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APPENDIX A: FURTHER THEORETICAL ANALYSIS

WE FIRST ANALYZE THE THEORETICAL PREDICTION for maxmin expected utility and
follow-up models under multiple-prior perspective in the domain of partial ambiguity.
Next, we derive the detailed analysis for recursive rank-dependent utility for the three
forms of partial ambiguity. Last, we analyze the theoretical prediction for Chew and Sagi’s
(2008) source preference model.

A.1. Maxmin Expected Utility and Follow-up Models

Maxmin Expected Utility. The maxmin expected utility (MEU) in Gilboa and Schmeidler
(1989) evaluates an ambiguous lottery L;! with the expected utility corresponding to the
worst prior in a convex set of priors I, 4 as follows:

UMEU(L,-A) ZMHEH m(R, ) u(w).
el !

i

As indifference between betting on red and black implies that IT LA is symmetric, MEU
exhibits global ambiguity aversion: {50} is preferred to any ambiguous lottery L. It should
be noted that the behavior of the set of priors II,, is inherently flexible, and MEU can
account for a wide range of ambiguity averse choice behavior with a judicious choice of
the worst prior in each I1 LA-

Variational Preference. Maccheroni, Marinacci, and Rustichini (2006) proposed an al-
ternative and more flexible generalization of MEU as follows:

Upp(L) = I}l}eiil{u(RL;t)u(w) +aga(w},

where A refers to the set of all possible priors and a;,(u) : A — [0,00) is an index
of ambiguity aversion. Notice that VP reduces to MEU if g, is an indicator func-

tion for I1, 4, and it follows that VP inherits the predictions of MEU in the domain of
partial ambiguity. The same qualitative behavior also applies to the contraction model
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(Gajdos, Hayashi, Tallon, and Vergnaud (2008)), which delivers a weighted combination
between SEU and MEU with built-in ambiguity aversion.

a-Maxmin Expected Utility. Ghirardato, Maccheroni, and Marinacci (2004) axiomatized
a-maxmin expected utility (a-MEU) that delivers a linear combination of maxmin EU
and maxmax EU as follows:

Uenev(L{') = a min w(R,4)u(w) + (1 — &) max w(R, 4)u(w).
well | 4 ! pell 4 '

i

Depending on the value of «, this model is highly flexible and can selectively exhibit ambi-
guity tolerance. The same predictions apply to Siniscalchi’s (2009) vector expected utility
model which incorporates an adjustment function in addition to SEU.

A.2. Recursive Rank-Dependent Utility

Interval Ambiguity I. The utility for an interval ambiguity lottery I under uniform
prior is given by

0= 3 (1= 30 (5 - ()

i=50—n

This can be approximated using a uniform random variable over [0, 1] with cumulative
distribution function F as follows:

U(Ly) = fo | +nf(s)d(—f(1 ~F(5))),

5-n

where 7 takes the values between 0 and 0.5, and F = ”@% for s €[0.5—-7,0.5+7]. Let
x = H203 We have

1
U= / —fQRx+0.5— Ay df (1 — x).
0
Differentiating with respect to 7 yields
1
U = / Qx—Df'((1-2m)x+7n)f'(1—x)dx.
0
Evaluating U’ at n = 0 gives
1
U/|ﬁ=0=/ QCx = Df' () f'(1—x)dx,
0
which can be rewritten as
0.5 1
—/ 1 =2x)f"(x)f'(1—x)dx +/ Cx-Df'(x)f'Ad—-x)dx, (A1)
0 0.5

which equals 0 given the symmetry of the two terms after changing the variable in the
second term to 1 — x.
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Observe that f(2nx + 0.5 —n) > f(x) when x < 0.5 since 2nx + 0.5 — 7 > x. Similarly,
we have f(2nx + 0.5 — 1) < f(x) when x > 0.5. It follows that when f is convex, U’ < 0,
that is, aversion to increasing the number of possible compositions in interval ambiguity,
since changing f'(x) to f'(2nx + 0.5 —n) will increase the first term of (A.1) and decrease
its second term.

Disjoint Ambiguity D. The utility U(D?) for a disjoint ambiguity lottery D under
uniform prior is given by

S0 o) (o)
3 f<2n s i)[f<2(in++11>> _f(m)]

i=n+1

This can be approximated using a uniform random variable over [0, 1] with cumulative
distribution function F as follows:

U:/O”f(s)d(_f(l—F(s)))—i—/l:f(s)d(—f(l_p(s))),

where 7 takes the values from 0.5 to 0 in disjoint ambiguity, and F(s) = 5 for s €10, 7]
and F(s) = %gm for s € [1 — 7, 1]. Let x equal 55 in the first integral and equal %ﬁ
in the second integral. We have

1

0.5
U:/ —f(2ﬁx)df(1—x)—/ f@ax+ 1 —2n))df (1 —x).
0 0

.5

Differentiating with respect to 7 yields

0.5 1
U= / 2xf' (2ax)f'(1 —x)dx + / (2x =2)f'(2ax + (1 —2m) f'(1 — x) dx.
0 0.5

Evaluating U’ at n = 0.5 gives

0.5 1
U’|ﬁ_0:/ 2xf'(x)f'(1 —x) dx+/ 2x=2)f'(x)f'(A —x)dx, (A2)
0 0.5

which again equals 0 given the symmetry of the two terms.

