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The supplement contains most formal proofs and derivations (Section A), detailed
description of implementation strategy and computational algorithms (Sections B and
C), complete specification of the model with on-the-job search and the identification
proof for this model (Section D), details of empirical analysis using large German
matched employer–employee data (Section E), and figures describing Monte Carlo re-
sults for the benchmark model and various alternative specifications (Section F).

A. PROOFS AND DERIVATIONS

A.1. Derivation of Value Functions

WE DERIVE WORKERS’ VALUE FUNCTIONS only since the functions for firms follow by
symmetry.

An unemployed worker becomes employed only if he meets a firm in his acceptance set,
and does not experience immediate match destruction. Otherwise, the worker remains
unemployed in the next period:

Vu(x) = β(1 − δ)Mu

∫
Bw(x)

dv(ỹ)
V

Ve(x� ỹ)dỹ
︸ ︷︷ ︸

successful matching

+βδVu(x)︸ ︷︷ ︸
destruction

+β(1 − δ)(1 −Mu)Vu(x)︸ ︷︷ ︸
no meeting

+β(1 − δ)MuVu(x)

∫
Bw(x)

dv(ỹ)
V

dỹ
︸ ︷︷ ︸

meet unacceptable firm

�

To express the continuation value from successful matching in terms of surplus, subtract
Vu(x) from the first integrand and add it back to rebalance the equation. Then, use (1) to
obtain

Vu(x) = βα(1 − δ)Mu

∫
Bw(x)

dv(ỹ)
V

S(x� ỹ)dỹ

+βδVu(x)+β(1 − δ)(1 −Mu)Vu(x)

+β(1 − δ)MuVu(x)

[∫
Bw(x)

dv(ỹ)
V

dỹ +
∫
Bw(x)

dv(ỹ)
V

dỹ
]
�

where terms cancel to give (3).
An employed worker receives w(x� y), and remains employed next period with proba-

bility (1−δ) or becomes unemployed with complementary probability. Minor rearranging
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and (1) yield (5):

Ve(x� y)=w(x� y)+βδVu(x)+β(1 − δ)Ve(x� y)

=w(x� y)+βδVu(x)+βα(1 − δ)S(x� y)+β(1 − δ)Vu(x)

=w(x� y)+βVu(x)+βα(1 − δ)S(x� y)�

A.2. Proofs of Results in Section 3.1

PROOF OF RESULT 1(i): Adding (5) and (6) yields

Ve(x� y)+ Vp(x� y)= f (x� y)+βVv(y)+βVu(x)+β(1 − δ)S(x� y)�

and, equivalently,

Ve(x� y)− Vu(x)+ Vp(x� y)− Vv(y)

= f (x� y)+ (β− 1)Vv(y)+ (β− 1)Vu(x)

+β(1 − δ)S(x� y)�

so that, using (1), gives

S(x� y)
(
1 −β(1 − δ)

) = f (x� y)+ (β− 1)Vv(y)+ (β− 1)Vu(x)�

and thus surplus equals

S(x� y)= f (x� y)+ (β− 1)Vv(y)+ (β− 1)Vu(x)

1 −β(1 − δ)
�(A.1)

Using (5) again gives us wages1

w(x� y) = S(x� y)α
(
1 −β(1 − δ)

) + (1 −β)Vu(x)(A.2)

= αf(x� y)+ α(β− 1)Vv(y)+ (1 − α)(1 −β)Vu(x)�

We now establish that Vu(x) is increasing in x. From (3),

Vu(x)(1 −β) = βα(1 − δ)Mu

∫
Bw(x)

dv(ỹ)
V

S(x� ỹ)dỹ�

so that

∂Vu(x)

∂x
(1 −β) = βα(1 − δ)Mu

∫
Bw(x)

dv(ỹ)
V

∂S(x� ỹ)

∂x
dỹ�

1Wages can also be derived using (6):

w(x�y) = f (x� y)− S(x� y)(1 − α)
(
1 −β(1 − δ)

) + (β− 1)Vv(y)

= f (x� y)− (1 − α)f (x� y)− (1 − α)(β− 1)Vu(x)+ α(β− 1)Vv(y)

= αf(x� y)+ (1 − α)(1 −β)Vu(x)+ α(β− 1)Vv(y)�
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keeping in mind that either S(x� y) = 0 at the interior boundaries of the matching set or
the non-interior boundaries do not change with x. More precisely, consider for simplic-
ity Bw(x) = [ϕ(x)�ϕ(x)]. If ϕ(x) �= 0, then S(x�ϕ(x)) = 0. If ϕ(x) = 0, then ∂ϕ(x)

∂x
= 0.

Analogously, if ϕ(x) �= 1, then S(x�ϕ(x)) = 0. If ϕ(x) = 1, then ∂ϕ(x)

∂x
= 0.

As a result, we have, using (A.1), that

∂Vu(x)

∂x
(1 −β)

= βα(1 − δ)Mu

1 −β(1 − δ)

∫
Bw(x)

dv(ỹ)
V

∂f (x� ỹ)+ (β− 1)Vu(x)

∂x
dỹ�

Solving for ∂Vu(x)

∂x
yields

∂Vu(x)

∂x

(
1 −β+ (1 −β)βα(1 − δ)Mu

1 −β(1 − δ)

∫
Bw(x)

dv(ỹ)
V

dỹ
)

= βα(1 − δ)Mu

1 −β(1 − δ)

∫
Bw(x)

dv(ỹ)
V

∂f (x� ỹ)

∂x
dỹ

and thus ∂Vu(x)

∂x
> 0 since ∂f (x�y)

∂x
> 0.

To show that w(x� y) is increasing in x, we differentiate (A.2):

∂w(x� y)

∂x
= α

∂f(x� y)

∂x
+ (1 − α)(1 −β)

∂Vu(x)

∂x
�

which is positive because ∂f (x�y)

∂x
> 0 and ∂Vu(x)

∂x
> 0.

Finally, we show that Ve(x� y) is increasing in x as well. We have

Ve(x� y)=w(x� y)+βδVu(x)+β(1 − δ)Ve(x� y)�

and thus that

Ve(x� y)
(
1 −β(1 − δ)

) = w(x� y)+βδVu(x)�

which is increasing in x since ∂w(x�y)

∂x
> 0 and ∂Vu(x)

∂x
> 0. Q.E.D.

PROOF OF RESULT 1(ii): Let ymin(x) be a firm type such that worker x is indifferent
between matching with this firm and staying unemployed,

Ve

(
x� ymin(x)

) = Vu(x)�

ymin(x) is the firm that pays the reservation wage to a worker of type x. Then (5) can be
written as

Ve

(
x� ymin(x)

) = w
(
x� ymin(x)

) +βVu(x)�

so that

w
(
x� ymin(x)

) = Ve

(
x� ymin(x)

) −βVu(x) = (1 −β)Vu(x)

which from Result 1(i) is increasing in x. Q.E.D.
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PROOF OF RESULT 1(iii): The maximum wage is given by w(x� ymax(x)). Taking deriva-
tives with respect to x yields

∂w
(
x� ymax(x)

)
∂x

= wx

(
x� ymax(x)

) +wy

(
x� ymax(x)

)
ymax
x (x)

= wx

(
x� ymax(x)

)
> 0� Q.E.D.

PROOF OF RESULT 1(iv): Assume that the matching sets are unions of intervals. For
the ease of exposition, we assume that there is just one interval:

Bw(x) = [
ϕ(x)�ϕ(x)

]
�

First rewrite the adjusted average wage as

wav(x) = w
(
x� ymin(x)

)
+Mu(1 − δ)

∫
Bw(x)

dv(ỹ)
V

[
w(x� ỹ)−w

(
x� ymin(x)

)]
dỹ�

Take derivatives with respect to x:

∂wav(x)

∂x
= ∂w

(
x� ymin(x)

)
∂x

+Mu(1 − δ)

∫
Bw(x)

∂w(x� ỹ)−w
(
x� ymin(x)

)
∂x

dv(ỹ)
V

dỹ

+Mu(1 − δ)ϕ′(x)
dv

(
ϕ(x)

)
V

[
w

(
x�ϕ(x)

) −w
(
x� ymin(x)

)]

−Mu(1 − δ)ϕ′(x)
dv

(
ϕ(x)

)
V

[
w

(
x�ϕ(x)

) −w
(
x� ymin(x)

)]
�

The last two terms are zero since either w(x�ϕ(x)) = w(x� ymin(x)) or ϕ′(x) = 0 and
either w(x�ϕ(x))=w(x� ymin(x)) or ϕ′(x) = 0. Now simply rewrite

∂wav(x)

∂x

= ∂w
(
x� ymin(x)

)
∂x

[
1 −Mu + δMu +Mu(1 − δ)

