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Appendices covering: the construction of Table I, the derivation of the model equa-
tions, numerical methods, and error analysis.

APPENDIX C: FROM THE NIPA TABLES TO TABLE I

FOR EACH ENTRY IN TABLE I, we construct a sum of one or more entries in the
NIPA tables, divide by nominal GDP, and average over 1988 to 2007. Here we
describe the components of each entry in Table I.

C.1. Revenues

• Personal income taxes are the sum of federal and state income taxes (NIPA
Table 3.4) plus contributions for government social insurance less contributions
to retirement programs (Table 3.6, line 1 minus lines 4, 12, 13, 22, and 29).

• Corporate income taxes are from line 5 of Table 3.1.
• Property taxes are the sum of business property taxes (Table 3.5) and indi-

vidual property taxes (Table 3.4).
• Sales and excise taxes are state sales taxes (Table 3.5) plus federal excise

taxes (Table 3.5).
• Public deficit is the residual between the two columns of the table.
• Customs taxes are from Table 3.5, line 11.
• Licenses, fines, fees are the residual between current tax receipts from Ta-

ble 3.1 and the other revenue listed in our table.
• Payroll taxes are contributions to retirement programs (Table 3.6, lines 4,

12, 13, 22, and 29).

C.2. Outlays

• Unemployment benefits are from Table 3.12, line 7.
• Safety net programs are the sum of the listed sub-components from Ta-

ble 3.12, where “security income to the disabled” is the sum of lines 23, 29, and
36 and “Others” is the sum of lines 37–39.

• Government purchases are current consumption expenditure from Ta-
ble 3.1.

• Net interest income is the difference between interest expense and interest
and asset income both from Table 3.1.

• Health benefits (nonretirement) are spending on Medicaid (Table 3.12, line
33) multiplied by the share of Medicaid spending that was spent on children,
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disabled, and nonelderly adults in 2007 plus other medical care (Table 3.12,
line 34).33

• Retirement-related transfers are the share of Medicaid spent on the elderly
plus Social Security, Medicare, pension benefit guarantees, and railroad retire-
ment programs (all from Table 3.12).

• Other outlays are the difference between total outlays in Table 3.1 and
those listed here.

APPENDIX D: DECISION PROBLEMS AND MODEL EQUATIONS

In this section of the appendix, we derive the optimality conditions that we
use to compute the equilibrium of the model.

D.1. Patient Household’s Problem

The patient household chooses {ct� nt} to maximize expression (1) subject
to equations (2) and (3). Define b̃t = bt/pt and πt = pt/pt−1 and note that
p̂t/pt = 1 + τc . Then we can rewrite the constraints as

(
1 + τc)ct + b̃t+1πt+1 − b̃t = xt − τ̄x(xt)+ T et �(29)

xt = It−1b̃t +wts̄nt + dt�(30)

Setting up the Lagrangian, with m1
t and m2

t as the Lagrange multipliers on
constraints (29) and (30), respectively, the optimality conditions are

βtc−1
t =m1

t

(
1 + τc)�

m1
t πt+1 = Et

[
m1
t+1 + It+1m

2
t+1

]
�

m2
t =m1

t

(
1 − τx(xt)

)
�

βtψ1n
ψ2
t =m2

t wt s̄�

These can be rearranged to give

ψ1n
ψ2
t =

(
1
ct

)(
1 − τx(xt)

1 + τc
)
wts̄�(31)

1
ct

= βEt
{

1 + It
(
1 − τx(xt+1)

)
ct+1πt+1

}
�(32)

33See Table 2 in the 2008 actuarial report of the Centers for Medicare and Medicaid Services
(https://www.cms.gov/ActuarialStudies/downloads/MedicaidReport2008.pdf).
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which are the patient household’s labor-supply and Euler conditions. Finally,
notice that the patient household’s stochastic discount factor is

λt�s = m2
t+s
m2
t

= βsc−1
t+s

(
1 − τx(xt+s)

)
c−1
t

(
1 − τx(xt)

) �(33)

