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This Supplemental Material consists of Appendices B, C, and D to the main text.

APPENDIX B: ADDITIONAL RESULTS AND PROOFS OF THE RESULTS
IN THE MAIN TEXT

IN APPENDIX B, we provide the proofs of all the lemmas, theorems, and propo-
sitions stated in the main text. Additional results on consistent sieve variance
estimators and bootstrap sieve t statistics are also presented.

B.1. Proofs for Section 3 on Basic Conditions

PROOF OF LEMMA 3.3: For Result (1). Observe that %[J is bounded on
(V, Il - ); and in this case equation (3.4) holds. By definitions of v} and v*, we
have: 240 [y] = (v}, v) and 4% [y] = (v*, v) for all v € V). Thus

(v* —v:,0)=0 forallveV,, and [v*|*= v —v|*+ ||

Since V., is a finite dimensional Hilbert space, we have v =
argmin,y,  ||v* —v|l. Since Vi, is dense in (V, || - [|), we have |v* — v}[| — 0
and ||v}|| — |[v*]| < oo as k(n) — oo.

For Result (2). We show this part by contradiction. That is, assume that
limy ) |V% ]| = C* < o0. Since % is unbounded under || - || in V, we have:
for any M > 0, there exists a v, € V such that |%[UM]| > M|lvy].

Since vy €V, and {V,}, is dense (under || - ||;) in V, there exists a sequence
(Vn.m)n such that v,y € Vi, and lim,,, « ||V, — varlls = 0. This result and the
fact that || - || < CJ| - ||; for some finite C > 0 imply that lim,, . ||V, x|l = Vsl

Also, since %[-] is continuous or bounded on (V, || - ||s), we have

dd’(ao)
da

lim

n—oo

[Vim — UM]’ =0.

Hence, there exists a N (M) such that

'd¢(ao)
da

(V]| = Moy uml
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for all n > N(M). Since v, i € Vi), the previous inequality implies that

‘d(b(ao)

[]’

|| v || = sup >M

VeV :l10lI£0 vl

for all n > N(M). Since M is arbitrary, we have lim . ||v}|| = co. A contra-
diction. O.E.D.

B.2. Proofs for Section 4 on Sieve t (Wald) and SOQLR

LEMMA B.1: Let @, be the PSMD estimator (2.2) and conditions for Lemma
3.2 hold. Let Assumptions 3.5(i) and 3.6(i) hold. Then:

Vnlu), @, — ag) = —/nZy 4 0p, (1).

PROOF: We note that n') ", ||ﬁ()(,-,a)||2?1 = 0,(a). By Assumption
3.6(i), we have: for any €, € 7,

(B.)  n D (X Gt el | — Y (X @) |5

i=1 i=1

=2€,{Z, + (1}, @ — o)} + €.B, + 0p, (1)

where r;' = max{e2, e,n /%, s, '} with s,;' = o(n™"), and

7, = Z(M[u:]) (X)) p(Zs, ).

— da

By adding
V) -
E,(a, €,) = o(n*) + A, (Pen(h + €, —2— H H > — Pen(hn)>
sd

to both sides of equation (B.1), we have, by the definition of the approximate
minimizer «, and the fact @, + €,u* € Ay, that, for all €, € T,,,
26,{Z, + (u, @y — o)} + €2B, + E, (@, €,) + 0p,o. (') > 0.
Or, equivalently, for any 6 > 0 and some N (§),
(B2)  Pz~(Ve,:y+ €, € Nog, 2€,{Z, + (1, @)y — ato)}
+€B,+E,(a,,€,)>—-6r,")>1-6
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for all n > N(§). In particular, this holds for €, = £{s;"* + o(n"'?)} =
+o(n~'?) since s, = o(n~"?). Under this choice of €,, r;' = max{s;’,

s, 12n~1/2}. Moreover, Assumptions 3.2(i)(ii) and 3.4(iv) imply that E(&,, €,) =
0p, (n71). Thus /ne,'E(a,, €,) = 0p,., (V/ne,'n™") = op,,.(1). Thus, from
equation (B.2), it follows,

Pyo(Ans = Nn{Zy+ (0 — ag)} = B, 5) =1 -8
eventually, where
A,s=-0.5ne,B, — 8/ne,'r;' +0.58
and
B, s=—0.5/ne,B, —0.5/nd¢,'r,' —0.58

(here the 0.56 follows from the previous algebra regarding /ne, E(a,, €,)).
Note that \/ne, = o(1), B, = Op,.. (1), and /ne,'r,' = £ max{s,'*/n, 1} <
+1. Thus

P2 (26 = /n{Z, + (), @, — ag)} > —28) =1 -8, eventually.
Hence we have established /n(u, @, — ag) = —/nZ, + 0p,.. (1). Q.E.D.

PROOF OF THEOREM 4.1: By Lemma B.1 and Assumption 3.6(ii), we imme-
diately obtain: /n(u;, @, — ay) = N (0, 1). Hence, in order to show the result,
it suffices to prove that

«/EM = V/n(u}, &, — ay) + 0p,. (1).

nlilsd

By the Riesz representation theorem and the orthogonality property of «y_,,
it follows
do(ag)
da

By Assumptions 3.1(iv) and 3.5(i), we have ||v#||sq =< [[v;]l. This and Assump-
tion 3.5(ii)(iii) imply

(@ — ] = (U], @y — 0g,) = (V, @ — atg).

ﬁ¢(an) — ¢ ()

nlilsd

—1d¢(a0)

sd

—1d¢(010)

od a [an - aO,n]

——[@, — ag] + 0p,.. (1)
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d
+n|v; ||Sd1 ¢(a°) [t — o] + 0, (1)

da [a a(],n] + OPZoo (1)

=Vn|v; ||;f(v;i,an — )+ 0p, (1).

Thus

ﬁ¢(an) - b(a) _ ﬁ(vn’ a’: — ) + 0p, (1),

sd sd

n n

and the claimed result now follows from Lemma B.1 and Assumption 3.6(ii).
Q.E.D.

PROOF OF LEMMA 4.1: By the definitions of V,,, and the sieve Riesz rep-
resenter v¥ € Vi, of d‘*ﬁd(““)[ ] given in (3.6), we know that vy = (vy,, v} ,(-))' =
(V3 YW () B € Vi solves the following optimization problem:

dd)(a()) [U*]

(B.3) o

*

2

I (a) I (a)
‘ &9,0 vo + M“[vh(-)]
= sup

v:(v;,,v,,)’evk(m,v;ﬁO E|:<dm(an aO) [U]) E(X)_l (dm(;y aO) [U]>i|
o o

YFEaF Yy
'D,y

= sup
Y= By RN g Y

where D, = E[(22%00) (7" (yy 3x0) ! (4200 (355 () s a (dy+k (1)) x

(dy + k(n)) positive definite matrix such that

yD,y = E[(idm(f @) ]) S(X)! (L(j{’ o) [v])}
o

for all v = (v}, ¢*™(-)B) € Vi,

and [, = (2290 220 ki (L)) = ‘i""%)[(p "(Y]is a (dy + k(n)) x 1 vector.

90
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The sieve Riesz representation (3.6) becomes: for all v = (v}, ¢*™(-)B) €
Vk(n)a

dd)(Ol()) (

(B.4) wl=F,y=v,v)=y/D,y forally= (v, B) eR¥*m.

It is obvious that the optimal solution of vy in (B.3) or in (B.4) has a closed
form expression:

Vo= (V5 Z/)/:D;Fn-
The sieve Riesz representer is then given by
Uy = (V3 010 () = (050 W CY'B,) € Vi
Consequently, [|v:||> =y 'D,y: = F /D, F ,. QO.E.D.

Another consistent variance estimator. For ||[v* |2, = E(S* ,S¥,) given in (3.8)

n,t Hl

and (4.3), by Lemma 4.1, it has an alternative closed form expression:
[ville = £ DD 1,

dm(X —kn '
0, = %(%W ><->/]) 307 5(X) (X))

dm(X, ag) —km ,
(o))

=0,.

Therefore, in addition to the sieve variance estimator ||¥ ||, s given in (4.7), we
can define another simple plug-in sieve variance estimator:

(B.5) ”?”isd = ”A*an 135,51

_l dm(Xi,a,,) . 19 dm(Xnan)
(s (i

a

with ZO, 20 (X;), where Eg(x) is a consistent estimator of 3,(x), for example,
E [p(Z,a,)p(Z,a,)|X = x], where E [-|X = x] is some consistent estimator
of a conditional mean function of X, such as a series, kernel, or local polyno-
mial based estimator.
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The sieve variance estimator given in (B.5) can also be expressed as

®6)  [7],4=Va=F,0;2,D; with
5 _ 1l (dmX,a) —m . 1\ s oo
Qn—nz< dO[ ['7[/ ()]> i 0i=

ASSUMPTION B.1: (i) Sup,, ! )|(v, V) x-13xy5-1 — (U, V) s-1x,5-1] = 0p,o (1);
and R

(i) Sup,cy,, SUP.cx 1 Ealp(z, @)p(z, )| X = x] — Elp(z,a)p(z,@)|X =
x]lle = 0p, (1).

THEOREM B.1: Let Assumption 4.1(i)-(iv), Assumption B.1, and assumptions
for Lemma 3.2 hold. Then: Results (1) and (2) of Theorem 4.2 hold with (0% |2
given in (B.5).

n,sd

Monte Carlo studies indicate that both sieve variance estimators perform
well and similarly in finite samples.

PROOF OF THEOREMS 4.2 AND B.1: In the proof, we use simplified notation
0p, (1) = 0p(1). Also, Result (2) trivially follows from Result (1) and Theo-
rem 4.1. So we only show Result (1). For Result (1), by the triangle inequality,
we have that

e B W WL P
[, H 03] [EA
1 Pl 1 PO DA
B UZ sd U: sd

This and the fact 2l — %%l (ypder Assumption 3.1(iv)) imply that Re-

vz s gl
sult (1) follows from

|7 — v,
(B.7) = or(),
and
o~ e
(B.8) L Pl DA =o0p(1).

v:].
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We will establish results (B.7) and (B.8) in Step 1 and Step 2 below.

STEP 1: Observe that result (B.7) is about the consistency of the empirical
sieve Riesz representer ¥ in || - || norm, which is the same whether we use p;p;

or 3 to compute the sieve variance estimators (4.7) or (B.5). By the Riesz
representation theorem, we have, for all v € V),

do(ay,) do(ay) . .
1o [v] = (7, U),,j—l and 1 Y] = (vz, v)=(vz, )y
Hence, by Assumption 4.1(i), we have
=k . _ *
Op(l) — sup (vn’ U)n,Z*l <vn’ v)
vV vl
i)\k’ V)51 7)\;’ v /\*a - *5
— sup (n ’)Z;Zl ( )”/17;”_’_(% v) (Un v>
B B 0 1 vl
(05 —vs, )
> sup |[———
Ve vl
- sup (@, @), 50— (@ @) < [9],
TV (yillwl=1
where @ = v/||v|| and @} =" /|v*||. First note that
(@ @), 51 — (@, @)
= |(a:<1’ 13-)71,/2\*l - (az’ w>n,2*1 | + |<a:’ w)n,Z*l - (a:’ ’w>2*1 |

= |Tln(w)| + |T2n(w)’-
By Assumption 4.1(ii), we have: SUP e, w1 | T5,(w)| = op(1). Note that

Ti(w)=n"" Z(M[@D [37x) - 37'(X))

- da
i=1

X 7(1“ wl] ).

By the triangle inequality, Assumptions 3.1(iv), and 4.1(ii)(iii), we obtain
| Tin(w)]
< sup||§‘1(x) -3,
xex
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dﬁ(Xia an) [a_ ]
da "

n 2 n
X J n-1 Z J n-! Z
i=1 ¢ i=1
< 0p(D) x Op(|/(@3, @), o1 % (@, @)x)
=o0p(1) x Op(1) = 0p(1).

Hence

(@ — v, v)
0< sup |——

VEV (), 0740

7).

=0P(

vl

In particular, for v =v* — v, this implies

[T = vl or(L+5;])
v, v,
Note that ||[v?|| > const. > 0 and H?’}: < ””T'fv;'ﬂ"”
n n

tion implies

||’\k_ *

D
“2(1—-o0p(1))=0p(1) and

%1

[l

n

=Op(D).

n

STEP 2: We now show that result (B.8) holds for the sieve variance estima-

tors [V} ||2 .4 defined in (4.7) and (B.5). By Assumption 3.1(iv), we have
[ o = 193]
EAw
’\* _ I ¢ Tl ~
'” “ni || ||sd || *”sd || ’\*”nsd _1' % ”vn
2.1 Ul I v,
S ~k A~ P~
S <||v:k||n,sd +1> ||v:k||n,sd _1' N 1 1 PR I 01
19 e v, |}“:, I v,
TP Py [l 1%l
n,sd sd ”? ”2 U;
=@, = @5l x 0r (L),

dﬁ,\l(Xia an)
da

Koj

]

2

e

+ 1, and thus, the previous equa-
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where @ =" /|[v}], Il — Op(1) (by Step 1), and ‘}‘l’;"l”z = Op(1) (by Assump-

loz
tion 3.1(iv) and i.i.d. data). Thus, it suffices to show that
2 ~

®9)  ||&],. -1

n,sd

& |2 = or(D).

STEP 2A FOR THE ESTIMATOR |v* ||n « DEFINED IN (4.7): We now establish
the result (B.9) when the sieve variance estimator is defined in (4 7).

Let M(Z;, ) = 2 "0(Z:, a)p(Z;, &) 2 and M(z, a) = 3N (x)p(z, ap) x

p(z,00)’37Y(x) and M; = M(Z;, a). Also let Ti[v,] = d'"(X “")[vn], T:[v,] =
a0l [y,], and 3(x, @) = E[p(Z, @)p(Z, @)'|x].

It turns out that || @ ||n « — @112, can be bounded above by

sup

ol
Un er(n)

n Y T M(Zi, @) Tivd —n Y Tilv, I MTi{v,]

i=1 i=1

+ sup

Un EVk(n)

n ZT[vn]MT[vn]— [Ti[vn]/MiTi[vn]]‘

i=1

+ sup |E[Ti[v.)M;Ti[v,]]
v,,eV;lf(m
— E[Ti[v,) 371 (X)) 3(X;, ) X (X)) Ti[w,]]|
= Aln + A2n + A3n'

Note that A3, = 0 by the fact that E[M;|X;] = 3"1(X,)3(X;, ) >~'(X;), and
that A,, = op(1) by Assumption 4.1(v). Thus it remains to show that A, =
op(1). We note that

n™ Y T, Tilv,]

i=1

Ay, <sup sup |M(z,a) — M(z, a)||, sup

z  a€Nosn

V€V,
< const. x sup sup H]\//?(z, a)—M(z, o),

z  aeNosn

x sup n! ZT[vn] M(Z:, a0) Tilv,]|,

Un eV,, i=1

where the first inequality follows from the fact that for matrices A and B,
|A'BA| < |A|?||B|l. and Assumption 3.1(iv). Observe that by Assumptions
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4.1(iii)(iv) and 3.1(iv),

Sup Sup ||M(Za 0() - M(Z’ aO)”e

z  a€Npsn

<sup sup |37 (0){p(z, @)p(z, @) — p(z, a)p(z, @) } 37 (),

z  ae€Npsn

S (x)p(z, a0)p(z, a0) S (x)

+ sup|

— 3 (x0)p(z, a0)p(z, a0) 37 ()|,

The first term in the RHS is op(1) by Assumptions 4.1(iii)(iv) and 3.1(iv);
the second term in the RHS is also of order op(1) by Assumptions 4.1(iii)
and 3.1(iv) and the fact that p(Z, ag)p(Z, a)’ = Op(1). By Assumption 4.1(v),
sup, y! [ty 1T[v,,] M(Z;, ag)T[v,,]| = Op(1). Hence A, = op(1) and re-
sult (B 9) holds.

STEP 2B FOR THE ESTIMATOR ||v* ||n « DEFINED IN (B.5): Since we already
provide a detailed proof for result (B.9) in Step 2a for the case of (4.7), here
we present a more succinct proof for the case of (B.5).

By the triangle inequality,

n,sd || qd|

= |||%Z R o] e | 1 ) o o

=Ry, + Ry,.
By Assumptions 3.1(iv), 4.1(iii)(iv), and B.1, we have

sup[| 271 (1) Zp(0)3 7 (1) — 37 () Ze(0) 37 ()|, = 0p(D),

XeX

where go(x) = En[p(Z, a,)p(Z,a,)|x]. Therefore, by Assumptions 3.1(iv)
and 4.1(ii) and similar algebra to the one used to bound Ty,(w), we have

R, <o (l)xn_IZn: M[{ﬁ*] 2—o (1) x Op(1) =0p(1)
in = Op L da n . =0p P =op(l).
Also by Assumption B.1, Ry, = 0p(1). Thus result (B.9) holds. Q.E.D.

Before we prove Theorem 4.3, we introduce some notation that will simplify
the presentation of the proofs. For any ¢ € R, let A(¢) ={a € A: ¢(a) = ¢},
and A (d) = A(¢) N Ay In particular, let A° = A(¢p(ap)) and Al =
-Ak(n) (¢ (ap)).
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Also, we need to show that for any deviation of « of the type « + tu?, there
exists a ¢ such that ¢ (a + tu?) is “close” to ¢(ay). Formally, the following
lemma holds.

LEMMA B.2: Let Assumption 3.5 hold. (1) Forany ne€ {1,2,...},any r € {r:
Ir] <2M,||v||8,}, and any o € N, there exists a t € T, such that ¢ (a + tu’) —
¢ (ap) =rand a+tu, € Agyy. (2) Forany r € {r: |r| <||vi||7,} and any a € {a €
Ak la — |l < 7,} with some positive sequence (t,), such that 7, = O(8,),
the t in Part (1) also satisfies |t| < max{Cr,, o(n~'?)} for some constant C > 0.

PROOF: For Part (1), we first show that there exists a ¢ € 7, such that ¢ (« +
tu!) — ¢ (ap) =r. By Assumption 3.5, there exists a (F,), such that F, > 0 and
F,=o(n "?|v*|) and, for any @ € N, and ¢ € T,,

2
*
[V

*
n

(B.10) d)(a—i—tu:) — ¢ () —(v:,a—a())—t <F,.

sd

(Note that by Assumption 3.5, F, does not depend on « nor ¢.)
For any r € {|r| <2M,,||v}||6,}, we define (£),—; » as

e e A R A D I D O
where a; = (—1)'2. Note that, by Assumption 3.5(i) (the second part), ||u*|~* <
¢72, and thus

*

u

n

*

v

n

ol <c™(|

-1

sd )

Without loss of generality, we can re-normalize M, so that ¢>C < M,, and
C > 1. Hence,

-1
o T |r| x

X [la —agll + 2| F,| x

*
vl’l

-2 -1 -1
1ol < 7 ((Jug]| Nl — aoll + 21F,] x |vg |, +1rl x |vi] )
) -1 -1
= (Jug| x Nl — ol + 21F,| x |Jvi |, + 17l > vzl [usl])
) % || —1 Tt
< 2C(|uy| x Nl — aoll + 21F,| x 03|, + Il > o3| )
<4M?s,,

where the third inequality follows from Assumption 3.5(i) (the second part),
and the last inequality follows from the facts that a € N, ¢ >C2|F,| x
lvillg = o(n™1?) < M2§,, r € {|r| <2M,||v¢||8,}. Thus, f is a valid choice in
the sense that ¢, € 7, for [ =1, 2.
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Thus, this result and equation (B.10) imply

2

*

qﬁ(a-l-tluj;)—qb(ao)S(vfl,a—a())-i-tl + F,
nllsd
= v, sd((u:’a ao) sd)
=r—F,<r
Hence, ¢ (a + fiu’) — ¢ (ag) < r. Similarly,
12
da+nul) — dag) = (v, a —ag)+ 1 —F,

nlisd

= il (7, @ = o) + ]|~ F
=r+F,>r

*

-1
n sd)

and thus ¢ (a + Lu’) — ¢p(ag) > r. Since t — ¢ (a + tu) is continuous, there
exists a t € [, ,] such that ¢ (a + tu’) — ¢(ay) =r. Clearly, t € T,.

The fact that (1) = & + tu} € Ay, for a € N, and ¢ € T, follows from the
fact that the sieve space Ay, is assumed to be convex with non-empty interior.
Part (2) can be proved in the same way as that for Part (1). Q.E.D.

