption 3.6(c). Appropriately modifying the
arguments of Lemma 19.24 in van der Vaart (1998) (i.e., replacing the L2 norm by the
norm induced by K, which is the appropriate semimetric for the weakly dependent case)
gives Zn(gα̂)→p 0.

For term T̂2, observe that

E
[∣∣(φ∗

k�tφk�t+1 −φ∗
t φt+1

)(
mt(α̂)−mt(α0)

)∣∣] � E
[∣∣(φ∗

k�tφk�t+1 −φ∗
t φt+1

)∣∣s/(s−1)](s−1)/s

by Assumption 3.6(e) and Hölder’s inequality. We complete the proof assuming
‖φk‖2s/(s−2) = O(1) and ‖φ∗‖2s/(s−2) < ∞; the proof under the alternative condition in
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Assumption 3.6(e) is analogous. By the Minkowski and Hölder inequalities and Assump-
tion 3.6(e), we have

E
[∣∣(φ∗

k�tφk�t+1 −φ∗
t φt+1

)∣∣s/(s−1)](s−1)/s

≤ E
[∣∣(φ∗

k�t −φ∗
t

)
φk�t+1

∣∣s/(s−1)](s−1)/s +E
[∣∣φ∗

t (φk�t+1 −φt+1)
∣∣s/(s−1)](s−1)/s

≤ ∥∥φ∗
k −φ∗∥∥‖φk‖2s/(s−2) + ‖φk −φ‖∥∥φ∗∥∥

2s/(s−2)

=O(1)×O(
δ∗
k + δk

)
�

It follows by Assumption 3.4(a) and Markov’s inequality that T̂2 = op(1). Q.E.D.

The following lemma is based on Lemma 6.10 in Akian, Gaubert, and Nussbaum
(2016).

LEMMA D.2: Let the conditions of Proposition 4.1 hold. Then there exist finite positive
constants C�c, and a neighborhood N of h such that∥∥Tnψ− h∥∥ ≤ Ce−cn

for all ψ ∈N .

PROOF OF LEMMA D.2: Fix some constant ā such that r(Dh) < ā < 1. By the Gelfand
formula, there exists m ∈ N such that ‖Dm

h ‖ < ām. Fréchet differentiability of T at h to-
gether with the chain rule for Fréchet derivatives implies that∥∥Tmψ−T

mh−D
m
h (ψ− h)∥∥ = o(‖ψ− h‖) as ‖ψ− h‖ → 0�

hence ∥∥Tmψ− h∥∥ ≤ ∥∥Dm
h

∥∥‖ψ− h‖ + o(‖ψ− h‖)< (
ām + o(1)) × ‖ψ− h‖�

We may choose ε > 0 and a ∈ (ā�1) such that ‖Tmψ−h‖ ≤ am‖ψ−h‖ for allψ ∈ Bε(h) :=
{ψ ∈L2 : ‖ψ− h‖< ε}. (Bε(h) is the neighborhood in the statement of the lemma.) Then
for any ψ ∈ Bε(h) and any k ∈ N, we have∥∥Tkmψ− h∥∥ ≤ akm‖ψ− h‖� (S.6)

It is straightforward to show via induction that boundedness of G and homogeneity of
degree β of T together imply∥∥Tnψ1 −T

nψ2

∥∥ ≤ (
1 + ‖G‖) 1

1−β ‖ψ1 −ψ2‖βn (S.7)

for any ψ1�ψ2 ∈L2.
Take any n≥m and let k= �n/m�. By (S.6) and (S.7), we have∥∥Tnψ− h∥∥ = ∥∥T(n−km)Tkmψ−T

(n−km)h
∥∥

≤ (
1 + ‖G‖) 1

1−β ∥∥Tkmψ− h∥∥β(n−km)
≤ (

1 + ‖G‖) 1
1−β εβ

(n−km)(
akm

)β(n−km)
for any ψ ∈ Bε(h). The result follows for suitable choice of C and c. Q.E.D.
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PROOF OF PROPOSITION 4.1: Take C and c from Lemma D.2 and Bε(h) from the proof
of Lemma D.2. Let N = {ψ ∈ L2 : ‖ψ − χ‖ < ε/‖h‖} and note that {‖h‖ψ : ψ ∈ N} =
Bε(h).

Take any ψ ∈ {af : f ∈ N�a ∈ R \ {0}}. For any such ψ, we can write ψ = (a/‖h‖)f ∗

where f ∗ = ‖h‖f ∈ Bε(h). By homogeneity of T:

χn+1(ψ)= T
n
(
χ1(ψ)

)∥∥Tn(χ1(ψ)
)∥∥ = T

n
(
χ1

(
f ∗))∥∥Tn(χ1

(
f ∗))∥∥ = χn+1

(
f ∗)

for each n≥ 1 (note positivity of G ensures that ‖Tnf ∗‖> 0 for each n and each f ∗ ∈N).
It follows from Lemma D.2 that

∥∥χn+1(ψ)−χ∥∥ = ∥∥χn+1

(
f ∗) −χ∥∥ =

∥∥∥∥ T
n
(
f ∗)∥∥Tn(f ∗)∥∥ − h

‖h‖
∥∥∥∥ ≤ 2

‖h‖
∥∥Tn(f ∗) − h∥∥ ≤ 2

‖h‖Ce
−cn

as required. Q.E.D.

PROOF OF COROLLARY 4.1: The result for χ is stated in the text. For h, let C, c, and
Bε(h) be as in Lemma D.2 and its proof. Suppose h′ is a fixed point of T belonging to
Bε(h). Then, by Lemma D.2,∥∥h′ − h∥∥ = ∥∥Tnh′ − h∥∥ ≤ Ce−cn → 0�

hence h′ = h. Q.E.D.