D.2. Impatient Households’ Problem

The idiosyncratic state of a household is its real bond holdings b̃, its em-
ployment status e, and its skill level s. Let S be the collection of aggregate
state variables. Then the problem of a household with real assets b̃ and labor
market states e and s can be written as

V (b̃� e� s�S)= max
c�n

{
log(c)−ψ1

n1+ψ2

1 +ψ2
+ β̂EV (

b̃′� e′� s′�S ′)}

subject to(
1 + τc)c+ b̃′π ′ − b̃= x− τ̄x(x)+ T s(j)�
x= I(S−1)b̃+ s(j)w(S)n+ Tu(j)�
n= 0 if e �= 2�

where I(S−1) refers to the interest rate determined in the previous period.
Here the expectation operator is over aggregate and idiosyncratic shocks. From
this problem, one can derive a Euler equation and a labor supply condition that
are analogous to those for the patient household’s problem. One difference,
however, is that, in these analogous expressions, the expectation operator re-
flects an expectation over idiosyncratic uncertainty as well as over aggregate
uncertainty.

D.3. Intermediate-Goods Firm

A firm that sets its price at date t chooses p∗
t � {ys(j)�ks(j)� ls(j)}∞

s=t to solve

maxEt
∞∑
s=t
λt�s(1 − θ)s−t

{(
1 − τk)

×
[
p∗
t

ps
ys(j)−wsls(j)− (υrs + δ)ks(j)− ξ

]
− (1 − υ)rsks(j)

}
�

subject to

ys(j)=
(
p∗
t

ps

)μ/(1−μ)
ys�

ys(j)= asks(j)αl(j)1−α�
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where the first constraint is the demand for the firm’s good and the second its
production function. By defining r̂t ≡ (1 − υτk)/(1 − τk)rt , we can rewrite the
objective function as if all capital costs were deductible, but the cost of capital
were higher (r̂t > rt if υ< 1). Dropping the constant 1 − τK and substituting in
the demand curve gives the modified problem:

max
p∗
t �{ks(j)�ls(j)}∞s=t

Et

∞∑
s=t

[(
p∗
t

ps

)1/(1−μ)
ys −wsls(j)− (r̂s + δ)ks(j)− ξ

]

× λt�s(1 − θ)s−t

subject to

(
p∗
t

ps

)μ/(1−μ)
ys = asks(j)αl(j)1−α�

The first-order conditions with respect to ks(j) and ls(j) are

(r̂s + δ)=Msαasks(j)
α−1ls(j)

1−α�(34)

ws =Ms(1 − α)asks(j)αls(j)−α�(35)

where Ms is the Lagrange multiplier on the production function constraint at
date s, which is real marginal cost at date s.

We can derive several useful features of the solution from these two opti-
mality conditions. First, taking their ratio:

ws

r̂s + δ = 1 − α
α

ks(j)

ls(j)
�

so that all firms have the same capital–labor ratio and, by market clearing,
ks(j)/ls(j)= ks/ls for all firms.

Second, these optimality conditions allow us already to derive the expression
for dividends as a function of factor prices. Total factor payments are

(r̂s + δ)ks =Msαask
α
s l

1−α
s �(36)

wsls =Ms(1 − α)askαs l1−α
s �(37)

The aggregate after-tax dividend of the intermediate goods firms is then

∫ 1

0
dit(j)dj

= (
1 − τk)∫ 1

0

[
pt(j)

pt
yt(j)−wt(j)lt(j)− (r̂t + δ)kt(j)− ξ

]
dj�
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and by market clearing, this becomes

∫ 1

0
dit(j)dj = (

1 − τk)[yt −Mtatk
α
t l

1−α
t − ξ]�(38)

Similarly, total profits are

∫ 1

0

[
pt(j)

pt
yt(j)−wtlt(j)− (rt + δ)kt(j)− ξ

]
dj(39)

=
∫ 1

0

[
pt(j)

pt
yt(j)−wtlt(j)− (r̂t + δ+ rt − r̂t)kt(j)− ξ

]
dj

= yt −Mtatk
α
t l

1−α
t − ξ+ τk

(
1 − υ

1 − υτk
)
r̂tkt�

And revenue from the corporate income tax is the difference between (39)
and (38).

