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SUPPLEMENT TO “FORECASTING WITH MODEL UNCERTAINTY:
REPRESENTATIONS AND RISK REDUCTION”
(Econometrica, Vol. 85, No. 2, March 2017, 617-643)

BY KEISUKE HIRANO AND JONATHAN H. WRIGHT

This supplement introduces some alternative procedures to the ones considered in
the main text, and provides extended numerical comparisons of local asymptotic risk
among the various methods. It also conducts a small Monte Carlo study of finite-sample
risk, and provides a comparison of shrinkage factors for a number of the procedures.

WE FIRST INTRODUCE three alternative procedures: the positive part James—Stein esti-
mator; the Laplace estimator; and LASSO.

1. Positive Part James—Stein Estimator. Let B be the unrestricted MLE and V be an
estimate of its asymptotic variance—covariance matrix. The positive part James—Stein es-

timator for k > 2 is
- . k—2
B=ﬂmah——77—;%.
TAV™'B
2. Laplace Estimator. Let t denote the vector of ¢-statistics consisting of the elements
of B each divided by the jth diagonal element of 1. The Laplace estimator of S is

B=Boh),

where A(x) = (1 — ) (element-by-element), h(x) = giiﬁig:g;;gjﬁi{;:g; , c=1In(2), and
®(-) is the standard normal c.d.f. This is equivalent to the Bayesian posterior mean in
the normal model when the prior is a product of Laplace distributions (Magnus (2002),
Magnus, Powell, and Priifer (2010)). Therefore, this estimator is asymptotically admissible

under our local asymptotics.

3. LASSO Estimator:. Set B to maximize I[(8) — Ay Zj;l |B,|, where A7 is a penalty term.
Penalized maximum likelihood estimators of this sort have been considered by Tibshirani
(1996) and many others.

If we use the James-Stein estimator, then under the conditions in Proposition 3.5, its
limiting distribution will be

. k—2
1/2 -1 - - -
TV’B —,3 Y(l)max{l Y(l)’z—zY(l)’O}'

If we incorporate a bagging step, then

- k-2
1/2 * —1vyr* _
T'"B—4E |:Z Y (1)max{1 —Y*(l)’E‘ZY*(l)’()”'

If we use the standard Laplace estimator, then under the conditions in Proposition 3.5,
its limiting distribution will be

TR —,Y(1) o h(WY (1)),

where W is a diagonal matrix with the jth diagonal element equal to the reciprocal of the
square root of the jth diagonal element of 3!
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If we incorporate a bagging step, then
T3 —, E*[Y*(1) o A(WY*(1))].
In the linear regression model (Section 3.2), the results of Knight and Fu (2000) apply

to the LASSO estimator. They showed that for the LASSO estimator, if max, 7-'x/x, — 0
and T-2A; — Ao >0, then

T3 -, argminv'3v — 20'Y (1) + X3 ;.
If we incorporate a bagging step, then
T8 -, E*[argmvinv/Zv WY D)+ A j:1|u,|].
RB makes no difference to the James—Stein, Laplace, or LASSO estimators.
In the remainder of this document, we report some further numerical results:

1. We first report the same computations of local asymptotic risk as in Figures 1-3 of
the paper, but adding in LASSO, James-Stein, and Laplace estimators, in their standard

No resampling

Bagging

0 2 4 6 0 2 4 6
b b
Rao-Blackwellization
18 AlC
1.6 ——e—00S
1.4 & ."... ........ Split Sample
1.2 e L MLE
1 :',,f’ T o] ==== | aplace
08 / 17« Ry LASSO
’ ,.f Bayes
0.6 & ==== Bayes: Tight Prior
0.4[.
0 2 4 6

b

FIGURE Al.—Local asymptotic risk (k = 1). These are the simulated local asymptotic risk values, Equa-
tion (5.1), for different procedures, plotted against b. Note that MLE and Bayes are the same without any
resampling, with bagging or with Rao-Blackwellization. AIC, Laplace, and LASSO are the same without any
resampling or with RB.
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FIGURE A2.—Local asymptotic risk (k = 3). These are the simulated local asymptotic risk values, Equa-
tion (5.1), for different procedures, plotted against b,, where b = (b,, 0, ..., 0)". Note that MLE and Bayes are
the same without any resampling, with bagging or with Rao-Blackwellization. AIC, Laplace, LASSO, and JS
are the same without any resampling or with RB.

form and with bagging (by construction, RB has no effect on them). LASSO is imple-
mented with the penalty Ay equal to the square root of sample size, using code from the
SpaSM toolbox (Sjostrand, Clemmensen, Larsen and Ersbgll (2012)).