Observe that f(2nx) < f(x) when x < 0.5 and f(2nx + (1 —2n)) > f(x) when x > 0.5.
It follows that when f is convex, U’ < 0, that is, aversion to increasing the number of
possible compositions in disjoint ambiguity, since changing f'(x) to f'(2nx) will decrease
the first term of (A.2) while changing f’(x) to f'(2nx + (1 — 2n)) will increase the second
term of (A.2).

Two-Point Ambiguity T#. The utility for a two-point ambiguity lottery T/ under uniform
prior is given by

Urou(T,) = (1= £(0.5)) (0.5 = 7)) + £(0.5) (0.5 + 7).
Differentiating with respect to 7 yields

U'=f0.5f0.5+7) — (1 - £(0.5)f(0.5—7).
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Given f convex, we have U'|;—y < 0 and U’|;—o5 > 0, which in turn implies U’ < 0 for n
small, and U’ > 0 as 7 approaches 0.5.

Stage-1 Spread. Given two ambiguous lotteries represented by stage-1 priors with cu-
mulative distribution functions F and G such that G is a stage-1 spread of F, consider the
difference:

[rear-Fo) - [ fod(-£(1-Geo)).
This becomes [ f'(x)[f(1 — F(x)) — f(1 — G(x))]dx after integrating by parts. We have
that f(1 — F(x)) — f(1 — G(x)) >0 for x <0.5 and f(1 — F(x)) — f(1 — G(x)) <0 for
x > 0.5, since F(x) < G(x) for x < 0.5 and F(x) > G(x) for x > 0.5. Changing variables
yields

fo' FO[f(1=Fx) - f(1-Gx))]dx
—/0' FA=-0[f(1-G—x)—f(1—F1-x)]dx.

£/ fA=G—x)—f(1-F1-x)) q; ;
We proceed to compare T and FA—F) =G Since f is convex, we have

fI-G—-x)—-f(1-F(1-x)
F(1-x)—G(1—x)

f(I-=F(1-x)=< <f(1-Gl-x),

and

1-F —f(1-G
F(1-Feo) = L4 é’(‘i))_’;((x) @) . (- 6e).

Given symmetry of F and G, F(1 —x) — G(1 —x) = G(x) — F(x). Dividing the above two
inequalities yields
f(1-F(1-x) - f1-G-x)—f1-F1-x) - f(1-G-x)
fA-Fx) — f(1-Fw))-f1-Gx) ~ f(1-Gw)

Suppose F is a stage-1 spread of uniform prior; then £ /f(l(;f ;1&;‘))) > fi/ffl) for x <0.5.

It follows that the decision maker prefers G to F if both of them are spreads of uniform

: : or ) . fU-G-x) - [
prior. Conversely, suppose uniform prior is a stage-1 spread of G; then —77=-=" < 7=

at x < 0.5 and we have the decision maker preferring F' to G if uniform prior is a stage-1
spread of both F and G.

A.3. Source Preference of Chew and Sagi (2008)

Chew and Sagi’s (2008) model directly distinguishes among the even-chance bets from
the three primitive sources of uncertainty in our experimental design: pure risk derived
from the known composition of half red and half black in {50}, full ambiguity based on the
unknown compositions of red and black in [0, 100]“, and additionally the all-red or all-
black ambiguity in {0, 100}“. These three sources generate 50-50 probabilities that may
be differentiated in terms of preference. In the following, we demonstrate how the source
preference approach with built-in RCLA endogenously generates a two-stage represen-
tation for the various forms of partial ambiguity.
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Interval Ambiguity . It comprises 100 — 2n cards with known composition—half red
and half black—while the composition of the rest of the 2x cards is fully unknown. With
RCLA for known probabilities, an interval ambiguous lottery induces a lottery on the
overall “known” domain that delivers (50 — n)/100 chance of getting w, (50 — n)/100
chance of getting 0, and 27/100 chance of getting a fully ambiguous lottery, and it is

represented as follows:
50—-n w: 2n c .50—n0
100 s W, 100 > €10,10014 5 100 > >

where ¢y, 1904 is the CE for a bet on the fully unknown deck [0, 100].