PROOF OF THEOREM 4.3: Result (2) directly follows from Result (1) with
Y =3, and |u}|| = 1. The proof of Result (1) consists of several steps.

STEP 1: For any ¢, € 7, wpal, by Assumption 3.6 and Lemma B.1, we have
(Bll) O'S(Qn(an(_tn)) - Qn(an))

~ta{Zo {4, @ = a0} + S0+ 0r (1))

B,
2 n

where ;! = max{¢?, t,n"* s} and s, = o(n7").
And under the null hypothesis, @X € N,,, N A, wpal,

(B.12)  0.5(0,(a%(t,)) — 0.(@"))

B,
{Z —|—(u* o, —ao)} 71‘,214-01,200( —1)

B,
=t,7, + — 5l 2+ 0p,. (1)),
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where the last line follows from the fact that ¢, (u, @X — ay) = 0p,.. (r;"). To

show this, note that under the null hypothesis, @t € N, N AJ,, wpal. This
and Assumption 3.5(ii) imply that

4(@8) — oo - LG ]| =0r, (1775,
—_— da
=0
Thus
Py (ﬂ dé(a) [@F — ]| < 3) >1-6
v da

eventually. By similar calculations to those in the proof of Theorem 4.1, we
have

P (Vn|(uf, @% — ag)| <8) =16, eventually.

Hence, (1}, af — ay) = 0p,.. (n7'/?), and thus 1, (1}, a¥ — ag) = 0p,. (n7'%t,) =
OPZDO (rlzl)'

STEP 2: We choose f, = —Z,B;'. Note that under Assumption 3.6, ¢, € 7,
wpal. By the definition of @,, we have, under the null hypothesis,

0.5(0.(@") - 0.(@y))
2 0.5(0,(@F) — 0(@5(1))) = 0r,n (n7")
1

= EZﬁBgl — 0p,n (max{B,*Z., —B,'Z,n""?,5,'}) — 0p,.. (n7")
1
= EZiB;I + 0p e (n71),

where the first inequality follows from the fact that, since #, € 7, and @® € N,
wpal, then a®(z,) € Ay, wpal; and the second line follows from equation
(B.12) with t, = —-Z,B;".

STEP 3: We choose ¢ € 7, wpal such that (a) ¢ (a,(t)) = P (ap), @, (L) €
* 1|12
Ak, and (b) 2 =2, 4 0, (n7?) = Op,.. (171/?).

vk )12

Suppose such a ' exists; then [r,(£)]™' = max{(¢})?, t'n" "2, 0(n ")} =
Op,.. (n~"). By the definition of a¥, we have, under the null hypothesis,

<05(0,(@ (1)) ~ Q@) + 0r,0 (")
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= {20+ (15 @0 — o)} + (1) + 0, (n7)
w2

B,, 2
% (= ||U o ”2)> +0r (1)
v

2

1 1
= 2B '+ op,. (n7) = - 22
2 ’ 2 || ||

(n™"),

where the second line follows from Assumption 3.6(i) and the fact that ¢! sat-
isfying (b), [r,(£)]1™' = Op .. (n!); the third line follows from equation (B.11)
and the fact that ¢* satisfying (b); and the last line follows from Assumptions
3.5(1i) and 3.6(ii), |B, — lu;lI*| = 0p,. (1), and u} = v} /[|V} ||sa-

We now show that there is a ¢* € 7, wpal such that (a) and (b) hold.
Denote r = ¢(a,) — ¢d(ay). Since @, € N, wpal and ¢(@,) — ¢ () =
Op,.. (IIV;1I/+/n) (see the proof of Theorem 4.1), we have |r| < 2M,||v}|8,.
Thus, by Lemma B.2, there is a ¢* € 7, wpal such that o, (t*) =, + tu’ € Ay
and ¢ (a, (1)) = ¢ (), so (a) holds. Moreover, by Assumption 3.5(ii), such a
choice of ¢! also satisfies

d¢(010)

[an —ap+ t*u*]

= or,e (I /9.

$(@(5)) — ot -

=0

By Assumption 3.5(1) and the definition of wu} = v!/|[vi|4, we have:
db(ag) [ pny 1 g 0512
= Eltuy] =ty —. Thus

< 6) >1-6

1 vpllsd
pzm< /

eventually. By similar algebra to that in the proof of Theorem 4.1, it follows

that the LHS of the equation above is majorized by

2

*

do(ag)
da

[a, — agl + 2

*
n

"sd

2

ono<£:l (U:,an—ao)'i‘t:; <8)+6
n nllsd
w112
=onc<if— v+ <5>+6
n nilsd
* 1|2
= Py (Jﬁ ”v"*”“‘ L+t | < 5) +39,
[ o1
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where the second line follows from the proof of Lemma B.1. Since % =
const. (by Assumption 3.5(i)), we obtain

v
t:—7, .

v
Since /nZ, = Op,., (1) (Assumption 3.6(ii)), we have t; = Op,., (n~"/*), and in
fact, /nt: = /nZ Ivilg + 0p,.. (1) and hence (b) holds. Q.E.D.

AR

Py (ﬁ

< 8> >1-—46, eventually.

Let AR ={a € A: ¢(a) = ¢y} be the restricted parameter space. Then
ay € AR iff the null hypothesis H, : ¢(ag) = ¢ holds. Also, Af, = {a €
Ak 1 ¢ (@) = ¢y} is a sieve space for A*. Let (@, € Af,} be a sequence such
that [la,, — aolls < infaeAf(”) la —aglly +o(n™").!

ASSUMPTION B.2: (i) |Pen(hy,) — Pen(ho)| = O(1) and Pen(hg) < oo;
(11) Qn(a(),n) = COQ(EO,n) + OPZoo (n_l)-

This assumption on @, € Af, is the same as Assumptions 3.2(ii) and 3.3(i)
imposed on I, € Ay, and can be verified in the same way provided that
o) € AR.

PROPOSITION B.1: Let af € A{, be the restricted PSMD estimator (4.10)
and oy € AR. Let Assumptions 3.1, 3.2(iii), 3.3(ii), B.2, and Q(a,,) + o(n™') =
O\, = o(l) hold. Then:

(D Pen(hf) =0Op,.. (1) and ||af —aglls = 0p, (1).

(2) Further, let Q(ap,) < QUl,a0) and Assumptions 3.2(ii), 3.3(i), and
3.4(1)(ii)(iii) hold. Then: |a® — ay|| = Op,.. (8,) and ||a® — aylls = Op,,.. (lag —
Hna()”S + Tn5n)-

PROOF: The proof is very similar to those for Theorem 3.2 and Remark 4.1
in Chen and Pouzo (2012a) by recognizing that Af , is a sieve for o € A*.

For Result (1), we first want to show that af € Af, N{Pen(h) < M} for some
M > 0 wpal-Pz~. By definitions of @* and @, ,, Assumption B.2(i)(ii) and the
condition that Q(@,,) + o(n™') = O(A,), we have

S = -1
Pen(ﬁf) < Q"(Aao’”) + Pen(hy.,) + 0(: )
< Q(a(),n) + 0(’1_1)

< " + Op,o (1) = Op . (1).

!Sufficient conditions for @, , € .Af(n) to solve inf AR lla — ag ||y under the null include either
(a) Ak is compact (in || - [|;) and ¢ is continuous (in | - |I;), or (b) A is convex and ¢ is linear.
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Therefore, for any € > 0, Pr(Pen(iz\f) > M) < € for some M, eventually.

We now show that Pr(|[a® — ay|l;, > €) = o(1) for any € > 0. Let Af(’ﬁf =
AR,y N {Pen(h) < M} and A®M = AR N {Pen(h) < M}. These sets are com-
pact under || - ||y (by Assumption 3.2(iii) and the || - ||;-continuity of ¢). As-
sumptions 3.1(i)(iv) and B.2(i) imply that ay € A® and @, € Ay, . Under
Assumption 3.1(ii), cl(UJ, Ax) 2 A and thus cl((J, Ap™) 2 A®M. Therefore
ety — aolls = o(1) by the definition of &, , and the fact that Af(’fg is dense in
ARM,

By standard calculations, it follows that, for any € > 0,

Pr([@) -,z )

<pr( inf  {Ou(@ +A,Pen(h)

RM
Ak(n) Nla—eplls=€

< 0,(@y,) + Ay Pen(lo,) + op(n™) ) +0.5e.
Moreover (up to omitted constants)

Pr([@) -,z €)

<pr( inf  {Q(a)+ A, Pen(h)]

RM
Akn) Nla—eplls =€

< Q@) + M Pen(y,) +0p(5,,,) +0r(n”)) +

<P inf  {Q(a)+ A, Pen(h)]

ARM o —ag||s=€

< Q@) + Ay Pen(hy,) + O0p(5,,,) + op(n‘l)) +e

where the first line follows by Assumptions 3.3(ii) and B.2 and the second by
A < ARM Since ARM is compact under || - |l;, & € A®M is unique, and
Q is continuous (Assumption 3.1), then inf x4 oy,2{Q(a) + A, Pen(h)} >

c(e) > 0; however, the term Q(ay,) + A, Pen(ﬁo,,,) + Op(gfn’n) +op(n™") =
op(1) and thus the desired result follows.
For Result (2), we now show that [af — ag| = Op, (K,) Where K =

n

max{8;, &, — aoll*, A,, o(n™")}. Let AF, = {a € A,y & d(@) = ¢(ap)} and

AR ={a e A, : dp(a) = ¢p(ap)}. Result (1) implies that a® € AR wpal. To
show Result (2), we employ analogous arguments to those for Result (1) and



SIEVE WALD AND QLR INFERENCE 17

obtain that, for all large K > 0,
Pr([a% - a| = K,

< Pr( inf O(a) + A, Pen(h)

A8 pilla—agll=K
< Q@) + Ay Pen(h,y) + Op(82) + op(n) ) + €

< Pr( inf  [la—apl?
AR la—agll=Kkn

< const. {|[@, — aoll* + Ay Pen(o,) + Op(87) + 0p(n ™)) +
<Pr(K’k;, < const. [, — aoll> + O(X,) + Op(82) + op(n")) + ¢,

where the first inequality is due to Assumption B.2(ii) and the assumption that
Ou(a) = cO(a) — Op,, (8%) uniformly over A,,; the second inequality is due
to Assumption 3.4. By our choice of «, the first term in the RHS is zero for
large K. So the desired result follows. The fact that «, coincides with §, fol-
lows from the fact that ||a , — aol|* < Q(@p,,) < Q(I1,a,) by assumption in the
proposition.

Finally, the convergence rate under || - ||, is obtained by applying the previous
result and the definition of 7,,. QO.E.D.

PROOF OF THEOREM 4.4: Since sup,,,, Pen(/) < oo, the relevant parame-
ter set is AY = {a € A: Pen(h) < M} with M = sup,,, Pen(h), which is non-
empty and compact (in || - ||;) under Assumptions 3.1(i)(ii) and 3.2(iii). Let
ARM = AM N {a e A: ¢ (a) = ¢y). Since ¢ is continuous in || - ||, A®M is also
compact (in || - ||,). Note that «y € A®M iff the null H; : ¢ («y) = ¢y holds.

If ARM is empty, then there does not exist any a € A such that ¢ (a) = ¢,
and hence it holds trivially that Q/ﬁ(n(d)o) > nC for some C > 0 wpal.

If A®M is non-empty, under Assumption 3.1(iii) we have: min,_ zv Q(a)
is achieved at some point within A% say, @ € A®M. This and Assump-
tion 3.1(i)(iv) imply that Q(@) = min, 4r.v O(a) > 0 = Q(«ap) under the fixed
alternatives H; : ¢ () # ¢y.

By definitions of @, and IT,a, and Assumption 3.3(i), we have

Qn(an) < Qn(Hnao) < C()Q(Hna()) + OPZoo (I’lil).

Since M = sup,_,, Pen(h) < 0o, we also have that @ € A;) < A¥  wpal,
so by Assumption 3.3(ii), we have

0.(@1) = cO(E) ~ Or,.. (5,,) = ¢ x_min 0@) = Op,..(5),):

acARM



18 X. CHEN AND D. POUZO
Thus
0,(@%) — 0.@,)
= c>x min O(a) = QUT,a0) = 0rpn (17') = O, (3,,,)

=cQ(@) + 0p,. (1).
Thus under the fixed alternatives H; : ¢ (ap) # o,

QLR (¢0) _
— >cQ(a) >0 wpal. Q.E.D.

A consistent variance estimator for optimally weighted PSMD estimator. To
stress the fact that we consider the optimally weighted PSMD procedure, we
use v and |[[v! ]|y to denote the corresponding v and ||v*|| computed using the
optimal weighting matrix 3 = 3. That is,

dm(X ' dm(X
ol = ] (5 1t ) s () |

We call the corresponding sieve score, S?, = (“Se20 0]y 3 (X))~ p(Z;, ),
the optimal sieve score. Note that ||v} %, = Var(S} ;) = [|v}|5. By Theorem 4.1,
V2012, = [Iv%]13 is the variance of the optimally weighted PSMD estimator
¢ (a,). We could compute a consistent estimator |@T|ﬁ of the variance V015

by looking at the “slope” of the optimally weighted criterion Q°:

— (QS(’&n) - QS@))*

(B.13)  |vls = .

8’1

where @, is an approximate minimizer of Q°%(a) over {a € Ay :d(a) =

d)(an) - 8,,}.

THEOREM B.2: Let @, be the optimally weighted PSMD estimator (2.2) with
3 = 3, and conditions for Lemma 3.2, Assumptions 3.5 and 3.6 hold with
Iv0llsa = I1V0llo and |B, — 1| = 0p,., (1). Let cn™'* < 22— < C§,, for finite con-

= Qe —
stants ¢, C > 0. Then: &, € N, wpal-P~, and e
Bk
2
lvaly

When a,, is the optimally weighted PSMD estimator of «,, Theorem B.2 sug-

= 1 + OPZoc (1)'

gests |00 |3 defined in (B.13) as an alternative consistent variance estimator for
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¢ (a,). Compared to Theorems 4.2 and B.1, this alternative variance estimator

[v0]|2 allows for a non-smooth residual function p(Z, @) (such as the one in
NPQIV), but is only valid for an optimally weighted PSMD estimator.

PROOF OF THEOREM B.2: Recall that for the optimally weighted criterion
case u: =v)/[1v2|lo, and hence ||u}|| =1, B, = 1+ 0p,.. (1). To simplify notation,
in this proof we use (-, -), | - ||, and Qn(-) for the ones corresponding to the
optimal weighting matrix 3 = 3.

We first show that &, € N, wpal. Recall that &, is defined as an approxi-
mate optimally weighted PSMD estimator constrained to {« € Ay, : ¢ (a) =
¢ (@,) — &,}. In the following, since there is no risk of confusion, we use p in-
stead of p,. .

Let r = ¢p(a,) — ¢ (@) — &,. Since g, < C|[V°[¢8, (by assumption), and
@, € N,g, wpal, ¢(@,) — d(ay) = Op(|[1°]lo/+/) (by Theorem 4.1), we have
Ir| < Cl|v200(8, + n=%) < C|[v°]|¢8, for some C > 0. Also note that |[a, —
ol < C8, wpal. Thus, by Lemma B.2(2), there exists a ! € 7, such that
o(@,(t))=¢(a,) —e, and a, () =a, + t'u: € Ay, and £F = O(8,). Hence-
forth, let @, = @, (). Observe that

”an - aO” =< 6n + t: = O(Bn)y
and

*

u

n

”an_aonsf ”an_aO”s"_t: 5588>n+t:7-”

which is of order §;,. Therefore, @, satifies: (a) @, € N,,, wpal, and ¢* € 7,
with £* = 0(6,); and (b) @, € {a € Ay : P () = ¢ (@,) — &,}.

We now establish the consistency of &, using the properties of @,. We ob-
serve that, for any € > 0,

Pr(||a, — aolls > €)

<Pr(_ inf  0u(@) =0,@)+o(n")+ A, Pen(hy)

Bn:lla—aglls=€

where B, ={a € AkM&) t ¢ (a) = ¢(a,) — &,} and the inequality is valid because
@, € B, by (a) and (b). Under (a) and Lemma 3.2, A, Pen(h,) = Op(N,) =
o(n™h).
By (a), under assumption 3.6(i),
00(@) = 0,(@,) + {2, + (13, @, — o))

+0.5(62) 4+ op(tzn 2 + ()" + o(n7")).
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By Lemma B.1, Z, + (u’, @, — ap) = op(n~/?) and thus, given that ¢* =
0(6,), the previous display implies that

0,(@) < 0,(@,) + 0p(n728,+ 82+ o(n™)) < Op(82).
Therefore,

Pr(”an - aO”s = E)

<Pr(_ inf  Ou(e) = 0u@)+0(M +8)).

Bp:lla—aplls=€

Since 0,(@,) < 0,IT,a0) + O(A,) by definition of @, and from the fact that
B, € Ay, it follows that

Pr(”an - aO”s = E)

<Pr( | inf Q@) =0,y + O\ + ).

Ay Olla—agllsze
The rest of the consistency proof follows from identical steps to the standard

one; see Chen and Pouzo (2009).
In order to show the rate, by similar arguments to the previous ones

0.(@,) < Ou(IT,ap) + O(A, + 82),

under our assumptions 0.(@,) > clld@, — apl?® — Op(8?) and O,(IT,a) <

coQ,ay) + op(n~1), so the desired rate under || - || follows. The rate un-
der || - ||, immediately follows using the definition of sieve measure of local
ill-posedness 7,,. Thus &, € N,,, wpal.

o913

We now show that

i = 1 + 0p,..(1). This part of the proof consists of
several steps that are similar to those in the proof of Theorem 4.3, and
hence we omit some details. We first provide an asymptotic expansion for
n(Q,(a,) — Q.(a,)) using Assumption 3.6(i) (with B, = 1+0p,., (1)), and then
show that this is enough to establish the desired result.

In the following we let ¢, = &,/[v"|l,. By the assumption on &, we have:
cn'? < t, < C$,. Therefore, t, € T,, t, = 0p,.. (1), and opzm(in—l/z) =

OPZoo(l)'

STEP 1: First, we note that @, € N,,, wpal, that —¢, € 7,, and @,(—1,) €
Aimy- So we can apply Assumption 3.6(i) with @ = @, and —t, as the direction,
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and obtain

(B14) (Qn (an(_tn)) - Qn(an)) _ —2

# t,

~12 -1
+0p<max{1, nt ,0(; )})

=1+o0p,.(1),

{Zn + (u:; an - aO)} + 1

where the last equality follows from the fact that (uf, @, — a) + Z, =
0p, (n~'/?) (by Lemma B.1), and that op,., (%rfl/Z) = 0p,~ (1) (by our choice
of t,).

STEP 2: Since @&, € N, wpal, t, € T, and &,(t,) € Ay, we can apply As-
sumption 3.6(i) with « = @&, and ¢, as the direction, and obtain

(B.15) (Q"(a"(t”)t)z_ 0, (@) = %{Z,, + (U, @, — )} + 1

-1/2 -1
+ 0p<max{1, nt , 0(; )}>

=—1+o0p,. (D),

where the last line follows from the definition of the restricted estimator «,,.
This is because ¢ (a,) = ¢ (@,) — &,, by Assumptions 3.5(i)(ii),

do(ap) .~
—&y — da [an - 0[”] == OPZoo (”vg ”O/ﬁ)'
Hence (v}, @, — ag) = (V), @, — ) — &, + 0p,o ([1V)]l0/+/n). This implies that
L + (U, Gy — ) = = 4 0 (W12) = =y + 0p o (n7112).