Finally, we turn to the optimality condition with respect to p∗
t :

Et

∞∑
s=t
λt�s(1 − θ)s−t

×
[

1
1 −μ

(
p∗
t

ps

)1/(1−μ)−1
ys

ps
−Ms

μ

1 −μ
(
p∗
t

ps

)μ/(1−μ)−1
ys

ps

]
= 0�

which we can rewrite as

Et

∞∑
s=t

1
1 −μ

(
p∗
t

ps

)1/(1−μ)−1
ys

ps
λt�s(1 − θ)s−t(40)

= Et

∞∑
s=t
λt�s(1 − θ)s−tMs

μ

1 −μ
(
p∗
t

ps

)μ/(1−μ)−1
ys

ps
�

p∗
t

pt
=
ptEt

∞∑
s=t
λt�s(1 − θ)s−tMsμt

(
pt

ps

)μ/(1−μ)−1
ys

ps

ptEt

∞∑
s=t

(
pt

ps

)μ/(1−μ)
ys

ps
λt�s(1 − θ)s−t

≡ p̄At
p̄Bt
�
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This equation gives the solution for p∗
t . It is useful to write p̄At and p̄Bt recur-

sively. To that end,

p̄At = ptEt

∞∑
s=t
λt�s(1 − θ)s−tMsμt

(
pt

ps

)μ/(1−μ)−1
ys

ps
(41)

=Mtμtyt +Etpt+1π
−1
t+1Et+1λt�t+1(1 − θ)

(
pt

pt+1

)μ/(1−μ)−1

×
∞∑

s=t+1

λt+1�s(1 − θ)s−t−1Msμ

(
pt+1

ps

)μ/(1−μ)−1
ys

ps

=Mtμtyt +Et

[
λt�t+1(1 − θ)π−μ/(1−μ)

t+1 p̄At+1

]
�

where πt+1 ≡ pt+1/pt . Similar logic for p̄Bt yields

p̄Bt = yt +Et

[
λt�t+1(1 − θ)π−μ/(1−μ)−1

t+1 p̄Bt+1

]
�(42)

Next comes the relationship between p∗
t and inflation. The price index is

pt =
(∫ 1

0
pt(j)

1/(1−μ) dj
)1−μ

�

and with Calvo pricing, we have

pt =
(
(1 − θ)

∫ 1

0

(
pt−1(j)

)1/(1−μ)
dj + θ(p∗

t

)1/(1−μ)
)1−μ

= (
(1 − θ)p1/(1−μ)

t−1 + θ(p∗
t

)1/(1−μ))1−μ
�

Therefore

πt =
(

1 − θ
1 − θ

(
p∗
t

pt

)1/(1−μ)

)1−μ

�(43)

Finally, note that because the capital–labor ratio is constant across firms, the
production of variety j follows:

yt(j)= at
(
kt

lt

)α

lt(j)�
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The demand for variety j can be written in terms of the relative price to arrive
at (

pt(j)

pt

)μ/(1−μ)
yt = at

(
kt

�t

)α

�t(j)�

Integrating both sides yields∫ 1

0

(
pt(j)

pt

)μ/(1−μ)
djyt = at

(
kt

�t

)α ∫ 1

0
�t(j)dj�

By market clearing, we have then that

Styt = atkαt �1−α
t �(44)

where

St =
∫ 1

0

(
pt(j)

pt

)μ/(1−μ)
dj�

St reflects the efficiency loss due to price dispersion and it evolves according to

St = (1 − θ)St−1π
−μ/(1−μ)
t + θ

(
p∗
t

pt

)μ/(1−μ)
�(45)

Throughout this subsection, we have dropped most of the t subscripts on μt .
When the equations in this subsection are linearized around the zero-inflation
steady state, the markup shock only enters equation (41).