Disjoint Ambiguity D:*. It comprises 100 — n cards that are either all red or all black, and
n cards with fully unknown composition. Similarly, the induced lottery on the “known”
domain is

100 — n n
W, Ci0,100)4 5 r.o, Ci0,10004 >

where ¢y 1004 is the CE for a bet on the either-all-red-or-all-black deck {0, 100}*. Notice
that the expression above converges to (0.5, ¢ 100,43 0.5, €j0,1004) rather than ¢y 04 as
n approaches 50. This behavior is related to an alternative description of full ambiguity
[0, 100]4. Besides its intended interpretation of being fully unknown, it can first be de-
scribed as comprising 50 cards which are either all red or all black while the composition
of the other 50 cards remains unknown. This process can be applied to the latter 50 cards
to arrive at a further division into 25 cards which are either all red or all black while the
composition of the remaining 25 cards remains unknown. Doing this ad infinitum gives
rise to a dyadic decomposition of [0, 100]“ into subintervals which are individually either
all-red or all-black. For the source model to deliver the same CE for [0, 100]“, we need to
restrict its evaluation to undecomposed intervals of ambiguity, and the overall expression
exhibits discontinuous behavior at n = 50.

Two-Point Ambiguity T:. It comprises 100 — 2n cards with known composition—half red
and half black—while the composition of the rest of the 2n cards is either all red or all
black, and the induced lottery on the “known” domain is given by

50—n w: 2n . '50—n 0
100 ° 7 100° "0 o0 07 )

Consider the baseline SEU model with a utility index u for objective risk on the
“known” domain. The utility for an interval ambiguous lottery is then given by

20 0) 4 e am) + o (0)
100 T 100 M o0t T TG ’

which is monotonically decreasing in # if we have M > u(cyo,10014)- This latter condi-

tion corresponds to standard ambiguity aversion {50} > [0, 100]“. Behaviorally, a subject
exhibits aversion to increasing the number of possible compositions under the same con-
dition.
Similarly, the SEU for a two-point ambiguous lottery is
50—n 2n

—n
Wu(w) + ﬁu(c{o,m}fi) + Wu(o),
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and we have aversion to two-point spread, that is, the utility is monotonically decreasing
in n, if “22O0 > (¢ 1004). This condition corresponds to a preference for betting on
the known deck {50} to betting on the deck {0, 100} that comprises either all red or all
black cards.

For disjoint ambiguity, we have aversion to increasing the number of possible composi-
tions if ¢ 1004 > {0,104, Which corresponds to a preference of {0, 100} > [0, 100]“. Note
that this implication does not depend on the assumption of SEU, but only on stochastic
dominance. In contrast, it is possible for general non-expected utility preferences, for ex-
ample, quadratic preference (Chew, Epstein, and Segal (1991)), to exhibit non-monotone
behavior in interval and two-point ambiguity. See Chew, Miao, and Zhong (2013) for a
discussion of Chew and Sagi’s (2008) source preference model without reduction.

In line with Chew and Sagi’s (2008) source preference approach, Abdellaoui, Bail-
lon, Placido, and Wakker (2011) proposed a model with a source-dependent probabil-
ity weighting function in conjunction with a cumulative prospect theory specification. As
in the preceding exposition of source-dependent SEU, being silent on how compound
lotteries may be evaluated in the absence of RCLA, this model exhibits considerable flex-
ibility in modeling choice behavior in our setting and can distinguish among the three
main sources of uncertainty should we take the view that each partial ambiguity lottery
itself represents a possibly distinct source.

APPENDIX B: AXioMS OF COMPOUND RISK AND THEIR IMPLICATIONS

Let X; = (pj, x;); denote a simple lottery paying x; with probability p;, and X =
(¢*, X*)« a compound lottery paying simple lottery X* = (pf, x}); with probability ¢*.
In addition, denote a degenerate lottery paying x for sure by &,. Similarly, a degener-
ate compound lottery paying simple lottery X; for sure is denoted by 8, and (¢’, 8,,), is
another kind of degenerate compound lottery which pays degenerate simple lottery d,,
with probability ¢/. We define two operations + and @ to combine risks at two different
stages. We use + to denote a mixture operation for simple risks and @ to denote a mixture
operation for stage-1 risks.

Given two simple lotteries X,, = (p1, X1; P2, X25 - -3 Pm» Xm) and Y, = (q1, V15 G2, »;

..3 qn, Yn), a mixture with probability r, r X, + (1 —r) Y, is identified with a simple lottery
given by

(rp1s X0 o5 PP Xy (L= 1)1, Vi o5 (L= 1) G, ).
In other words, + can be used as a mixture operation for stage-2 risks as follows:
6”Xm+(1*")yn = a(rpl,xl;---:rpm,Xm:(lfr)ql,ylz---;(17r>qn,yn)'

In a similar vein, given two compound lotteries X = (p!, X'; p?, X?;...; p™, X™) and
Y=(Y%qg,Y?%...;q",Y"), a stage-1 mixture with probability r, rX & (1 — r)Y, is
identified with the compound lottery

(rpl,Xl; coarp™, X" (1=r)g', Y. . (1=r)q', Y").