STEP 3: It is easy to see that, from equation (B.15) and by the definition of

o~
Ay,

(/Q\n(&n) - Qn(an)) (Q\n(an)) - /Q\n(&n([n))

>
7 - £

= 1 + Ol’Zco(l)'

- 0ono(1)

Also, from equation (B.14), Assumption 3.6(i), and by the definition of «,,

(Qn(an) - Qn(an)) (Qn(an(t;)) - Qn(an))

2 = 2
tn Z‘n

+ 0p, (1)
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20 Z + (i, @, — o)} + (t*)2

+ t,20p (max{(z; ) tn ', 0(n™)}) +o0p(1)

-2
= ——{Zn+ (. @ — o)} + 1+ 0, (1)

n

= 1+ OPZoc(l)a

provided that there is a ¢: € 7, such that (3a) ¢ (a,(t})) = ¢(a,) — &, and
(3b) tr/t, = —140p,, (1). In Step 5, we verify that such a £} exists.
By putting these inequalities together, it follows that

|| 0 ||2 Qn(an) Qn(an) (Q\n(&n) - Qn(an))

(B16) tz :1+0P200(1)'
STEP 4: By equation (B.16) we have
0
—”ﬂ“ “ltop (D), with [oF= (Q"(“") - Q"(“")> ,
sl "

which implies that 0.5 < b1 < 1.5 with probability Pz~ approaching 1. By the

”vn”()
continuous mapping theorem, we obtain

Bl
Bk

STEP 5: We now show that there is a ¢* € 7, such that (3a) and (3b)
in Step 3 hold. Denote r = ¢ (@,) — ¢(ay) — &,. Since &, < C||V°]¢5,, and
a, € Ny, wpal, ¢(a,) — ¢(ay) = Op([|0°]lo/+/n) (by Theorem 4.1), we have
Ir] < 1V 0108,(M,, + C) < 2M,|[v°]lo8, (since C < M, eventually). Thus, by
Lemma B.2, there exists a ¢* € 7, such that ¢(a,(t)) = ¢(a,) — &, and
a,(t) = a, + tiu: € Ay, and hence (3a) holds. Moreover, by Assump-
tion 3.5(i)(ii), such a choice of £ also satisfies

d
b(@,(1,)) — d(@,) — d)( 0)[tj;u;] = 0p (|| 2772).-

=—ep

= 1 + OPZoc (1)‘

Since u} = v)/[|v%]|, for optimally weighted criterion case, we have “4% ;] =
[v]lo- Thus

e = 0 llol = ors ([0 ]n™)-
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Since t, = &,/[[v} ||y, we obtain |—t, — ;| = 0p,., (n~"/*), and hence

|(£:/t,) + 1| = 0p,e (177 1,) = 0p (1)

due to the fact that cn~'? < t, < C§,,. Thus (3b) holds. Q.E.D.

B.3. Proofs for Section 5 on Bootstrap Inference

Throughout the appendices, we sometimes use the simplified term “wpal”
in the bootstrap world while its precise meaning is given in Section 5.

Recall that Z¢ = 13 w,8(X;,u)p(Z;, ) with g(X;,u) =
(PG ]y Z(X) 7

LEMMA B.3: Let a@® be the bootstrap PSMD estimator and conditions for
Lemma 3.2 and Lemma A.1 hold. Let Assumption Boot.3(i) hold. Then: (1) for
all 6 > 0, there exists a N (8) such that, for all n > N (8),

PZDC(PVOO|ZOO(\/_|< * AB a0>+Z“’|>8|Z")<5)>1—5
(2) If, in addition, assumptions of Lemma B.1 hold, then
ﬁ(u:,af —b?n) =—/nZ ' + 0P (1) wpal (Pzx).

PROOF: The proof is very similar to that of Lemma B.1, so we only present
the main steps.
For Result (1). Under Assumption Boot.3(i) and using the fact that @ is an

approximate minimizer of Q%(«) + A, Pen(h) on Ay, and @ € N,,, wpal, it
follows (see the proof of Lemma B.1 for details), for sufficiently large n,

ono (PVO°|Z°° (26,,{2: + (u:,&f — ao)} + GiBZ) + En(af, En)
> 62" > 1-8) > 13,

where r, and E, are defined as in the proof of Lemma B.1, and €, = £{s,"/* +
o(n~%)}. Dividing by 2¢, and multiplying by /n, it follows that

P (P (A3 2 VL + 0,82 — o)) = B,127) 2 1-0)
>1-6
eventually, where
AL s =—-0.5ne, By — 6/ne,'r, " +0.58,
B, =—0.5Vne, By — 6y/ne,'r, ' —0.58.
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Since /ne, = o(1) and By = Op,. ,.. (1) wpal (Pz~) and |Vne, 'rt <1, it
follows, for sufficiently large n,
PZOO(P[/OC‘ZOO(Q,SZ\/E{Z:—F( C(B—a())}> 26|Zn)>1—8)
>1-20.

Or equivalently, for sufficiently large #,
PZOO(PVOC‘ZOO(|\/_{Z‘U ( * aB—a0>}’>25|Z”)<5)>1—5
Result (2) directly follows from Result (1) and Lemma B.1. Q.E.D.

PROOF OF THEOREM 5.1: We note that Assumption Boot.4 implies that
|n_1 Z T[vn] MBT[vn] - 0-2”_1 Zz 1 T[Un] M T[vn” - OP[/oo‘Zoo (1), uni-
formly over v, € Vk( »» With M, = M(Z,,@,) and T)[v,] = d’”(X dmXi.an) 19y 1. The rest

of the proof follows directly from that of Theorem 4.2(1) for the sieve variance
defined in (4.7) case. Q.E.D.

PROOF OF THEOREM 5.2: By Lemma B.3 and steps analogous to those used
to show Theorem 4.1, it follows that

*
ooVl

-1

__\/_ —}—Opvx‘zoo(l) Wpal (PZOC).

For Result (1), we note that the result for ﬁ\/fn follows directly from Theo-
rem 5.1 and the proof of the Result (1) for an = JndEn-_s@n

Uw“ﬁ”n,sd ’
In fact, for both j =1, 2, Theorem 4.2(1), equation (B.17), and Theorem 5.1
imply that

w-1

_ Z
(B.18) WP =—/n™"
: -

+ Oppocy e (1) Wpal (Pzx);

equation (B.18) and Assumptions 3.6(ii) and Boot.3(ii) imply that
|Lveeiz(WEIZ") = LOW,)| = 05, (1).
Result (1) now follows from the following two equations:

(B.19)  sup|Pywize (WE < 1] Z") — ©(1)] = 0pync o (1) wpal (Pz),
teR

and

(B20)  sup|Py(W, < 1) — ®(1)| = 05, (1),

teR
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where ®() is the c.d.f. of a standard normal. Equation (B.20) follows directly
from Theorem 4.2(2) and Polya’s theorem (see, e.g., Bickel and Millar (1992)).
Equation (B.19) follows by the same arguments in Lemma 10.11 in Kosorok
(2008) (which are in turn analogous to those used in the proof of Polya’s theo-
rem).

Result (2) follows from equation (B.17) and the fact that ||v}|l — [|[v*]lsa €
(0, 00) for regular functionals. Q.E.D.

PROOF OF THEOREM 5.3: For Result (1), denote

inf  Q%(a) — 0% (@)

F znAk(n)(d»‘n) . (jl—l\Rf(an)
n = o2 - 0_3)
Oy (ay”) - On(@r
2@ -GG L) wpal (P,

(o

w

where Ay, (¢,) = {a € Ay : P (a) = ¢ (a,)}. Since OPyoc 7 (1) Wpal (Pzx)
will not affect the asymptotic results, we omit it from the rest of the proof to
ease the notational burden. We want to show that for all 6 > 0, there exists a
N (6) such that

mel 2
P (pywlzm(‘fn - (ﬁ : )

0'u,| u,

zS‘Z”><8)zl—8

for all n > N(8). We divide the proof in several steps.

STEP 1: By assumption |B® — ||u}|]?| = opyxlzx(l) wpal (Pz) and |u}| €

| lluj;

%'2 — 1= OPyooy 700 (1) wpal (Pz~). Therefore, it suffices to

zB‘Z”)<6)21—8

(c, C), we have:
show that

Zw—l 2
(B.21) PZOO <PVOO|ZOO (‘fn - (\/EWB_Z))

eventually.

STEP 2: By Assumption Boot.3(i), for all § > 0, there is a M > 0 such that
P (P (VA[Z2 /B2 = MIZ7) < 8) 21— 5

eventually. Thus , = —Z¢~'/B* € T, wpal. By the definition of @”, and the
fact that a®® € N, wpal (by Lemma A.1(3)),

B (~R,B B (~R,B
5 _ 5 tn
Fozne @) (3" &) Oy (1) WpaL (Py).

w
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By specializing Assumption Boot.3(i) to « = a®# and ¢, = —Z*~'/B®, it fol-
lows that

(B22) 05 (Qf (a§~3 (—%)) - Qf(af’3)>

e e a (z)
=~ V(@ el + g

+ 0pyoc e (') Wpal (Pz).
By Assumption 3.5(i)(ii), and the fact that @®# € N, wpal,

Jn
PZOO <PVoozoo <7

n

35‘2")«3)31—5

i) ghE g, = (v, @%F —@,). This and As-

‘~R,B dd)(ao) ~R,B _ =
$(@r”) — @) — ——[ar’ -a)]

eventually. Also by definition
sumption 3.5(i) imply that

(B23)  Vn(u;,@" —@,) = 0pyu o (1) Wpal (Pz).

Equation (B.23) and /n(u}, @, — ) = —/nZ, + 0p,. (1) (Lemma B.1) imply
that

Vn(u, AP — ag) = —/nZy + 0p, 1 (1) Wpal (Pz).

Thus we can infer from equation (B.22) that

o efo(e () o)

Zw—l
= —( 2nB“’) + 0ppoe o (1) WpaL (Pz=).

Since nr;' = O(1), multiplying both sides by —2no 2, we obtain

w

w—1

zet N’
fnz(ﬁgw@) — Opyoey (1) Wpal (Pze).

STEP 3: In order to show

w—1

2
(B.25) fn5<ﬁ Zi ) + 0oy (1) Wpal (Pz),

0u\/By
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we can repeat the same calculations as in Step 2, provided there exists a
t* € T, wpal such that (a) ¢(@2(t})) = ¢(a,) with a®(t*) € Ay, and (b)
tn = Z7 P + 0pyu oo (B7?) = Ope o (n7'?) wpal (Pz). This is be-
cause by (a) and the definition of a%-2,

Or(@y”) - 0@
n
0_2

w

B (~B ) — OB (B
ann (a”l( ")0)-2 Qn (an) +0PVoc‘Zoo (1) Wpal (PZDO)'

By specializing Assumption Boot.3(i) to a« = a@® € N,,, wpal (by Lemma
A.1(2)), and ¢! as the direction, it follows that

0.5(0%(a2(r)) — OF(@h))
Bw
=728 + (u, @ — o)} + 7”(1‘,’:)2 + 0oy (7)) WpAL (Pz)
_B/
2

Zm—l 2
( || L:* H2 F 0Py 7 (n‘1/2)> t0py0 700 (r,') wpal (Pz~)

1 Zw—l 2
= —( 2 ) +0PVOO‘ZOO (r;l) Wpal (ono),

2 /B

where the second equality is due to Lemma B.3(1) and (b), the third equality
is due to the assumption |B® — ||u*|*| = OPyoo 20 (1) Wpal (Pzx) and |lu;| €
(¢, C). Thus equation (B.25) holds.

STEP 4: We now show that there exists a #; such that (a) and (b) hold in
Step 3.

Let r = ¢(a,) — ¢(ap). Since @ € N, wpal, and ¢(@,) — ¢(ay) =
Op,.. (IIV:ll/+/n), by Lemma B.2, there is a t: € 7, wpal satisfying (a) with
ab(t)y=al + tu € Ay and ¢ (@l (17)) — ¢ (ay) = r. Moreover, by Assump-
tion 3.5(i)(ii), such a choice of ¢! also satisfies

(@, (1) — @) ~
=0

= OPyoojz00 (” UZ ||/ﬁ) wpal (Pzx).

-~ ko ok
n ap + tnun]

d¢(a0) ~B
da [a B
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Thus, for sufficiently large 7,

n
ono <PV°CZ°C (i

]

w12
n

02

do(ag) g .
To[af_a"]_‘_tn

> 5‘2") < 5)

By Assumption 3.5(i) and Lemma B.3(2), it follows that the LHS of the above
equation is majorized by

>1-24.

)
Pre <pyw (ﬂ @ — el | za\zn) < 5) +s
n nllsd

)
— P (Pymlzw (ﬂ e O z;;v+” > 25‘2") < 5)

v vrll

+o.
Therefore,

et = nZ U]+ 0pye e (1) wpal (Pre).

*
u n

Since /nZe = Op, 0, (1) With probability Pz~ approaching 1 (Assumption
Boot.3(ii)) and [|u;]|> = O(1), we have t; = Op, . (n"/*) with probability P~
approaching 1. Thus (b) holds.

Before we prove Result (2), we wish to establish the following equation
(B.26):

QLR (4,
(B26) EVOO|ZOO (Q4nz«¢))

(0]

zn) — L(QLR,($)Hy)| = 07, (1),

where £((5L\Rn(¢0)|HU) denotes the law of (jL\R,I(zbo) under the null H, :

¢ (a) = ¢, which will be simply denoted as L{QLR,(¢o)) in the rest of the
proof. By Result (1), it suffices to show that for any 6 > 0, there exists a N ()

such that
(2T )] stroma=9

oo

P < sup

feBLy

>1-96
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for all n > N(5). Let Z denote a standard normal random variable (i.e., Z ~
N (0, 1)). If the following equation (B.27) holds, which will be shown at the end
of the proof of equation (B.26):

E[f([wi]z)} - E[f((iin(d)o))]‘ —o(1),

n

(B27) T,= sup

fGBLl

then, it suffices to show that
(D]l ([m])] -

for all n > N(8). Suppose we could show that

(B.28) PZOC < sup

feBLy

>1-—-6

(B.29) sup

fEBLl

i

w

)22~ elr@u] D)~ 0. weat e,

or equivalently,

>1-46, eventually.

wal
£VOC‘ZOQ (\/ﬁni*
g,

WU

2') - ol | <5

Then, by the continuous mapping theorem (see Kosorok (2008), Theorem 10.8
and the discussion in Section 10.1.4), we have
<9)

onc(

>1-46, eventually,

wal

) 7)) )

o, | u;

Ev&zw((\/ﬁ

and hence equation (B.28) follows.

It remains to show equation (B.29). By Assumption Boot.3(ii), and the fact
that if a sequence converges in probability, for all subsequence, there exists
a subsubsequence that converges almost surely, it follows for all subsequence
(ny)«, there exists a subsubsequence (7, ), such that

Za) 1
£Voczoo<,/nk(] sl an(“> E(Z)' —> 0 a.s. ono
Since lluy,, || € (¢, C), then there exists a further subsequence (which we st111

denote as nk(])) such that lim;_, [|u}, || =d € [c, C]. Also, since f

Tk (j)
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a real-valued sequence, by Helly’s theorem, convergence in distribution also
holds for (n;,);. Therefore, by the Slutsky theorem,

w—1

zZe-
Eym|zoo( /nk(j)ﬁ‘znk(j)) — E(Zd;ol) — 0, a.S.'PZOC.

oo

Since lim;_, ||,
readily implies

| =ds € [c,C] and Z is bounded in probability, this

” ‘Z”k(n) —

w—1

(-

Mk (j)

™) =0, as-Ps.

”k(j)

1»(/)
Lyooyz (v ”k(/

"k<j)

Therefore, it follows that

sup
feBL4

I )]
"k(}>

e 0, a.s.'ono.

Since the argument started with an arbitrary subsequence 7y, equation (B.29)
holds.

To conclude the proof of equation (B.26), we now show that equation (B.27)
in fact holds (i.e., T, = o(1)). Again, it suffices to show that for any subse-
quence, there exists a sub-sub-sequence such that 7,,;) = o(1). For any sub-
sequence, since (|lu:]l), is a bounded sequence (under Assumption 3.1(iv)),
there exists a further subsubsequence (which we denote as (n(j));) such that

lim;_, o llu ) Il = d., €[c, C] for finite ¢, C > 0. Observe that
i z 7T z 7
< sl ([ g )] (Z])
sesisl L AL | dw

e (D] ((F) e

+ sup E[f(Q/\Ian(j)(d)O))]

feBLy

—E[f((—’ L;’“” ”) 6LTan<j><¢o>>}‘.

The first term vanishes because Z is bounded in probability and
lim; ., ||u ds > 0; the third term follows by the same reason (by The-

I =
n(j)
orem 4.3 and Assumption 3.6(ii), QLR,,((bO) is bounded in probability).
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Finally, for any f € BL,, let f(d_') = f o d_*(-). Since f o d_? is bounded
and |f od 2(t) — fod 2(s)| <d |t —s| <c?|t —s|,we have {fod ?: [ €
BL;} € BL.-.. Therefore, the second term in the previous display is majorized
by sup,.p; , |ELf([Z1*)] — ELf (llu; ;) II” x QLR,;,(¢0))1l. Hence, to conclude
the proof we need to show that

(B.30) lim sup |E[ (Z)] - E[f(|

/—>oof€B

”Z(j)”z X (ﬁn(h((ﬁo))]\ =0.

Theorem 4.3 (i.e., [luf* x QLR,(¢) = [VAZ,* + 0p(1)) and Assump-
tion 3.6(ii) directly imply that the above equation (B.30) actually holds for the
whole sequence, which readily implies that for any subsequence (n(j));, there
is a subsubsequence (which we still denote as (n(j));) for which the previous
display holds.

Finally for Result (2), we want to show that

QLR (&, —
Sup| Py 7 (% < t(Z") — P (QLR, (o) < t]H,)
teR ®
= OPZoo (1)

Let f;(-) = 1{- < ¢} for ¢t € R. Under this notation, the previous display can
be cast as

A, =sup

teR

= Opzoo(l).

Epn [f (M) \Z] Er,.[f/(OLR, (%))]‘

(o

w

Denote Z* ~ x* and

LR%($,
Ay, =5up|Epym o [ﬂ( | x Q%)’Z} E[f.(2)]],
t'eR )

Ay, =sup|Ep,. [fo(]|u
t'eR

*
n

* x QLR,($))] - E[f+(2?)]|-

Notice that

A, _sup

QLR
Epyocipoe [ftlunu2 (| 07((1))) )Z”:|

= Ep o[ forae ([ I (ﬁn(%))]‘
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QLR n
<sup sup |Ep, [ﬁdz(” “27(‘1)))2;4}
teR defc,C) (J'm
—Epyx [ftdz(| u, ’ ﬁn(¢0))]‘
LR "
< sup EPVoo‘Zoo |:ft,<| uz 2 X Qi) ‘Zn]
t'eR a’w
~ En [l )|
= Al,n + A2,n

where the first line follows from the property that f,(-) = fi,(A x ) forany A €
R, ; the second line follows because by assumption, ||u*||* € [¢*, C*]; the third
line follows simply because {1{- <tA}:teRand A e R,} C {1{- <1t} :t e R}.
Finally, the last line is due to the triangle inequality and the definitions of A, ,
and A2,n-

By Theorem 4.3, under the null, ||u*||* x 6131,,((150) converges weakly to Z* ~
X7, whose distribution is continuous. Therefore, by Polya’s theorem, A4,, =
o(1). Similarly,

/\B o~
QLan(d)n) < ¢ Z,,) _P(Zz < t,)‘
o

Ay, =sup
'eR

Pz (i

= Oonc(l)

w

by equation (B.26) and by the same arguments in Lemma 10.11 in Kosorok
(2008). Q.E.D.

We first recall some notation introduced in the main text. Let 7, = {f €

]R |t| < 4M?5,}. For t, € T,, a(t,) = a + t,u’ where u’ = v:/|v|« and

= (Vy,» v;,,(-))". To simplify presentation, we use r, = r,(f,) = (max{r?,
tn‘l/2 o(n‘l)}) L

PROOF OF LEMMA 5.1: For Result (1), if o =1, then Assumption Boot.3(i)
simplifies to

ono<P[/c>czoc< sup ]l\,,(a([n),a)

(e, tn)€Nosn X Tn

_ tn{Zn +(u:, a— ao)} — %tﬁ

za)z")ga)zl—a;
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iff

Ty /Tn(a(tn)7 a) - tn{Zn + (l/lj;, o — a0>} - _ntn

P 700 < sup

(a,tn)eNosnxTn

Z 1 - 87
where //l\n(a(t,,), o) = O.S(Qn(a(tn)) - Q,,(a)) and B, is a Z" measurable ran-
dom variable with B, = Op,, (1). Therefore, if we could verify Assumption

Boot.3(i) in Result (2), we also verify Assumption 3.6(i).
For Result (2), we divide its proof in several steps.

STEP 1: We first introduce some notation. Let

AB(a(ty), @)

26‘2").