These results are shown in Figures A1-A3. Bagging makes little difference to the
LASSO or Laplace estimators. The LASSO and Laplace estimators have low risk for
many values of b and are numerically quite similar to out-of-sample with bagging, except
that for large b, LASSO and Laplace have higher risk. We also include a Bayesian estima-
tor with a tight prior in Figures A1-A3. This prior is multivariate normal with mean zero
and variance matrix {2 = 3 - diag{1, 1/2, ..., 1/ k}. As noted in the paper, by construction,
neither bagging nor RB has any effect on the Bayesian estimator. Also, as noted in the
paper, achieving the local asymptotic risk of this proper-prior Bayesian estimator would
require using a sequence of shrinking priors in the original model. Using the tighter prior
improves the performance of the Bayes estimator for small values of b, although its risk
is higher than some of the other procedures for larger values of b.

2. We report further computations of local asymptotic risk with multiple predictors as
in Section 5 of the paper, but where the associated coefficients are all equal. The LASSO
and Laplace estimators are again included. In the notation of the paper, we specify that
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FIGURE A3.—Local asymptotic risk (k = 20). These are the simulated local asymptotic risk values, Equation
(5.1), for different procedures, plotted against b, where b = (b4, 0, ..., 0)". Note that MLE and Bayes are the
same without any resampling, with bagging or with Rao-Blackwellization. AIC, Laplace, LASSO, and JS are
the same without any resampling or with RB.

b = b k=2, where i denotes a k x 1 vector of ones. Figures A4 and A5 plot the risk
for k =3 and k = 20 against b, for the different procedures. RB and bagging help the
split-sample and out-of-sample methods a good deal.

3. We calculate the integrated local asymptotic risk for the various procedures, using a
uniform weighting on [—b, b]*, where k is the dimension of the parameter space, k = 1
or 3, and b = 3 or 6. These are shown in Table A-I. The inefficiency of the out-of-sample
and split-sample methods is apparent, but as noted in the main text, either bagging or
Rao-Blackwellization improves them considerably and their integrated risk is similar, and
sometimes lower, than the in-sample (AIC) procedure. We also include results for the
Bayes estimator where the prior is flat on [—b, b]*: the Bayes estimator of the localization
parameter is then max(min(Y (1), 15), —l;). Not surprisingly, this gives lower integrated
risk than any of the alternatives, although other methods can be quite close.

4. We consider the case where b has k elements and we do a grid search over possible
values of k of these elements, setting the remaining elements to zero. In Table A-II, we
list the cases in which one method dominates another one uniformly over the nonzero
elements of b in terms of local asymptotic risk for various pairs of possible forecasting



FORECASTING WITH MODEL UNCERTAINTY

No resampling

Bagging

0.5 ‘ 0.5 ‘ ‘
0 2 4 6 2 4
b1 b1
Rao-Blackwellization
S James Stein
AIC
25 e e, ———— 00S
> - —~ ———l Split Sample
= MLE
15 ;'5/ = === Laplace
/5{ ........ LASSO
1L 2% Bayes
,~" = === Bayes: Tight Prior
0.5p"
0 2 4 6

1

FIGURE A4.—Local asymptotic risk (k = 3, all coefficients equal). These are the simulated local asymptotic
risk values, Equation (5.1), for different procedures, plotted against b;, where b = b;k~'/?i. Note that MLE
and Bayes are the same without any resampling, with bagging or with Rao-Blackwellization. AIC, Laplace,
LASSO, and JS are the same without any resampling or with RB.

methods. As this is done by grid search, it is only feasible for k = 1, 2. We find that in all
cases, the split-sample forecasts with RB or bagging dominate those without. For bagging,
this is a numerical result, but for RB it is a theoretical one, as discussed above. The out-of-
sample forecasts with RB dominate those without, though that is not true for bagging. In
Table A-11, if £ > 4 and k = 1, then the split-sample scheme with bagging or RB dominates
in-sample forecasting (with or without bagging), the maximum-likelihood estimator, and
the James—Stein estimator. It seems that the split-sample forecasting scheme with bagging
or RB does best if the model is sparse—there are multiple coefficients, most of which are
equal to zero. The out-of-sample scheme with RB dominates in-sample forecasting (with
or without bagging), the maximum-likelihood estimator, and the James—Stein estimator
ifk>3and k =1.

5. To assess whether the local asymptotic theory provides useful approximations to the
finite-sample performance of the procedures we examine in the paper, we conducted a
small Monte Carlo study. We simulated the linear regression model in Section 2.1 with
t(5) errors' scaled to have unit variance, independent standard normal regressors, sample

'Results with normal errors were very similar.
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FIGURE A5.—Local asymptotic risk (k = 20, all coefficients equal). These are the simulated local asymptotic
risk values, Equation (5.1), for different procedures, plotted against b, where b = b;k~'/?i. Note that MLE
and Bayes are the same without any resampling, with bagging or with Rao-Blackwellization. AIC, Laplace,
LASSO, and JS are the same without any resampling or with RB.

size T = 100, and different values of k. In each simulation, we drew T + 1 observations
on y, and x,, and used the first 7' for model selection and parameter estimation according
to one of the methods discussed in the paper or above. Then, given x7,;, we worked out
the prediction for yr,;, and computed the mean squared prediction error (MSPE).