PROOF OF THEOREM 4.1: Immediate from Lemmas A.6 and A.8. Q.E.D.

D.2. Proofs for Appendix A.1

PROOF OF LEMMA A.1: We first prove that there exists K ∈ N such that the maximum
eigenvalue ρk of the operator ΠkM :L2 →L2 is real and simple whenever k≥K.

Under Assumption 3.1, ρ is a simple isolated eigenvalue of M. Therefore, there exists
an ε > 0 such that |λ− ρ|> 2ε for all λ ∈ σ(M) \ {ρ}. Let Γ denote a positively oriented
circle in C centered at ρ with radius ε. Let R(M� z)= (M− zI)−1 denote the resolvent of
M evaluated at z ∈C \ σ(M), where I is the identity operator. Note that

CR := sup
z∈Γ

∥∥R(M� z)∥∥<∞ (S.8)

because R(M� z) is a holomorphic function on Γ and Γ is compact.
By Assumption 3.2, there exists K ∈ N such that

CR × ‖ΠkM−M‖< 1 (S.9)

holds for all k≥K. It follows by Theorem IV.3.18 on p. 214 of Kato (1980) that whenever
k≥K: (i) the operatorΠkM has precisely one eigenvalue ρk inside Γ and ρk is simple; (ii)
Γ ⊂ (C \ σ(ΠkM)); and (iii) σ(ΠkM) \ {ρk} lies on the exterior of Γ . Note that ρk must
be real whenever k≥K because complex eigenvalues come in conjugate pairs. Thus, if ρk
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were complex-valued, then its conjugate would also be inside Γ , which would contradict
the fact that ρk is the unique eigenvalue of ΠkM on the interior of Γ .

Any nonzero eigenvalue of ΠkM is also an eigenvalue of (M�G) with the same mul-
tiplicity. Therefore, the largest eigenvalue ρk of (M�G) is positive and simple whenever
k≥K. Q.E.D.

Let ΠkM|Bk : Bk → Bk denote the restriction of ΠkM to Bk. Recall that φ∗
k(x) =

bk(x)′c∗
k where c∗

k solves the left-eigenvector problem in (15). Here, φ∗
k is the eigenfunc-

tion of the adjoint (ΠkM|Bk)∗ : Bk → Bk corresponding to ρk. That is, 〈(ΠkM|Bk)∗φ∗
k�ψ〉 =

ρk〈φ∗
k�ψ〉 for all ψ ∈ Bk.

Another adjoint is also relevant for the next proof, namely, (ΠkM)
∗ : L2 → L2, which

is the adjoint of ΠkM in the space L2. It follows from Lemma A.1 that (ΠkM)
∗ has an

eigenfunction, say φ+
k , corresponding to ρk whenever k ≥ K. That is, 〈(ΠkM)

∗φ+
k �ψ〉 =

ρk〈φ+
k �ψ〉 for all ψ ∈ L2. Notice that φ+

k does not necessarily belong to Bk, so we may
have that φ∗

k �=φ+
k .

PROOF OF LEMMA A.2: Step 1: Proof of part (b). By Proposition 4.2 of Gobet, Hoff-
mann, and Reiß (2004) (taking T = M, Tε =ΠkM, and Γ = the boundary of B(κ�ρ) in
their notation), the inequality

‖φ−φk‖ ≤ const × ∥∥(ΠkM−M)φ
∥∥

holds for all k sufficiently large, where the constant depends only on CR. The result fol-
lows by noticing that ∥∥(ΠkM−M)φ

∥∥ = ρ× ‖Πkφ−φ‖ =O(δk)� (S.10)

Step 2: Proof of part (a). By Corollary 4.3 of Gobet, Hoffmann, and Reiß (2004), the
inequality

|ρ− ρk| ≤ const × ∥∥(ΠkM−M)φ
∥∥

holds for all k sufficiently large, where the constant depends only on CR and ‖M‖. The
result follows by (S.10).

Step 3: Proof that ‖φ+
k −φ∗‖ =O(δ∗

k) under the normalizations ‖φ∗‖ = 1 and ‖φ+
k ‖ = 1.

Let P∗
k denote the spectral projection on the eigenspace of (ΠkM)

∗ corresponding to
ρk. By the proof of Proposition 4.2 of Gobet, Hoffmann, and Reiß (2004) (taking T =
M

∗, Tε = (ΠkM)
∗, and Γ = the boundary of B(κ�ρ) in their notation and noting that

‖R(M∗� z)‖ = ‖R(M� z̄)‖ holds for all z ∈ Γ ), the inequality∥∥φ∗ − P∗
kφ

∗∥∥ ≤ const × ∥∥(
(ΠkM)

∗ −M
∗)φ∗∥∥

for all k sufficiently large, where the constant depends only on CR. Moreover,∥∥(
(ΠkM)

∗ −M
∗)φ∗∥∥ = ∥∥(

M
∗Πk −M

∗)φ∗∥∥ = ∥∥M∗(Πkφ
∗ −φ∗)∥∥

≤ ‖M‖∥∥Πkφ
∗ −φ∗∥∥ =O(

δ∗
k

)
by definition of δ∗

k (cf. display (22)) and boundedness of M. Therefore,∥∥φ∗ − P∗
kφ

∗∥∥ =O(
δ∗
k

)
� (S.11)