Pn(Z")EPszoo< sup 7,

(a,tn)€Nosn X Tn

A ) B

Recall that £8(x, a) = mi(x, @) + m?(x, ap). Let

LE(a(t,), @) = % > ek (x, () X)) E(X,, ()

i=1
— (X, ) S(X) B (X, @),

We need to show that P« (P,(Z") < §) > 1 — & eventually, which is equiva-
lent to showing that P~ (P,(Z") > &) < 6 eventually. Hence, it suffices to show
that

P ({P(Z") > 8} NS,) + Pz=(SS) <6, eventually,

for some event S, that is measurable with respect to Z”, and some P, (Z") >
P,(Z") a.s.; here S¢ denotes the complement of S,.. In the following, we take

Sn = {Zn :PV°°|Z°°< sup r,,|/Tf(a(t,,), a) —Zf(a(tn), a)|

(a,tn)€Nosn X Tn

> 0.58|Z”) < 0.55},
and

p,;(z")zpmoo< sup  ra| P (a(t), @)

(a,tn)€Nosn X Tn
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025+ (0~ )} — 2| 2 0.5

)

+PV°°|Z°°( sup rn|]1\f(a(tn),a) —zf(a(t,,),a)|

(a,tn)€Nosn X Tn
>0.58|2").
It follows that we “only” need to show that

Pzx(S$) <0.56 and
P~ ({P,(Z") > 8} N S,) <0.58, eventually.

Since P~ (S¢) can be expressed as

ono <PV°C|Z°°< sup r,,|//1\f(a(t,,), CK) — Zf(a(l‘,,), a)| > 0.58|Z")

(@) EN s X T
>0.58),
which, by Lemma A.2(3), is in fact less than 0.5, we only need to verify
P~ ({P,(Z2") > 8} N S,) <0.58, eventually.
It is easy to see that
P ({P(2) > 8] 05.)

Ef(a(tn), a)

Z") > 0.5(3).

Hence, in order to prove the desired result, it suffices to show that

<Py (Pyoo| 700 ( sup T,

(a,tn)€Nosn X Tn

— 0[5+ (o~ e} — 2] 2055

L%(a(t,), a)

Z")>5><8

(B31) Py <PVQOZO@ ( sup r,

(a,tn)€Nosn X Tn

w

A R | I

>0

eventually.
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STEP 2: For any @ € N,, and ¢, € T, a(t,) = a + t,u’, under Assumption
A.7(i), we can apply the mean value theorem (w.r.t. #,) and obtain

Lt ) = (P ] ) S0 ex e

, da
i=1

2 PSS (di(Xa(s) o\
+E 0 21:( da [un])

i=

dm(x, a(s))

X E(X[)il (T[U:]) ds

2 d (X)) . Y
fan | (e )

x S(X)5(Z;, als)) ds
2

= 1,75 (o) + %"{Tznm) +TE (),

where a(s) = a + st,u’ € Ny,

From these calculations and the fact that Ppejz~(a, + b, > d|Z") <
Pyooze(ay, > 0.5d|Z") + Pyoojz00 (b, > 0.5d| Z") a.s. for any two measurable ran-
dom variables a, and b, it follows that

z‘\f(a(tn); a) - tn{Z: =+ <LLZ’ o — 0(0>} _ ﬁl&

Proc) 700 ( sup Tn >

(a,tn)ENosn X Tn

> 0.53‘2”)
SPVOC\ZOO< sup rntniTlli(a)— {Z;’—I—(u:,a—ag”\
(a,tn)E€Nosn X Tn
>0.255|2")
2

t
+PVooZ:>c( sup r"él {Tou(@) + T ()} — BY|

(e, tn)€Nosn X Tn

> 0.253]2").
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Hence, in order to show equation (B.31), it suffices to show that

Pro(Proize( sup  rata|Ti(e) = {25 + (1}, o — o)} | = 8] 27)

(e, tn)ENosn X Tn
>5) <5
and
r,,t,f B ® n
PZoo PVoc‘Zoc sup 3 |{T2n(a)+T3n(a)}_Bn| ZB‘Z
(a,tn)ENosn xTn
> 6) <0
eventually.

Since r,t, < n'/?, by Lemma A.3, the first equation holds. Since r,#> < 1, in
order to verify the second equation it suffices to verify that, for any é > 0,

Pr( sup |Ton(@) — By 28) <8, VnzN(o),

a€Nosn

and

Py (Pyiz( sup |Th(e)| 2 827) 2 8) <8, VnzN(®).

a€Nosn

By Lemmas A.5(1) and A.4, these two equations hold.

By our choice of ¢2() (in particular, the fact that /7 is measurable with re-
spect to Z"), it follows that By, = B, = Op, ., ,.. (1) wpal (Pz~). Thus we veri-
fied Assumption Boot.3(i).

Finally, Lemma A.5(2) implies |B® — ||u} ||| = 0Py (1) Wpal (Pz) and
1B, — [t} 1’| = 0p0c (1). Q.E.D.

The following lemma is a LLN for triangular arrays.

LEMMA B.4: Let (X)), be a triangular array of real-valued random
variables such that (a) X, ..., X,., are independent and X;, ~ P,,, for all n,
(b) E[X;,]1 =0 for all i and n, and (c) there is a sequence of nonnegative real
numbers (b,), such that b, = o(y/n) and

limsupn~" Y " E[|X;,[1{|X;.| = b,}] =0.

n—0oo .
i=1
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Then: for all € > 0, there is a N (€) such that

Pr( nt Zn: Xin

i=1
PROOF: We obtain the result by modifying the proofs of Billingsley (1995,
Theorem 22.1) and of Feller (1970, p. 248). For any € > 0, let

26) <€ foralln> N(e).

Xi,n :Xi,n1{|Xi,n| S bn} +Xi,n1{|Xi,n| > bn} Ean +X£Jn

Pr( ZG)
< Pr( n > XP,

i=1
= Tl,e + T2,E.

Thus,

n

n! ZXW

i=1

n

-1 U
n E Xm

i=1

> O.Se) + Pr( > 0.56)

By conditions (b) and (c), it is easy to see that, for large enough n,

> 0.256)

+ 1{n1 Y E[X]]= 0.256}
i=1

2
= Pr( > 0.256) < 26xp<—const.ﬂ),

b2
for some finite constant const. > 0, where the last inequality is due to Hoeffd-
ing inequality (cf. Van der Vaart and Wellner (1996, Appendix A.6)). Thus,
there is a N (€) such that, for all n > N (e), T}, < 0.5¢.
For T, ., by Markov inequality and then by condition (c), we have

n

'y XE - B[]

i=1

Tl,e < Pr(

n

'y X5 - B[]

i=1

n

T2 'n' Y [ P

i=1 ¢ {xI=bn}
=(e/2)'n! Z/ |x11{|x| = b,} P;,(dx) < 0.5€
i=1

eventually. Q.E.D.
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PROOF OF LEMMA 5.2: We divide the proof into several steps.

STEP 1: We first show that the event

S, = {Z”:

—E[g(X, u})30(X)g(X, u:) ]

n

n! Z(g(Xi: uy)p(Z;, ao))2

i=1
o)

occurs wpal (Pz~). For this, we apply Lemma B.4. Using the notation in
the lemma, we let X, , = (§(X;, u?)p(Z;, a))* — E[g(X, u?)3o(X)g(X, u:)1,
and thus conditions (a) and (b) of Lemma B.4 immediately follow (note that
Elg(X,u:)3y(X)g(X,u:)]=1). In order to check condition (c), note first
that for any generic random variable X with mean u < oo, it follows that

E[1X — p|1{|X — u| = b, }]
< E[IX11{1X| > b, — |ul}] + [l Pr{|X| > b, — ]}
Since b, is taken to diverge, we can “redefine” b, as b, — |i|. Moreover,
Pr{|X| > b, — |u|} < E[max{|X|, 1}1{| X| = b, — |ul}].

Again, since b, is taken to diverge, the only relevant case is | X| > 1. Therefore,
it suffices to study E[|X|1{|X| = b,}] in order to bound E[| X — u|1{|X — u| >
b,}]. Thus, applied to our case, it is sufficient to verify that

limsupn™! ZE[(g(Xi, us)p(Zi, 010))2

n— 00 -
i=1

x 1{(s(X:, u;)p(Zi, ao))2 >b,}]=0,

which holds under our assumption equation (5.1).

STEP 2: Let ﬁziwl = = 2y {iSin, Where s, = g(Xi, u;)p(Zi, a), and
either{{;}?, is i.i.d. with {; = (w; — 1)o7, ! (under Assumption Boot.1) or{{;},
is multinomial with {; = (w;, — 1) (under Assumption Boot.2). In the follow-
ing, we let Py, denote the conditional distribution of {{;}_, given the data Z”,
which is also the unconditional distribution of {{;}7_, since {{;}_, is indepen-

dent of Z". We want to establish that

[ (va

sup
feBLy

w—1
ZZn
[2)

(o

)‘Z] - E[f(Z)]‘ =0p,. (1),
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where Z ~ N (0, 1). Which is equivalent to showing that
! 2": {iSi, =7, wpal (Pzx)
ﬁ — iNi,n ) p VA

Which, by Billingsley (1995, Theorem 20.5, p. 268), in turn suffices to show that
any subsequence contains a further subsequence, (7;)y, such that

1<
(B32) ﬁ ; {isi,,,k = Z, a.S.-(onc).

Step 3 below establishes (B.32) under Assumption Boot.1, while Step 4 below
establishes (B.32) under Assumption Boot.2.

STEP 3—Under Assumption Boot.1: Since the event S, occurs wpal (Pz«)
(Step 1), it follows that any subsequence contains a further subsequence such
that n;' > 7% (si,,)° = 1, a.s.-(Pzx). Moreover, max;.,, |s;,,|/«/Mx = o(1),
a.s.-(Pz). This follows since, for any € > 0,

PZOC (maXlS,')n| > 6\/5) < Z/ Pi,n(ds)
i=n i=1 Is|=ey/n

n

<eint Z / szPi,n(ds)
Is|>ey/n

i=1
— 2 Y B[ 1{Isial = ev/n)].
i=1

We note that 1{s, ,| > es/n} < 1{|s;,|* > b,} (provided that |s;,| > 1, but if it is
not, then the proof is trivial). Hence by equation (5.1) and the fact that s; , are
row-wise i.i.d., the RHS is of order o(1). Going to a subsequence establishes
the result.

Under Assumption Boot.1, {; = (w; — 1)o7, " is i.i.d. with mean zero, variance
1, hence conditional on the event S,, for any € > 0,

g
n;] ZEPQ [(gisi,nk)21{|gisi,nk| > eA/nk}]
i=1
1y
< (n,jlz |Si,nk|2> X Epn[ﬁ X 1{|§1| X F}§§|Si,nk| > e,/nk'}]
i=1 <i<

1
< (nkl Z|si,nk|2> x Ep, [ x {1 > €/€}] > 0, as-(P),
i=1
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where the second inequality follows from the fact that max,_,, [s;,, |/+/7k < €,
a.s.-(Pz=) eventually. Since ¢; are i.i.d., by choosing the € (small relative
to €), one can make the term Ep,[{ *1{|¢1| > €/€'}] arbitrarily small. The
Lindeberg-Feller CLT then implies that \/Ln_k Yok LiSin, = Z, a.s.-(Pz) where
Z~N(0,1).

We have thus showed that any subsequence contains a further subsequence
such that the above equation holds; therefore,

EH% > g,-si,,,) \Z} ~ E[f(D)]

STEP 4—Under Assumption Boot.2: We proceed as in Step 3 to establish
equation (B.32). The difference is that now {{;}/, is not i.i.d., but exchange-
able with {; = {;, = (w;, — 1). To overcome this, we follow Lemma 3.6.15 (or
really Proposition A.5.3) in VdV-W for a given subsequence (7). To simplify
notation, we let n =n, and s;,, =, , .

Under Assumption Boot.2 we have: n' "', £, =0, n' Y, 7, — 1,
n-'max;., {7, = op,(1), and max, ., E[{},] < ¢ < oo. Conditional on
the event S,, we also have n'Y "7 s;, = 0, n' Y7 s;, — 1, and n™' x
max, -, s;, = o(1) (this has already been established in Step 3), and finally
we need:

sup
fEBLl

= OPZoo(l)'

(B.33) 1imsupn72 Z Z(si,ngj,n)21{|si,n§j,n| > 6\/5} = O, a.S.-ono.

=00 i=1 j=1

To show equation (B.33), we note that

limsupn— Z Z(si,néj,n)zl{lsi,ngj,n| > e/n}

n—00 =1 j=1

S D5 x I8yl x mas izl > eva)
j=1 T

. i=1 j
<limsup| - X .
n—oo n n

Under Assumption Boot.2, conditional on the event S, we have, for any € > 0,

D (i) % 1{Is,-,n| x max || > e«/ﬁ}
limsup Ep, ( =

n

n—>0oo

=0, byequation (5.1).
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Hence (with possibly going to a subsequence) we establish equation (B.33). So,
by Lemma 3.6.15 (or Proposition A.5.3) in Van der Vaart and Wellner (1996),

1 &
m Z gisi,nk = Z, a-s.'(PZoc),
i=1

The rest of the steps are analogous to those in Step 3 and will not be repeated
here. Q.E.D.

B.3.1. Alternative Bootstrap Sieve t Statistics

In this subsection, we present additional bootstrap sieve t statistics. Recall
that W, = /n2@n—¢0) ¢(“") is the original-sample sieve t statistic. The first one is

19311

WB = /@@ @) In the definition of WB one could also define [T} |13 ; us-

U'w””n”n sd

ing 2 E loV,a)o(V,a,) |X X;] instead of o(V;, @,)o(V;, @,)’, which
will be a bootstrap analog to [|[U% |2 ., defined in equation (B.5).

n,sd
Let st’n = %, where [[0% ], is a bootstrap sieve variance estima-

tor that is constructed as follows. First, we define

dm® X,,AB ! dm?® Xi,Af
||BM—HIZ( ~ ‘ )[]) Mn,i(%['])y

where M,,; is some (almost surely) positive definite weighting matrix. Let v%

iy . . . a8
be a bootstrapped empirical Riesz representer of the linear functional %[-]
under | - ||z 5-1. We compute a bootstrap sieve variance estimator as

d XiaAB '~ IS
B3 1= (e @) S ool S
i=1

" <dﬁ13(Xi,af) [33])

da "

with o(V}, @) = (w;, — Dp(Z;, @) = p?(Vi,a) — p(Z;, a) for any a. That
is, |[v® ||Bbd is a bootstrap analog to |[v* ||Mcl defined in equation (4.7). One
could also define |[v7|3,, using E, [o(V,a®)o(V,a?)|X = X,] instead of
oV, a®yo(V,a®y, Wthh will be a bootstrap analog to ||7; |7 st defined in
equation (B.5). In addition, one could also define |[0%]|; ., using @, instead of
@8 In terms of the first order asymptotic approximation, this alternative defi-
nition yields the same asymptotic results. Due to space considerations, we omit
these alternative bootstrap sieve variance estimators.
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The bootstrap sieve variance estimator [[v%]% , also has a closed form ex-
pression: [[V5(|3 , = (F 2)(D2)~'G% (DE)~'F? with

. do(al) —
Ff=%[w OFt

dm® Xl, —kn '~ (dm® (X, Q%)
__Z< m a)[l!fk()(')’])2?(%[1!/{()('),])’

1S dRB (X, @) i 2\ =
B8, = - Z(%[‘/’k( 'O ]) SN wi,—1)°

i=1

k(n)

IS ‘14/\3 ;XZG /\f? —k(n
<ol at)olz @) 5 (B ),

This expressmn is computed in the same way as |[v* ||n w=r D 1B, D '
given in (4.9) but using bootstrap analogs. Note that this bootstrap sieve vari-
ance only uses a”, and is easy to compute.

When spemahzed to the NPIV model (2 18) in Section 2.2.1, the expressmn

0213 o simplifies further, with Fe= d‘/’(h )[q"(”)( Y1, DB 1CB(P P)- (CB) ,
Cl=3" ;g (Yo p' (X)),

0}, = —CB P'P) <Zp’"(X)[(wm—1)UB] pf"(X))

i=1
x (P'P) (C?), with TP =Yy —hP(Ya).

This expression is analogous to that for a 2SLS t-bootstrap test; see Davidson
and MacKinnon (2010). We leave it to further work to study whether this boot-
strap sieve t statistic might have second order refinement by choice of some
i.i.d. bootstrap weights.

Recall that ]VIf =(@ip— 1)2M, and M, = g:lp(zi;an)p(zi,an)/g;l'

ASSUMPTION B.3: (i) sup
wpal (Pz«);

(i) sup,yt 1V, V)p s — 05V, V) i| = Oy o (1) Wpal (Pz);

(ifl) sup,q1 7 Y0 (@i — D PSR [w]|2 = Op, o (1) wpal (Pye).

1,026V V1, V2)gyt = (V1 Va)u x| = OPyoo|z00 (D

Assumption B.3(i)(ii) is analogous to Assumption 4.1(ii)(v). Assumption
B.3(iii) is a mild one; for example, it is implied by assumptions for Lemma
A.1 and uniformly bounded bootstrap weights (i.e., |w;,| < C < oo for all §).

The following result is a bootstrap version of Theorem 4.2.



SIEVE WALD AND QLR INFERENCE 43

THEOREM B.3: Let conditions for Theorem 4.2(1) and Lemma A.1, Assump-
tion B.3 hold. Then:

(1)

27115,

*
nlilsd

— 1‘ = OPVoc‘Zoc(l) Wpal (PZOC).

(2) If, further, conditions for Theorem 5.2(1) hold, then:

mel
717 B _ n
I/V3,n - _\/ﬁ o

(0]

+ Opyoc e (1) Wpal (Pze),

|Lyeiz (W1 2") = LOW,) | = 0p, (1), and
Sup|P[/oc‘Zoo(I/’I731?n < t|Zn) —PZOO(IZ/\” < t)i = OPVoo‘Zoo(l) Wpal (ono).

teR

PROOF: For Result (1), the proof is analogous to the one for Theorem 4.2(1).
As in the proof of Theorem 4.2(1), it suffices to show that

||AB *

(B.35) v"” |r =0 (1) wpal (Ps),

and

19711500 = 197 s

k
n

(B.36)

=0PV°°\Z°°(1) Wpal (Pzao).

Following the same derivations as in the proof of Theorem 4.2(1) Step 1, for
equation (B.35), it suffices to show

|<wB m) 51 (m’B m’)BE*1| =0Pym|zoo(1) and
KWB w)BZ 1 (wB w)z 1 ‘ = OPVOO\ZOO(l)
wpal (Pz~), uniformly over w € V,lc(m, where @8 = ”A,,” The first term follows

by Assumptions 4.1(iii) and 3.1(iv) and the fact that (@, @) y-1 = Op s, (1)
wpal (Pz~) (by Assumptions B.3(i) and 4.1(ii)). The second term follows di-
rectly from these two assumptions.

Regarding equation (B.36), following the same derivations as in the proof of
Theorem 4.2 Step 2, it suffices to show that [[| @71} 4 — 1T5 13| = 0pye o (1)
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wpal (Pz~). By the triangle inequality,

2
sup (v, V) ps — 02 (v, V), 5| < sup |(v, v)ppe — (v, V)5 5]
veV,]((,,) UEVl]c(n)

+ sup |(v, v)g 5 — 02(V, V), 1

vl
ver(,,)
— AB B
= Aln + A2n’

with W2 = 37 o(Vi, @) o(Vi, @83, = (@i, — 1237 p(Zi, @8 p(Zi, @Y 3}

and M? = (w0, — 1)*M; and M; = 5" p(Z,, @) p(Zi, @)'S;
It is easy to see that 4% is bounded above by

sup | 371 () {p(2, @) p(z, @) — p(z, @p(z, @) } 37 ()],
x 17 (0, — DX TP 1)
i=1

<2sup sup |37 (x){p(z, 0)p(z, @) — p(z, a)p(z, @) |37 (0),

x  a€Nosn

T’[v]

X n71 Z(wi,n - 1)2‘

i=1

2
e’

where T:B [v] = W[v]. The second line follows because @® € N, wpal.
The first term in the RHS is of order op,., (1) by Assumption 4.1(iv). The sec-
ond term is Op,, . (1) by Assumption B.3(iii).

A8 is of order OPysoizo (1) Wpal (Pze) by Assumption B.3(ii).

Result (1) now follows from the same derivations as in the proof of Theo-
rem 4.2(1) Step 2a.

Given Result (1), Result (2) follows from exactly the same proof as that of
Theorem 5.2(1), and is omitted. Q.E.D.