D.4. Capital Goods Firm

The capital goods firm chooses a sequence {kt+1�kt+2� � � �} to maximize

Et

∞∑
s=t
λt�s

(
1 + τp)−(s−t+1)

[
rsks − ks+1 + ks − ζ

2

(
ks+1 − ks
ks

)2

ks

]
�

The discounting by 1/(1 + τP) comes from the property tax since

vt = 1
1 + τP d

k
t + 1

1 + τP Et[λt�t+1vt+1]�(46)

This problem leads to the first-order condition

1 + ζ
(
kt+1 − kt
kt

)
= Et

{
λt�t+1

1 + τp
[
rt+1 + 1 − ζ

2

(
kt+2 − kt+1

kt+1

)2

(47)

+ ζ
(
kt+2 − kt+1

kt+1

)
kt+2

kt+1

]}
�
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This expression can be transformed into one that only includes variables dated
t and t + 1 by writing it in terms of k̂t = kt+1 and introducing k̂lag

t = k̂t−1. Div-
idends paid by the capital goods firm are the term in brackets in the objective
function less τp times the value of the firm, which follows equation (46).

APPENDIX E: NUMERICAL SOLUTION ALGORITHM

As the main text described, the key steps involved in solving the model are:
(i) to discretize the cross-sectional distributions and decision rules, (ii) to solve
for the stationary equilibrium, (iii) to collect all of the many equations defining
an approximate equilibrium and linearizing them, and (iv) to solve the system
with a linear rational expectations solver. We elaborate on each of these steps
next.

E.1. Discretizing the Model

For each discrete type of impatient household characterized by a skill level
and an employment status, we approximate the distribution of wealth by a his-
togram with 250 bins. We approximate the policy rules for savings and labor
supply by two piece-wise linear splines with 100 knot points each. We deal
with the borrowing constraint in the approximation of the policy functions by,
following Reiter (2010), parameterizing the point at which the borrowing con-
straint is just binding, and then constructing a grid for higher levels of assets.
As a result of these approximations, there are now 450 variables for employed
workers, and 350 variables for nonemployed workers (who do not choose labor
supply).

E.2. Solving for the Stationary Equilibrium

Solving for the steady state of the model requires two steps: first, solving for
the impatient household policy rules and distribution of wealth; and second,
solving for the aggregate variables including the assets and consumption of
the representative patient household. These two steps are interrelated, as the
equilibrium interest rate depends on the patient household’s marginal tax rate,
which depends on the patient household’s income and therefore wealth, which
in turn depends on the level of wealth held by impatient households.

We use an iterative procedure to find the equilibrium income of the patient
households. Given a guess of the patient household’s income and therefore
marginal tax rate, we find the equilibrium interest rate from the patient house-
hold’s Euler equation and then the solution of the intermediate goods firm’s
problem to find the equilibrium wage. With these objects, we solve the impa-
tient households’ problem to find their consumption and asset positions. With
these in hand, we use standard techniques from the analysis of representative-
agent models to find the rest of the aggregate variables. Finally, we check our
guess of the patient household’s income and iterate from here.
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E.3. System of Equations

Keeping Track of the Wealth Distribution

We track real assets at the beginning of the period using Reiter’s (2010)
procedure to allocate impatient households to the discrete grid in a way that
preserves total assets. As we have nominal bonds in the model, we account for
the effect of inflation in the evolution of the household’s asset position. For
each discrete type of household, this provides 250 equations.

Solving for Household Decision Rules

We use the impatient households’ Euler equations and labor supply condi-
tions to solve for their decision rules by imposing that these equations hold
with equality at the spline knot points. This provides 100 equations for nonem-
ployed households and 200 for employed households.

Aggregate Equations

In addition to those equations that relate to the solution of the impatient
household’s problem and the distribution of wealth across households, we have
equations that correspond to the patient household’s savings and labor supply
decisions, as well as those that correspond to the firms’ problems. These equa-
tions are discussed in more detail in Appendix B. We use equations (29), (31),
(32), (40), (41), (42), (43), (36), (37), (44), (45), (46), (47). We introduce an
auxiliary variable that carries an extra lag of capital, klag

t = kt−1. In addition,
from the main text we have equations (22), (23), (24), (26), (25), (27), and ex-
ogenous AR(1) processes for εt , at , and μt . We use these equations to solve
for ct , nt , bt Mt , p∗

t /pt , p̄
A
t , p̄Bt , St , πt , yt , wt , rt , vt , kt , k

lag
t , dt , Bt , T et , gt , and It .