12 TIMOTHY M. CHRISTENSEN

Define (φ+
k ⊗φk)ψ(x)= 〈φk�ψ〉 ×φ+

k (x) for any ψ ∈L2. We use the fact that

P∗
k = 1〈

φk�φ
+
k

〉 (φ+
k ⊗φk

)
under the normalizations ‖φk‖ = 1 and ‖φ+

k ‖ = 1 (Chatelin (1983, p. 113)). Then, under
the sign normalization 〈φ∗�φ+

k 〉 ≥ 0, we have∥∥φ∗ −φ+
k

∥∥2 ≤ 2
∥∥φ∗ − (

φ+
k ⊗φ+

k

)
φ∗∥∥2

(see the proof of Proposition 4.2 of Gobet, Hoffmann, and Reiß (2004)). Moreover,

∥∥φ∗ − (
φ+
k ⊗φ+

k

)
φ∗∥∥2 ≤

∥∥∥∥φ∗ −
(
φ+
k ⊗ φk〈

φk�φ
+
k

〉)φ∗
∥∥∥∥2

≡ ∥∥φ∗ − P∗
kφ

∗∥∥2
�

It follows by (S.11) that ‖φ∗ −φ+
k ‖ =O(δ∗

k).
Step 4: Proof that ‖φ∗

k −φ∗‖ =O(δ∗
k). To relate φ+

k to φ∗
k, observe that by definition of

(ΠkM)
∗ and (ΠkM|Bk)∗, we must have

E
[
φ+
k (X)ΠkMψ(X)

] = ρkE
[
φ+
k (X)ψ(X)

]
for all ψ ∈L2�

E
[
φ∗
k(X)ΠkMψk(X)

] = ρkE
[
φ∗
k(X)ψk(X)

]
for all ψk ∈ Bk.

It follows from taking ψ= ψk in the first line of the above display that Πkφ
+
k =φ∗

k. Now
by the triangle inequality and the fact that Πk is a weak contraction, we have∥∥φ∗ −φ∗

k

∥∥ = ∥∥φ∗ −Πkφ
+
k

∥∥ ≤ ∥∥φ∗ −Πkφ
∗∥∥ + ∥∥Πkφ

∗ −Πkφ
+
k

∥∥
≤ ∥∥φ∗ −Πkφ

∗∥∥ + ∥∥φ∗ −φ+
k

∥∥ =O(
δ∗
k

) +O(
δ∗
k

)
�

where the final equality is by definition of δ∗
k (see display (22)) and Step 3. Q.E.D.

The following lemma collects some useful bounds on the orthogonalized estimators.

LEMMA D.3:
(a) If Ĝ is invertible, then(

Ĝo
)−1

M̂o − Mo = M̂o − ĜoMo + (
Ĝo

)−1((
Ĝo − I

)2
Mo + (

I − Ĝo
)(

M̂o − Mo
))
�

(b) In particular, if ‖Ĝo − I‖ ≤ 1
2 , we obtain∥∥(

Ĝo
)−1

M̂o − Mo
∥∥ ≤ ∥∥M̂o − Mo

∥∥ + 2
∥∥Ĝo − I

∥∥ × (∥∥Mo
∥∥ + ∥∥M̂o − Mo

∥∥)
�

PROOF OF LEMMA D.3: If Ĝ is invertible, we have(
Ĝo

)−1
M̂o − Mo = (

I − (
Ĝo

)−1(
Ĝo − I

))
M̂o − Mo

= M̂o − Mo − (
Ĝo

)−1(
Ĝo − I

)
Mo − (

Ĝo
)−1(

Ĝo − I
)(

M̂o − Mo
)
�
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Part (b) follows by the triangle inequality, noting that ‖(Ĝo)−1‖ ≤ 2 whenever ‖Ĝo − I‖ ≤
1
2 . Substituting (Ĝo)−1 = (I − (Ĝo)−1(Ĝo − I)) into the preceding display yields(

Ĝo
)−1

M̂o − Mo

= M̂o − Mo − (
I − (

Ĝo
)−1(

Ĝo − I
))(

Ĝo − I
)
Mo − (

Ĝo
)−1(

Ĝo − I
)(

M̂o − Mo
)

= M̂o − ĜoMo + (
Ĝo

)−1(
Ĝo − I

)2
Mo − (

Ĝo
)−1(

Ĝo − I
)(

M̂o − Mo
)
�

as required. Q.E.D.

PROOF OF LEMMA A.3: Step 1: We show that∥∥R(ΠkM|Bk� z)
∥∥ ≤ ∥∥R(ΠkM� z)

∥∥
holds for all z ∈ C \ (σ(ΠkM) ∪ σ(ΠkM|Bk)). Fix any such z. For any ψk ∈ Bk, we have
R(ΠkM|Bk� z)ψk = ζk where ζk = ζk(ψk) ∈ Bk is given by ψk = (ΠkM − zI)ζk. For any
ψ ∈L2, we have R(ΠkM� z)ψ= ζ where ζ = ζ(ψ) ∈L2 is given by ψ= (ΠkM− zI)ζ. In
particular, taking ψk ∈ Bk, we must have ζk(ψk)= ζ(ψk). Therefore, R(ΠkM|Bk� z)ψk =
R(ΠkM� z)ψk holds for all ψk ∈ Bk. We now have∥∥R(ΠkM|Bk� z)

∥∥ = sup
{∥∥R(ΠkM|Bk� z)ψk

∥∥ :ψk ∈ Bk�‖ψk‖ = 1
}

= sup
{∥∥R(ΠkM� z)ψk

∥∥ :ψk ∈ Bk�‖ψk‖ = 1
}

≤ sup
{∥∥R(ΠkM� z)ψ

∥∥ :ψ ∈L2�‖ψ‖ = 1
} = ∥∥R(ΠkM� z)

∥∥�
Step 2: We show that (M̂� Ĝ) has a unique eigenvalue ρ̂ inside Γ wpa1, where Γ is from

the proof of Lemma A.1.
As the nonzero eigenvalues of ΠkM, ΠkM|Bk , and G−1M are the same, it follows from

the proof of Lemma A.1 that for all k≥K, the curve Γ encloses precisely one eigenvalue
of G−1M, namely, ρk, and that ρk is a simple eigenvalue of G−1M.