B.4. Proofs for Section 6 on Examples

PROOF OF PROPOSITION 6.1: By our assumption over clsp{p;:j=1,...,J},
e yx) e clsp{p;: j=1,...,J,} provided k(n) < J,, and thus Assumption
A.6(i) trivially holds. Since ¥ = 1, Assumption A.6(ii) is the same as Assump-
tion A.6(i).
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We now show that Assumption A.6(iii)(iv) holds under Condition 6.1. First,
Condition 6.1(i) implies that {(E[h(Y,) — ho(Y>)|-])?: h € H} is a P-Donsker
class and, moreover,

E[(E[A(Y>) = ho(Y2)|X])"] < 2¢ x lh — hll — 0

as ||h — hyl| 12y, = 0. So by Lemma 1 in Chen, Linton, and van Keilegom
(2003), Assumption A.6(iii) holds. Regarding Assumption A.6(iv), by Theo-
rem 2.14.2 in VAV-W, (up to omitted constants)

E[
|Fn||L2(/ )
5/ X \/1+10gNu(u ]:m || ”Lz(fx))
0

where F, = {f : f = g(-, u})(m(-, &) — m(-, ), some a € N,,} and

sup n’l/ZZ{f(Xi) —E[f(Xi)]}H

feFn i=1

F,(x) —sup|f(x)| = sup |g(x, u){m(x, ) — m(x, a)}|.

aeNosn

We claim that, under our assumptions,
N[J(u7 frn ” : ||L2(fX)) < N[](u’ AZ(X)7 ” ° ||L°°)'

To show this claim, it suffices to show that, given a radius 6 > 0, if we take
{lZ;, u;]}}Y to be brackets of AY(X) under || - [|.~, then we can construct

{1 un,j]}jz(l) such that: they are valid brackets of F,, under || - ||,2,,. To

show this, observe that, for any f, € F,, there exists an a € N,,,, such that
fn=8C, u){m(-, «) —m(-, )}, and under Condition 6.1, it follows that there
existsa j € {1,..., N(8)} such that

(B37) L =m(,a)—m(,a) <u,
hence, there exists a [/, ;, u, ;] such that, for all x,

L) = (U (e, 15) > 01,06) + 1{g(x. 1) < 0} () (. ).
and

(6) = (18 (e, 1) > 0}, () + 1. ) < O}, (0)g v, u5).

such that /, ; < f, <u,, ;. Also, observe that

My =t iz = VE[(8(X, ) (1,(X) — 1,(X))’]

< luj =1Ll <6
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because E[(g(X, u?))*] = |lu;||* =1and |u; — [;|| .~ < & by construction.
Therefore,

|

1l 2
< [ i o Ny (e A 1)
0

sup l’l_l/zz{f(Xi) - E[f(Xi)]}H

feFn i=1

Since by assumption, y > 0.5, it is well known that (1 + log Ny(u, AY(X),
Il - Il ))"/* is integrable, so in order to show that E[|sup, - n™"/* 3" {f(X,) —
E[f(X)]}1] = o(1), it suffices to show that ||F,|;2,, = o(1). In order to show
this,

||Fn||L2(fX)

- ; 5
< |E|(g(X, uz)) (sup|m(X, a) —m(X, a0)|> ]

- Nosn

/Exg(X, ) (sup|E[n(vs) — v 1)) |

- Nosn

L Nosn

z\/E (g(x, u:‘,))zsup/(h(yz) — ho(Yz))sz2|x(Y2,X)dY2:|

~(E| c0r. )y

2 frox (32, X)

12
A Al d
Fram fr () 202 y])

X i}lpf(h(YZ) - ho()’z))

frox (2, X) 2
< AL Lt h—h E|(g(X, u;
- quyIzD fr,(32) fx(x) igg : OHLZ(sz) [(g( ! )) ]

<const. x M,8,, — 0,

where the last expression follows from the fact that E[(g(X, u}))*] = |u:||* =1
and Condition 6.1(ii), that states that

, X
sup Jrox (92, X) < const. < 0.

o fr,(0) fx(x) —

Hence, E[|sup;_, n 23 Af (X)) — E[f(X)1}] = o(1), which implies As-
sumption A.6(iv). Finally, Assumption A.7 is automatically satisfied with the
NPIV model. O.E.D.
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PROOF OF PROPOSITION 6.2: Assumptions A.6(i) and (ii) hold by the same
calculations as those in the proof of Proposition 6.1 (for the NPIV model).
Also, under Condition 6.2(i), {E[Fy,v,x (h(Y2), Y2, )|-1: h € H} € A (X) with
v > 0.5, Assumptions A.6(iii) and (iv) hold by similar calculations to those in
the proof of Proposition 6.1.

Assumption A.7(i) is standard in the literature. Regarding Assumption
A.7(ii), observe that for any & € N,

dm(x’ h) * dm(x7 h()) *
)= G )
= |E[{fY1|Y2X(h(Y2)7 YZ; x)
— frimx (ho(Y2), Yz, ) Jus (Y2)| X = x]|

_ ‘/{/1 dfy,v,x (ho(£) (1), y2, X)
0

dy,

x (h(y2) — ho(y2))us(y2) dt}fyzx()’z, x)dy,

_ ‘/(/1 dfyl\yzx(ho(t)(YZ), Y2, x) dt)
0 dy

i Jrox (32, X)
x (h(y) — ho(}’z))%(k)fn(b)(m) dy,

= Vﬂ(yz,x)l}(yz,x)(h(yz) — ho(y)) s (y2) fr, () dy,

< [BEOBED] < = Rl [u4;] 2y, 0

where ho(t) = hy + t{h — ho} and Ii(y,, x) = (f(; de1|Y2x(h;y<1,)(yz),yz,x) dr) and

fryx(2,%) |

For D> the last line follows from the Cauchy—Schwarz inequal-

(2, x) =
ity.
Under Condition 6.2(ii), it follows that

dfmyzx()’l > Y2, X)

<C<o
dy a

sup
Y1,Y2,X

and, under Condition 6.1(ii), it follows that

szX(y% X)
sz () fx(x)

<C <oo.

sup
X,¥2
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Then it is easy to see that | I5(-, x)||Lo<>(fY2) < C < oo for both j =1, 2. Thus

dm(x, h) _dm(x, hy)

U B 1| Y R P 7

and thus, Assumption A.7(ii) is satisfied provided that n x M8} sup,_,. [lh—
h0||2Lz(fY2)||u;||iz(fY2) =o0(1). Since Iy lli2sy,) < c;u,j(ln), it suffices to show that

_ 2 _
M8, (Lo — holli s, + Rty 8a) Bigey = 0(1).

By assumption, |11,k — h0||L2(fy2) < const. x ,u,:(ln)én = O(5,,) and & =<
const. k(n)/n , then it suffices to show that

nM?*8* =o(1),

n-s,n

which holds by Condition 6.3.
Regarding Assumption A.7(iii), observe that for any & € N,

d’*m(x, h) . .
T[u”’ ”n]

/ de1|Y2X(h(y2), Y25 x)
dy

(u:(yZ))sz2\X(y27 x) dyz.

Again by Conditions 6.2(ii) and 6.1(ii), it follows that |m[u,’;, ut]l < C* x

dh?
l|ue ||i2 (Fry)" Since ||u |2 fy,) < const. x ,u,,:(ln), Assumption A.7(iii) holds because

B X (M,8,)* =0(1), or M;8, =o(1).

n-s,n

Finally, we verify Assumption A.7(iv). By our previous calculations,

d ,h d ,h

‘%mz — gt = T g, g
B 'f(/ dfy,iv,x (ho(y2) + t[ R (32) — Bo(2) ], y2, X) dt)
= D,

x (hi(y2) = ho(32)) (h2(32) — ho(¥2)) frax (32, X) Ay

<C*x /|(h1(Y2) — ho(y2)) (h2(32) — ho (1)) | fr, () dy»

<C*x ||\h — h0||L2(fy2)”h2 - h0||L2(fy2),
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where the first inequality follows from Conditions 6.2(ii) and 6.1(ii), and the
last one from the Cauchy-Schwarz inequality. This result and the Cauchy-
Schwarz inequality together imply that

dm(X, h dm(X, h
'E[g(X, UZ)(%[}ZZ — hol — %[hz— ho]):H

< CYH/E[(g(X, u,’;))z] 171 = holl2cry,) ha = holl 2y,

< const. x [|h; — h0||L2(fY2)”h2 - ho||L2(fy2),

where the last line follows from E[(g(X, u?))*] = ||u*|* < 1. Thus, Assumption
A.7(iv) follows if

85 = (Lo = hollapy,) + il 8,)’ = o(n1?)

which holds by Condition 6.3. Q.E.D.

APPENDIX C: PROOFS OF THE RESULTS IN APPENDIX A

In Appendix C, we provide the proofs of all the lemmas, theorems, and
propositions stated in Appendix A.

C.1. Proofs for Section A.2 on Convergence Rates of Bootstrap
PSMD Estimators

PROOF OF LEMMA A.1: For Result (1), we prove this result in two steps.
First, we show that @ € .AkM(‘;) wpal-Pye z~ for any Z* in a set that occurs

with Pz~ probability approaching 1, where ,424(0”) is defined in the text. Second,

we establish consistency, using the fact that we are in the .AkM(‘,;) set.

STEP 1: We show that for any 6 > 0, there exists a N(8) such that
Py (Pyiz= (@ ¢ A0 Z") < 8) = 1—8, Vn=N(d).

To show this, note that, by definition of @?,

~ —~ ~ 1
M Pen(h))) < QF(@,) + A, Pen(hy,) + 0pe 1o (Z)’ wpal (Pz~).
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By Assumption A.1(i) and the definition of @, € A,

A, Pen (ﬁf )

= o~ _— 1
< ¢5(Qu(@,) + Ay Pen(hy)) + 0py e o (;) wpal (Pz~)

~ 1
< (D (M) + Ay Pen(I, ) + o, .« (5) wpal (Pye).

By Assumptions 3.2(i)(ii) and 3.3(i),

AnPen(Rf) < cieoQUIT ) + A, Pen(hy)
1
+0Pyoo‘zoc ()\n+0<;))7 Wpal (PZOO).

By the fact that Q(I1,a0) + 0(%) = O(A\,), the desired result follows.

STEP 2: We want to show that for any 6 > 0, there exists a N(8) such that
Proc(Pyoize (@) — |, > 812") < 8) =1—8, Vn=N(5),

which is equivalent to showing that Pz (Pye z=([[a® — aylls > 8|1Z") > 8) < 8
eventually. Note that

P (P (|2 = a2 5127) = )
< PP (3 - ol = 0] 0 a2 € AL ]127) = 0.55)
+ ono (PVOC\Zm (&\f ¢ AZ[;,)|ZH) > 0.58).

By Step 1, the second summand in the RHS is negligible. Thus, it suffices to
show that

Po (P @ € Al 1 [ — ], = 8127) < 9)
>1-06, Vn>N(d)

(henceforth, we omit a” € AZ‘;)). Note that, conditioning on Z", by As-
sumption A.1(i)(ii), the definition of @, € AkM(‘}l), Assumption 3.2(i)(ii), and
max{A,, 0(3)} = O(A,), we have

P ([ — au, = 512

SPVOOIZ”( . inf {OF(a) + A, Pen(h))

ALy la=aglls=8)
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AB (-~ m 1 n
=< Qn (an) + )\n Pen(hn) + ol — ‘Z
n

<Pyuze( , inf  {Qu(@) + A, Pen(h)]

(A8, s lla—aglls=8)
<& [0.(@y) + M Pen(B,)] + O\, + Sf,in|zn)

SH/M\ZO@( inf {C*Qn(a)}

(A5, s lla—aglls=8)

= ;[ 0. (UT,a0) + A, Pen(IT,h)] + O\ +5,,,|2").
Thus, wpal (Pzx),
Prizs ([ — o = 8127)

SPVOC\ZOQ< inf C*Qn(a)

[y oyt la—aglls=3)

=< cg@n(ﬂnaﬂ) + M(/\n + S*mz,n)

Z”),

which can be bounded above by

Pym|zao( inf ccQ(a)

(Ao ¢ la—aglls=5)
< GGaQUTa0) + MMy + (Bn +3,,,))|2")

t P sup Oule) — Q@) < ~M3,,,[2")

LA la—aplls =)
~ 1
+ PV°°\Z°O (Qn(nnaﬂ) - cQUI,ap) > _O(Z> ‘Zn)

Therefore, for sufficiently large n,
onc (PVOO|Z:>C(||/OZ\5 — a()“s > 5|Z”) < 6)

50.255+sz< inf ¢ cO(@)

M
(Ag oy la—aglls=8)

< ¢ QUT,a0) + M(Ay + (s +5,,,)))

51
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+PZOO< sup Qn(a) - CQ(O[) < _Mgi,n>

(Al - la—aglls=3)
0O 1
+ Pz (Qn(nna()) —cQUI,a) > —0<;>),

By Assumption 3.3, the third and fourth terms in the RHS are less than 0.56.
The second term in the RHS is not random. By Assumptions 3.1(ii) and 3.2(iii),
ALl is compact, and so is AM = {a = (¢, h) € A: A, Pen(h) < A, My}. This
fact and Assumption 3.1(iii) imply that inf{ A0 gl O(a) > Q(a(d)) for

some a(8) € AM N {|la — ay|l; > 8}. By Assumption 3.1(i), Q(«(d)) > 0, so
eventually, since ¢;;coQ(I1,a0) + M (A, + (Sm,,, + E*m,n)z) =o(1),

ono< inf c*cO(a)

M,
(Al < la—aplls=3)

< c;eoQULa) + M(Ay+ (8,0 + 5;,,1)2)) —0.

For Result (2), we want to show that for any 6 > 0, there exists a M () such
that

Poo(Pyeiz0(8,'||@2 — ao| = M'|1Z") <8) =1—8, VM’ > M(5)

eventually. By Assumptions 3.4(iii) and A.1(iii), following the similar algebra
as before, we have: for M’ large enough,

Py (8,1 |32 = ] = M12)

SPVOO|Z°°< inf C*CQ(C() fM(/\n+6i)|Zn) + 6.

{Aosn:8  a—apl=M")

By Assumption 3.4(i)(ii) and 8, = \/max{A,, 62}, we have
Py inf  "eQ(a) = M(A,+82)[ 27)
{Aosnidy ! lla—aglzM'}
<1{c'ce;(M'8,)" < M(A, + 82)},
which is eventually naught, because M’ can be chosen to be large. The rate

under || - ||; immediately follows from this result and the definition of the sieve
measure of local ill-posedness 7,.
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For Result (3), we note that both a@®, @, € {a € Ay, : p(a) = ¢ (@,)}, and
hence all the above proofs go through with @®-# replacing @®. In particular, let
Al ($) = {a e 440 b (@) = $(@,)} € AL, Then: for any 8 > 0,

Pyeciz=(@% € A3, (d) : |[@P — ag |, > 812"

< PV°CZ°°< inf {Qf(a) + A, Pen(h)}

A (@)1 la—aglls=8)
< 0%(@,) + A, Pen(h, )+0< )‘Z)

<Ppuze( , inf  {COu(@+APen()} = 4,]2")

My ~
(AL 0y (@) la—aglls=8)

SR/OC\ZOO( inf {C*Qn(a)}

140 s la—alls=3)

< [0, ULa0) + A, Pen(L, h)] + O\, +3,,|2"),

where A4, = c{;[@n (a,) + A, Pen(iz\n)] +O0(A,) + Ezn. The rest follows from the
proof of Results (1) and (2). Q.E.D.

C.2. Proofs for Section A.3 on Behaviors Under Local Alternatives

PROOF OF THEOREM A.1: The proof is analogous to that of Theorem 4.3,
hence we only present the main steps. Let a, = oy + d, 4, with %[A,,] =
(v, A,) =k, =k x (1+0(1)) #0.

STEP 1: By Assumption 3.6(i) under the local alternatives, for any ¢, € 7T,

= )+ (1 @ — e} + 2282+ 0 (a0,
where [r,(t,)]™" = max({¢?, t,n"/?,s,'} and s,' = o(n~'). The LHS is always
positive (up to possibly a negligible term given by the penalty function; see the
proof of Theorem 4.1(1) for details) by definition of ’o?n Hence, by choosing
t, = %£(s, ">+ o(n"'?)}, it follows that {Z,(e,) + (u},, @y — @)} = 0p, . (n7'/?).
Since (u}, &, — a) = ‘usn by the definition of local alternatives a,,, we obtain

07 llsd
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equation (C.2):
~ d, Kk,
(c2) {ann) B ) — W}
nilsd
= Zy(a,) + (u;, a, — a”> = 0P, 7 (nil/z)’

where Z,(a,) is defined as that of Z, but using p(z, @,) instead of p(z, ap)
(since m(X, a,) =0 a.s.-X under the local alternative).
Next, by Assumption 3.6(i) under the local alternative, we have: for any

tw €T,
(C3)  0.5(0.(@ 1)) — 0.(@"))

— T + (18 — e} + 222 op . ([0 ).

2 n
By Assumption 3.5(ii),
d
sup (@) — (@) — 2 o gy = o (w7 ;)
QE/\/OII o

and assumption @® € N, wpal-P, z~, and the fact that ¢ (@) — ¢ (ay) =0,
following the same calculations as those in Step 1 of the proof of Theorem 4.3,
we have

*

(7, @) = a0) = 05, oo (7).

Since a, = oy + d,, A, € N, with %[A,,] = (v}, A,) = k,, we have

* *

(i @ — @) = (15, @ — o) - +0p, . (n7)

d,k
=——"+0p, (0.
il o)

Therefore, by choosing t, = —(Z,(e,) — -252)B-! in (C.3) with [r,(£,)]™" =

V7 llsa
=12 o(n™")} (which is a valid choice), we obtain

max({t?, t,n
0.5(0,(@,) — 0.(aF))
<0.5(0,(@R () — 0u(@F)) + 0p, o (1)

1 <Zn(an) -
2

VB,

dn Kpn

sd> )2 +on, o ([m(t0] 7).

*
n
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By our assumption and the fact that ||u}| > ¢ > 0 for all n, it follows that B, >
¢ > 0 eventually, so

Zo(ay) — Sk

1 ( v d))z
< —— . 3 x (14+o0p, ,.(1)).
2( [ 1+ 0n. (1)

STEP 2: On the other hand, suppose there exists a ¢, such that
(a) d(@, (1)) = d(ay), Au(t;) € Aginy, and (b) 1; = (Zy(a,) — s )(llu D=2+

V3 llsa

0p, . (n~1/2). Substituting this into (C.1) with [r,(£)]~" = max{(£;)?, £n~" 27
o(n™1)}, we obtain
> 0.5(0(@,) — 0u(@(£)))) — 0p, e (1)

By b o ()]
-5 V) o ()]

2

=_%(

where the second line follows from equation (C.2). Finally, we observe that
point (a) follows from Lemma B.2, with r = 0. Point (b) follows by analogous
calculations to those in Step 3 of the proof of Theorem 4.3, except that now
with a(t¥) =a, + tius,

¢(@(r7)) — ¢ (a0)

)
dql;(ag)[ apl+t ” ”
a

(Z () —

”sd

dKn

2
sd ) X (1 + opn’zw(l)),

Ln(aty) —

n

*

u

n

H))

n

+OPnZ°°(n

"sd

d,k
3 nsn
vn 5d+ *

sd

d, K,,
(( n( n)_ )
nlilsd

=0n, (107 ])

*
n

sd

*

1))

n

*

v

n

v |7
2d> ”U: ” + Op, 700 (n

nlisd
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where the second line follows from equation (C.2) and some straightforward
algebra.

STEP 3: Finally, the above calculations and «,, = k(1 + o(1)) imply that

(C4)  |uz]” x (Ou(@) — Ou@)

dy(l +o(1)) 0(1))>2 % (1+op, . (1).

*
un

= (Zn(an) -

*
n

sd

For Result (1), equation (C.4) with d, = n~'/2||v} ||q implies that

*

u

n

* x QLR, (o) = (VnZu(e,) — k(1 +0(1)))’ x (1+ 0, . (1)

= xi(«%),

which is due to /nZ,(a,) = N(0, 1) under the local alternatives.
For Result (2), equation (C.4) with \/n—%— — oo implies that

vz llsa

;| x QLR, (o)

B (ﬁzmn) _ gt o)

*
n

2
) x (1+ oPn)ZOQ(l))

sd

d,k(1+0(1)

2
= (OPH,ZOQ(D —/n [ )) X (1+0p, (1)),
nllisd

where the second line is due to /nZ,(a,) = N(0,1) under the local al-

ternatives. Since n”’”“”(:*—m”;l” — oo (or —o0) if k > 0 (or k < 0), we have
that lim,,_ o (Jlu%||* x (ﬁn(qbo)) = oo in probability (under the alternative).