Figure A6 plots the simulated root normalized mean squared prediction errors
(/T % (MSPE —1)) with k =1 against B. Figures A7 and A8 plot the simulated root nor-
malized mean squared prediction errors with k =3 and k = 20, where 8 = (3,0, ...,0)
against 31, also including James-Stein estimators. Figures A9 and A10 do the same where
B = B1k~"i. The Monte Carlo results are generally consistent with local asymptotics. In
the case k = 20, MSPE:s for all methods tend to be a bit higher than would be expected
under the local asymptotic approximations, because of estimation of variance—covariance
matrices.

6. We consider Monte Carlo simulations where the data generating process consists of
y: = B:x; + u,, where x, are independent standard normal regressors, B, is a Gaussian
random walk with innovation standard deviation w, the sample size is 7= 100, and u, are
t(5) errors with variance scaled to unity. Although the data generating process features
time-varying parameters, we suppose that the researcher does not know this, and applies
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TABLE A-1
INTEGRATED LOCAL ASYMPTOTIC RISK*

k=1 k=1 k=3 k=3
Method b=6 b=3 b=6 b=3
MLE 1.00 1.00 3.00 3.00
JS 1.00 1.00 2.95 2.76
AIC 1.16 1.27 3.29 3.80
Laplace 1.08 0.90 323 2.68
LASSO 1.14 0.83 342 2.48
Bayes 0.91 0.83 2.74 2.47
00S 1.75 1.52 4.54 4.57
SS 243 2.08 7.05 6.51
JSB 1.00 1.00 2.99 2.78
AICB 1.05 1.01 3.11 3.03
LaplaceB 1.07 0.86 3.17 2.55
LASSOB 1.13 0.83 3.37 2.45
OOSB 1.12 0.93 3.26 2.84
SSB 1.40 1.16 3.78 3.39
OOSRB 1.17 1.02 3.36 3.13
SSRB 1.63 1.55 4.20 442

aThese are the simulated local asymptotic risk values, E[(TV/2§ — b)Y (T'/2§ — b)] (the square of Equation (5.1)), for different

procedures, integrated using a uniform weighting over the local parameter b, for b in [—b, b]X. These represent simple average risk
values and note that here we report the mean squared error, not the root mean squared error. Recall that MLE and Bayes are the
same without any resampling, with bagging or with RB. AIC, LASSO, Laplace, and JS are the same without any resampling or with
RB.

the methods discussed in the paper treating parameters as constant. Table A-I1I tabulates
the simulated root normalized mean squared prediction errors for various values of w.

7. We lastly plot the implicit local asymptotic shrinkage functions for the AIC, out-of-
sample, and split-sample estimators, in their standard form, with bagging and with RB in
the case k =1 (g(Y) in the notation of Appendix B). These are shown in Figure All.
The out-of-sample procedure with RB has a function g(Y') that is apparently continuous
but that is equal to zero for small values of |Y'|. It thus combines shrinkage with variable
selection, in common with LASSO. The split-sample procedure with RB has a function
g(Y) that goes negative for small values of |Y]|.
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DOMINANCE RELATIONS IN LOCAL ASYMPTOTIC RISK*
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TABLE A-1I—Continued

k 1 2 3 4 5 6 2 3 4 5 6

k 1 1 1 1 1 1 2 2 2 2 2
AICBv. SSRB “r “ “ “SSRB” “SSRB” “SSRB” “r “ “ “ “SSRB”
OOSBv. SSB “r “ “r “SSB” “SSB” “SSB” “r “r “ “r “SSB”
OOSB v. OOSRB “ “ “O0SRB” “O0SRB” “O0SRB” “O0SRB” “ “ “ “O0SRB” “O0SRB”
OOSBv. SSRB “r “r “r “r “SSRB” “SSRB” “r “r “r “r “r
SSBv. OOSRB “ “r “ “ “ “r “ “ “r “ “
SSB v. SSRB “ “ “ “r “ “ “r “ “ “ “r
OSSRB v. SSRB “ “ “r “ “ “r “ “ “r “r “