Recall that G−1M is isomorphic to ΠkM|Bk on (Rk� 〈·� ·〉G). Let R(G−1M� z) denote the
resolvent of G−1M on (Rk� 〈·� ·〉G). By step 1, we then have

sup
z∈Γ

∥∥R(
G−1M� z

)∥∥
G

= sup
z∈Γ

∥∥R(ΠkM|Bk� z)
∥∥ ≤ sup

z∈Γ

∥∥R(ΠkM� z)
∥∥� (S.12)

The second resolvent identity gives R(ΠkM� z) = R(M� z) + R(ΠkM� z)(M −
ΠkM)R(M� z). It follows that whenever (S.9) holds (which it does for all k≥K),

sup
z∈Γ

∥∥R(ΠkM� z)
∥∥ ≤ CR

1 −CR‖ΠkM−M‖ = CR
(
1 + o(1)) (S.13)

by Assumption 3.2. Combining (S.12) and (S.13), we obtain

sup
z∈Γ

∥∥R(
G−1M� z

)∥∥
G

=O(1)� (S.14)

By Lemma D.3(b), Assumption 3.3, and boundedness of M:∥∥Ĝ−1M̂ − G−1M
∥∥

G
= ∥∥(

Ĝo
)−1

M̂o − Mo
∥∥ = op(1)�
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It follows by (S.14) that the inequality∥∥Ĝ−1M̂ − G−1M
∥∥

G
× sup

z∈Γ

∥∥R(
G−1M� z

)∥∥
G
< 1 (S.15)

holds wpa1.
By Theorem IV.3.18 on p. 214 of Kato (1980), whenever (S.15) holds: Ĝ−1M̂ has pre-

cisely one eigenvalue, say ρ̂, inside Γ ; ρ̂ is simple; and, the remaining eigenvalues of Ĝ−1M̂
are on the exterior of Γ . Note that ρ̂ must necessarily be real whenever (S.15) holds (be-
cause complex eigenvalues come in conjugate pairs); hence the corresponding left- and
right-eigenvectors ĉ∗ and ĉ are also real and unique (up to scale). Q.E.D.

PROOF OF LEMMA A.4: Take k ≥ K from Lemma A.1 and work on the sequence of
events upon which

∥∥Ĝ−1M̂ − G−1M
∥∥

G
× sup

z∈Γ

∥∥R(
G−1M� z

)∥∥
G
<

1
2

(S.16)

holds. By the proof of Lemma A.3, this inequality holds wpa1 and ρ̂, ĉ, and ĉ∗ to (16) are
unique on this sequence of events.

Step 1: Proof of part (b). Under the normalizations ‖ĉ‖G = 1 and ‖ĉ∗‖G = 1, whenever
(S.16) holds (which it does wpa1), we have

‖φ̂−φk‖2 = ‖ĉ− ck‖2
G ≤ √

8 sup
z∈Γ

∥∥R(
G−1M� z

)∥∥
G

× ∥∥(
Ĝ−1M̂ − G−1M

)
ck

∥∥
G

by Proposition 4.2 of Gobet, Hoffmann, and Reiß (2004) (setting Ĝ−1M̂ = Tε, G−1M = T ,
and Γ = the boundary of B(κ�ρ) in their notation). The result now follows by (S.14) and
the fact that ∥∥(

Ĝ−1M̂ − G−1M
)
ck

∥∥
G

= ∥∥((
Ĝo

)−1
M̂o − Mo

)
c̃k

∥∥ =Op(ηn�k) (S.17)

(cf. display (23)).
Step 2: Proof of part (a). In view of (S.16), (S.14), and the fact that ‖G−1M‖G =

‖ΠkM|Bk‖ ≤ ‖M‖<∞, by Corollary 4.3 of Gobet, Hoffmann, and Reiß (2004), we have

|ρ̂− ρk| ≤O(1)× ∥∥(
Ĝ−1M̂ − G−1M

)
ck

∥∥
G
�

The result follows by (S.17).
Step 3: Proof of part (c). Identical arguments to the proof of part (b) yield∥∥φ̂∗ −φ∗

k

∥∥ = ∥∥ĉ∗ − c∗
k

∥∥
G

≤ √
8 sup
z∈Γ

∥∥R(
G−1M′� z

)∥∥
G

× ∥∥(
Ĝ−1M̂′ − G−1M′)c∗

k

∥∥
G

under the normalization ‖ĉ∗‖G = ‖c∗
k‖G = 1. The result now follows by (S.14), noting that

supz∈Γ ‖R(G−1M′� z)‖G = supz∈Γ ‖R(G−1M� z)‖G, and the fact that∥∥(
Ĝ−1M̂′ − G−1M′)c∗

k

∥∥
G

= ∥∥((
Ĝo

)−1
M̂o′ − Mo′)c̃∗

k

∥∥ =Op
(
η∗
n�k

)
(cf. display (23)). Q.E.D.
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D.3. Proofs for Appendix A.2

Some of the proofs in this subsection make use of properties of fixed-point indices.
We refer the reader to Section 19.5 of Krasnosel’skii, Vainikko, Zabreiko, Rutitskii, and
Stetsenko (1972) for details.