Q.E.D.

PROOF OF PROPOSITION A.1: Recall that (ﬁg(qso) denotes the optimally
weighted SQLR statistic. By inspection of the proof of Theorem A.1, it is easy
to see that

-~ (ﬁn(qbo) = (VnZ,(a,) — K)2 + 0p, 4 (1)

X
un
and

*
n

2
QLR "(¢y) = (ﬁzn(an>— K Sd) + o, (1)

921,
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for local alternatives of the form described in equation (A.2) with d, =
n~'2|v¥||e. Hence, the distribution of [u*|> x QLR,(¢y) is asymptotically
close to xi(x*) and the distribution of QLR’(¢,) is asymptotically close to

(Hv 2 2
llvh u2

Let Af(2) = (222 [00]) (30(x)) ' p(2, a9) and A,(2) = (“G2[v])
(Z(X)) 'n(z, ap), where 0 is the Riesz representer under | - ||y. Since

E[(A“(Z))(A (2))] = Lutal ” - E[(P A [)]) (3(X0)) ™ (e D] =

<<”n %" and E[(AO(Z))(A”(Z)) ] = (v, U)o, We have

[(A (Z)— (v, V) AO(Z)><A (Z) - (v7, ) AU(Z)>']

(vn’ vn>0 (Un, UH)O
= E[(A4:(2))(A4:(2)) ] - w = (v, ), — %

(vl ol

Since the LHS is nonnegative, the previous equation implies that |[v7 [, —

(R

(0—0 > 0. By definition of v* and v?, it follows that

(o, o) = LLCD R g2

n’“n dC(

07

and thus [|v* |2, > [|[v° 2 for all n.

Observe that for a noncentral chi-square, sz(r), Pr( Xf,(r) <t) is decreasing
in the noncentrality parameter r for each ¢; thus Pr(x3(r1) > ) > Pr(x;(r) >
t) for r; > r,. Therefore, the previous results imply that, for any ¢,

lim P, ([ |” x QLR () = 1)
= Pr()(f(Kz) > t)
§limianr<Xf(|||| |||‘Sd 2) > t)

0

=liminf P, z~(QLR () > 1). Q.E.D.

PROOF OF THEOREM A.2: The proof of Result (1) is similar to that of Theo-
rem 5.3, so we only present a sketch here. By Assumptions 3.6(i) and Boot.3(i)



58 X. CHEN AND D. POUZO

under local alternative, it follows that

w—1
(e ) -

wal ; N
_ B g ay) + (17, @ — )
B’l
(Zy (@)’ L
T + 0Py 1 (r,"), wpal (P, z~),
where r! = max{(—zﬁé""))% |—Z:’";;“")|n”/2,0(n*‘)} = Oppoyyoe (N7,

wpal (P, z~) under Assumption Boot.3(i)(ii) with e, (instead of «y).
By similar calculations to those in the proof of Result (1) of Theorem 5.3
(equation (B.23)),

V(up, @ —a,) = 0p, (1), Wpal (P, zx),

that is, the restricted bootstrap estimator a@®# centers at @,, regardless of the
local alternative. Thus

(u,’;, all — an) = (u;‘,,&f’B — ’o?n> + (ui,’a?,, — an>

= (uj;a an - an) + OPVOC|Z:>c (n—l/Z)’ Wpal (Pn,ZOC)-

This result and equation (C.2) (i.e., Z,(@,) + (4}, @, — @,) = 0p, . (n7?))
imply that

w—1
et ) o)

_ _%’é‘v"){ﬂf(an) + (15, @, — av,))
(Zn“;Tf;n»z +0ppe e (r7Y), Wpal (P )

_ _%g’"){z;l(ao +0p, o (1717)}
%E?"))z + 0pyoc e (1), WpAL (P z)

w—1 2
@) |

2Bw (1 + 0PV°C|Z°° (1)) Wpal (Pn,zoc).
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Following the proof of Result (1) of Theorem 5.3 Step 3 with Z*~!(a,,) re-
placing Z*~!, we obtain

QLR?($,) 7o @)\
= () X e )
= OPVDO‘Zoo(l), wpal (P, z~).

This shows that, since for the bootstrap SOLR the “null hypothesis is ¢ (o) =
¢, = ¢ (a,),” it always centers correctly.
By similar calculations to those in the proof of Result (2) of Theorem 5.3,

the law of (/nZ \/("‘_") )? is asymptotically (and wpal (P, z~)) equal to the law

m ” where Z ~ N (0, 1). This implies that the ath quantile of the distribu-

tion of M , Cu(a), is uniformly bounded wpal (P, z~). Also, following the
proof of Result (2) of Theorem 5.3, we obtain

sup
teR

QLR (3, _—
Pyoize (% < r(z") — P, (QLR, () < 1IH)

w

= 0PV{X}|ZOO (1) Wpal (PH,ZOO)'

This and Theorem A.1 (and the fact that ||u*|| < ¢ < oo) immediately imply
Result (2). Q.E.D.

PROOF OF THEOREM A.3: The proof is analogous to that of Theorems 4.2
and A.1, so we only present a sketch here.

Under our assumptions, Theorem 4.2 still holds under the local alternatives
a,. Observe that, with e, = g + d, A, € N, and d,, = 0(1),

nlln,sd sd

= Vn(u, @, — ag) x (1+ 0p, 4 (1)) +0p, (1)

d, k(1 1
< VnZy, (an)+«/—w) x (1+0p, , (1)

x (14 0p, (1))

nlisd

+ Oanzoc(l)a

where the second line follows from Assumption 3.5; the third line follows from
equation (C.2), and \/nZ,(e,) = N (0, 1) under the local alternatives (i.e., As-
sumption 3.6(ii) under the alternatives).
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172

For Result (1), under local alternatives with d, = n="/*||v* ||, we have

—(VnZy(e,) — k(14 0(1))) x (14 0p, o (1)) + 0p, 4o (1),

and

W, = (T = xi(«).

dn

For Result (2), under local alternatives with N

— 00, we have
W, = (T.)?
= <0Pn’zoo(1) —/n

2
M) X (1 + OPn,ZOC (1))

k
n

sd
+ OPn,Zoo (1)
— oo wpal (P, z). O.E.D.

PROOF OF THEOREM A.4: For Result (1), following the proofs of Theorems
5.2(1) and A.2, we have: under local alternatives a,, defined in (A.2), for j =
L2,

Zo (@)
Wh = —/n="——""+ 0p,. ,. (1) wpal (P, z~).

O,

By similar calculations to those in the proof of Theorem 5.2(1), the law

of /nZi—ten) e g asymptotically (and wpal (P, z~)) equal to the law of Z ~
N(,1). Then under the local alternatives a,,,

(C5)  sup|Pyoize (WE < | Z") — Py (W, < 1)
teR
= Opyooyye (1) Wpal (P, z),

where lim,,_ o onc(Wn < t) = ®(t) (i.e., the standard normal c.d.f.). Thus
the ath quantile of the distribution of (W]ﬁ)z, C;n(a), is uniformly bounded
Wpal (Pn,ZOO)-

For Result (2a), by Theorem A.3(2), Result (1) (i.e., equation (C.5)) and the

continuous mapping theorem, we have

Pose(Wo 2 61— 1)) = Pyooyye (WE) 2, (1 — 1) 27)

= Pr(}3(%) = Gl — 7)) — Pr() = 601 — 7))
+0ono|zoo(1) wpal (P, z~).
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Thus, by the definition of ¢; ,(1 — 7), we obtain
P, z(W, >C;,(1 - 1))
=7+Pr(xj(x’) =¢,(1— 1) = Pr(xi =¢,(1— 1))
+ OPVOO‘ZOQ(I) wpal (P, zx).
Result (2b) directly follows from Theorem A.3(2), equation (C.5), and the

continuous mapping theorem. Q.E.D.

C.3. Proofs for Section A.4 on Asymptotic Theory Under Increasing
Dimension of ¢

LEMMA C.1: Let Assumption 3.1(iv) hold. Then: there exist positive finite con-
stants c, C such that

2 2 2
Ly <D < Clyys

where 1, is the d(n) x d(n) identity and for matrices A < B means that B — A
is positive semi-definite.

PROOF: By Assumption 3.1(iv), the eigenvalues of 3;(x) and 3(x) are
bounded away from zero and infinity uniformly in x. Therefore, for any ma-
trix A,

AZ(x0)Z(x) 3 (x)A>dA'S (x)A
and

A3 x)3(x)3 W (x)A<DA3S ' (x)A

for some finite constant 0 < d < D < oo, and for all x. Taking expectations at
both sides and choosing A" = W [vi], these displays imply that

'Qsd,n > dQn and Qsd,n < Dgn
Thus

D2 = 02.0.'0,,0,' 007 >d| 0000

sd,n sd,n sd,n sd,n

> "0 0 07

sd,n=“sd,n" “sd,n

- dzld(,,).

Similarly, D? < D*1,,). Q.E.D.
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LEMMA C.2: Let TM ={t e RI™ : ||t||, < M,n""*,/d(n)}. Then:

sd,n

0422, = 0n(w'adGm) and 072, T wpar.

PROOF: Let 0.7, = n! Yoo & where (i, € RYM. Observe that

sd,n

Elgnl1=1am. It follows that

Er[(2417Zn) (QuanZ)] = | Ep[ 2,472,201}

=Y w{Ep[gnd, ]} =",

i=1

and thus the desired result follows by the Markov inequality. Q.E.D.

LEMMA C.3: Let conditions for Lemma 3.2 and Assumption A.3 hold. Denote
Vo = A/Sn(1+b,) + a,. Then:
(1) 192,722, + (v, @, — o)}l = Op(\/d(m)F,) = 0p(n™12);

%dn

(2) further let Assumptzon A2 hold. Then
|23 AZ0 + 6 @) — plan)}], = 0r(n 7).

PROOF: For Result (1), note that ||7]2 = Zd(”) |t;|> and if we obtain || =
Op(¥,) for ¥, uniformly over /, then ||t||2 Or(d(n)y?).

The rest of the proof follows closely the proof of Theorem 4.1, so we only
present the main steps. By definition of the approximate PSMD estimator a,,,
and Assumption A.3(i),

0<t 02, + v, @, — o)) + %t/IBSnt +O0p(r '(1)).

sd,n

We now choose ¢ = ,/s,e, where e € {(1,0,...,0),(0,1,0,...,0),...,
(0,...,1)}; it is easy to see that this # € 7™, and thus the display above im-
plies

0<e 02, + (v, @ — o)) + Op(7,).
By changing the sign of ¢, it follows that

,Qs_dlftz (Zn + (V:/7 an - a0>)} = OP(:)\;n)

Observe that the RHS holds uniformly over e, thus, since e € {(1,0, ..., 0),
0,1,0,...,0),...,(0,..., 1}, it follows that

||qu1,/12( + <v:',an — ao)) “e = OP( d(n)%) — Op(n—uz),
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where the second equal sign is due to Assumption A.3(ii).
For Result (2). In view of Result (1), it suffices to show that

|2 @) — dlag) — (v, @ — )|, = 0p(n7?).

Following the proof of Theorem 4.1, we have

- d -
<V*’ — a0> = d;(c(j()) [, — ap ]
_ d¢(ao)[a ] — dd’(ao)[a ~
- da n 0 da 0,n ol

Since Assumption A.2(ii)(iii) (with ¢ = 0) implies that
do(ay) deo (o)
da da

H(l;f{qb(an) — ¢ (ag) — [, — ap] +

= OP(Cn)a

[ao,n - 010]}

e

the desired result now follows from Assumption A.2(iv) of ¢, = o(n~'?).
O.E.D.

PROOF OF THEOREM A.5: Throughout the proof, let W, = n(¢(@,) —
¢ () 024, (d (@) — P (ay)). By Lemma C.3(2),

T,= (¢ @) — b () +Z,) 2, ((@,) — b (o) +Z,) = 0p(n”").
Observe that
[(b(@) — b (@) (6 @) — d(a0)) — (Z,) 2 (Z)]
< T, 42| (6 @) — la) +Z,) 07|, x | 27 Z]
= 0p(n™") + 2| (@) — d(@0) + Z.) )|, x |20 Z],
=op(n”") + OP(n’l\/M),

where the last equality is due to Lemmas C.2 and C.3(2). Therefore we obtain
Result (1):

Wy = (VnZ,) O, (VnZy) + 0p(\/d(n)) =W, + 0p(\/d(n).

Result (2) follows directly from Result (1) when d(n) = d is fixed and finite.
Result (3) follows from Result (1) and the following property:

=, = (2dn) (W, —d(n)) = N(©,1)
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where W, = (\/nZ,)’ Qsd ,(W/nZ,), or formally,

sup |E[f(E)] - E[f(D)]|=0(1)

feBLi(R)

where Z ~ N (0, 1) and BL,(R) is the space of bounded (by 1) Lipschitz func-
tions from R to R.
By the triangle inequality, it suffices to show that

(C.6) sup |E[f(ED]—E[f(&)]|=0)

feBL1(R)

and

(C.7) sup |E[f(&)] - E[f(D)]| = o(1),

feBL{(R)

where &, = 2d(n))” '/Z(Zd('” 77 — d(n)) with Z; ~ N(0, 1) and independent
across j=1,...,d(n). We now show that both equations hold.
Equation (C.6). Let t — vy (t) = min{t't, M} for some M > 0. Observe

E[f(Z0] - E[f((2dm) " (w (212 V/nZ,) — dm))]]
= |E[f((2d(m) " (vee (27 VNL,) — d(m))
— F((dm) " (v (22 /nZ,) — d(m) ]|

_ / [f( (2 V/nz,) — d ()
{z:nz’.();dlwnz>M] 2d(n

_ M—d(n))i|P d
f(ird(n) 70 (dz)

= 2PZ°c ((\/Ezn)/n;j{n(ﬁzn) > M)a

where the last line follows from the fact that f is bounded by 1. Therefore, by
the Markov inequality, for any e, there exists an M such that

E[f(Z)] - E[£((2d(m) " (vu (27 V/nZ,) — d(m)))]| < €

for sufficiently large n. A similar result holds if we replace (Zs_dff\/r_zln by Z, =
(Zy, ..., ZLgw) with Z; ~ N(0,1) and independent across j = 1,...,d(n).
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Therefore, in order to show equation (C.6), it suffices to show

sup |E[f(Emn)] — E[f(Eun)]| =o0(D),
feBL1(R)
where 2y, = (2d(n)) ™" (vy (24} /nZ,) — d(n)) and &y, = (2d(n))"2 x

(vu(Z,) —d(n)).
Since f is uniformly bounded and continuous, it is clear that in order to show
the previous display, it suffices to show that

(C8)  (2d(m) vy (QL2VNZ,) — vi(Z,)| = 0p(1).

It turns out that |y (¢) — vy (r)| <2 M ||t — r||., SO ¢ > vy (¢) is Lipschitz
(and uniformly bounded). So in order to show equation (C.8), it is sufficient to
show that for any 6 > 0, there exists an N(8) such that

Pr((2d(n))

for all n > N(8). Note that _Qsdl/z\/_Z [ Yo 11’ (Z;), with ¥,(z) =
(s [y 1922y p(z, o), and that Z, can be cast as ﬁ S 2, with 2,

sd,n

N(0, 1,.,), i.i.d. across i =1, ..., n. Following the arguments in Section 10.4

of Pollard (2002), we obtain: for any 6 > 0,
5/2
Pr ~38)| < yd(n)<w>’
(8+/n)

for any n, where x = Yy, (x) = Cx x (1 + |log(1/x)|/d(n)) and w3, =
E[| (2w a")[V 19,72y p(Z, ay)|]. Therefore,

sd,n

-12

| VNZ, — Z,||, > 8) < 8

sd,n

!

Iz 047 - —= ZZn :

Pr((2d(n)) |02 VnZ, - 2|, > 6)

sd,n
p3and(n)*? - H3n
< yd(")<(5/33)3d(n)3/2n3/2) = Yim (n 1/2d(l’l) (5/;)38) —0

provided that d(n) = o(ﬁM; L) which is assumed in the Theorem Result (3).

Equation (C.7). Observe that ¢, = (2d(n))~ I/Z(Zd(”) Z2 d(n)) with Z; ~
N(0,1) iid. across j=1,...,d(n), E[(Z; — 1)] =0, and E((Z; — 1)} =2.
Thus, ¢, = N(0, 1) by a standard CLT. Q.E.D.

In the following, we recall that a(7) = a + v (,,) "/t for t € RY™,

LEMMA C.4: Let all conditions for Theorem A.6(1) hold. Then there exists a t,
(possibly random) such that: (1) t, € T wpal, (2) @,(t,) € A, = {a € Aww :
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¢ (a) = ¢o} wpal, and (3)
0 < n{O.(@(t)) — Ou(@n)}
< (VA '2,) Dy (Vnad ' 2,) + op(Vd(m).
PROOF: To show Parts (1) and (2), we define the following mappings:
d¢(ay)
da

teR™ > @,(1) = Qsd],fzz{¢(an(f)) — ¢ () - [@(0) = ]

and t € R 1 7,(t) = —D, Q2 {(vV, @ — ag) + L9, — ag] + 27 1)
Under our assumptions, both mappmgs are continuous in ¢ (a.s.) and thus
®, = ¢, o 7, is also continuous in ¢ (a.s.). Given ¢, = o(n~/?) satisfying As-
sumption A.2(iv), we define T, = {t ¢ R¥™ : | ¢||, < L,c,} where (L,), is a pos-
itive real-valued sequence diverging to infinity slowly such that L,.c, = o(n~"/?)
(such a sequence exists by Assumption A.2(iv)).

Let S, ={Z" : sup,.; [|P.(D)]. < L,c,}. By Lemmas C.1, C.2, and C.3(2),

and Assumption A.2(iii), we have that, for any ¢ € T,
|7, < Op(Vd(m){F, +n7"7}) + O(cy) + [Dut]l.

= Op(n™"/d(n)) + O(Lycy),

where y, = /[s,[(1 + b,) + a, = o(n~"?) (by Assumption A.3(ii)). Hence
7,(t) € TM for all t € T,. This implies, by Assumption A.2(i)(ii), P(S,) — 1.
Moreover, these results imply that ||®,(¢)||, < L,c,forall t € T, and Z" € §S,..
This implies that {®,(¢) : t € T,} € T, wpal.
For any given n, T, is compact and convex in R and since @, is continuous
and maps T, into itself (wpal), by the Brouwer fixed point theorem, wpal there

exists a 7, € T, such that ®,(7,) =1,. Therefore,

Li=@uo0 Tn(tn)

~ d
= 0 0(@ () - de - 4 a1, ) - ]|

Since

Q,(7,(5)) = @y + Vi 27,1,

= 67,, *Q:dlf/fID) Q:dlfzz (( A —_ a0>
do(a)

+da

[oegn — ap] + Qid/z,, >
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and 0_°D,0,” = Q;', we obtain

sd,n sd,n

) @) — au]

_dd(a)
T da

— (v, vl ((v’;/, a, — )+

[an - aO]

dd’(ao)

[ — ap] + Qlfn )

Since (v¥, v¥) = (2, we obtain

[, — o]

~ . ~ d
tnzﬂsdff{¢(an(n(rn))) ¢ () — ‘“a”)

dé (ay)

*/A

+ (V - 010) + [aon — ap] + -Q:éz,, }

= 0 (@ (m.(B))) — b ()} +1.