∫
Bw(x)

dv(ỹ)
V

dỹ
]

+Mu(1 − δ)

∫
Bw(x)

∂w(x� ỹ)

∂x

dv(ỹ)
V

dỹ

to see that ∂wav(x)

∂x
> 0. Q.E.D.
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A.3. Proofs of Results in Section 3.2

PROOF OF RESULT 2: For the value of a vacancy we have that

Vv(y)(1 −β)= β(1 − α)(1 − δ)Mv

∫
Bf (y)

du(x̃)
U

S(x̃� y)dx̃�

so that (using again as in the Proof of Result 1(i) that the terms involving the derivatives
of the boundaries are zero)

∂Vv(y)

∂y
(1 −β)

= β(1 − α)(1 − δ)Mv

∫
Bf (y)

du(x̃)
U

∂f (x̃� y)+ (β− 1)Vv(y)

∂y

1 −β(1 − δ)
dx̃�

and thus that

∂Vv(y)

∂y

(
1 −β+ (1 −β)β(1 − α)(1 − δ)Mv

1 −β(1 − δ)

∫
Bf (y)

du(x̃)
U

dx̃
)

= β(1 − α)(1 − δ)Mv

∫
Bf (y)

du(x̃)
U

∂f (x̃� y)

∂y

1 −β(1 − δ)
dx̃ > 0�

so that ∂Vv(y)

∂y
> 0 since the coefficient multiplying it is positive. Finally, we show that the

value of a filled job for a firm is increasing in y . We have that

Vp(x� y) = f (x� y)−w(x� y)+βVv(y)+β(1 − α)(1 − δ)S(x� y)

= f (x� y)(1 − α)− (1 − α)(1 −β)Vu(x)

+ α(1 −β)Vv(y)+βVv(y)

+β(1 − δ)
(
Vp(x� y)− Vv(y)

)
�

so that

Vp(x� y)
(
1 −β(1 − δ)

) = f (x� y)(1 − α)− (1 − α)(1 −β)Vu(x)

+ Vv(y)
(
βδ+ α(1 −β)

)
�

and

∂Vp(x� y)

∂y

(
1 −β(1 − δ)

)

= ∂f (x� y)

∂y
(1 − α)+ ∂Vv(y)

∂y

(
βδ+ α(1 −β)

)
> 0� Q.E.D.

PROOF OF RESULT 4: The main part of the proof is in the main text. Here we only show
that we can use Ω to rank firms even if some or all workers match with all firm types or
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if some or all firms match with all worker types. In particular, we show that it does not
matter that if a worker of type x is accepted by all firms, the lowest wage w(x� ymin(x)) is
not equal to the reservation wage and thus not equal to the return of being unemployed.

The derivative of Ω with respect to y equals

∂Ω(y)

∂y
= (1 − δ)Mv

∫
Bf (y)

du(x̃)
U

∂w(x̃� y)

∂y
dx̃

+ (1 − δ)Mv

{(
w

(
ϕ(y)� y

) −w
(
ϕ(y)� ymin

(
ϕ(y)

)))

× du
(
ϕ(y)

)
U

∂ϕ(y)

∂y

}

− (1 − δ)Mv

{(
w

(
ϕ(y)� y

) −w
(
ϕ(y)� ymin

(
ϕ(y)

)))

× du
(
ϕ(y)

)
U

∂ϕ(y)

∂y

}
�

where for simplicity Bf(y) = [ϕ(y)�ϕ(y)]. The terms (w(ϕ(y)� y) − w(ϕ(y)�

ymin(ϕ(y)))) ∂ϕ(y)

∂y
and (w(ϕ(y)� y)−w(ϕ(y)� ymin(ϕ(y))))

∂ϕ(y)

∂y
are both zero, because one

of the two factors is zero.
Without loss of generality consider the first term with ϕ(y). The argument for the sec-

ond term with ϕ(y) is identical. If the matching set is interior, that is, ϕ(y) ∈ (0�1), the
lowest wage of worker type ϕ(y), w(ϕ(y)� ymin(ϕ(y))), is equal to the reservation wage
and also equal to w(ϕ(y)� y). If the matching is not interior, that is, ϕ(y) ∈ {0�1}, ∂ϕ(y)

∂y
= 0.

Thus, independent of whether the matching set is interior or not, the term is zero and
the derivative of Ω with respect to y equals

∂Ω(y)

∂y
= (1 − δ)Mv

∫
Bf (y)

du(x̃)
U

∂w(x̃� y)

∂y
dx̃�

By the same logic, it holds that

∂

∫
Bf (y)

du(x)
U

(
Ve(x� y)− Vu(x)

)
dx

∂y
=

∫
Bf (y)

du(x̃)
U

∂Ve(x̃� y)

∂y
dx̃�

which is proportional to ∂Ω(y)

∂y
since ∂Ve(x�y)

∂y
(1 −β(1 − δ))= ∂w(x�y)

∂y
. As a result, the statistic

Ω(y) is increasing in y independent of the properties of the matching set. Q.E.D.

A.4. Measuring α in the Data

In the model of Shimer and Smith (2000), the value of α is fixed at 1
2 . More generally,

one may consider leaving the value of α unrestricted in the (0�1) interval and recovering
it from the data. Note that α governs the responsiveness of wages to changes in match
surplus (if α → 0, workers receive b regardless of the movements in the match surplus,
while if α → 1, workers’ wages fully co-move with surplus). While this provides a natural



EQUILIBRIUM MODELS OF LABOR MARKET SORTING 7

source of variation for the identification of this parameter, the fluctuations of surplus
are absent from the simple baseline version of the model considered in the main text.
In this appendix, we extend the model to incorporate two sources of fluctuation in match
surplus, an idiosyncratic and an aggregate productivity shock, and show how each of these
stochastic components allows to identify the bargaining powers.2

A.4.1. Measure α From Fluctuation in Firm Output

To measure the bargaining power α in the data, we first consider an extended version
of the model with i.i.d. shocks to the firm’s technology, εj , which changes output from
f (x� y) to f (x� y) + εj for all worker types x employed at firm j of type y . In response
to such a shock to the firm’s technology, Nash bargaining with worker bargaining power
α implies that profits increase by (1 − α) and wages increase by α. To measure α using
this experiment, we can use any data where the response of wages is observable. This
approach for identifying the bargaining powers was pursued in a number of papers in the
literature reviewed in Hagedorn and Manovskii (2008).

Adding these shocks to our model is simple and does not change any of our other
results and conclusions as we verified in simulated data. The reason is that these shocks
are unanticipated and their impact is only to make statistics slightly noisier in the same
way as measurement error does (and we have established in the main text that adding a
large amount of measurement error does not have a significant impact on our inference).
The ranking of workers within a firm is not affected at all since all wages within a firm
are shifted by the same amount, αεj , and thus the ranking of workers is preserved. The
ranking of firms is based on the statistic Ω which is proportional to the value of a vacancy.
Since the technology shocks are unanticipated, this statistic is not affected either. Neither
is the estimation of the production function f . The only object that is affected is the
estimation of the matching set, as now workers may become acceptable only because
of a large positive εj whereas they were not acceptable in the absence of any shocks.
This makes the model computationally much more burdensome. Given that adding these
idiosyncratic shocks to the model obviously allows to identify α but has no material impact
on any of our results, we adopted a simpler model as a benchmark in the main text.

A.4.2. Using Business Cycles to Measure α

We now show how the bargaining power α can be measured in the data by considering
an extended version of the model with business cycles, that is, exogenous changes in aggre-
gate productivity z. The output of a pair (x� y) is then zf (x� y). Consider two worker types
x and x′ (have to be different types), working at firm y when productivity is z and when it
is ẑ. The wages of worker x in the two business cycle states are w(x� y� z) and w(x� y� ẑ),
respectively. For worker x′, the corresponding wages are w(x′� y� z) and w(x′� y� ẑ). These
wages are observed. The equation for wages with business cycles is straightforward and
follows the same arguments as the one without business cycles. For the value of a job, it
holds with the obvious notation that

Ve(x� y� z) = w(x� y� z)+βE
(
Vu

(
x�z′) | z)

+βα(1 − δ)E
(
S
(
x� y� z′) | z)�

2Eeckhout and Kircher (2011) have argued that the bargaining power can also be identified in the baseline
deterministic version of the model. Unfortunately, their proof appears to contain a mistake (Eq. (28) in their
paper does not follow from Eq. (26) since the term w∗

x(x) is missing in Eq. (28)).
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and for the value of a filled vacancy that

Vp(x� y� z) = zf (x� y)−w(x� y� z)+βE
(
Vv

(
y� z′) | z)

+β(1 − α)(1 − δ)E
(
S
(
x� y� z′) | z)�

Adding up these two Bellman equations yields

Ve(x� y� z)+ Vp(x� y� z)