PROOF OF LEMMA A.5: By Assumption 4.1 and Corollary 4.1, we may choose ε > 0
such that N = {ψ ∈ L2 : ‖ψ− h‖ ≤ ε} contains only one fixed point of T, namely, h. We
verify the conditions of Theorem 19.4 in Krasnosel’skii et al. (1972) where, in our nota-
tion, Ω = N , En = Bk, Pn =Πk, T = T, and Tn =ΠkT|Bk (i.e., the restriction of ΠkT to
Bk). The compactness condition is satisfied by Assumption 4.1(b) (recall that compact-
ness of G implies compactness of T). The fixed point h has nonzero index by Assump-
tion 4.1(c); see result (5) on p. 300 of Krasnosel’skii et al. (1972). Finally, condition (19.28)
in Krasnosel’skii et al. (1972) holds by Assumption 4.2(b) and their condition (19.29) is
trivially satisfied. Q.E.D.

PROOF OF REMARK A.1: This follows by the proof of result (19.31) in Theorem 19.3 in
Krasnosel’skii et al. (1972). Q.E.D.

PROOF OF REMARK A.2: This follows by Theorem 19.7 in Krasnosel’skii et al.
(1972). Q.E.D.

PROOF OF LEMMA A.6: Part (c) follows by the proof of display (19.50) on p. 310 in
Krasnosel’skii et al. (1972) where, in our notation, x0 = h, xn = hk, Pn =Πk, P(n) = I−Πk,
T = T, and T ′(x0) = Dh. Note that Assumption 4.2(a) implies their condition ‖T ′(x0)−
PnT

′(x0)‖ → 0 as n→ ∞. Part (b) then follows from the inequality∥∥∥∥ h

‖h‖ − hk

‖hk‖
∥∥∥∥ ≤ 2

‖h‖‖h− hk‖�

Finally, part (a) follows from the fact that |‖h‖ − ‖hk‖| =O(τk) and continuous differen-
tiability of x �→ x1−β at each x > 0. Q.E.D.

The next lemma presents some bounds on the estimators which are used in the proof
of Lemmas A.7 and A.8.

LEMMA D.4:
(a) Let Assumptions 4.1(b) and 4.3 hold. Then

sup
v∈Rk:‖v‖G≤c

∥∥Ĝ−1T̂v− G−1Tv
∥∥

G
= op(1)�

(b) Moreover,

sup
v∈Rk:‖v′bk−h‖≤ε

∥∥Ĝ−1T̂v− G−1Tv
∥∥

G
=Op(νn�k)�

where νn�k is from display (37).

PROOF OF LEMMA D.4: By definition of Ĝo, T̂o, and To, we have

sup
v∈Rk:‖v‖G≤c

∥∥Ĝ−1T̂v− G−1Tv
∥∥

G
= sup

v∈Rk:‖v‖≤c

∥∥(
Ĝo

)−1
T̂ov− Tov

∥∥�
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Whenever ‖I − Ĝo‖< 1 (which it is wpa1 by Assumption 4.3), for any v ∈R
k, we have(

Ĝo
)−1

T̂ov− Tov

= T̂ov− Tov− (
Ĝo

)−1(
Ĝo − I

)
Tov− (

Ĝo
)−1(

Ĝo − I
)(

T̂ov− Tov
)
�

(S.18)

Part (a) follows by the triangle inequality and Assumption 4.3, noting that
supv∈Rk:‖v‖≤c ‖Tov‖ ≤ supψ:‖ψ‖≤c ‖Tψ‖<∞ holds for each c by Assumption 4.1(b).

Part (b) follows by definition of Ĝo, T̂o, To, and νn�k in display (37). Q.E.D.

PROOF OF LEMMA A.7: Let ε, K, and Nk be as in Lemma A.5. Also define the sets
N = {ψ ∈ L2 : ‖ψ − h‖ < ε}, Γ = {ψ ∈ L2 : ‖ψ − h‖ = ε}, Γk = {ψ ∈ Bk : ‖ψ − h‖ = ε},
Nk = {v ∈ R

k : v′bk(x) ∈Nk}, and Γ k = {v ∈ R
k : v′bk(x) ∈ Γk}.

Let γ(I−T;Γ ) denote the rotation of the field (I−T)ψ on Γ . Assumption 4.1 implies
that |γ(I − T;Γ )| = 1; see result (5) on p. 300 of Krasnosel’skii et al. (1972). Also notice
that

sup
ψ∈Γ

‖Tψ−ΠkTψ‖< inf
ψ∈Γ

‖ψ−Tψ‖ (S.19)

holds for all k sufficiently large by Assumption 4.2(b) (note that infψ∈Γ ‖ψ − Tψ‖ > 0,
otherwise T would have a fixed point on Γ , contradicting the definition of N in the proof
of Lemma A.5). Result (2) on p. 299 of Krasnosel’skii et al. (1972) then implies that
whenever (S.19) holds, we have |γ(I −ΠkT;Γ )| = |γ(I −T;Γ )| = 1. Result (3) on p. 299
of Krasnosel’skii et al. (1972) then implies that |γ(I −ΠkT|Bk;Γk)| = 1 whenever (S.19)
holds. Finally, by isomorphism, we have that |γ(I−G−1T;Γ k)| = 1 whenever (S.19) holds.