To illustrate the difference between + and &, consider two compound lotteries,
(1, (3, x;3,0)) and (1, (3, y; %, 0)). A mixture operation + with probability 1 delivers the

following:
1/1 1 1/1 2 1 1 7
1.2 = x: = -1z v = =1 Ty oy
(,2<2,x,2,0>+2(3,y,3,0>) (,<4,x,6,y, 12,0>),



PARTIAL AMBIGUITY 7

while a mixture operation @ with probability 1 delivers the following:

1 1 1 1 1 2 1 /1 1 1 /1 2
5(13 (Eaxa 57 O)> @ 5(1’ (5’ ya §>0)> == (57 (E?xv §,0>a 57 (§7y7 5’0))

We now introduce several commonly used axioms in the literature on decision making
involving compound risk and discuss their implications for choice behavior in our setup.
We begin with the following axiom which has largely been implicit in the literature on
generalizing expected utility under different weakening of its independence axiom.

REDUCTION OF COMPOUND LOTTERY AXIOM (RCLA): (g%, X*), ~ ¢' X' + ¢*?X* +
g X

RCLA requires a compound lottery (g*, X*), to be indifferent to a simple lottery
' X'+ ¢*X?* + --- + g X* whose outcomes are taken from the component lotteries X*
with the corresponding probabilities derived from the given compound lottery. This prop-
erty is inherent to any utility model whose domain of choice comprises a set of probability
measures with a convex combination of two lotteries interpreted as a compound lottery.
In relaxing RCLA, people may exhibit distinct attitudes towards risks at different stages in
a compound lottery. To accommodate this, we may limit the scope of a preference axiom
to simple lotteries in a single-stage setting. Clearly, applying + on within-stage risks does
not imply that RCLA holds.

We adapt the independence axiom and the betweenness axiom to the domain of simple
lotteries for both stage-1 and stage-2 risks.

STAGE-1 INDEPENDENCE: (g™, X™),, > (q", X"), implies that a(q", X™),,® (1—a)(q',
XI)I i a(qna Xn)n @ (1 - a)(ql’ Xl)l'

STAGE-2 INDEPENDENCE: X, = X, implies that aX,, + (1 —a)X; > o X, + (1 — @) X.

Independence requires that the preference between two lotteries is preserved when
each is mixed with a common third lottery at the same probability.

STAGE-1 BETWEENNESS: (", X™),, = a(q", X™), ® (1 — &) (q", X™),, = (¢", X™), if
q" X™")m = (q", X")n.

STAGE-2 BETWEENNESS: X, = aX,, + (1 —a) X, = X, if X,n = X,.

Betweenness requires a mixture between two lotteries to be intermediate in preference
between the preference for two respective lotteries.
The following axiom provides a link between stage-1 and stage-2 risk preference.

TIME NEUTRALITY: Given X; = (p;, X;);, 8x, ~ (p’, 8y));.

This axiom requires a decision maker to be indifferent between two degenerate com-
pound lotteries if they reduce to the same simple lottery. Put differently, whether the
resolution of risks occurs at stage 1 or stage 2 does not influence the preference for de-
generate compound lotteries.

It is straightforward to see that RCLA implies time neutrality and that independence
implies betweenness (see Segal (1990) for a detailed discussion). For completeness in
exposition, we present the following axiom which together with RCLA implies indepen-
dence.
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COMPOUND INDEPENDENCE AXIOM: X* = X* iff (¢', X'; ¢*, X?;...; ¢, X¥; .. .; q",
XM= (gL X5 ¢ X% 545 X g X,

Compound independence requires a compound lottery (g*, X*), to becomes less pre-
ferred if any of the component simple lotteries is replaced with a less preferred simple
lottery.

We summarize below the implications of RCLA, stage-1 betweenness, and time neu-
trality for choice behavior in our experiments.

IMPLICATION R: RCLA implies that all compound lotteries are indifferent to {50}.

This follows from observing that the compound lotteries in our setup reduce to {50}.

IMPLICATION B: Stage-1 Betweenness implies that [0, 100]¢ is ranked between [n,
100 — n]€ and [0, n] U [100 — 2, 100]€.

This follows from observing that [0, 100]¢ = 2%[n, 100 — n]¢ @ 22110, n] U [100 —

100 100
n,100]€ in our setup, assuming the overlapping two points {n} and {100 — n} are neg-

ligible.
IMPLICATION T: Time Neutrality implies that {50} ~ {0, 100}.
This follows from observing that {50} and {0, 100}¢ reduce to the same lottery.

APPENDIX C: SUPPLEMENTARY TABLES AND FIGURES

TABLE C.I
SUMMARY STATISTICS IN MAIN EXPERIMENT?

N Mean SD Seeking Neutral Averse
{50} 188 7.888 4.716 27 19 142
[25, 7514 188 6.346 4.314 30 65 93
[0,25] U [75, 100]4 188 5.840 4.297 19 65 104
(25,7534 188 6.106 4.254 24 70 94
[0, 100]4 188 5.686 4.483 22 69 97
{0, 10034 188 7.122 5.665 34 80 74
[25,75]¢ 188 6.686 4.256 29 78 81
[0,25] U [75,100]¢ 188 6.128 4.199 39 54 95
(25,75)¢ 188 6.351 4.194 35 57 96
[0, 1001¢ 188 5.830 4.259 25 63 100
{0, 100}¢ 188 6.947 5.866 37 72 79

aNote. This table summarizes the mean and standard deviation of CEs, as well as the number of subjects who exhibit aversion,
neutrality, and affinity towards each lottery.
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TABLE C.II
TRENDS IN CHOICE PATTERNS ACROSS EXPERIMENTS?