= zf (x� y)+βE
(
Vv

(
y� z′) | z) +βE

(
Vu

(
x�z′) | z)

+β(1 − δ)E
(
S
(
x� y� z′) | z)�

and equivalently,

S(x� y� z) = Ve(x� y� z)− Vu(x� z)+ Vp(x� y� z)− Vv(y� z)

= zf (x� y)− Vv(y� z)− Vu(x� z)+βE
(
Vv

(
y� z′) | z)

+βE
(
Vu

(
x�z′) | z) +β(1 − δ)E

(
S
(
x� y� z′) | z)�

Motivated by the observation that productivity basically follows a random walk, we now
make the approximation that

E
(
S
(
x� y� z′) | z) = S(x� y� z)+ expectational error�

so that the surplus equals

S(x� y� z)
(
1 −β(1 − δ)

) = zf (x� y)− Vv(y� z)− Vu(x� z)

+βE
(
Vv

(
y� z′) | z) +βE

(
Vu

(
x�z′) | z)�

Using the Bellman equation for Ve and the approximation, we can solve for wages:

w(x� y� z) = αS(x� y�p)
(
1 −β(1 − δ)

) + Ve(x� z)

−βE
(
Vu

(
x�z′) | z)�

Making the same approximation for Vu,

E
(
Vu

(
x�z′) | z) = Vu(x� z)+ expectational error�

and using the equation for the surplus S, we obtain

w(x� y� z) = α
(
zf (x� y)− Vv(y� z)− (1 −β)Vu(x� z)

+βE
(
Vv

(
y� z′) | z)) + Vu(x� z)(1 −β)

= αzf (x� y)+ α
(
βE

(
Vv

(
y� z′) | z) − Vv(y� z)

)
+ (1 − α)(1 −β)Vu(x� z)�

The differences in wages for types x and x′ equals

w
(
x′� y� z

) −w(x� y� z) = αz
(
f
(
x′� y

) − f (x� y)
)

+ (1 − α)(1 −β)
(
Vu

(
x′� z

) − Vu(x� z)
)
�
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To figure out α, we have to measure Vu(x� z) and Vu(x
′� z) in the data. For this, we use the

Bellman equation for Ve and the approximation for the expected surplus

Vu(x� z) = Ve

(
x� y(x� z)� z

)
= w

(
x� y(x� z)� z

) +βE
(
Vu

(
x�z′) | z)

+βα(1 − δ)E
(
S
(
x� y(x� z)� z′) | z)

= w
(
x� y(x� z)� z

) +βVu(x� z)+βα(1 − δ)S
(
x� y(x� z)� z

)
= w

(
x� y(x� z)� z

) +βVu(x� z)�

so that

Vu(x� z)(1 −β) = w
(
x� y(x� z)� z

)
�

that is, we measure the value of employment at the lowest firm at productivity level z
through the lowest wage accepted by type x at level z. Using this expression for the reser-
vation wage in the wage equation to substitute for the value of unemployment yields

w
(
x′� y� z

) −w(x� y� z)

= αz
(
f
(
x′� y

) − f (x� y)
) + (1 − α)(1 −β)

(
Vu

(
x′� z

) − Vu(x� z)
)

= αz
(
f
(
x′� y

) − f (x� y)
)

+ (1 − α)
(
w

(
x′� y

(
x′� z

)
� z

) −w
(
x� y(x� z)� z

))
�

For the empirical implementation, define then dummies δx�y , which are 1 if worker type
x works at firm type y and zero otherwise. We then regress

wt

(
x′) −wt(x) = zt(δx′�y − δx�y)

+ κ
(
w

(
x′� y

(
x′� z

)
� z

) −w
(
x� y(x� z)� z

))
�

The estimated value of κ is then our estimate of 1 − α so that α̂= (1 − κ).

B. COMPUTATION AND IMPLEMENTATION

In this section, we describe how we compute the model, and construct and measure
the variables mentioned in the text. We first discretize the continuous type space for both
workers and firms with 50 evenly distributed grid points on the type space [0�1]. To com-
pute the model, we use an iterative procedure on the match density, dm(x� y), and the
surplus, S(x� y). Let dm�k(x� y) and Sk(x� y) be the values in the kth iteration. To initial-
ize the iteration, we set, ∀(x� y), the initial match distribution, dm�0(x� y) = 0�5, and the
initial surplus, S0(x� y) = f (x� y). We obtain a solution by alternatively updating exactly
once on either the match density (8) or the flow equation for the surplus (which we get
by summing (3)–(6)). When dm�k(x� y) < 10−6, we set dm�k(x� y)= 0. A solution is found if
the maximum absolute difference between iterations of both surplus and match density is
less than 10−12.

If no solution admitting a pure acceptance strategy is found (due to discretization), we
solve for a mixed strategy; that is, unemployed agents accept matches with a probability
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(between 0 and 1) such that the surplus of the match is positive, but very close to zero.
Denote iteration k of the acceptance strategy of workers with Aw

k(x� y). A
w
k(x� y) is the

probability worker x accepts a job at firm y . We then update the acceptance strategy in
the following way:

Mixed strategy
if Sk(x� y) > 5 × 10−7 and Aw

k(x� y) < 1
Aw

k+1(x� y)= Aw
k(x� y)+ 0�001 · rand() · (1 −Aw

k(x� y))
elseif Sk(x� y) < 5 × 10−7 and Aw

k(x� y) > 0
Aw

k+1(x� y)= Aw
k(x� y)− 0�001 · rand() · (1 −Aw

k(x� y))
end

where rand() is a pseudo-random value drawn from the standard uniform distribution
on the open interval (0�1). A mixed solution is found if the maximum absolute change
between iterations of both the surplus and the match density is less than 2�5 × 10−6. We
find a mixed strategy solution in all parameterizations that we use.

With the computed solution, we simulate 600 workers and 600 jobs for each grid point,
giving 60,000 agents (30,000 workers and 30,000 jobs) over a period of 240 months with
an initial burn-in of 100 months. This corresponds to 20 years of monthly data.

Where order is meaningful (e.g., ranks, types, or bins), higher numbers correspond to
higher productivity; for example, a worker with rank 10 is better than a worker with rank
2, a firm in bin 7 is better than a firm in bin 3.

Here, we define quantities that we will use to sketch the procedures we use:
(i) #workers = #jobs = N = 30,000.

(ii) #worker types = X = #firm types = Y = 50.
(iii) Worker ID, i = 1� � � � �N .
(iv) Rank of worker i, î = 1� � � � �N .
For example, if i = 4 has rank 10, î(4)= 10.
(v) True worker type x= 1� � � � �X . Each x has N/X individual workers.

E.g., if i = 6 has type 3, x(6) = 3. For convenience, x(i) = 1 if i ∈ {1� � � � �N/X}, x(i) =
2 if i ∈ {1+N/X� � � � �2N/X}, and so on. In our estimation of the assignment of individual
workers to worker types, x̂, we use no information on the true assignment x.

(vi) Estimated worker type (worker bin) x̂ = 1� � � � �X . Each x̂ has N/X workers.
For example, if i = 5 is in bin 45, x̂(5)= 45.
For our simulations, x̂(i)= 1 if î ∈ {1� � � � �N/X}, x̂(i)= 2 if î ∈ {1+N/X� � � � �2N/X},

and so on.
(vii) Firm ID, j = 1� � � � � J. J =N/100. Jobs and vacancies sum to 100 at all j.
(viii) Rank of firm j, ĵ = 1� � � � � J.
For example, if j = 4 has rank 10, ĵ(4)= 10.
(ix) True firm type, y = 1� � � � �Y . Each y has N/(100 · Y) unique j’s. Denote JY ≡

J/Y =N/(100 ·Y).
For example, if j = 4 has type 10, y(4)= 10.
(x) Estimated firm type (firm bin) ŷ = 1� � � � �Y . Each ŷ has JY unique j’s.

For example, if j = 4 is in bin 10, ŷ(4)= 10.
First, we take simulated matched employer–employee data sets and rank workers using

the algorithm described in Appendix C. The algorithm delivers the ranking of workers
î(i) and the estimated worker type x̂(i). At each firm j, we observe all workers i matching
with this firm and we have their estimated type x̂. This gives us an estimate of the set of
worker types matching with this firm j, that is, we obtain an indicator function B̂(x̂� j),
which is 1 if firm j hires a worker of type x̂ and is zero otherwise. We now want to refine
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this estimate of which types match with firm j. The reason is that whereas we observe
whether a worker i works at a firm j in the data, his type x̂(i) is just estimated, potentially
with error due to large measurement error in wages. To take this into account, we now
provide an algorithm to detect misranked workers. We then exclude the wage histories
of these misranked workers. Using IDNoise, we locate matches that are likely caused by
very noisy wage histories. Note that this algorithm does not apply to noise generated by
match-specific productivity, the presence and magnitude of which is measured following
Hagedorn and Manovskii (2012). We include all these workers in the set N̂ .3 This algo-
rithm also updates the estimate of the set of worker types matching with firm j, B̂(x̂� j),
by excluding those estimated types of workers who are included in N̂ .