E.4. Linearization and Solution

At this stage, we have a large system of nonlinear equations that the dis-
cretized model must satisfy. We follow Reiter (2009, 2010) in linearizing this
system around the stationary equilibrium using automatic differentiation and
then solving the linearized system as a linear rational expectations model using
the algorithm from Sims (2002).

APPENDIX F: NUMERICAL ERROR ANALYSIS

Here we discuss the accuracy of our numerical calculations for the main re-
sults, in Section 4. There are two sources of errors, both of which commonly
arise in related algorithms. First, there are errors in the decision rules of the
impatient households between the points at which the household optimality
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conditions are imposed. These errors are present even in the stationary equi-
librium. Away from the stationary equilibrium (the point around which we lin-
earize), there are errors due to nonlinear responses to aggregate states, as is
the case with other applications of perturbation methods.

To assess the accuracy of our solution, we calculate unit-free Euler equation
errors.34 We calculate the Euler equation errors for the patient household as
well as for impatient households. For impatient households, we use a test grid
over asset holdings that is finer than the grid on which we solve for household
decision rules.35 For a given aggregate state of the economy, St , the distribu-
tion of bond holdings, the capital stock, and exogenous variables are predeter-
mined:

Predetermined and exogenous:

kt�Bt� bt� at� εt�μt�distribution of households�

We then use the computed solutions to determine

Approx. solutions:

Mt� ct� vt� p̄
A
t � p̄

B
t � impatient hhld. savings and labor supply rules�

We then use the nonlinear, static relationships and market clearing conditions
to determine the remaining variables. Table S.I lists the equations we impose

TABLE S.I

EQUATIONS THAT HOLD EXACTLY IN ERROR ANALYSISa

Description Number Variable(s) Determined

Price-setting equations (40), (43), (45) p∗
t /pt , πt , St

Production function (14) yt
Firm F.O.C.s and definition of r̂ (34), (35) r̂t , rt , wt
Government policy rules (25), (26), (27) It , Tet , gt
Impatient budget constraints (6) ct(i)
Aggregate resource constraint (48) kt+1

Accounting definitions (3), (7), (16), (19), (22) xt , xt(i), dt(j), dkt , dt
Progressive tax rule (4) Tax rev. and marginal rates
Government budget constraint (23) Bt+1

Bond market clearing (24) bt+1

aDue to the capital adjustment cost, there are two values of kt+1 that solve the aggregate resource constraint, the
relevant solution is the larger of the two.

34See Judd (1992) for an explanation of this accuracy check and the interpretation of the errors
in terms of bounded rationality.

35Specifically, we use the same 250 point grid for b(i) as we use to approximate the distribution
of wealth.
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and the variables that we solve for. In addition to those equations listed, the
patient household budget constraint, equation (2), holds by Walras’s Law. The
aggregate resource constraint is

kt+1 + ct +
∫ ν

0
ct(i)di+ gt = yt + (1 − δ)kt − ξ− ζ

2

(
kt+1 − kt
kt

)2

kt�(48)

Notice that all budget constraints and market clearing conditions are forced to
hold. From these calculations and a given set of aggregate shocks, we can com-
pute the next state of the economy, St+1, and repeat these steps to find ct+1, and
so on. To compute expectations, we use Gaussian quadrature over the three ag-
gregate shocks using a grid that has 11 nodes in each dimension. For a given
household (i.e., a patient household or an impatient household with particular
idiosyncratic states), we can compute the level of consumption implied by the
right-hand side of the Euler equation as

ĉt ≡
[
βEt

{
1 + It

(
1 − τx(xt+1)

)
ct+1πt+1

}]−1

�(49)

where the expectation is over aggregate and idiosyncratic shocks in the case
of impatient households. The unit-free Euler equation error for a given type
of household is then ĉt/ct − 1, where ct is the level of consumption implied by
the approximated decision rules.36 Here we have used the Euler equation for
bond holdings, which is the relevant Euler equation for impatient households.
For patient households, we could alternatively use equation (47) to construct
ĉ. We will refer to these two versions as the “bond” error and the “investment”
error.