Ambiguity (M) Compound Risk (M) Ambiguity (S1) Compound Risk (S2)

A: Interval Lotteries

Increasing 12 15 0 12

Constant 49 47 20 21

Decreasing 79 85 25 30
B: Disjoint Lotteries

Increasing 33 42 4 22

Constant 57 52 19 16

Decreasing 50 50 19 26

C: Two-point Lotteries

Increasing 17 20 7 8

Constant 54 41 22 14

Decreasing 1 50 45 33 17

Decreasing 2 53 60 22 18

4Note. Panel A (B) displays the number of subjects whose CEs are increasing, constant, or decreasing as the number of possible
compositions increases for the interval (disjoint) lotteries. Panel C displays the number of subjects whose CEs are increasing, constant,
or decreasing in two ways (Decreasing 1: including the end-point; Decreasing 2: excluding the end-point) as the spread increases for
the two-point lotteries.

TABLE C.III
END-POINT BEHAVIOR ACROSS EXPERIMENTS?

Experiment {50} > {0, 100}4 {50} = {0, 100}4 {50} < {0, 100}
Main 74 (39.4%) 80 (42.6%) 34 (18.1%)
S1 33 (31.1%) 49 (46.2%) 24 (22.6%)
{50} > {0, 100}€ {50} = {0, 100}€ {50} < {0, 100}€
Main 79 (42.0%) 72 (38.3%) 37 (19.7%)
S2 43 (43.9%) 34 (34.7%) 21 (21.4%)

4Note. This table displays the number (percentage) of subjects in terms of their preference between {50} and {0, 100} in the main
experiment and experiment S1, as well as between {50} and {0, IOO}C in the main experiment and experiment S2.

TABLE C.IV
SPEARMAN CORRELATION OF AMBIGUITY PREMIUM AND COMPOUND RISK PREMIUM

125,751 [0,25]U[75, 1001€ (25,75C [0, 1001€ {0, 100}€
[25, 7514 0.614 0.525 0.544 0.492 0.267
[0,25]U[75, 10014 0.477 0.613 0.597 0.520 0.451
25,7514 0.564 0.556 0.694 0.600 0.382
[0, 10074 0.497 0.590 0.473 0.580 0.285

{0, 10034 0.170 0.271 0.378 0.199 0.441
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TABLE C.V

CORRELATION BETWEEN AMBIGUITY AND COMPOUND RISK PREMIUMS ACROSS STUDIES

Study Correlation N Remark
Halevy (2007)* 0.474 104 first round
Halevy (2007)* 0.810 38 robustness round
Dean and Ortoleva (2012) 0.730 190 -
Abdellaoui, Klibanoff, and Placido (2015)® 0.483 115 uniform compound risk
Abdellaoui, Klibanoff, and Placido (2015)* 0.557 115 hypergeometric compound risk
Gillen, Snowberg, and Yariv (2015) 0.440 786 no control for measurement error
Gillen, Snowberg, and Yariv (2015) 0.850 786 control for measurement error
Current study 0.580 188 [0, 100]
Current study 0.614 188 [25,75]
Current study 0.613 188 [0,25]1U[75,100]
Current study 0.694 188 (25,75}
Current study 0.441 188 {0, 100}
Chew, Miao, and Zhong (2017) 0.489 3146 [0, 100]
aThe correlations are calculated based on data provided.
TABLE C.VI
COLOR PREFERENCE ACROSS STUDIES*
Study Color Preference N Note
Abdellaoui et al. (2011) 1% 67 eight-color urn
Epstein and Halevy (2017) 5% 80 first experiment
Epstein and Halevy (2017) 23% 87 second experiment
Epstein and Halevy (2017) 14% 44 risk control with {50}
Epstein and Halevy (2017) 23% 39 single urn control with [0, 100]4
Current study 13% 39 {50}
Current study 15% 39 [0, 10014
Current study 15% 39 {0, 100}

aNote. Abdellaoui et al. (2011) tested symmetry for one-color events, two-color events, and four-color events in an eight-color
unknown urn. Epstein and Halevy (2017) tested symmetry with two unknown urns in two experiments, along with one risky urn and
one fully ambiguous urn as controls. Our supplementary experiment follows Epstein and Halevy (2017) in which subjects make binary
choices between betting on either color with slightly unequal prizes.
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TABLE C.VII
ASSOCIATION BETWEEN AMBIGUITY ATTITUDE AND RCLA?