ALGORITHM 1—IDNoise[x̂(i)] =⇒ [B̂(x̂� j)� N̂ ]:
Construct p(x̂� j)�π(x̂� j) and N(j).4
for each firm j

Compute F(p(x̂� j);N(j)�π(x̂� j)).5

∀x̂, Initialize B̂(x̂� j)= 1 iff p(x̂� j) > 0.
*for x̂ with B̂(x̂� j) = 1

if x̂ ∈ {1�X} and F(p(x̂� j);N(j)�π(x̂� j)) < 0�1χ6

Set B̂(x̂� j)= 0.
Return to ∗.

else
if (B̂(x̂+ 1� j)= 0 | B̂(x̂− 1� j)= 0)

if F(p(x̂� j);N(j)�π(x̂� j)) < 0�1χ
Set B̂(x̂� j)= 0.
Return to ∗.

end
end

end
end

end
i ∈ N̂ if a firm j, which matches with i, exists such that B̂(x̂(i)� j)= 0.
return [B̂(x̂� j)� N̂ ]

3The fraction of workers excluded is small (less than 5%) for most parameterizations.
4p(x̂� j) is the number of workers of estimated type x̂ hired by firm j. N(j) = ∑

x̂ p(x̂� j) is the total number
of workers actually hired by firm j which sums over all types from the matching set of firm j. The theoretical
fraction of workers of type x̂ hired by firm j over all workers hired by j is

π(x̂� j) = u(x̂)1
{
p(x̂� j) > 0

}
∑
x̂

u(x̂) · 1{
p(x̂� j) > 0

} �

5The probability of observing at most p(x̂� j) given the hiring probability π(x̂� j) from N(j) trials is

F
(
p(x̂� j);N(j)�π(x̂� j)

) =
p(x̂�j)∑
i=0

(
N(j)

i

)
π(x̂� j)i

(
1 −π(x̂� j)

)N(j)−i
�

6Where χ= 0 in the presence of match-specific productivity.
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The next crucial statistic to estimate is reservation wages for each worker ŵres(i). To
this end, we implement ResWage.

ALGORITHM 2—ResWage[w(i� j)� x̂(i)� N̂ ] =⇒ ŵres(i):
Consider wages histories of i /∈ N̂ .
for x̂

Construct J(x̂)= {j s.t. j hires any i ∈ x̂}.
foreach j ∈ J(x̂), compute w̄(x̂� j)= average wage paid by j to workers i ∈ x̂.
wres(x̂)= lowest average of w̄(x̂� j) possible from pooling JY firms in J.7

end
return ŵres(i)= wres(x̂(i))

Then, for each firm j, compute the average wage premium as in (15). We next estimate
job filling rates q̂(j) using information from all workers (whether or not they belong to
N̂ ) over the acceptance set B̂ of firm j, which includes all types x̂ for which B̂(x̂� j) = 1.
Our estimate of q̂(j) is M̂v

∑
x̂∈B̂

u(x̂)

u
. Multiplying the average wage premium and the

acceptance rate gives the statistic Ω̂ which allows us to rank firms.
We now assign individual firms to firm types ŷ . Using our ranking of firms, we can assign

the first JY firms to firm bin 1, the next JY firms to firm bin 2, and so on. The assignment
of firms to types allows us to compute statistics for firm types only. For example, statis-
tics for all firms belonging to firm type ŷ = 1 will be the firm size (measured by average
employment) weighted average of firms with ĵ(j) ∈ {1� � � � � JY }. This step only serves to
aggregate information across firms and yields smoother statistics and more precise esti-
mates. We could have also proceeded by assigning each individual firm to its own type,
that is, ŷ(j) = ĵ(j).

Taking present values of estimated minimum wages for each bin yields Vu(x̂). Compute
the average wages each bin x̂ receives with all firms of bin ŷ . This is wav(x̂� ŷ). Compute
the corresponding value of employment, Ve(x̂� ŷ) and Vv(ŷ) from Ω̂(ŷ). The estimate of
the production function f̂ (x̂� ŷ) follows.

Using unemployment rates at the x̂ level and estimated firm size at the ĵ level, we can
estimate frictional output with the estimated production function.

To measure output losses due to frictions we optimally assign a subsample (5000 work-
ers and 5000 jobs) from the pool of employed workers.8 The subsample reflects the esti-
mated type distributions of employed workers and producing firms. To evaluate the accu-
racy of our method, our estimated gains from eliminating search frictions are compared
with those obtained when repeating the same procedure using true model generated dis-
tributions and production functions.

C. RANK AGGREGATION

Our goal is to rank workers according to their productivity. We know that wages within
a firm are increasing in worker productivity x. Thus, in the absence of measurement error,
considering the workers within one specific firm gives us a correct ranking among these

7For x̂ > 1, we additionally impose wres(x̂) > wres(x̂− 1) which is consistent with theory.
8See Section 4.6 for references to the algorithms used.



EQUILIBRIUM MODELS OF LABOR MARKET SORTING 13

workers. Repeating this ranking for every firm yields a globally consistent and, if work-
ers are sufficiently mobile between firms, a complete ranking of workers since worker
rankings are transitive across firms.

However, wage data might contain measurement error. Consequently, within one firm,
a less productive worker could be ranked above a truly more productive worker because
of measurement error. Furthermore, the ranking between these two workers may not be
transitive across firms where they happen to be coworkers. Thus, the rankings from all
firms are not consistent and thus do not yield an aggregate ranking. To solve this problem,
we build on the insights from social choice theory, which considers a equivalent problem
in the context of voting.

Imagine that voters were asked to rank candidates from the most to the least preferred
one. Voters will rank candidates according to their own preferences, but when the need
to have a single ranking of candidates comes up, a disagreement is likely to arise. Unless
every voter ranks all candidates identically, there will not be an aggregate ranking that
all voters agree with completely. This requires then the specification of how to aggregate
disagreements between voters and a method how to find this aggregate ranking.

C.1. Kemeny–Young Rank Aggregation

Given many (perhaps) inconsistent rankings of candidates, how does one aggregate
the ranks to determine who the best candidate is? This problem is ancient, and was first
studied by de Borda (1781) and Condorcet (1785). One natural starting point to use as
a metric for evaluating the posited aggregate ranking is the number of disagreements
generated in the voter submitted ranks as done in the Kemeny–Young formulation of
this classic problem.9 The goal then is to find an aggregate ranking which generates the
minimum number of disagreements with the data. Drissi-Bakhkhat and Truchon (2004)
argued in a context of a social choice model that the disagreements in the ranking of two
alternatives should be weighted by the probability that the voters compare them correctly.
Similarly, in our labor market application, weighting means that the disagreements are
weighted by the probabilities that a worker is ranked higher than another worker (which
are computed from wage data). Fortunately, the computer science literature provides
algorithms to handle these weighted ranking problems as well since they can be cast as
a special case of a weighted feedback arc set problem on tournaments (see, e.g., Ailon,
Charikar, and Newman (2008)).

For a candidate ranking Π, Π(i� j) = 1 if i is ranked higher than j and Π(i� j) = 0
otherwise. There are no ties. The objective is to find ranking Π which maximizes

(A.3)
∑
i>j

c(i� j)Π(i� j)+ c(j� i)Π(j� i)�

where the weighting c(i� j) is the probability (computed from wage observations) that i is
ranked above j.

We now construct c(i� j). First, we use head-to-head wage information at all firms to
calculate the probability that worker i is ranked higher than worker j. Note that we can
only use this ranking when we observe worker i and worker j at the same firm. We first
discuss the simple case where we only observe i and j at one firm.