Using the steps above, we can compute the Euler equation error for each
type of household. As a summary statistic, we integrate ĉ across households
using the distribution of wealth at the given state of the economy to compute
aggregate consumption implied by the right-hand side of the Euler equation.
We similarly can integrate the consumptions implied by the approximate policy
rules to find aggregate consumption as implied by the left-hand side of house-
hold Euler equations. We can then express an aggregate Euler equation error
for all impatient households as

∫
ĉ(i)di/

∫
c(i)di− 1 and an aggregate Euler

equation error for all households as [∫ ĉ(i)di + ĉ]/[∫ c(i)di + c] − 1, where
c is the consumption of the patient households and ĉ can be calculated from
either (47) or (49). We choose to focus on these aggregate Euler equation er-
rors as opposed to the disaggregated errors for each type of household because
this is what is relevant to our results on aggregate dynamics. Nonetheless, the

36For impatient households, we approximate their policy rules for savings as opposed to con-
sumption, so c is computed from their budget constraint and depends on the approximate policy
rule for labor supply and the market clearing prices.
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TABLE S.II

LARGEST AND MEAN ABSOLUTE ERRORS ACROSS 50 RANDOMLY DRAWN POINTS
IN THE STATE SPACE

Euler Equation Errors (Log Base 10)

Patient Aggregate

Investment Bond Impatient Investment Bond

Largest −2�15 −2�09 −2�05 −2�50 −2�08
Mean −3�10 −2�78 −2�78 −3�08 −2�80

Labor Supply Errors (Log Base 10)

Patient Impatient Aggregate

Largest −3�19 −3�14 −3�15
Mean −3�88 −3�82 −3�86

disaggregated Euler errors do not show large differences in magnitude across
households.

We can also assess the errors in household labor supply decision rules. In
the course of the steps listed above, we have solved for everything on the right-
hand side of equation (31) and the analogous equations for impatient house-
holds. Specifically, we use the approximate solutions to find c and the value of x
that follows from plugging the approximate policy rule for n into equation (3).
We can then solve for the implied value of n, call it n̂, from the right-hand side
of equation (31) and express the error in this equation as n̂/n− 1. Again, we
summarize these errors by integrating n and n̂ over the distribution of house-
holds.

The Euler equation and labor supply errors vary over the state space. We
randomly draw points in the state space by simulating the model for 50,000
periods, and we compute the errors every 1000 simulated periods. We describe
the distribution of errors across the 50 resulting points by reporting the largest
absolute error and the mean absolute error in Table S.II.

APPENDIX G: METHODS FOR TRANSITION DYNAMICS

In Sections 5 and 6, we discuss perfect foresight transition experiments. Un-
like above, we do not linearize the model equations, but instead compute the
transition using the fully nonlinear model equations.

Initial Guess

We assume that the economy has returned to steady state after T = 250 pe-
riods and look for equilibrium values for endogenous variables between dates
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t = 0 and T . In this explanation of our methods, we use variables without sub-
scripts to represent sequences from 0 to T . LetX denote a path for all endoge-
nous aggregate variables from date 0 to date T . These variables include ag-
gregate quantities and prices. Specifically, in Appendix E.3 under the heading
“Aggregate Equations,” we list 20 endogenous aggregate variables and three
exogenous variables. In addition to those, we also include the exogenous path
for the preference shock for the zero-lower-bound experiment. In addition,
let cIt ≡ ∫ ν

0 ct(i)di be the aggregate consumption of impatient households. De-
fine bIt similarly as the aggregate bond holding of the impatient households
and nIt ≡ ∫ ν

0 st(i)nt(i)di as the aggregate effective labor supply. Finally, de-
fine T It ≡ ∫

τ̄x(xt(i))di as the aggregate income tax payment of the impa-
tient households. X contains the sequences {cIt � nIt � bIt � T It }Tt=0. Importantly, X
does not include the distribution of wealth or the household decision rules.
So in total, X represents time paths for 28 variables, four of which are exoge-
nous.