Compound Risk

Reduction Non-Reduction Total

Panel A: Ambiguity first

Ambiguity
Neutral 18 (3.7) 2(16.3) 20
Nonneutral 1(15.3) 81 (66.7) 82
Total 19 83 102

Panel B: Compound risk first

Ambiguity
Neutral 12 (2.8) 8(17.2) 20
Nonneutral 0(9.2) 66 (56.8) 66
Total 12 74 86

aNote. The two-way table presents the number of subjects by whether RCLA
holds and whether ambiguity neutrality holds. Each cell indicates the number of sub-
jects with the expected number displayed in parentheses.

TABLE C.VIII
COMPARISON BETWEEN AMBIGUOUS AND COMPOUND TWO-POINT LOTTERIES®

{0, 100}

CEA4 < CE€ CE4 = CE¢ CE4 > CE€ Total

Panel A: Ambiguity first

(25,75}
CE* < CE€ 7(3.8) 5(5.8) 3(5.4) 15
CE* =CE¢ 7 (11) 19 (17.1) 18 (15.9) 44
CE* > CE€ 4(3.3) 4(5.1) 5 (4.7) 13
Total 18 28 26 72

Panel B: Compound risk first
(25,75}
CE* < CE€ 8 (5.6) 10 (9.2) 0(3.2) 18
CE* = CE* 7(8) 12 (13.6) 7(4.7) 26
CE* > CE° 2(3.4) 6 (5.6) 3(2) 11
Total 17 28 10 55

aNote. The two-way table presents the number of subjects in each of the categories—CE4 < CEC, CEA = CEC, and CE/ >

CEC€—indicating that the CE of a two-point ambiguity lottery may be smaller than, equal to, or larger than that of the corresponding
two-point compound lottery. Each cell indicates the number of subjects with the expected number displayed in parentheses.
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TABLE C.IX
INDIVIDUAL TYPES WITH TWO-STAGE PERSPECTIVE®
Compound Risk

REU RRDU Unclassified Total
Panel A: Ambiguity first

Ambiguity
REU 11 (8.3) 8(0.2) 4 (4.5) 23
RRDU 11 (14.1) 21(17.3) 7(7.6) 39
Unclassified 4(3.6) 3(44) 3(1.9) 10
Total 26 32 14 72

Panel B: Compound risk first

Ambiguity
REU 16 (12.3) 5(10.0) 4(2.7) 25
RRDU 6(9.3) 11 (7.6) 2(2.1) 19
Unclassified 5(5.4) 6(4.4) 0(1.2) 11
Total 27 22 6 55

aNote. The two-way table presents the number of subjects classified as REU or RRDU separately for ambiguity and compound
risk. Each cell indicates the number of subjects with the expected number displayed in parentheses.

C.1. Figures
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FIGURE C.1.—Cumulative distribution of CEs in each kind of partial ambiguity/compound risk.
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FIGURE C.2.—Aggregate choice patterns for the two treatments.

C.2. Order Effect

We assess the extent to which our results, especially those concerning the three key
findings and individual type, are robust to the order of appearance of ambiguity and
compound risk in our main experiment. The plots of the aggregate data displayed in
Figure C.2 reveal that the observed choice patterns for interval, disjoint, and two-point
ambiguity (compound risk) are generally similar across the two orders of appearance.
Namely, there is a decreasing trend in the CEs for the interval and disjoint ambiguity
(compound risk) as the number of possible compositions increases. For two-point am-
biguity (compound risk), there is an initially decreasing trend in the CEs as the spread
increases except for the end-point {0, 100}.

To check the robustness of the association between ambiguity attitude and RCLA for
both orders, we plot the corresponding two-way tables separately (Table C.VII). For the
102 subjects under “ambiguity first,” of the 19 subjects who are observed to reduce all
compound lotteries, 18 are ambiguity neural. Of the 83 subjects who violate RCLA, 81
exhibit ambiguity non-neutrality. For the 86 subjects under “compound risk first,” of
the 12 subjects reducing all compound lotteries, all exhibit ambiguity neutrality. Of the
74 subjects who violate RCLA, 66 exhibit ambiguity non-neutrality. The null hypothe-
sis of independence is strongly rejected in both order treatments (Pearson’s chi-squared
test, p < 0.001 for each treatment). This suggests that attitude towards partial ambiguity
and attitude towards the corresponding compound risk are closely correlated within both
treatments.

Table C.VIII further examines the robustness of the non-neutrality between two-point
ambiguity and two-point compound risk. Under ambiguity first (compound risk first), 19
(12) subjects have similar CEs, 27 (16) subjects weakly prefer ambiguous two-point lot-
teries to compound two-point lotteries, and 19 (25) subjects exhibit the reverse behavior,
with the rest of the 7 (2) subjects not revealing a consistent preference. The difference
between the two treatments is significant for {0, 100} (multinomial logistic regression,
p < 0.023), but not for {25, 75} (multinomial logistic regression, p < 0.508). Overall,
while there are some differences between the two order treatments, the observation that
substantial proportions of subjects value these two types of lotteries differently remains
robust.
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In an individual type analysis for REU and RRDU under the two treatments (see Ta-
ble C.IX), 11 (16) are classified as REU type and 21 (11) are classified as RRDU type
under ambiguity first (compound risk first) treatment. A proportion test reveals that the
difference between these two treatments is statistically significant (p < 0.039). In sum,
the three key findings appear robust to the two different orders. At the same time, we
observe an order effect on the classification of individual type.