9This was first described in Kemeny (1959) and Kemeny and Snell (1963).
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Suppose we observe ni�k wage observations and nj�k from workers i and j, respectively,
at firm k.10 We know that observed wages follows

ŵi�k�t =wi�k + εt�

which contains noise ε with variance σ2. We can compute the average wages w̄i�k and w̄j�k,
which can be written as

w̄i�k − w̄j�k = 1
ni�k

ni�k∑
t=1

ŵi�k�t − 1
nj�k

nj�k∑
t=1

ŵj�k�t

= wi�k −wj�k + 1
ni�k

ni�k∑
t=1

εi�k�t − 1
nj�k

nj�k∑
t=1

εj�k�t�

where all of the ε’s are independent.
We are interested in computing the probability that wi�k > wj�k given the observations

on w̄i�k and w̄j�k. A Bayesian approach seems a natural one to follow to accomplish this.
Suppose that we had a normal prior distribution over wages, that is, we assume that

wi�k ∼N
(
μ0� τ

2
0

)
�

The posterior density over wi�k conditional on knowing σ2 (we explain below how to mea-
sure it in the data) is given by

p(wi�k|ŵi�k�1� � � � � ŵi�k�ni�k)= p(wi�k|w̄i�k) =N
(
μn�τ

2
n

)
�

where

μn =
1
τ2

0

μ0 + ni�k

σ2 w̄i�k

1
τ2

0

+ ni�k

σ2

and

1
τ2
n

= 1
τ2

0

+ ni�k

σ2 �

If in the baseline case we assume an uninformative prior, that is, we take τ2
0 → ∞, this

simplifies to

μn = w̄i�k

and

1
τ2
n

= ni�k

σ2 �

10ni�k periods (months, in our case) of observations need not be in one employment spell. Moreover, i and
j do not need to be employed at the same time.
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Then the posterior densities for wi�k�wj�k given the data would just be given by

p(wi�k|w̄i�k)=N
(
w̄i�k�

σ2

ni�k

)
�

p(wj�k|w̄j�k)=N
(
w̄j�k�

σ2

nj�k

)
�

Since these posteriors are independent normals, we know that the distribution over the
difference p(wi�k −wj�k|w̄i�k� w̄j�k) is simply

p(wi�k −wj�k|w̄i�k� w̄j�k)=N
(
w̄i�k − w̄j�k�

σ2

ni�k

+ σ2

nj�k

)
�

Thus, the posterior probability that wi�k > wj�k can simply be computed as

P(wi�k > wj�k)= 1 −�

⎛
⎜⎜⎜⎝

0 − (w̄i�k − w̄j�k)

σ2

ni�k

+ σ2

nj�k

⎞
⎟⎟⎟⎠ =�

⎛
⎜⎜⎜⎝
w̄i�k − w̄j�k

σ2

ni�k

+ σ2

nj�k

⎞
⎟⎟⎟⎠ �

If i and j are on the same payroll at only one firm, P(wi�k > wj�k) = c(i� j). If more
than one firm hires i and j, we compute P(wi�k > wj�k) for all those firms and assign the
product of these probabilities to c(i� j), that is, we consider observations in different firms
as independent.

The variance of noise is computed from the variance of wages for all workers within
jobs since all variation in wages within a specific job arises from measurement error only.

The solution to the problem of finding the best ranking is then conceptually trivial:
(1) Enumerate all possible rankings. (2) Evaluate (A.3) for all of them. (3) Select the
rank which maximizes the objective function. Unfortunately, the Kemeny–Young rank ag-
gregation problem is NP-hard.11 We therefore approximate the solution to the problem
and use the following algorithm:

ALGORITHM 3—Single Worker Moves:
Initialize Π(i� j) that maximizes (A.3). Choose ranking from:

(a) lowest wage,
(b) highest wage,
(c) adjusted average wage,

While some rearrangement of Π(i� j) improves (A.3)
Choose worker x and rank j.
Rearrange Π(i� j) so that x has rank j, leaving all other relative rankings intact.12

Return Π(i� j)

This algorithm is a simplified version of the algorithm in Kenyon-Mathieu and Schudy
(2007) which is capable of approximating the solution arbitrarily well. We choose this al-
gorithm as it provides for us the best compromise between accuracy and computational

11See Bartholdi, Tovey, and Trick (1989). Consider a simple case of 100 candidates and at least 4 submitted
rankings. There are 100 × 99 × · · · × 2 combinations to consider!

12Suppose there are workers, A, B, C , and D ranked alphabetically, {A�B�C�D}. Moving C to rank 2 would
mean rearranging them so that the ranking is now {A�C�B�D}.
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complexity. Indeed, we show that this simplified algorithm provides a very accurate rank-
ing of workers in our model. It is straightforward to implement the complete algorithms
in Kenyon-Mathieu and Schudy (2007) if more precision is required for a particular ap-
plication.

D. MODEL WITH ON-THE-JOB SEARCH

We first describe the details of the model with on-the-job search used in the data anal-
ysis. We then prove the results, mentioned in the main text, to obtain identification, and
we finally evaluate its performance in Monte Carlo simulations.

D.1. The Model

In this section, we describe the model which introduces on-the-job search into the envi-
ronment of Shimer and Smith (2000) analyzed in the main text. The basic features of the
two models are the same and we describe here only the necessary modifications.

All workers and all unmatched firms engage in random search. The exogenous search
intensity of employed (relative to unemployed) workers is φ ∈ [0�1]. The total search ef-
fort is the weighted sum s =U +φE. A function m : [0�1] × [0�1] → [0�min(s�V )] takes
the total mass of searchers s and vacant firms V as its inputs and generates meetings. The
probabilities that an unemployed or an employed worker meets a potential employer are
given by Mu = m(s�V )

s
and Me =φm(s�V )

s
, while the probability of a vacant firm meeting a po-

tential hire is Mv = m(s�V )

V
. These probabilities are time-invariant in the steady-state equi-

librium we will consider. The probability to meet a firm y ∈ Y ⊂ [0�1] equals Mu

∫
Y dv(y)dy

V

for unemployed and Me

∫
Y dv(y)dy

V
for employed workers. For firms, these probabilities de-

pend on the employment status of the worker, since unemployed and employed workers
not only search with different intensities but also endogenously exhibit different distri-
butions. Conditional on meeting a worker, we therefore define the probabilities that the
worker is unemployed or employed by Cu = U

U+φE
and Ce = φE

U+φE
, respectively. The prob-

ability for a firm to meet an unemployed worker x ∈ X ⊂ [0�1] then equals MvCu

∫
X du(x)dx

U

and the probability to meet an employed worker x ∈X ⊂ [0�1] equals MvCe

∫
X de(x)dx

E
. Not

all meetings necessarily result in matches. Some meetings are between an unemployed
worker and a vacant firm who are unwilling to consummate a match and who prefer to
continue the search process. Some other meetings are between an employed worker and
a vacant firm where the worker prefers to stay with the current firm so that the meeting
does not result in a new match.

An unemployed worker makes a take-it-or-leave-it offer to a firm and thus extracts the
full surplus. As in Postel-Vinay and Robin (2002) and Cahuc, Postel-Vinay, and Robin
(2006), when a worker employed at some firm ỹ meets a firm y which generates higher
surplus, the two firms engage in Bertrand competition such that the worker moves to
firm y and obtains the full surplus generated with firm ỹ . Small costs of writing an of-
fer prevent firms y which generate lower surplus than the current firm from engaging in
Bertrand competition. Let Vu(x) denote the value of unemployment for a worker of type
x; Ve(x� y�S

o) is the value of employment for a worker of type x at a firm of type y , Vv(y)
the value of a vacancy for firm y , and Vp(x� y�S

o) the value of firm y employing a worker
of type x. The value functions Ve and Vp depend on So, which is the current surplus for a
worker hired out of unemployment or the surplus from the previous job when a worker is
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poached from another firm. The surplus of a match between worker x and firm y and for
some So is13

S(x� y) := Vp

(
x� y�So

) − Vv(y)+ Ve

(
x� y�So

) − Vu(x)�(A.4)

Matching takes place when both the worker and the firm find it mutually acceptable. For
a worker of type x, the matching set Bw(x) consists of firms which match with worker type
x. Symmetrically, for a firm of type y , Bf(y) consists of workers who are matching with
firm type y . For a worker of type x employed at a firm of type y , the set Be(x� y) are
firms which match with worker type x and are preferred by worker x to his current firm of
type y . Finally, the set Bp(y), with corresponding density dy(x̃� ỹ), are worker-firm pairs
(x̃� ỹ) where worker type x̃ and firm type ỹ accept each other (x̃ ∈ Bf(ỹ), x̃ ∈ Bu(ỹ)) and
the worker prefers firm type y to firm type ỹ . In this case, a worker of type x̃ currently
employed at firm ỹ moves to a firm of type y . We denote by X the complement of a set
X (in the obvious universe). The matching sets for unemployed workers and vacant firms
can be characterized through the surplus function:

(A.5) Bw(x)= {
y : S(x� y)≥ 0

}
�

Bf (y)= {
x : S(x� y) ≥ 0

}
�

Be(x� y)= {
ỹ : S(x� ỹ)≥ S(x� y) ≥ 0

}
�

Bp(y)= {
(x̃� ỹ) : S(x̃� y)≥ S(x̃� ỹ)≥ 0

}
�

The steady-state value functions are

Vu(x)= βVu(x)+β(1 − δ)Mu

∫
Bu(x)

dv(ỹ)
V

S(x� ỹ)dỹ�(A.6)