We now show that the inequality

sup
v∈Γ k

∥∥(
Ĝ−1T̂ − G−1T

)
v
∥∥

G
< inf

ψ∈Γk
‖ψ−ΠkTψ‖ (S.20)

holds wpa1. The left-hand side is op(1) by Lemma D.4(a). For the right-hand side, we
claim that lim infk→∞ infψ∈Γk ‖ψ−ΠkTψ‖> 0. Suppose the claim is false. Then there exists
a subsequence {ψkl : l ≥ 1} withψkl ∈ Γkl such thatψkl −ΠklTψkl → 0. Since T is compact,
there exists a convergent subsequence {Tψklj : j ≥ 1}. Let ψ∗ = limj→∞ Tψklj . Then∥∥ψklj −ψ∗∥∥ ≤ ‖ψklj −Πklj

Tψklj ‖ + ∥∥Πklj
Tψklj −Πklj

ψ∗∥∥ + ∥∥Πklj
ψ∗ −ψ∗∥∥ → 0

as j→ ∞, where the first term vanishes by definition of ψkl , the second vanishes by defi-
nition of ψ∗, and the third vanishes by Assumption 4.2(b). Therefore, ψ∗ ∈ Γ . Moreover,
by continuity of T and definition of ψ∗,∥∥Tψ∗ −ψ∗∥∥ ≤ ∥∥Tψ∗ −Tψklj

∥∥ + ∥∥Tψklj −ψ∗∥∥ → 0

as j → ∞, hence ψ∗ ∈ Γ is a fixed point of T. But this contradicts the fact that h is the
unique fixed point of T inN =N ∪Γ (cf. the proof of Lemma A.5). This proves the claim.

Result (2) on p. 299 of Krasnosel’skii et al. (1972) then implies that whenever (S.19) and
(S.20) hold (which they do wpa1), we have γ(I−Ĝ−1T̂;Γ k)= γ(I−G−1T;Γ k). Therefore,
|γ(I − Ĝ−1T̂;Γ k)| = 1 also holds wpa1 and hence, by result (1) on p. 299 of Krasnosel’skii
et al. (1972), Ĝ−1T̂ has at least one fixed point v̂ ∈ Nk. We have therefore shown that



NONPARAMETRIC STOCHASTIC DISCOUNT FACTOR DECOMPOSITION 17

ĥ(x) = bk(x)′v̂ is well defined wpa1 and ‖ĥ− h‖ < ε wpa1. Consistency of ĥ follows by
repeating the preceding argument with any positive ε′ < ε. Q.E.D.

PROOF OF REMARK A.3: Fix any positive ε′ < ε and let A= {ψ ∈ L2 : ε′ ≤ ‖ψ− h‖ ≤
ε}, Ak = {ψ ∈ Bk : ε′ ≤ ‖ψ − h‖ ≤ ε}, and Ak = {v ∈ Rk : v′bk(x) ∈ Ak}. Clearly, T has
no fixed point in A. Moreover, similar arguments to the proof of result (19.31) in Theo-
rem 19.3 in Krasnosel’skii et al. (1972) imply that Ak contains no fixed points of ΠkT for
all k sufficiently large. By similar arguments to the proof of Lemma A.7, we may deduce
that lim infk→∞ infψ∈Ak ‖ψ−ΠkTψ‖ =: c∗ > 0. Then for any v ∈ Ak, we have ‖v−Ĝ−1T̂v‖ ≥
c∗ − op(1) where the op(1) term holds uniformly over Ak by Lemma D.4(a). Therefore,
‖v − Ĝ−1T̂v‖ ≥ c∗/2 holds for all v ∈ Ak wpa1. On the other hand, any fixed point v̂ of
Ĝ−1T̂ with bk(x)′v̂ ∈Nk necessarily has ‖v̂− Ĝ−1T̂v̂‖ = 0. Therefore, no such fixed point
v̂ belongs to Ak wpa1. Q.E.D.

PROOF OF LEMMA A.8: We first prove part (c). The Fréchet derivative of ΠkT|Bk
at h is ΠkDh|Bk . This may be represented on (Rk� 〈·� ·〉G) by the matrix G−1Dh where
Dh = E[bk(Xt)βG

1−γ
t+1 h(Xt)

β−1bk(Xt+1)
′]. By Lemma A.7, v̂ (equivalently, ĥ) is well de-

fined wpa1. Therefore, wpa1, we have(
I − G−1Dh

)
(vk − v̂)= G−1Tv̂− Ĝ−1T̂v̂− (

G−1Tv̂− G−1Tvk − G−1Dh(v̂− vk)
)
�

Note that ‖G−1Tv̂− Ĝ−1T̂v̂‖G = Op(νn�k) by Lemma D.4(b) and consistency of ĥ. There-
fore,∥∥(

I − G−1Dh

)
(vk − v̂)∥∥

G
≤Op(νn�k)+ ∥∥G−1Tv̂− G−1Tvk − G−1Dh(v̂− vk)

∥∥
G
� (S.21)

By isomorphism, we have ‖(I − G−1Dh)(vk − v̂)‖G = ‖(I −ΠkDh)(hk − ĥ)‖. Assumptions
4.1(c) and 4.2(a) together imply that (I −ΠkDh)

−1 exists for all k sufficiently large and
the norms ‖(I−ΠkDh)

−1‖ are uniformly bounded (for all k sufficiently large). Therefore,∥∥(
I − G−1Dh

)
(vk − v̂)∥∥

G
≥ const × ‖hk − ĥ‖ (S.22)

holds for all k sufficiently large. Also notice that∥∥G−1Tv̂− G−1Tvk − G−1Dh(v̂− vk)
∥∥

G

= ∥∥ΠkTĥ−ΠkThk −ΠkDh(ĥ− hk)
∥∥

≤ ∥∥Tĥ−Th−Dh(ĥ− h)− (
Thk −Th−Dh(hk − h))∥∥

≤ ∥∥Tĥ−Th−Dh(ĥ− h)∥∥ + ∥∥Thk −Th−Dh(hk − h)∥∥
= o(1)× (‖ĥ− hk‖ + ‖hk − h‖) + o(1)× ‖h− hk‖�

(S.23)

where the first inequality is because Πk is a (weak) contraction on L2 and the final line
is by Assumption 4.1(c). Substituting (S.22) and (S.23) into (S.21) and rearranging, we
obtain (

1 − o(1)) × ‖hk − ĥ‖ ≤Op(νn�k)+ op(τk)�
Parts (a) and (b) follow by similar arguments to the proof of Lemma A.6. Q.E.D.
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D.4. Proofs for Appendix B

PROOF OF PROPOSITION B.1: First note that

√
n(L̂−L)= √

n

(
log ρ̂− logρ− 1

n

n−1∑
t=0

logm(Xt�Xt+1)+E
[
logm(Xt�Xt+1)

])

= 1√
n

n−1∑
t=0

(
ρ−1ψρ�t −ψlm�t

) + op(1)�

where the second line is by display (24) and a delta-method type argument. The result
now follows from the joint convergence in the statement of the proposition. Q.E.D.