APPENDIX D: RESULTS OF SUPPLEMENTARY EXPERIMENTS
D.1. Experiment SI on Ambiguity

This subsection presents the design and results of Experiment S1 on partial ambiguity.
We first present the experimental design, and then analyze the choice patterns for the
three kinds of partial ambiguity at both aggregate and individual levels.

D.1.1. Design

Experiment S1 comprises three kinds of six lotteries each with a total of 15 lotteries as
follows.

Interval ambiguity. It comprises six lotteries with interval ambiguity: {50}, I}, = [40, 6014,
L =[30, 7014, I = [20, 8014, I;{ =[10, 9014, [0, 100].

Disjoint ambiguity. It involves six lotteries with disjoint ambiguity: {0, 100}, D7} =
[0, 10] U [90, 10014, D5 = [0, 20] U [80, 100]“, D5, = [0, 30] U [70, 100], D;, = [0, 40] U
[60, 10014, [0, 100]~.

Two-point ambiguity. It involves six lotteries with two-point ambiguity: {50}, Tj) =
{40, 60}, T5 = {30, 70}, T5 = {20, 80}, T4 = {10, 90}, {0, 100}.

In the experiment, subjects were shown the 15 decks of cards. For each lottery, betting
correctly on the color of a drawn card would deliver SGD40 (about USD30) while betting
incorrectly would deliver nothing. We use the price-list design and RIM in eliciting the
CE:s of various lotteries. The order of appearance of the 15 lotteries is randomized for the
subjects who each make 150 choices in total (see Appendix E for detailed Experimental
instructions). At the end of the experiment, in addition to a SGD5 show-up fee, each
subject is paid based on his/her randomly selected decision in the experiment. One out of
150 choices is randomly chosen using dice. We recruited 112 undergraduate students from
the National University of Singapore (NUS) by advertising on the university platform, the
Integrated Virtual Learning Environment. The experiment consisted of four sessions with
20 to 30 subjects in each session.

D.1.2. Observed Choice Behavior

We present the observed choice behavior at both aggregate and individual levels for 106
subjects. Six subjects exhibit multiple switching in some of the tasks. Their data are ex-
cluded from our analysis. The choice data are similarly coded in terms of the switch point
given by the number of times a subject chooses a given lottery over different increasingly
ordered sure amounts before switching over to choosing the sure amounts.

We first examine the implication of ambiguity neutrality, that is, that subjects assign the
same CE to the 15 lotteries. Using a Friedman test (p < 0.001), we reject the null hypoth-
esis that the CEs of the 15 lotteries come from a single distribution. Besides replicating
the standard finding on ambiguity aversion with CE of {50} being significantly higher than
that of [0, 100]“ (paired Wilcoxon Signed-rank test, p < 0.001), our subjects have distinct
attitudes towards different kinds of partial ambiguity. Specifically, for the comparison
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between {50} and [0, 100]4, 62 subjects (58.5%) exhibit ambiguity aversion, 33 subjects
(31.1%) exhibit ambiguity neutrality, and 11 subjects (10.4%) exhibit ambiguity affinity.
Comparing {50} with the other 14 ambiguous lotteries at the individual level, 16 out of
106 subjects (15.1%) have the same CEs for the 15 lotteries. Among the others, 48 sub-
jects (45.3%) exhibit overall ambiguity aversion in having weakly larger CEs for {50} than
for the other 14 ambiguous lotteries. Thirteen subjects (12.3%) have weakly lower CEs
for {50} than that for the other 14 ambiguous lotteries, hence revealing some degree of
ambiguity affinity. The remaining 29 subjects (24.3%) do not exhibit uniform attitude
towards ambiguity. Using a similar analysis as in the main experiment, we replicate the
observations for the three kinds of partial ambiguity.

For interval ambiguity, there is a statistically significant decreasing trend in the CEs as
the number of possible compositions increases (p < 0.001). At the individual level, 20
subjects (18.9%) have the same CEs, 25 subjects (23.6%) have weakly decreasing CEs,
while none of the subjects has weakly increasing CEs. For disjoint ambiguity, there is a
statistically significant decreasing trend in the CEs as the number of possible compositions
increases (p < 0.001). At the individual level, 19 subjects (17.9%) have the same CEs,
19 subjects (17.9%) have weakly decreasing CEs, and four subjects (3.8%) have weakly
increasing CEs.