Vv(y)= βVv(y)(A.7)

+β(1 − δ)MvCe

∫
Bp(y)

dy(x̃� ỹ)
E

(
S(x̃� y)− S(x̃� ỹ)

)
dx̃dỹ�

Ve

(
x� y�So

) = w
(
x� y�So

) +βVu(x)(A.8)

+β(1 − δ)

[
1 −Me +Me

∫
Be(x�y)

dv(ỹ)
V

dỹ
]
S0

+β(1 − δ)Me

∫
Be(x�y)

dv(ỹ)
V

S(x� y)dỹ�

Vp

(
x� y�So

)
(A.9)

= f (x� y)−w
(
x� y�So

) +βVv(y)

+β(1 − δ)

[
1 −Me +Me

∫
Be(x�y)

dv(ỹ)
V

dỹ
](
S(x� y)− So

)
�

13As in Lise and Robin (2013), the surplus So does not affect the surplus in the current match, S(x� y), but
only the sharing of the surplus between the worker and the firm.
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and free entry implies

c =
∫

Vv(ỹ)dỹ�(A.10)

The worker’s value of being employed then equals

Ve

(
x� y�So

) = Vu(x)+ So(A.11)

and the firm’s value of producing equals

Vp

(
x� y�So

) = Vv(y)+ (
S(x� y)− So

)
�(A.12)

In a steady-state search equilibrium (SE), all workers and firms maximize expected pay-
off, taking the strategies of all other agents as given. The economy is in steady-state. A SE
is then characterized by the density du(x) of unemployed workers, the density dv(y) of
vacant firms, the density of formed matches dm(x� y), and wages w(x� y�So). The density
dm(x� y) implicitly defines the matching sets, as it is zero if no match is formed and is
strictly positive if a match is consummated. Wages are set as described above and match
formation is optimal given wages w, that is, a match is formed whenever the surplus
(weakly) increases (see (A.5)). The densities du(x) and dv(x) ensure that, for all worker
and firm type combinations in the matching set, the numbers of destroyed matches (into
unemployment and to other jobs) and created matches (hires from unemployment and
from other jobs) are the same.

D.2. Identification

D.2.1. Some Useful Results

Before we turn to the specific identification results, we derive results for the surplus
and wages. We first derive the Bellman equation of surplus:

S(x� y) = Vp

(
x� y�So

) − Vv(y)+ Ve

(
x� y�So

) − Vu(x)

= f (x� y)− (1 −β)
(
Vv(y)+ Vu(x)

)
+β(1 − δ)

[
1 −Me +Me

∫
Be(x�y)

dv(ỹ)
V

dỹ
]
S(x� y)

+β(1 − δ)Me

∫
Be(x�y)

dv(ỹ)
V

S(x� y)dỹ

= f (x� y)− (1 −β)
(
Vv(y)+ Vu(x)

) +β(1 − δ)S(x� y)

so that

S(x� y)
[
1 −β(1 − δ)

] = f (x� y)− (1 −β)
(
Vv(y)+ Vu(x)

)
�(A.13)

We can also compute how the surplus changes with worker type x:

∂S(x� y)

∂x
=

∂f (x� y)

∂x
− (1 −β)

∂Vu(x)

∂x
1 −β(1 − δ)

�(A.14)
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Similarly, the derivative with respect to y equals

∂S(x� y)

∂y
=

∂f (x� y)

∂y
− (1 −β)

∂Vv(y)

∂y

1 −β(1 − δ)
�(A.15)

From the Bellman equation for an employed worker, we get that the wage equals

w
(
x� y�So

) = So + (1 −β)Vu(x)(A.16)

−β(1 − δ)

[
1 −Me +Me

∫
Be(x�y)

dv(ỹ)
V

dỹ
]
S0

−β(1 − δ)Me

∫
Be(x�y)

dv(ỹ)
V

S(x� y)dỹ�

For a worker coming out of unemployment, this equals

w
(
x� y�So

) = S(x� y)+ (1 −β)Vu(x)−β(1 − δ)S(x� y)�(A.17)

And thus using the surplus equation,

w
(
x� y�So

) = f (x� y)− (1 −β)
(
Vv(y)+ Vu(x)

) + (1 −β)Vu(x)(A.18)

= f (x� y)− (1 −β)Vv(y)�

Finally, we can also show that workers can be ranked by their lowest as well as by their
highest wage. Let ymin(x) be a firm type such that worker x is indifferent between match-
ing with this firm and staying unemployed,

Ve

(
x� ymin(x)

) = Vu(x)�

ymin(x) is the firm that pays the lowest wage to a worker of type x hired from unemploy-
ment. Of course, this equation can be satisfied for more than one firm. In this case, simply
pick the lowest firm type. It then holds that, from the Bellman equation for Ve,

Ve

(
x� ymin(x)

) = w
(
x� ymin(x)

) +βVu(x)

+β(1 − δ)Me

∫
Be(x�ymin(x))

dv(y)
V

S(x� y)dy

and from the Bellman equation for Vu,

Vu(x)(1 −β) = β(1 − δ)Mu

∫
Bw(x)

dv(y)
V

S(x� y)dy�

and thus that

∂

∂x
β(1 − δ)Mu

∫
Bw(x)

dv(y)
V

S(x� y)dy = ∂

∂x
Vu(x)(1 −β) > 0�
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Since Bv(x� ỹ(x)) = Bw(x), it follows that

∂w
(
x� ymin(x)

)
∂x

= (1 −β)
∂

∂x
Vu(x)− (1 −β)

Me

Mu

∂

∂x
Vu(x)

= (1 −β)
∂

∂x
Vu(x)

Mu −Me

Mu

�

which is greater than zero if Mu >Me.
Similarly for the highest wage, let ymax(x) be the firm type that generates the highest sur-

plus with worker x. The highest wage of worker type x equals w(x� ymax(x)�S(x� ymax(x))).
For the wage, it holds that

w
(
x� y�So

) = So + (1 −β)Vu(x)(A.19)

−β(1 − δ)

[
1 −Me +Me

∫
Be(x�y)

dv(ỹ)
V

dỹ
]
S0

−β(1 − δ)Me

∫
Be(x�y)

dv(ỹ)
V

S(x� y)dỹ�

For the highest wage, we therefore get

w
(
x� ymax(x)�S

(
x� ymax(x)

))
(A.20)

= S
(
x� ymax(x)

) + (1 −β)Vu(x)

−β(1 − δ)

[
1 −Me +Me

∫
Be(x�ymax(x))

dv(ỹ)
V

dỹ
]
S
(
x� ymax(x)

)

−β(1 − δ)Me

∫
Be(x�ymax(x))

dv(ỹ)
V

S(x� y)dỹ

= S
(
x� ymax(x)

)(
1 −β(1 − δ)

) + (1 −β)Vu(x)

= f
(
x� ymax(x)

) − (1 −β)
(
Vv

(
ymax(x)

) + Vu(x)
) + (1 −β)Vu(x)

= f
(
x� ymax(x)

) − (1 −β)Vv

(
ymax(x)

)
�

The Envelope Theorem then implies that the highest wage, given by w(x� ymax(x)�
S(x� ymax(x))), is increasing in x as the production function f is increasing in x.

D.2.2. Ranking Workers

The wage of a worker in the first job following an unemployment spell is equal to

w
(
x� y�So

) = f (x� y)− (1 −β)Vv(y)�(A.21)

Thus, within a firm, wages of workers hired from unemployment are increasing in worker
type: ∂w(x� y�So)/∂x = ∂f (x� y)/∂x > 0. The same methodology applied to workers
hired out of unemployment as in the benchmark model can therefore be used to rank
workers.
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D.2.3. Ranking Firms

To rank firms, we establish that the value of a vacancy is increasing in y . We then show
that the value of the vacancy can be expressed as a function of wages observed in the data.

RESULT A-1: Vv(y) is increasing in y .

Differentiating (A.7), we have

∂Vv(y)

∂y
= β

∂Vv(y)

∂y
+β(1 − δ)MvCe

∫
Bp(y)

dy(x̃� ỹ)
E

∂S(x̃� y)

∂y
dx̃dỹ�(A.22)

Plugging in

∂S(x̃� y)

∂y
=

∂f (x̃� y)

∂y
− (1 −β)

∂Vv(y)

∂y

1 −β(1 − δ)
�(A.23)

and solving for ∂Vv(y)

∂y
yields the desired result. Using (A.7), this result immediately implies

the following:

RESULT A-2: The expected surplus from newly hired workers poached from other firms
given by

(1 − δ)MvCe

∫
Bp(y)

dy(x̃� ỹ)
E

(
S(x̃� y)− S(x̃� ỹ)

)
dx̃dỹ

is increasing in y .

The next step is to relate these monotone statistics to workers’ value functions.