Thus 2,3 @u(ra(1))) = b (o)} =0 wpal iff ¢(@,(7,(£))) — b(a) =0
wpal. Also, since 7,(1,) € TM wpal, Parts (1) and (2) hold with ¢, = 7,,(z,).
To show Part (3), recall that @, € N,,, wpal and @,(t,) € Af,, by Parts (1)
and (2) with ¢, =7, (1,). We can rewrite ¢, as
—D, 21V, @ — o)+ A, (T} with

sd,n

d(ay)
da

[aon — ap] + 0t

sdn

A, (1) =
Observe that ||z, = Op(y/d(n)n~"/?), so by Assumption A.3(i) and the def-
inition of @,
0 =< n[én(an(t )) - Qn(an)]
= n(t,) OV, @ — o) + L)
+0.5n{t,B,1,} +n x Op(s, + tallca, + 1,120,
<n(t,) QS H VY, @ — o) + Z,,)
+0.5n{t;D, " 1, } + 1 x Op (s, + Itullean + I8,11302),
where the third line follows from the fact that sup,, _, [{B, — D'} =

Op(b,) by assumption, and thus we have: ¢'B,t < [¢{B, — D, '}t| + D, 't <
I£120p(b,) + t'D;, 't uniformly over ¢ € RY™ with ||¢||, = 1.
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By the fact that Q,/’D, D, 'D,0)} = dilfD 0,7 = 2", the definition of

t,, and straightforward algebra the previous display implies that
n[0,(@u(t,)) — 0u(@,)]
< —0.5n((v;, @, - aa)) 2, (v} @ — o))
—n(v/, @, — ) 2,'(Z,) — n(A,(1,)) ;"
+0.50(A,(5)) 2, (A@)) + 1 x Op(s, + Itall.@n + 121175,
<n(Z,) 2, (Z,) —n(v, @, — o) + Z,) 2, (Z,)
n(A.(5)) Q,'Z, +0.5n(A, (1)) 2, (A, ()
+ 1% Op(sy + ltalle@n + 14,1252),

where the second line follows by ((v¥, @, — ag))' Q2 (v, @, — ap)) > 0 and
straightforward algebra. Observe that

[(4.)) 2, (4.G))]
= [(A”(f”)) sdlﬁzD ‘!2 1/Z(A’éln(’l:t))]l/z

=0P( I/ZQ;jlilzd(f’(ao)[aon_ao] +||]D>,1/2?n||e>
_ipd
(‘Qsdlfzz <75d(010)
o

+ ”’t;”e)
= Oplen(1 + L) = op(n”'2),

where the first equation follows from Lemma C.1, and the last equality follows
from Assumption A.2(iii) and the results from Parts (1) and (2). Also

[(Z,)2," (2] =[(Q472,) D7 2,)] 7 = 0p(n™2Vd(n)

by Lemmas C.1 and C.2. Thus (A4,(%,))2;'Z, = 0p(n"V*)Op(n~"2/d(n)) =

op(n~'y/d(n)). Similarly, (v, @, — o) + Z,)' 2, (Z,) = op(n~'\/d(n)) by
Lemmas C.1 and C.3(1). Smce It.ll. = Op(/d(n)n='?), we have n(s, +

It llean + (18,115)b,) = Op(ns, + \/d(n)n'?a, + \/d(n)\/d(n)b,) = op(n~"' x
y/d(n)) under Assumption A.3(ii). Therefore,

n[@n(an(tn)) - Qn(an)]
<n(Z,)' 2, (Z,) + op(v/d(n))
= (VAL Z,) D, (Va2 ") + op(V/d(n)). O.E.D.

[aon — ap]
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PROOF OF THEOREM A.6: The proof is very similar to that of Theorem 4.3
and we only provide main steps here.

STEP 1: Similarly to Steps 1 and 2 in the proof of Theorem 4.3, by the def-
initions of @® and @, and Assumption A.3(i), it follows that for any (possibly
random) t € T M,

0.5QLR,(¢) = 0.5n(én(aR) — 0.(@ (1)) — 0p(1)
—n(t QG Z, + (v, @F — ap)} +0.5¢B, 1)

sd,n n’ n

+ Op(sun + nlitllca, + nlit)}by).

By Assumption A.2(i)(ii),

Hﬂ;d%f(qb(af) — pan) — OO ao]) — Op(cn).
— o

e
=0

Hence, by Assumption A.2(iii),

(C9) [ 77y, @R — )|, = Op(cy).

sd,n n’ n

Since sup,.,,._; [t'{B, — D,'}t| = Op(b,) by assumption, we have: ¢'B,t <

|t'{B, — D, '}t| + D't < ||£|?Op(b,) + D't uniformly over ¢ € RY™ with

Izl = 1. This, Assumption A.3(i), and equation (C.9) together imply that
0.5QLR,(dy) > —n(t 0,7, +0.5¢D; 1)

sd,n

+ Op(s,n+ nlltlle(an + ¢,) + nltl2b,).

In the above display, we let ¢ = —Z Q_'”°DD,, which, by Lemmas C.1 and C.2,

sd,n

is an admissible choice and |¢]|, = OP(n‘l/z,/d (n)). Observe that t,;();dlfz
~7. 0D, 07, and 1D, =7 0 D), 0-*7Z,.; we obtain

n*=“sd,n sd,n n*=“sd,n sd,n

0.5QLR, ($0) = 0.5(vnQy’Z,) D, (vVnQ,’L,)
+ Op(s,n 4+ n'2/d(n)(a, + c,) + d(n)b,)
= 0.5(v/nQ " 2,) D, (Vn P L,) + op(Vd(n)),

where the last equal sign is due to Assumptions A.2(iv) and A.3(ii).
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STEP 2: Similarly to Step 3 in the proof of Theorem 4.3, by the definitions
of @ and @, and the result that @,(z,) € Af,, (Lemma C.4), with ¢, given in
Lemma C.4, we obtain

0.5QLR,(¢y) < 0.52(0n(@(1)) — 0u(@n)) + 0p(1).
By Lemma C.4(3), it follows that
0.5QLR, (o) < 0.5(vn05"Z,) D, (VnQLPZ,) + 0p(v/d(n)).
STEP 3: The results in Steps 1 and 2 together imply that

QLR (¢) = (V€2 2,) D (VL) 'Z,) + 0p (V).

which establishes Result (1).

Result (2) directly follows from Result (1) and the fact that D, = 14, 2540 =
Qo,n when 3 = 20.

Result (3) follows from Result (2), 2, = 2, when X = 3, and the follow-
ing property of W, = nZ;hQSd /%

(2d ()" (W, — d(n)) = N(0, 1),
which has been established in the proof of Theorem A.5 Result (3). Q.E.D.

C.4. Proofs for Section A.6 on Series LS Estimator m and Its Bootstrap Version

PROOF OF LEMMA A.2: For Result (1), since

M, (Z") = Pyiz (sup I Y IR (Xi, @) = (X, @)

osn i=1
— (X )| zM]Z")
< Pyocz (sup = Z“m (X;, @) — (X, a)

— (PP (Xi, @) — (X @)} \Z)

'i‘PV"O|Z°C (SUP—Z“I’H(X“CY) m(XHa)

osn
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- A a0 2 %\z)
=M, ,(Z") + M,,(Z"),
we have: for all 6 > 0, there is an M (8) > 0 such that, for all M > M (5),
Py (M, (Z") = 28) < Py (M1,,(Z") = 8) + Pz (M5,,(Z") = 5).

By following the proof of Lemma C.3(ii) of Chen and Pouzo (2012a), we have
that Pz« (M, ,(Z") = §) < /2 eventually. Thus, to establish Result (1), it suf-
fices to bound

P ({M14(Z7) = 8} 0 (Ao (PP) 1) > <))
+PZ°° (Amm((P,P)/n) =< C)-
By Assumption A.4(ii)(iii) and Theorem 1 in Newey (1997), Apin((P'P)/n) >

¢ > 0 with probability Pz~ approaching 1, hence Pz (Anin((P'P)/n) <c) <
8/4 eventually. To bound the term corresponding to M, ,, we note that?

> || mP (X, @) = WX, @) — [P (X, a0) — (X @) )|
i=1

=Y A%(a)P(P'P) p"(X)p" (X)) (P'P) P'AL" ()
i=1

=A% (a)P(P'P) PAL%(a)

b

Amin((P'P)/n)

=

{n AL (@) PP'ALE ()],

where AZ% (@) = (01 = 1)Ap(Zy, ), ..., (0, — DAp(Z,, @) with Ap(Z, a) =
p(Z,a) — p(Z, ap). It is thus sufficient to show that, for large enough #,

(C.10) Py (Pymlzw (sup AL (@) PPALR (@) > M‘Z") > 5) <,
NOS)Z n

which is established in Lemma C.5.

>To ease the notational burden in the proof, we assume d, = 1; when d, > 1, the same proof
steps hold, component by component.
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For Result (2), recall that £2(x, a) = mi(x, a) + m®(x, ay). By similar calcu-
lations to those in Ai and Chen (2003, p. 1824), it follows that

£ [ S A ) ||i}
i=1
= Ep, [p" (X)) (PP) P'Ep,.. . [p"(a)p" (@) |X"]
X P(P’P)fpj" (X,-)],

where p®(a) = (p?(V}, @), ..., pP(V,, a)) with p?(V, a) = w;p(Z;, a). Note
that

Ep, y [p® Vi, a0)p" (V}, a9)' 1 X"
= Ep,[0i0,Ep, , [p(Zi, 20)p(Z;, 29) | X, X}]]
=0 foralli#j,
and
EPV‘XOO [PB(V:', ao)PB(Vu 010),|X”] = 0520(X5)~

So under Assumption Boot.1 or Boot.2, Assumptions 3.1(iv) and A.4(ii), ap-
plying the Markov inequality, we obtain: for all 6 > 0, there is an M (8) > 0
such that, for all M > M (5),

J

ono <P1/oozcx: (;nnl ZH%B(X,, (X())Hj > M‘Zn) > 8) < 0.
i=1

To establish Result (2), with (7)™ = max{%,b] , ,(M,8,)%}, it remains to
show that

(C11) Py~ (sup T Y |#X, e = M) <é.
osn I=1

By Lemma SM.1 of Chen and Pouzo (2012b), under Assumptions A.4 and
A.5(1), we have: there are finite constants c, ¢’ > 0 such that, for all 6 > 0,
there is an N (8) such that, for all n > N (§),

ono (Va S Afosn : CEPx[“’%(X’ a) ||i:|

1~
=< ; Z”m(X” OZ)

i=1

? < CEp [| (X, a)||j]) >1-34.
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Thus to show (C.11), it suffices to show that

sup 7, Ep, [ (X, )| ] = O(D).

osn

By Assumption A.4(ii), it follows that

sup Ep, [||m(X, a)||§]

a€Nosn

< sup{Ep, [| (X, &) — m(X, 0)|] + Ep, [ |m(X, o) |]}

osn

< const. sup max{bZ, , lla—aol?} = O((7,) "),
a€Nosn

where the last inequality follows from Assumptions A.4(ii)(iii)(iv) and 3.4. We
thus obtain Result (2).
For Result (3), we note that

j 1 <
YA X ==Y e X @5 = RY (@) + 2R} (@),
i=1 i=1
where

1<y
Rl (@)= -3 | (X, @) — (X, 0 5o,
i=1

1 n
RS (a) < Rﬂl p ZHEf(Xi, a)”;r
i=1

By Result (1) and Assumption 4.1(iii), we have

Py (PVN‘ZDC (sup?ann(a) > M|Z”> > 3) <5

osn

with 7' = §2(M,,5,,,)**C,. By Results (1) and (2), and Assumption 4.1(iii), we
have

Py (va‘zm (sup F.RE (a) > M|Z”> > 5) <6

osn

with 7! = M,,62(M,,8;,)*~/C,. By Assumption A.5(iii) and the fact that L,
diverges, we obtain the desired result. Q.E.D.

In the following, we state Lemma C.5 and its proof.
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LEMMA C.5: Let Assumptions 3.4(i)(ii), A.4(iii), A.5(i)(ii), and either Boot.1
or Boot.2 hold. Then: for all § > 0, there is an M(8) > 0 such that, for all M >
M(5),

P <PVW (Sup DAL (@) PP AL () > M)Z") > 5) <0.55

Nosn

eventually, with 7,' = (8,)*(M,,8;,,)*C,, where A5 (@) = ((w; — 1)Ap(Z,, ),
o (0, —DAp(Z,, @) and Ap(Z, a) = p(Z, a) — p(Z, ay).

PROOF: Denote

M{”(Z”) = Pyooz0 <i}1p T—;AgB(a)fPP/AgB(a) > M‘Z").

By the Markov inequality,

osn

M (Z") <M 'Ep, o [sup SALP () PP'AL” (a)j|
Hence it is sufficient to bound

Py (M}, (Z") = 8)

Nosn

1 n ’
< 5B [sup ~2AL%(a) PP A§B<a>]

2
1 &
nM(S ZEPVDC |:sup(ﬁ ;(wz - l)fj(Zla 0()) j|?

Nosn

where the first inequality follows from the law of iterated expectations and the
Markov inequality, and the second equality is due to the notation fj(z, @) =
pj(x){p(Z, a) - p(Za OZ(])}.

Under Assumption Boot.1, {(w; —1)f;(Z;, a)}._, are independent, and thus,
by Proposition A.1.6 in Van der Vaart and Wellner (1996) (VAV-W),

2
nM5 ZEPVM [sup< ‘”22((»1 -1 f;(Z, a)) }

Nosn

— In
Tn
< YE /E:l (EP,,OC |:sup

osn

n Y (0, = Df(Zi, @)
i=1

|

2

1<n
osn

+\/E[maxsup|n 12(w; — 1)f,(Zna)| ])
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The second term in the RHS is bounded above by

\/nn—lEpm [ (w0 =1)sup|f(Zi, )]

osn

osn

- JEPM[M,- — 12)Es,[supl(Ze @) ] = O((M,5,,7)

Y (i = V) fi(Zi, @)

i=1

by Assumptions A.4(iii), A.5(ii), and Boot.1. Hence, under Assumption
? In
(C12) ;(;zpm |:Sli[:
Under Assumption Boot.2, ((w; — 1) f;(Z;, a)); are not independent. So we
need to take some additional steps to arrive to an equation of the form of
n 2
[Sup< Y (0 - D fi(Z, a)) }
037’! 1:1
n n 2
[sup( S 0if(Zna)—nT Y fi(Z, a)) }
i=1

Boot.1, we need to control
:| ) |
co B ws.0).
(C.12). Under Assumption Boot.2, it follows that
OSH l:]

— I 2
:A;nﬁzEszsz |:sup( Z(Sz -P)[fi(, a)]):|

j=1 Nosn

where the last line follows from the fact that w; are the number of times the
variable Z; appears on the bootstrap sample. Thus, the distribution of w;0, is
the same as that of 67, where (Z)i is the bootstrap sample, that is, an i.i.d. sam-
ple from P, = n™! Zil 0z, By a slight adaptation of Lemma 3.6.6 in VdV-W
(allowing for square of the norm), it follows that

2
Epyosrye sup( sz P[fi( a>]”

Nosn

osn i=1

— n 2
< EPZoo EPﬁoo |:sup (n_l ZﬁiBZ[ [f](a 0[)]) i|i| >
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where N, ; = N;—N]with N; and N/ beingi.i.d. Poisson variables with parameter

0.5 (Pg is the corresponding probability). Note that now, {ﬁ ifi(Zi, )}, are
independent. So by Proposition A.1.6 in VdV-W,

— In n 2
Tn _ ~
s 2 (Do) |

i=1
T &
<" E
~ nMé ( ¢ |:,S\}lp

j=1 osn

n'? Zﬁifj(ziy a)
i=1

|

2

1<n
Nos

+\/E[maxsup|n 1/2NfJ(Z,,a)| ])

where O = Pz~ x Pj~. By the Cauchy-Schwarz inequality, the second term in
the RHS is bounded above by

osn

\/nnlEQ[H\Nflz Sup|fj(Z, a) |2]

osn

< \/EPN[WP]EPZ [sup|£i(Z, || = O((M,8,,))

by Assumptions A.4(iii) and A.5(ii) and E [|N|?] < co. Therefore, under As-
sumption Boot.2, we need to control
2 p—

— Jn
Tn
(C.13) Y ; (EQ |:s1(15

Applying Lemma 2.9.1 of VdV-W, we can bound the leading terms in equa-
tions (C.12) and (C.13) respectively as follows:

|:sup
nM8 {/ P |w—1|>tdt}

I 1/22e,-az,,[ﬁ(-,a)]

i=1

1/ZZNf](Z,,co

(C.14)

T2y (0= Doz [fiC a>]H

i=1

1<i<n

|

x max Ep, . «p . |:sup

osn
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and

nl/zzﬁﬁzi[fj("a)]‘:ﬂ
nM8 {/ VP |N|>tdt}

11/22662 fiG, a)]

i=1

— In
Tn
(ClS) WMo E EPZoo |:EP}V |:sup
=1

1<i<n
osn

J

where (€;)", is a sequence of Rademacher random variables. Note that

{/;7VP(o—1>1)dt} < oo (under Assumption Boot.l), and also
{foOo VP(N|>1t)dt} <22 (see VAV-W, p. 351). Hence in both cases we need

to bound
}> |

11/22652 fiC, a)]H

i=1

x max Ep,. «p |:sup

11/22652 fi )]

1<l<n
l=1 (}(}’l

— Jn
Tn
(C.16) nMSE (maXEonoxpm[Sup

— -/11
Tn
< E max FE su
= nMs 4 1(1<,< Pzooxbes | SIP
j:

Nosn

1<l<n

I 1/Zze,.}_ujpz[f,(z, a)]H)

+max Ep, o .po [sup

osn

S 2ﬂ,n + 2T2,n5

where ?].(Z, a) = fi(Z,a) — Ep,[fi(Z,a)],

11/2Ze5z )]

i=1

osn

)

I 1/225 Ep,[fi(Z, a)]H)

i=1

_ Jn
Tn
T\, = Y E ({gﬁprzmxpm [sup
j=1

and

Nosn

_ Jn
Tn
T, = Y E ({gﬁx Ep, <P [sup
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To bound the term 73 ,, we note that

l

[~ Z GiEPZ [fj(Za a)]

osn i=1

max max Ep,.. «p_ | SUP
1<j<Jn 1<i<n

|

= max maxsup|Ep,[fi(Z, a) |Epm|:‘l I/ZZE,

1<j<Jn 1<[<nN

|

i 2
< mas masuplr, [ (XSmO, a>J|J J(reze) |

1<j<Jp 1<i<

80

= O(Mn‘sn)a

< max max(\/EFZ |p](X)| sup\/EpX [|[Am(X, a)|]

Nosn

where Am(X, @) = m(X,a) — m(X, ay) and the inequality follows from
Cauchy-Schwarz and the fact that €; are independent, and the last two equal
signs are due to Assumptions 3.4(i)(ii) and A.4(iii). Thus 7, < const. x
(M, 3,)° 2.

To bound the term 7} ,, we note that by the “desymmetrization lemma” 2.3.6

in VdV-W (note that fj(Zi, «) are centered),
:| )2

By Van der Vaart and Wellner (1996, Theorem 2.14.2), we have (up to some
omitted constant), for all j,

1
=< {(Mnas,n)K/ \/1 + IOgN[](w(Mnas,n)K; onn, ” : ”Lz(fz)) dw}a
0

— Jn
Tn
T, , <const. x max| Ep . | su
b= nMo 4 < I<l=n Pz p
=

r “22?,-<Zi,a>
=1

osn

!
Ep,.. [ sup \I7'2 Y " F(Zi, @)
i=1

a€Nosn

where £, = {p;(-)(p(-, @) = p(-, ) = E[p;(-)(p(-, @) — p(-; ap))] : @ € Ny}
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Given any w > 0, let ({g]", &' m=1,...Nw) b€ the || - [|;27,,-norm brackets of
O If {p(-, @) — p(-, )} € O,, belongs to a bracket {g]", g}, then, since
|p;(x)| < const. < oo by Assumption A.4(iii),

g/ (Z) < pi(X){Ap(Z, )} <g(Z)

(where {g]", g/} are transformations of the original ones, given by (1{p; >
0}g" + U p; = 0}g;) pj and (1{p; > 0}g; + 1{p; < 0}g]") p; and since | p;(x)| <
const. < oo the || - [|;2(7,,-norm of the new brackets is given by & x 2const.. We
keep the same notation and omit the constant “2const.” to ease the notational
burden), and from the previous calculations it is easy to see that

{¢/'(2) - E[g}(D)]} < pi(X)Ap(Z,a) — E[ pj(X)Ap(Z, )]
<{&12) - E[g/D)]}.

So functions of the form

.....

form || - |I;2(5,,-norm brackets on &,;,. By construction, Ny(w, Ejn, | - 12¢7,)) <
N (w). Hence (up to some omitted constants)

|

1

'Y fi(Zi, )

i=1

Ep,.| sup
a€Nosn

= (M,8,,)"

< (M,8,,)"V/Cy,

where the last inequality follows from Assumption A.5(ii). Notice that the
above RHS does not depend on / nor on j, so we obtain

1<j<Jy 1<l<n a€Nosn

I 2
(C.17)  max maprZoo|: sup (ll/Zij(Z,«, a)) i| < const. x (M, 8,,)*C,
i=1

and hence T}, < const. x (M,8,,)*C, .