For two-point ambiguity, there is a significant decreasing trend in the CEs until the end-
point. Interestingly, the CE of {0, 100} reverses this trend and is significantly higher than
the CE of {10, 90}* (paired Wilcoxon Signed-rank test, p < 0.001). Moreover, the CE
of {10, 90}/ is not significantly different from that of {50} (paired Wilcoxon Signed-rank
test, p > 0.225). At the individual level, 22 subjects (20.8%) have the same CEs, 14 sub-
jects (13.2%) have weakly decreasing CEs, 33 subjects (31.1%) have weakly decreasing
CEs until {10, 90} with an increase at {0, 100}, and seven subjects (6.6%) have weakly
increasing CEs. Between {50} and {0, 100}, 49 subjects (46.2%) have the same CEs, 33
subjects (31.1%) display a higher CE for {50} than that for {0,100}“, and 24 subjects
(22.6%) exhibit the reverse.

In summary, the observed patterns towards the three kinds of ambiguity replicate the
observations in the main experiment regarding ambiguity lotteries.

D.2. Experiment S2 on Compound Risk

This subsection presents the design and results of Experiment S2 on compound lottery.
We first present the experimental design, and then analyze the choice patterns for the
three kinds of compound lottery at both aggregate and individual levels.

D.2.1. Design

Experiment S2 on uniform compound risk links naturally to the two-stage perspective
of ambiguity under uniform priors. For each compound lottery, we implement objective
uniform stage-1 prior as follows: one ticket is randomly drawn from a bag containing
some tickets with different numbers written on them. The number drawn determines the
number of red cards in the deck with the rest black. The resulting stage-1 risk is thus
uniformly distributed among different numbers while the bet at stage 2 involves betting
on the color of a card randomly drawn from the deck. There are three kinds of nine
lotteries included in this experiment.

Interval compound risk. This involves four lotteries with symmetric interval stage-1 risk:
{50}, I, = [40, 60]¢, I§, = [20, 80]¢, [0, 100]°.
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Disjoint compound risk. This involves four lotteries with symmetric disjoint stage-1 risk:
{0, 100}¢, DS, = [0, 20] U [80, 100]¢, DS, = [0, 40] U [60, 100]¢, [0, 100]¢.

Two-point compound risk. This involves four lotteries with symmetric two-point stage-1
risk: {50}, T¢, = {40, 60}¢, TS, = {20, 80}€, {0, 100}°.

The elicitation mechanism and experimental procedure are similar to those in Experi-
ment S1 (see Appendix E for detailed Experimental instructions). We have 109 subjects
in Experiment S2.

D.2.2. Observed Choice Behavior

We report the observed choice patterns at both aggregate and individual levels. To test
the implication of RCLA, that is, that the CEs of the nine lotteries are the same, we
apply the Friedman test and reject the null hypothesis that their CEs come from the same
distribution (p < 0.001). At the individual level, 12 of 98 subjects (12.2%) have the same
CE for the nine lotteries. Besides these subjects, 39 subjects (40.0%) have weakly larger
CEs for {50} than that of the other eight compound lotteries, while 17 subjects (17.3%)
exhibit the opposite pattern with weakly lower CEs for {50} than the other eight lotteries.
This suggests that subjects tend to weakly prefer receiving the reduced simple lottery than
any of the eight other compound lotteries. To study the choice patterns across the three
kinds of compound lotteries, we again apply a similar analysis as in the main experiment
to examine whether there is a significant trend in each kind corresponding to attitudes
towards different patterns of spread in stage-1 risks.

For interval compound risk, there is a statistically significant decreasing trend in the
CEs as the stage-1 risks spread away from the mid-point (p < 0.001). At the individual
level, 21 subjects (21.4%) have the same CEs, 30 subjects (30.6%) have weakly increasing
CEs, and 12 subjects (12.2%) have weakly decreasing CEs, with the rest of the subjects
not exhibiting monotonic preference in relation to uniform interval spread. For disjoint
compound risk, there is a statistically significant increasing trend in the CEs as the stage-
1 risks spread away from the mid-point (p < 0.001). At the individual level, 16 subjects
(16.3%) have the same CEs, 26 subjects (26.5%) have weakly increasing CEs, and 22
subjects (22.4%) have weakly decreasing CEs, with the rest of the subjects not exhibiting
monotonic preference in relation to uniform disjoint spread.

For two-point compound risk, there is a statistically significant decreasing trend in the
CEs as the stage-1 risks spread away from the mid-point (p < 0.042). At the individual
level, 18 subjects (18.4%) have weakly increasing CEs, 14 subjects (14.3%) have the same
CEs, 8 subjects (8.2%) have weakly decreasing CEs, and 17 subjects (17.3%) have weakly
decreasing CEs initially followed by an increase near the end-point, while the remaining
41 subjects (42.0%) do not exhibit any of these patterns. Focusing on {50} and {0, 100},
34 subjects (34.7%) have the same CEs, 43 subjects (43.9%) have a higher CE for {50}
than that of {0, 100}¢, while the other 21 subjects (21.4%) have the reverse preference.
Paired Wilcoxon Signed-rank test shows that the CE of {50} is significantly higher than
that of {0, 100}€ (p < 0.022).

In summary, the observed patterns towards the three kinds of compound lottery repli-
cate the observations in the main experiment except for the end-point, which we elaborate
in the manuscript.
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