RESULT A-3: The expected surplus premium given by

(1 − δ)MvCe

∫
Bp(y)

dy(x̃� ỹ)
E

(
Ve

(
x̃� y� S(x̃� y)

) − Ve

(
x̃� ỹ� S(x̃� ỹ)

))
dx̃dỹ

is increasing in y .

This result is immediately implied by (A.11) as

S(x̃� y)− S(x̃� ỹ)= Ve

(
x̃� y� S(x̃� y)

) − Ve

(
x̃� ỹ� S(x̃� ỹ)

)
�(A.24)

We now relate this statistic to wages which are observable in the data. Since

S(x̃� y)= w
(
x̃� y� S(x̃� y)

) − (1 −β)Vu(x̃)

1 −β(1 − δ)
�(A.25)

S(x̃� y)− S(x̃� ỹ)= w
(
x̃� y� S(x̃� y)

) −w
(
x̃� ỹ� S(x̃� ỹ)

)
1 −β(1 − δ)

�(A.26)

we finally obtain the key result that allows to rank firms:
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RESULT A-4: The expected wage premium given by

Ω(y) = (1 − δ)MvCe

∫
Bp(y)

dy(x̃� ỹ)
E

(
w

(
x̃� y� S(x̃� y)

)
(A.27)

−w
(
x̃� ỹ� S(x̃� ỹ)

))
dx̃dỹ

is increasing in y .

Once again it is useful to decompose Ω(y) into the average wage difference, Ωe(y),
and the probability to fill a vacancy with an employed worker, qe(y). The average wage
difference equals

Ωe(y)=
∫
Bp(y)

dy(x̃� ỹ)
E

(
w

(
x̃� y� S(x̃� y)

) −w
(
x̃� ỹ� S(x̃� ỹ)

))
∫
Bp(y)

dy(x̃� ỹ)
E

dx̃dỹ
dx̃dỹ�(A.28)

The probability that a vacancy of type y is filled with an employed equals

qe(y)= (1 − δ)MvCe

∫
Bp(y)

dy(x̃� ỹ)
E

dx̃dỹ�(A.29)

It then holds that

Ω(y)= qe(y)Ωe(y)�(A.30)

Measuring qe(y). The probability for a type y firm to fill a vacancy with an employed
worker is

qe
y = (1 − δ)MvCe

∫
Bp(y)

dy(x̃� ỹ)
E

dx̃dỹ = (1 − δ)MvCeq̃
e
y �(A.31)

It can be directly measured with vacancy data at the firm level. If such data are not avail-
able, qe

y can still be easily estimated using, for example, only the aggregate number of
vacancies, as we now show.

For hires out of unemployment, let

qu
y = (1 − δ)MvCu

∫
Bf (y)

du(x̃)
U

dx̃ = (1 − δ)MvCuq̃
u
y(A.32)

be the probability a firm fills a vacancy with an unemployed worker. q̃u
y is simply the share

of unemployed workers that firm j is willing to hire out of unemployment and can be
measured in the data.

For hiring out of unemployment, denote by Hu(y) the observed number of new hires
(out of unemployment) for a firm of type y , and by V (y) the unobserved number of va-
cancies posted by such a firm. For a single firm, we get

Hu(y)= qu
y V (y)�(A.33)
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Aggregating and rearranging yields

MvCu = 1
1 − δ

∫
[0�1]

Hu(ỹ)

q̃u
ỹ

dỹ
∫

[0�1]
V (ỹ)dỹ

�(A.34)

Denote by He(y) the observed number of new hires (from other firms) of a firm of type
y . For a single firm, we get

He(y)= qe
yV (y)�(A.35)

Aggregating and rearranging yields

MvCe = 1
1 − δ

∫
[0�1]

He(ỹ)

q̃e
ỹ

dỹ
∫

[0�1]
V (ỹ)dỹ

�(A.36)

The total number of vacancies,
∫

[0�1] V (ỹ)dỹ , if unobserved, can be inferred by matching
the wage share in output.

What remains to be obtained is an estimate of q̃e(y) which requires an estimate of
Bp(y). To better estimate Bp(y) in short panels, we can augment mobility information
with wage data by utilizing (A.25): Conditional on worker type x, a worker moves job-to-
job to firms which pay higher wages out of unemployment, as the surplus in these firms
is higher. Summing the number of worker-firm matches over the estimated matching set
Bp(y) for each firm gives q̃e(y)= ∫

Bp(y)

dy (x̃�ỹ)

E
dx̃dỹ .

We can therefore compute MvCe and MvCu and therefore also Ce

Cu
, which delivers an

estimate of φ, and thus both Ce and Cu are available which allows us to obtain Mv. This
then yields, using the estimates of δ�Mv, and Ce, qe

y = (1 − δ)MvCeq̃
e(y).

D.2.4. Measuring Output f (x� y)

Inverting the wage equation (A.21) for workers hired from unemployment, we obtain

f (x� y)=w
(
x� y�So

) + (1 −β)Vv(y)�(A.37)

The output of a match is determined by inverting the wage equation, expressing the out-
put f (x� y) as a function of the observed wage w(x� y�So) and the outside option Vv(y)
measured above.

D.3. Quantitative Evaluation

The objective of this section is to evaluate the performance of the proposed measure-
ment approach over a wide range of parameter values that are likely to be encountered
in empirical work for the model with on-the-job search. The approach and the param-
eterization are the same as in the benchmark model. In addition, the on-the-job search
efficiency parameter φ is set to 0.2 to generate the monthly probability of a job-to-job
move ranging from 1% to 2% across parameterizations.
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FIGURE A-1.—Model with on-the-job search: recovering the production function.

All combinations of parameters result in 108 distinct parameterizations. Across the pa-
rameterizations, all the key variables of interest fall within empirically plausible ranges.
Figures A-1(a) and A-1(b) plot the distribution of the correlation between the true and
the estimated production functions and the corresponding distribution of the differences
between them. The lowest correlation is 0.9812 and the median is above 0.995, indicating
that the proposed identification and estimation strategy recovers the underlying produc-
tion function very precisely.

Figure A-2(a) plots the correlation between identified worker and firm ranks against
the true correlation for all parameterizations. Clearly, the proposed identification strat-
egy identifies the sign of sorting and measures the strength of sorting very well. It also

FIGURE A-2.—Model with on-the-job search: frictions and sorting.
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allows to accurately estimate gains from optimal worker reallocation as illustrated in Fig-
ure A-2(b).

E. DETAILS OF EMPIRICAL ANALYSIS

As explained in the main text, our empirical work closely follows Card, Heining, and
Kline (2013). Here, we provide basic details and explain all the differences.

Our raw LIAB data contain employment histories of 2,087,683 German males aged 16
and above observed working in 1,168,301 unique establishments. The worker data are
continuous (up to a day), and are based on notifications submitted by employers to vari-
ous social insurance agencies upon a change in the conditions of employment. The data
include 34,263,798 spells from the Employment History (Beschäftigten-Historik—BeH),
which cannot be longer than a year since an annual notification is required for all jobs
in progress on December 31; and 6,488,810 spells from the Benefit Recipient History
(Leistungsempfänger-Historik—LeH), which can span multiple years.

Our analysis is based on daily wages in the main job of West German male workers
aged 20–60. While the data are continuous, we aggregate it to monthly frequency. In case
of several concurrent jobs in a given calendar month, we define the main one to be the
job in which the worker earns the most in that month. We drop all spells from the Benefit
Recipient History, spells with real (2005 base) daily earnings below 10 Euro, as well as
spells that correspond to individuals in training or working from home. We also drop
several individuals with over 150 employment spells. After this initial data preparation,
we are left with 698,374 establishments, 1,973,679 workers, and 22,675,589 employment
spells.

Wages are censored at the social security maximum. We follow Dustman, Ludsteck, and
Schönberg (2009) and impute censored wages by multiplying the censoring threshold by
1.2.14 Our identification strategy is based on wages of workers who start new employment
cycles, that is, individuals (1) who start their first ever job, (2) whose start of a new job
is preceded by compensated unemployment, or (3) who have an uncompensated gap be-
tween two jobs longer than one month. Only 2.41% of spells in this sample are censored.

To construct residual wages, we follow Card, Heining, and Kline (2013). In particu-
lar, we regress individual log real daily wage yit of individual i in month t on a worker
fixed effect αi and an index of time-varying observable characteristics x′

itβ which include
an unrestricted set of year dummies as well as a quadratic and cubic terms in age fully
interacted with educational attainment:

yit = αi + x′
itβ+ rit�

where rit is an error component. The residual wage which serves as input into the analysis
is then defined as wit = exp(yit − x′

it β̂).
15

14Card, Heining, and Kline (2013) used a different algorithm in Dustman, Ludsteck, and Schönberg (2009)
and stochastically imputed censored wages using a series of Tobit models. One argument of their Tobit model
is the censoring rate of an individual’s coworkers. It is not possible to reliably construct this variable in LIAB
data for establishments outside of the Establishment Panel because not all workers employed in those estab-
lishments are observed.