4This table reports comparisons of local asymptotic risk between pairs of methods: maximum likelihood (MLE), positive part James—Stein estimator (JS) applicable if k > 2, in-sample with AIC
(AIC), the counterpart with bagging (AICB), out-of-sample (OOS), the counterpart with bagging/Rao-Blackwellization (OOSB/OOSRB), the split-sample method (SS), and the counterpart with
bagging/Rao-Blackwellization (SSB/SSRB). Results are shown for different numbers of predictors k. For each pairwise comparison, the table lists which method is uniformly dominant when only &
of the predictors are in fact nonzero. If neither is dominant, then the entry in the table is “~”.
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FIGURE A6.—Root normalized mean squared prediction errors (k = 1). These are the simulated root nor-
malized mean squared prediction errors using different procedures, plotted against 8. There is one possible
predictor. The Monte Carlo simulation design is as described in Section 6, and the sample size is 7 = 100.
Note that MLE and Bayes are the same without any resampling, with bagging or with Rao-Blackwellization.
AIC, Laplace, and LASSO are the same without any resampling or with RB.



FORECASTING WITH MODEL UNCERTAINTY 11

No resampling Bagging
2 .““‘""..'u. 2
T
'8 R il 8 e

16 .—"‘

1.4

e,
.
Treaa,, 4
"
uy
.

1.2 =" o

0 0.2 0.4 0.6 0 0.2 0.4 0.6
B, B,

Rao-Blackwellization

=-=:= James Stein

2 AIC
18 ==== 00S
===xxxe= Split Sample
LASSO
= === | aplace
vennnens GV
Bayes
,,’::' = === Bayes: Tight Prior
L7 & MLE
0 0.2 0.4 0.6

FIGURE A7.—Root normalized mean squared prediction errors (k = 3). These are the simulated root nor-
malized mean squared prediction errors using different procedures, where 8 = (B4, 0, 0)’, plotted against B;.
The sample size is 7 = 100. Note that MLE and Bayes are the same without any resampling, with bagging or
with Rao-Blackwellization. AIC, Laplace, LASSO, and JS are the same without any resampling or with RB.
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FIGURE A8.—Root normalized mean squared prediction errors (k = 20). These are the simulated root nor-
malized mean squared prediction errors using different procedures, where 8 = (B4, 0, 0)’, plotted against ;.
The Monte Carlo simulation design is as described in Section 6, and the sample size is 7 = 100. Note that MLE
and Bayes are the same without any resampling, with bagging or with Rao-Blackwellization. AIC, Laplace,
LASSO, and JS are the same without any resampling or with RB.
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FIGURE A9.—Root normalized mean squared prediction errors (k = 3, all coefficients equal). These are the
simulated root normalized mean squared prediction errors using different procedures, where 8 = 81k,
plotted against ;. The Monte Carlo simulation design is as described in Section 6, and the sample size is
T = 100. Note that MLE and Bayes are the same without any resampling, with bagging or with Rao-Black-
wellization. AIC, Laplace, LASSO, and JS are the same without any resampling or with RB.
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FIGURE A10.—Root normalized mean squared prediction errors (k = 20, all coefficients equal). These are
the simulated root normalized mean squared prediction errors using different procedures, where 8 = 81k~1/2,
plotted against ;. The Monte Carlo simulation design is as described in Section 6, and the sample size is
T = 100. Note that MLE and Bayes are the same without any resampling, with bagging or with Rao-Black-
wellization. AIC, Laplace, LASSO, and JS are the same without any resampling or with RB.

TABLE A-111
ROOT NORMALIZED MEAN SQUARED PREDICTION ERRORS WITH TIME-VARYING PARAMETERS?

" 0.00 0.01 0.02 0.03 0.04
AIC 0.76 1.07 1.55 2.02 2.51
00S 0.73 1.02 1.48 1.96 2.45
SS 0.56 1.05 1.80 2.54 3.15
AICB 0.81 1.01 1.46 1.95 2.45
OOSB 0.70 0.95 1.45 1.99 2.52
SSB 0.45 0.90 1.54 2.11 2.64
OOSRB 0.59 0.93 1.48 2.02 2.55
SSRB 0.30 0.93 1.64 2.23 2.73

2This table reports the simulated root normalized mean squared prediction errors using different procedures where there is a scalar
parameter B that is a Gaussian random walk with innovation standard deviation w, the sample size is T = 100, and the procedures
are applied treating the parameter as though it were constant.



FORECASTING WITH MODEL UNCERTAINTY 15

-------- AIC/AICRB
—AICB

,.
L.

0.2 w ‘ e | |
* A 2 - 0 1 2 3 4

FIGURE All.—Local asymptotic shrinkage functions. This plots the local asymptotic shrinkage functions
for the case k = 1. Each estimator has a limit of the form Y g(Y) and this figure plots g(Y) against Y, as
described in Appendix B. AIC is the same without any resampling or with RB.
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