We require an initial guess X0. We start with a scaled down version of the
exogenous variables so that they differ from their steady-state values by a small
amount. For this starting point, the steady-state values for quantities and prices
are good initial guesses. After computing an equilibrium for this scaled down
problem, we then gradually scale up the exogenous variables to the full version
of the transition experiment.

Solving the Household’s Problem

The impatient household’s decision problem depends on X through the
prices. For a given Xi, we solve the household’s problem using the endoge-
nous gridpoint method (Carroll (2006)).

Simulating the Population of Households

We simulate the population of households in order to compute aggregate
consumption and aggregate labor supply. We use a nonstochastic simulation
method. We approximate the distribution of wealth with a histogram with 250
unequally spaced wealth levels for each value of (e� s), placing more bins at
low asset levels. We then update the distribution of wealth according to the
household savings policies and the exogenous transitions across skill and em-
ployment states. When households choose levels of savings between the center
of two bins, we allocate these households to the adjacent bins in a way that
preserves total savings. See Young (2010) for a description of nonstochastic
simulation in this manner.
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Checking the Equilibrium Conditions

In Appendix E.3 under the heading “Aggregate Equations,” we list 20 equa-
tions.37 These equations depend on the distribution of wealth and the impa-
tient household decision rules only through cI , nI , bI , and T It . So we can di-
rectly check whether these 20 equations hold at X . In addition, we need to
verify that cI , nI , bI , T I are part of an equilibrium. This requires solving for the
household decision rules and simulating the population of impatient house-
holds. We do that using the methods described in the previous two paragraphs
and check whether the aggregate behavior of impatient households that is im-
plied matches the values listed in X .

Updating Xi

The difficult part of the solution method arises when our guess Xi is not an
equilibrium. In this case, we need to find a new guess Xi+1 that moves us to-
wards an equilibrium. To do this, we construct an auxiliary model by replacing
the computational equilibrium conditions with additional analytical equilib-
rium conditions that approximate the behavior of the population of impatient
households but are easier to analyze. Specifically, we use the equations(

cIt
)−γ = η1

t β(1 + rt)
(
cIt+1

)−γ
�(50) (

cIt
)−γ
wt = η2

t

(
nIt

)ψ
�(51)

T It = η3
t

(
wtn

I
t + It−1b

I
t /πt + Tu�IUt

)
�(52) (

1 + τc)cIt + bIt+1 = (1 + It−1)bt/πt +wtnIt + Tu�IUt + Tn�INt − τIt �(53)

where η1, η2, and η3 are treated as parameters of the auxiliary model, and
Ut and Nt are masses of unemployed and needy households. Tu�I and Tn�I are
parameters that determine the aggregate transfer payments as a function of
the number of unemployed and needy. These are constant parameters, as the
distribution of skills is stationary.Ut andNt evolve exogenously in line with the
Markov chain transition matrix Πt .

For a given Xi, we have computed cI , nI , bI , and T I from the computational
equilibrium conditions. We then calibrate η1, η2, η3 from the above equations.
We then solve for a new value of X from the 20 analytical equilibrium condi-
tions and this system of equations. This is a problem of solving for 26 unknowns
at each date from 26 nonlinear equations at each date.38 We solve this system
using the method described by Juillard (1996) for computing perfect foresight

37For the zero-lower-bound experiment, we modify equation (27) such that the nominal inter-
est rate is the maximum of the value implied by the Taylor rule and zero.

38There are 26 equations and endogenous variables as opposed to 24 because we include N
and U and the associated equations.
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transition paths for nonlinear models. This method is a variant of Newton’s
method that exploits the sparsity of the Jacobian matrix. Call this solution Xi′.
We then form Xi+1 by updating partially from Xi towards Xi′.

In essence, we are computing an equilibrium as if there were a representative
impatient household whose behavior were described by a standard Euler equa-
tion with the wedge η1, a standard labor supply equation with the wedge η2,
and so on. We use this equilibrium under a representative impatient household
to construct our next guess Xi+1. We iterate on these steps until the values η1,
η2, and η3 converge.
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