15Card, Heining, and Kline (2013) also included establishment fixed effects in the regression. This difference
is inconsequential for our purposes, as the inclusion of establishment fixed effects has virtually no impact
on β̂. In particular, corr(x′

it β̂� x
′
it β̂CHK) = 0�9925 and corr(log(wit)� log(wit�CHK)) = 0�9993, where wit�CHK =

exp(yit − x′
it β̂CHK).
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Having constructed wit , we rank workers. The ranking algorithm uses all available pair-
wise wage comparisons of workers who start employment cycles within an establishment
and does not require that all workers in the establishment are observed. Thus, we include
the comparisons in all establishments available in the LIAB data regardless of whether
they belong to the Establishment Panel.16 On this sample, we also measure the labor mar-
ket transition rates.

After the ranking of workers has been constructed, we drop all establishments for which
we do not observe all workers (those that are not in the IAB Establishment Panel). We
also drop the establishments that employ fewer than 20 workers on average during the
sample period. This leaves us with a sample of 1,328,402 workers and 5,349 establish-
ments. This generates 13,381,974 employment-year spells of which 2,857,275 are out of
unemployment. Establishments in this sample are ranked following the procedure in Ap-
pendix D.2.3. Following this, the production function is recovered.

F. APPENDIX FIGURES

F.1. Figures: Benchmark Model

FIGURE A-3.—Distributions of selected variables of interest across all parameterizations.

FIGURE A-4.—Distribution of the correlation between the true and estimated, using indicated alternative
ranking procedures, worker ranks across all parameterizations.

16Even restricting the pairwise connections to workers hired out of unemployment into the same firms im-
plies a highly connected set of workers. In particular, the largest connected set on this sample contains 98.75%
of workers. This is only a small reduction in connectedness relative to the full sample where the largest con-
nected set contains 99.81% of workers.
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FIGURE A-5.—True and estimated PAM production function.

FIGURE A-6.—True and estimated NAM production function.
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FIGURE A-7.—True and estimated Neither NAM nor PAM production function.
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F.2. Robustness: Shorter Time Horizon of 10 Years

FIGURE A-8.—Monte Carlo results with a 10-year panel.
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F.3. Robustness: Small Firms

FIGURE A-9.—Monte Carlo results with maximum firm size of 20 workers.
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F.4. Robustness: Stochastic Match Quality

FIGURE A-10.—Monte Carlo results on a model with stochastic match quality.
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F.5. Robustness: Discount Factor Close to 1

FIGURE A-11.—Monte Carlo results with monthly discount factor of 0.999.

REFERENCES

AILON, N., M. CHARIKAR, AND A. NEWMAN (2008): “Aggregating Inconsistent Information: Ranking and
Clustering,” Journal of the Association for Computing Machinery, 55 (5), 23:1–23:27. [13]

BARTHOLDI, J., C. A. TOVEY, AND M. A. TRICK (1989): “Voting Schemes for Which It Can Be Difficult to Tell
Who Won the Election,” Social Choice and Welfare, 6, 157–165. [15]

CAHUC, P., F. POSTEL-VINAY, AND J.-M. ROBIN (2006): “Wage Bargaining With On-the-Job Search: Theory
and Evidence,” Econometrica, 74 (2), 323–364. [16]

CARD, D., J. HEINING, AND P. KLINE (2013): “Workplace Heterogeneity and the Rise of West German Wage
Inequality,” Quarterly Journal of Economics, 128 (3), 967–1015. [25]

CONDORCET, J. M. (1785): “Essai sur l’application de l’analyse à la Probabilité des Décisions Rendues à la
pluralité des voix,” in American Mathematical Society Bookstore. [13]

DE BORDA, J. C. (1781): Memoire sur les Elections au Scrutin. Paris: Histoire de l’Academie Royale des Sci-
ences. [13]

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/Ailon+Charikar+Newman08&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/bartholdi+tovery+trick89&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/cahuc+postelvinay+robin06&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/card+heining+kline13&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/Ailon+Charikar+Newman08&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/bartholdi+tovery+trick89&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/cahuc+postelvinay+robin06&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/card+heining+kline13&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4


EQUILIBRIUM MODELS OF LABOR MARKET SORTING 33

DRISSI-BAKHKHAT, M., AND M. TRUCHON (2004): “Maximum Likelihood Approach to Vote Aggregation
With Variable Probabilities,” Social Choice and Welfare, 23 (2), 161–185. [13]

DUSTMAN, C., J. LUDSTECK, AND U. SCHÖNBERG (2009): “Revisiting the German Wage Structure,” Quarterly
Journal of Economics, 124 (2), 363–376. [25]

EECKHOUT, J., AND P. KIRCHER (2011): “Identifying Sorting—In Theory,” The Review of Economic Studies, 78
(3), 872–906. [7]

HAGEDORN, M., AND I. MANOVSKII (2008): “The Cyclical Behavior of Equilibrium Unemployment and Va-
cancies Revisited,” American Economic Review, 98 (4), 1692–1706. [7]

(2012): “Search Frictions and Wage Dispersion,” Report, University of Pennsylvania. [11]
KEMENY, J. G. (1959): “Mathematics Without Numbers,” Daedalus, 88 (4), 577–591. [13]
KEMENY, J. G., AND J. L. SNELL (1963): Mathematical Models in the Social Sciences. New York: Blaisdell. [13]
KENYON-MATHIEU, C., AND W. SCHUDY (2007): “How to Rank With Few Errors,” in Proceedings of the Thirty-

Ninth Annual ACM Symposium on Theory of Computing. STOC ’07. New York: ACM, 95–103. [15,16]
LISE, J., AND J.-M. ROBIN (2013): “The Macro-Dynamics of Sorting Between Workers and Firms,” Working

Paper, University Colege London. [17]
POSTEL-VINAY, F., AND J.-M. ROBIN (2002): “Wage Dispersion With Worker and Employer Heterogeneity,”

Econometrica, 70 (6), 2295–2350. [16]
SHIMER, R., AND L. SMITH (2000): “Assortative Matching and Search,” Econometrica, 68 (2), 343–370. [6,

16]

Dept. of Economics, University of Oslo, Box 1095 Blindern, 0317 Oslo, Norway; marcus.
hagedorn07@gmail.com,

Dept. of Economics, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA
02467, U.S.A.; tzuohann@gmail.com,

and
Dept. of Economics, University of Pennsylvania, 160 McNeil Building, 3718 Locust Walk,

Philadelphia, PA 19104-6297, U.S.A.; manovski@econ.upenn.edu.

Co-editor Jean-Marc Robin handled this manuscript.

Manuscript received 20 December, 2012; final version accepted 31 March, 2016; available online 27 June, 2016.

http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/TruchonDrissi-Bakhkhat2004SCW&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/dustman+ludsteck+Schoenberg09&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/eeckhout+kircher11&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/hagedorn+manovskii08&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/Kemeny59&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:14/Kenyon-Mathieu+Schudy07&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/postelvinay+robin02&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/shimer+smith00&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
mailto:marcus.hagedorn07@gmail.com
mailto:tzuohann@gmail.com
mailto:manovski@econ.upenn.edu
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/TruchonDrissi-Bakhkhat2004SCW&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/dustman+ludsteck+Schoenberg09&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/eeckhout+kircher11&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/hagedorn+manovskii08&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:14/Kenyon-Mathieu+Schudy07&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/postelvinay+robin02&rfe_id=urn:sici%2F0012-9682%28201701%2985%3A1%2B%3C1%3ASTIEMO%3E2.0.CO%3B2-4
mailto:marcus.hagedorn07@gmail.com

	Proofs and Derivations
	Derivation of Value Functions
	Proofs of Results in Section 3.1
	Proofs of Results in Section 3.2
	Measuring alpha in the Data
	Measure alpha From Fluctuation in Firm Output
	Using Business Cycles to Measure alpha


	Computation and Implementation
	Rank Aggregation
	Kemeny-Young Rank Aggregation

	Model With On-the-Job Search
	The Model
	Identiﬁcation
	Some Useful Results
	Ranking Workers
	Ranking Firms
	Measuring qe(y)

	Measuring Output f(x,y)

	Quantitative Evaluation

	Details of Empirical Analysis
	Appendix Figures
	Figures: Benchmark Model
	Robustness: Shorter Time Horizon of 10 Years
	Robustness: Small Firms
	Robustness: Stochastic Match Quality
	Robustness: Discount Factor Close to 1

	References
	Author's Addresses