PROOF OF PROPOSITION B.2: Similar arguments to the proof of Proposition B.1 yield

√
n(L̂−L)= 1√

n

n∑
t=1

(
ρ−1ψρ�t + ρ−1φ∗

k�tφk�t+1

(
mt(α̂)−mt(α0)

)
− (

logmt(α̂)− logmt(α0)
) −ψlm�t

) + op(1)�
By similar arguments to the proof of Theorem 3.4, we may deduce

1√
n

n−1∑
t=0

(
ρ−1φ∗

k�tφk�t+1

(
mt(α̂)−mt(α0)

) − (
logmt(α̂)− logmt(α0)

))
=Dα�lm

√
n(α̂− α0)+ op(1)�

where

Dα�lm = E

[(
φ∗(Xt)φ(Xt+1)

ρ
− 1
m(Xt�Xt+1�α)

)
∂m(Xt�Xt+1�α)

∂α′

]
�

Substituting into the expansion for L̂ and using Assumption 3.5(a) yields

√
n(L̂−L)= 1√

n

n∑
t=1

(
ρ−1ψρ�t +Dα�lmψα�t −ψlm�t

) + op(1)�

The result follows by the joint CLT assumed in the statement of the proposition. Q.E.D.

PROOF OF THEOREM B.1: We prove part (1) first. We first characterize the tangent
space as in pp. 878–880 of Bickel and Kwon (2001) (their arguments trivially extend to R

d-
valued Markov processes). Let Q2 denote the stationary distribution of (Xt�Xt+1). Con-
sider the tangent space H0 = {h(Xt�Xt+1) : E[h(Xt�Xt+1)

2]<∞ and E[h(Xt�Xt+1)|Xt =
x] = 0 almost surely} endowed with the L2(Q2) norm. Take any bounded h ∈ H0 and
consider the one-dimensional parametric model which we identify with the collection of
transition probabilities {Pτ�h1 : |τ| ≤ 1}, where each transition probability Pτ�h1 is dominated
by P1 (the true transition probability) and is given by

dPτ�h1 (xt+1|xt)
dP1(xt+1|xt) = eτh(xt �xt+1)−A(τ�xt )�
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where

A(τ�xt)= log
(∫

eτh(xt �xt+1)P1(dxt+1|xt)
)
�

For each τ, we define the linear operator M(τ�h) on L2 by

M
(τ�h)ψ(xt)=

∫
m(xt�xt+1)ψ(xt+1)P

τ�h
1 (dxt+1|xt)�

Observe that(
M

(τ�h) −M
)
ψ(xt)=

∫
m(xt�xt+1)ψ(xt+1)

(
eτh(xt �xt+1)−A(τ�xt ) − 1

)
P1(dxt+1|xt) (S.24)

is a bounded linear operator on L2 (since ‖M‖<∞ and h is bounded). By Taylor’s theo-
rem,

eτh(xt �xt+1)−A(τ�xt ) − 1 = τh(xt�xt+1)+O(
τ2

)
� (S.25)

where the O(τ2) term is uniform in (xt� xt+1). It now follows by boundedness of h that
‖M(τ�h) − M‖ = O(τ). Similar arguments to the proof of Lemma A.1 imply that there
exist ε > 0 and τ̄ > 0 such that the largest eigenvalue ρ(τ�h) of M

(τ�h) is simple and lies
in the interval (ρ − ε�ρ + ε) for each τ < τ̄. Taking a perturbation expansion of ρ(τ�h)
about τ = 0 (see, e.g., equation (3.6) on p. 89 of Kato (1980) which also applies in the
infinite-dimensional case, as made clear in Section VII.1.5 of Kato (1980)):

ρ(τ�h) − ρ= 〈(
M

(τ�h) −M
)
φ�φ∗〉 +O(

τ2
)

= τE[
m(Xt�Xt+1)h(Xt�Xt+1)φ(Xt+1)φ

∗(Xt)
] +O(

τ2
)

= τ
∫
m(xt�xt+1)φ(xt+1)φ

∗(xt)h(xt� xt+1)dQ2(xt� xt+1)+O(
τ2

) (S.26)

under the normalization 〈φ�φ∗〉 = 1, where the second line is by (S.24) and (S.25).
Expression (S.26) shows that the derivative of ρ(τ�h) at τ = 0 is ψ̃ρ = m(xt�xt+1)×
φ(xt+1)φ

∗(xt).
As bounded functions are dense in H0, we have shown that ρ is differentiable relative

to H0 with derivative ψ̃ρ. The efficient influence function for ρ is the projection of ψ̃ρ
onto H0, namely,

ψ̃ρ(xt� xt+1)−E
[
ψ̃ρ(Xt�Xt+1)|Xt = xt

] =ψρ(xt�xt+1)�

because E[ψ̃ρ(Xt�Xt+1)|Xt = xt] = φ∗(xt)Mφ(xt) = ρφ(xt)φ
∗(xt). It follows that Vρ =

E[ψρ(Xt�Xt+1)
2] is the efficiency bound for ρ. A similar argument shows that h′(ρ)ψρ is

the efficient influence function for h(ρ).
We now prove part (2). The efficient influence function for L is

ψL = ρ−1ψρ −ψlogm�

where ψlogm is the efficient influence function for E[logm(Xt�Xt+1)]. It is well known that

ψlogm(x0�x1)= l(x0�x1)+
∞∑
t=0

(
E
[
l(Xt+1�Xt+2)

∣∣X1 = x1

] −E
[
l(Xt�Xt+1)

∣∣X0 = x0

])
�
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where l(xt� xt+1) = logm(xt�xt+1) (see, e.g., Greenwood and Wefelmeyer (1995)).
It may be verified using the telescoping property of the above sum that VL =
E[ψL(X0�X1)

2]. Q.E.D.

PROOF OF LEMMA B.1: Take k ≥ K from Lemma A.1 and work on the sequence of
events upon which (S.16) holds, so that ρ̂, ĉ, and ĉ∗ are uniquely defined by Lemma A.3.

Normalize ĉ, ĉ∗, ck, and c∗
k so that ‖ĉ‖G = 1, ‖ck‖G = 1, ĉ′Gĉ∗ = 1, and c′

kGc∗
k = 1. Let

P = ckc
∗′
k G and P̂ = ĉĉ∗′G. We then have trace(P̂) = 1, trace(P) = 1, ρ̂ = trace(P̂Ĝ−1M̂),

ρk = trace(PG−1M), Ĝ−1M̂P̂ = ρ̂P̂, and G−1MP = PG−1M = ρkP. Now observe that

ρ̂− ρk = trace
(̂
PĜ−1M̂

) − trace
(
PG−1M

)
= trace

(
(P̂ − P)Ĝ−1M̂

) + trace
(
P
(
Ĝ−1M̂ − G−1M

))
�

By addition and subtraction of terms, we have

trace
(
(P̂ − P)Ĝ−1M̂

)
= ρ̂− ρ̂ trace(PP̂)+ trace

(
PĜ−1M̂(P̂ − I)

)
= ρ̂ trace

(
P(I − P̂)

) + trace
(
PĜ−1M̂(P̂ − I)

)
= (ρ̂− ρk) trace

(
P(I − P̂)

) + ρk trace
(
P(I − P̂)

) + trace
(
PĜ−1M̂(P̂ − I)

)
= (ρ̂− ρk) trace

(
P(I − P̂)

) + trace
(
PG−1M(I − P̂)

) + trace
(
PĜ−1M̂(P̂ − I)

)
= (ρ̂− ρk) trace

(
P(I − P̂)

) + trace
(
P
(
Ĝ−1M̂ − G−1M

)
(P̂ − I)

)
�

(S.27)

where ∣∣trace
(
P(I − P̂)

)∣∣ = ∣∣c∗′
k G(ck − P̂ck)

∣∣ ≤ ∥∥c∗
k

∥∥
G
‖ck − P̂ck‖G� (S.28)

By the proof of Proposition 4.2 of Gobet, Hoffmann, and Reiß (2004) (setting P̂ = Pε,
Ĝ−1M̂ = Tε, G−1M = T , and Γ from the proof of Lemma A.1 as the boundary of B(κ�ρ)
in their notation) and similar arguments to the proof of Lemma A.4:

‖ck − P̂ck‖G �
∥∥(

Ĝ−1M̂ − G−1M
)
ck

∥∥
G

=Op(ηn�k)� (S.29)

Moreover, ∥∥c∗
k

∥∥
G

= ‖P‖G ≤
∥∥∥∥ 1

2πi

∫
Γ

R
(
G−1M� z

)
dz

∥∥∥∥
G

(see Kato (1980, expression (6.19), p. 178)) which is O(1) by display (S.14). By displays
(S.28) and (S.29) and the fact that ρ̂− ρk =Op(ηn�k) (by Lemma A.4), we obtain

(ρ̂− ρk) trace
(
P(I − P̂)

) =Op
(
η2
n�k

)
� (S.30)

Moreover,∣∣trace
(
P
(
Ĝ−1M̂ − G−1M

)
(P̂ − I)

)∣∣ = ∣∣c∗′
k G

(
Ĝ−1M̂ − G−1M

)
(P̂ − I)ck

∣∣
≤ ∥∥c∗

k

∥∥
G

∥∥Ĝ−1M̂ − G−1M
∥∥

G
‖ck − P̂ck‖G

=Op(ηn�k�1 +ηn�k�2)Op(ηn�k)
(S.31)
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by Lemma D.3(b) and display (S.29). It follows by (S.27), (S.30), and (S.31) that

ρ̂− ρk = trace
(
P
(
Ĝ−1M̂ − G−1M

)) +Op(ηn�k�1 +ηn�k�2)×Op(ηn�k)+Op
(
η2
n�k

)
�

Finally,

trace
(
P
(
Ĝ−1M̂ − G−1M

)) = c∗′
k G

(
Ĝ−1M̂ − G−1M

)
ck

= c̃∗′
k

((
Ĝo

)−1
M̂o − Mo

)
c̃k

= c̃∗′
k

(
M̂o − ĜoMo

)
c̃k +Op

(
ηn�k�1 × (ηn�k�1 +ηn�k�2)

)
by Lemma D.3(a) and the fact that ‖c̃∗

k‖ = ‖c∗
k‖G =O(1). The result follows by noting that

c̃∗′
k

(
M̂o − ĜoMo

)
c̃k = c∗′

k (M̂ − ρkĜ)ck

and that ηn�k is of at least as small order as ηn�k�1 and ηn�k�2 (cf. Lemma D.3(a)). Q.E.D.
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