Note that max{(M,3,)?, (M,,5;,)*} = (M,,5,,)* (by assumption) and that
7, =2(M,8,,)*C,; the desired result follows. Q.E.D.

n =
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PROOF OF LEMMA A.3: Denote

TS =sup|-

osn

__Z(M[ ]) S(X)E (X, )l

da

dfﬁ(Xi, a) £ S \-1yB
;(7@ [un]) (X)X, a)

and

;Z(idm(foj w0y, ]) S(X) (X, @)

- {25+ a -l

It suffices to show that for all & > 0, there is N(8) such that, for all n >
N(8),

(C.18) ono (PV"C\ZOO (\/ﬁTrﬁ > 8|Zn) > 6) <0

and

(C19)  Pzoc(Pyoiz(v/nTh = 8|1 Z") = 8) < 6.
We first verify equation (C.18). Note that

dim(X;, a) dm(X;, a0)r 1\
Z( da [ "] da : [u"]>

i=1

TS < sup|—
N()§" n

x (X)) (X, )

Ly ()

i=1

+ sup|—
N{)S"

< {3(X) ™ = S(X) B (X, @)

=T5 +T5.
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By Assumption 4.1(iii) and the Cauchy-Schwarz inequality, it follows that, for
some C € (0, 00),

P (Pyoojz0 (VT )5, > 81 2") = 8)

i dm(Xh 0(0) [u*] i dl’?l(Xl, 0() [u*]
, da " da ",
< Py | Pyoojz | SUp = P
Ylex, ol
x | = > € 7z > 8
N n n

+PZOO( mm(Z(X)) < C)

The second term in the RHS vanishes eventually, so we focus on the first term.
It follows that

& dm(X;, ap) dm(X;, a)
Z da [u"] B da [u”]
onc PVoc‘Zoc sup =l ¢
N()X’l n
1 > Cé6
— £B(X;, >—\Z"| =6
JHZH FXe| 2 =20 [ =
1 | dm(X:, o) dm(X;, a) ?
=fe (P (iﬁpJ D) i U e G

Tﬂ

. [Mn ca‘z">>055>
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+ Py (PVW (supJ % Mool = W‘Z) > 0.56).
i=1

Nosn

By Lemma A.2(2), the second term on the RHS is less than 0.56 eventually
(with (7,)~! = const. (M,,5,,)?). Regarding the first term, note that

wp |13
NOIHJ n = 1

dm(X;, ap) dm(X;, )
7 S U

1 dﬁl(X,, a()) dﬁ/l(X,, a) . n
fﬂﬂzg‘—%f4ﬁ‘—7z—whxz
1 dm(X;, ag) dm(X;, ag) n
+§V‘IPJ ;; T[un] - T[”n] ) X 7
dm(X,, aO) dm(Xi7 a) % ﬁ
<%Jml—7:—h]—7xﬁme ;
+ 0ono(1)7

by the LS projection property and the definition of 771, as well as by the Markov
inequality and Assumption A.6(i). Next, by the Markov inequality and As-

sumption A.7(ii), we have
> In
Py —>0.56
(o 72 7z05)
: n
] x — — 0.
e T

2
E
5\/ 7 [Np "

Thus, we established that

dm(X;, ay) dm(Xi, a) |
T[ u,] - T[un]

dm(X, ay) [u ] 3 dm(X, a) [u*]
da " do "

ono (PVOC\ZOQ (\/_Trﬁa > 8|Zn) > 8) <0 eVentuaHy.

By similar arguments, Assumptions 4.1(iii) and A.5(iv), Lemma A.2(2), and
that 1 37 |40 14])12 js bounded in probability, it can be shown that

ono (PVoc‘Zoo (f’z:ﬁb > 6|Zn) > 8) < 6, eVel’ltually.

Therefore, we establish equation (C.18).
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For equation (C.19), let g(X, u}) = (dm(x 200) [u:])271(X). Then

nII = Sup Zg i n m(Xl, a) ( , o — ao)
Zg i )P (X, ) = 22
= nIIa+THb

Thus, to show equation (C.19), it suffices to show that «/nT,;, = o p,~ (1) and

that

(C.ZO) ono (PV°°|Z°C ([ nllb = > 8|Zn) > 6) <6 eVentuaHy.

83

First we consider the term 7,;,. This part of the proof is similar to those in

Ai and Chen (2003), Ai and Chen (2007), and Chen and Pouzo (2009) for their

regular functional A’6 case, and hence we shall be brief. By the orthogonality
properties of the LS projection and the definition of m(X;, «) and g(X;, u¥),

we have
n*Zg b U)X, ) =n” Zg o ) m(X;, ).
i=1

By the Cauchy-Schwarz inequality,

n

1 ~
- > {3 (X wy) — g(Xi, wp) H{m(Xi, @) — m(X, an))

i=1

| R
SJ 2 30 ug) — g(Xe )
i=1

sup
NOSIl

is

osn

1 n
x supJ - > mXi, @) -
i=1
By Assumption A.6(iii),
Jnsup — Z |m(Xz; a) —m(X;, a0)||

osn i=1

—pr[”m(X], a) —m(Xy, ao)”j]} =op(1).
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Thus, since sup,, Ep, [[|m(X:, @) — m(Xy, ap) |71 = O(M.5},), it follows that

1 n
o 2 _llmXi, @) = m(X;, ) |2 = Opy (M,8,)* + 0, (n72)).

osn i=1

This, Assumption A.6(ii), and 8, = o(n~"*) (by Assumption A.5(iv)) imply
that

n

1 ~
i}"lp ;Z{g( is n) g(qu,,)}{m(Xi,a)_m(Xiaao)}
osn i=1

1 —
< OPy <m> X OPZoo (\/(Mnan)z + O(n—1/2)) = 0p,n (n 1/2)_

Therefore,

\/_TnIIa—\/_SUp

Nosn

Zg Ul )m(X;, o) — <uﬁ,a—a0>

For (7).

By Assumption A.6(iv), ﬁsupNosn |% Yo (X, uym(X, a) — Ep, [g(X1,
w){m(X,, a) —m(Xy, ap)}l| = op,. (1). Thus, by Assumption A.7(iv), we con-
clude that \/ﬁTnIIa =0py (1)

Next we consider the term 775, . By the orthogonality properties of the LS
projection,

n_lzg i n m (Xlaa(])_n Zg i n P (Kaao)a
i=1

where p?(V;, ay) = w;,p(Z;, ap) and {w; .}/, is independent of {Z;}7,
Hence, by applying the Markov inequality twice, it follows that

Pec (Pyoojz0 (/0T > 8| 2") = 5)
n 2
<8'Ep,.. [n‘1<Z{g(Xl, ur) — g(X:, ul)} oV, ao)) }
i=1
Regarding the cross-products terms where i # j, note that

EPVOO[{g(XJ’un) g(X/’un)}{g(X”un) g(X“un)}
xXp (I/iaa(])pB( jya())]
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= Ep,.. [{8(X;, u) — 8(X;, wy) {e (Xi, ) — B(X, )}
X EPVoo‘ch: [pB(I/h ao)pB(I/j7 a())an]]
= Ep,..[{8(X), u) — 8(X;, ;) He (X, ) — 8(X, )}
X Epyoc yoo [ 00| X" Ep o o [P(Zis 20) p(Z), a0)| X "] ]
-0,

since EPZOC,XOQ [p(Z;, ao)P(Zj, )| X"] = EPZ‘X[p(Zi, a0)|Xi]EPZ‘X [P(Zj, ap)|
X;]=0for i # j. Thus, it suffices to study

n

6~ Ep, {n-l > (e(Xi uy) = B(Xi ) (0" Vs, a@)ﬂ

i=1
= 6_4]’1_1 ZEPVOO [(g(X,, u:) — g(Xia u:))z
i=1

% Epynepyo [ (0:9(Zi, a0))'1X"]].
By the original-sample {Z;}} , being i.i.d., {w;,}’, being independent of

{Z,},, Assumption 3.1(iv), and the fact that o2 < oo, we can majorize the
previous expression (up to an omitted constant) by

5 Er, [(8(X0 ;) ~ B(Xo )] = 0(D),

where the last equality is due to Assumption A.6(ii). Hence we established
equation (C.20). The desired result now follows. Q.E.D.

PROOF OF LEMMA A.4: By the Cauchy-Schwarz inequality and Assump-
tion 4.1(iii), it suffices to show that

Py | Pyoojzoo | SU n-!
Z<V|Z<N0£J 1221

N eB(X, )| =8|z ) >6) <6.
NPJ >jesx ol olz) =) -

2

d’m(X;, a)

e LALA

e

osn

By Lemma A.2(2), it suffices to show that

P | su n-1

(X, )
e el

2
6
> < 0.
. M0,
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By the Markov inequality and the LS projection properties, the LHS of the
previous equation can be bounded above by

M?5? [ d’m(X, @) 2}

Ep, |sup| ————

ImX, ) .

— [ ]

do

d 2 [l/l:, u:]

o

2
o Nosn

M;s;
< (;2 ~Ep, [sup
NOS)Z

2

} <0
eventually, which is satisfied given Assumption A.7(iii). The desired result fol-
lows. O.E.D.

PROOF OF LEMMA A.5: For Result (1), we first want to show that

2
3-1 }

(C21) sup

Nosn

? H dm(X;, o) ¢,
e ey,

1 Xn:{ H dﬁ/’l(X,, (1) [M*]
n 4= da "

ST+ Tou+ Thm=o0p,.(1),

S-1

where
ol i e T
=[P |y |
AU | LLE T CLE T

Therefore, to prove equation (C.21), it suffices to show that

T,;=o0p,.(1) for je{l,II,1I}.

Note that for || - ||;2p,, With P, being the empirical measure, |||01||i2 *y

2 2 _ dm(X;,
1612 | < lla = BI2,,  + 21{b, @ — byaqp,|. Now, let a = ““Xe9 () and

b= W[w’;]. In order to show 7, | = op,. (1), under Assumption 4.1(iii),
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it suffices to show

dﬁ’l(X,’, a[)) [Lt ]
da "

e

. dﬁl(Xl, 0[) dﬁl(Xi,a )
o 1| Pl B
By the property of LS projection, we have
A X a) AT dm (X ao)
D) el U | ISR Bl 4 =0r ()

i=1 ¢ i=1

due to ii.d. data, Markov inequality, the definition of Ep,,, [|| 2220 1% |
and Assumption 3.1(iv). Next, by the property of LS projection, we have

dm(X;, ) ., dm(X,ap) ,
— — "u u

_1 _ e Y
sup ; ] o [”]e
— : dm(Xi’a) % dm(Xiaa ) *
<supn ! 3| =20 (] - T ]| =onn )

i=1

due to i.i.d. data, Markov inequality, and Assumption A.7(ii). Thus we estab-
lished 7,y = op,., (1).

By similar algebra as before, in order to show 7,, 1 = 0p,, (1), given Assump-
tion 4.1(iii), it suffices to show

dm(X;, ay)
"

da [ ”]
x | nl
i=1

The term n' Y7, || d’”(x “”)[u*]||2 Op,.. (1) is due to i.i.d. data, Markov in-
equality, the deﬁnmon Of Epzm[lldm(x 90 [ 11311, and Assumption 3.1(iv).
The termn=' Y | dm(X W0 [y] — d”'(X -0) [u*]||2 = 0p,, (1) is due to i.i.d. data,
Markov inequality, and Assumptlon A 6(i). Thus 7, 1 = 0p,., (1).

df?l(X,-, 0(0) [u ] _ dm(Xi, aO) [u*]
da " da "

= Opzeo(l).

e
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Finally, T, ;1 = 0p,., (1) follows from the fact that n=' ") | || === d"’(x e [y#])|2 =
Op,.. (1) and Assumption 4.1(iii). We thus established equation (C 21). Since

n 2
EPZ‘” |:n_1 Z 1i|
-

i=1
= Ep, [8(X, ;) 3(X)g(X, u;)] < C < o0,

dm(Xi7 aO) [Ll ]
da "

we obtain Result (1).
Result (2) immediately follows from equation (C.21) and Assumption B.
Q.E.D.

APPENDIX D: SIEVE SCORE STATISTIC AND SCORE BOOTSTRAP

In the main text, we present the sieve Wald, SQLR statistics, and their boot-
strap versions. Here we consider sieve score (or LM) statistic and its bootstrap
version. Both the sieve score test and score bootstrap only require to compute
the original-sample restricted PSMD estimator of «y, and hence are computa-
tionally attractive.

Recall that a® is the original- sample restricted PSMD estimator (4.10). Let
Uk be computed in the same way as v* in Section 4.2, except that we use a”
1nstead of @,. And

n s dini(X.. aR " -
||AKR ||n sd = I’l71 Z(MTM[ELR]> Z;IP(Zi’ af)p(zn af) 271

i=1

8 (dﬁ(ji(;af) F)\;R])

Denote
o1 &ydm(X,ah) sy A
5= =3P 9,0 S ),
1 & dm(X,, &) P
S.= ;(Tmf*/||af||n,sd]) (2, a0),
and

1 ”(dm(X,-,aR

n) =R || 5+R /
T )



SIEVE WALD AND QLR INFERENCE 89

~ 1 dm(X;, a, !
= =3P 61,.0)

x 3 {(win — Dp(Z:,@0)).

Then

Var(S?,1Z")
" /dm(X;,aR = PN

(P ) S etz otz a5
i=1
dm(X;,ay) .

(P )) fle)
:0‘2

which coincides with that of E,n (once adjusted by o).
Following the results in Section 4.2, one can compute v** in closed form,

TR = Ek(m(')/ﬁ;/?n, where
~ d(ﬁ(&f) —k(n)
FH—TH’ (')],
~ dm(X,,an) —k(n) , , - dm(Xl,an) —k(n) , ,

~~~~~

~ dX,,n_n//Ai x e
6n=—2(%w‘ @) (2.2, S
i=1

y (dm(X,,an)[Ekm)(')/])‘

da

Therefore, the bootstrap sieve score statistic §ﬁn can be expressed as

—~ 1 dm(Xi, o) cop 1~
= 2 (P 5, 0) 5o - D028
i=1

~~~~~~ ~ d Xz’n—n !
= (7,D; 5,5, F.) ‘”FD—Z(m - "”()])

Xg[_l(wzn 1)P( is n)
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For the case of i.i.d. weights, this expression is similar to that proposed in Kline
and Santos (2012) for parametric models, which suggests the potential higher

order refinements of the bootstrap sieve score test (S1 7. We leave it to future
research for bootstrap refinement.

In the rest of this section, to simplify presentation, we assume that m(x, )
is a series LS estimator (2.5) of m(x, a). Then we have

i (. 8) — ()
— (an(wj,n —p Z,,aﬁ)pfn(Xj)’) (P'P)” p"(x).
When 3 =1, then we have
3 G e L ) EEAC IR

= 2 2 ) o= Doz

_SB

1,n®
Let {e,}°, and {{,}32, be real-valued positive sequences such that €, = o(1)
and £, =o(1).

ASSUMPTION D.1: (i) max{e,, n~"*}M, 8, = o(n~"/?)

dnXpa) _ dmXipa)
da ! da !

sup sup n’' Xn:

Nosn ueVy : |lu=1 i=1

= Op,., (max{n™""?, €.});

>~n

e

(i) there is a continuous mapping Y : R, — R, such that max{Y({,),
n~ VM8, = o(n"Y?) and

dm(Xi’a)[ *] . dm(Xiaa)[ ]
da “n da .

sup sup n’'

Nosn Yy, ||ufy—ul| <n i1

= Oy, (max{n™"2, (Y(£))’});

(iii) 11" — wyll = Op o (&) where R =0 /U ||sa-

e
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Assumption D.1(i) can be obtained by similar conditions to those imposed in
Ai and Chen (2003). Assumption D.1(ii) can be established by controlling the
entropy, as in VdV-W, Chapter 2.11 and E[|| 42X [yx] — &nXa 2] = o(1)
for all |uX — ul| < ¢,; this result is akin to that in Lemma 1 of Chen, Linton,
and van Keilegom (2003). However, Assumption D.1(ii) can also be obtained
by weaker conditions, yielding a (Y'(£,))? that is slower than O(n~'/?) provided
that Y'({,)M,,8, = o(n~"/?). In the proof, we show that [|i:% — u}|| = 05, (1);
faster rates of convergence will relax the conditions needed to show part (ii).

THEOREM D.1: Let a® be the restricted PSMD estimator (4.10), and condi-
tions for Lemma 3.2 and Proposition B.1 hold. Let Assumptions 3.5, A.4-A.7,
3.6(ii), 4.1, B.1, and D.1 hold and that n5*(M, 8, ,)**C, = o(1). Then, under the
null hypothesis of ¢ (ay) = o,

(1) S, =/nZ,+ op,.(1)=N(0,1).

(2) Further, if conditions for Lemma A.1 and Assumptions Boot.3(ii), Boot.1,
or Boot.2 hold, then

‘LVOC‘ZOO(O';lS?ﬂZ”) - E(/S\n)| =0p,. (1), and
sup| Py z (0, 'S} < 11Z") = Pz (S, < 1)

teR

= OPVoclzoo(l) wpal (Pz~).

PROOF: We first note that by Lemma 5.1, Assumptions 3.6(i) and Boot.3(i)
hold. Also, by Proposition B.1 we have a® € N,,, wpal under the null hypoth-
esis of ¢ (ay) = ¢py. Under the null hypothesis, and Assumption 3.5, we also
have (see Step 1 in the proof of Theorem 4.3):

Vn(u, ak — ag) = 0p,.. (1).

For Result (1), we show that S, is asymptotically standard normal under the
null hypothesis in two steps.

STEP 1: We first show that |2 s B 1] = 0p,.. (1) and [ — ;]| = 0p,.. (1),

\P*R lln,

where Wk =R /|0 ¢ and v* R i computed in the same way as that in Sec-
tion 4.2, except that we use a¥ instead of .

| ””’,QH"“‘d 1] = 0p,. (1) can be established in the same way as that of Theo-

107

rem 4.2(1). Also, following the proof of Theorem 4.2(1), we obtain

SR o
D RGN it
’ nlisd
(v =%, v)
S RSO U S O D,
ol < [ 0p (1)
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This and Assumption 3.1(iv) imply that | 2 “vv;”; b)) = Op, (1) and | ””H;’”,fuzv | =
”'L”'}J"Td X 0p, (1). Therefore,
|2 ~«R =R _ SR
o TS % T 2 M’ZR o, ),
127 19| 12|
and
*
o], o
Thus
xR * xR *
|7 = ;] = | e = 1 (14 07 (1) =
| “sd 'Un sd sd nllsd
=R =R
o, — v, |2 H)
_ = 1).
v:; § + onc< Un B Oonc( )

STEP 2: We show that under the null hypothesis,

(D) S, =/nZ,+0p,..(1)
1 /dm(X;, a) . ' _
-2 Z(To[un]) S(X) ™ p(Zin o) + 0p, (1),

By Step 1, it suffices to show that under the null hypothesis,
dm Xl, an)
E\/—Z( ])2 H(XDm(X;, @)
= T, + 0p, (1).
Recall that £, (x, o) = mi(x, ay) + mi(x, a). We have

< 1 dm(X,,an) ~ R § y -1 ~R
Sn - ﬁ (T[un ]> E(Xl) ¢ (X”a")

(X ar
2 12(X,; )T[u R]

;
\

=

J (.38 — £, (. 3|

i=1



SIEVE WALD AND QLR INFERENCE 93

By Lemma A.2(1) and the assumption that n8*(M,,3;,)*C, = o(1), we have

J SN~ X =0 (79),

i=1

Also n'y " IZ 12(X; )dm(X ) [@*]]|> < 1 by Step 1 and Assumptions A.7
and D.1. Therefore

> IZ( ) ]) SXD ™ 0 (Xis @) + 0, (D).
Assumption D.1(i) implies that
- dm(Xl’an) =R dm (X”af) ~«R ’
Z T[un ]_T[un] .

i=1

= O, (max{n 12, &}).

>*n

And n7' Y0 1€6,(X:, @2 = Op,.. ((M,5,)*) by Lemma A.2(2). These re-
sults, Assumption D.1(i), and Assumption 4.1(iii) together lead to

(B a) S )

1 am(X;,al) ) .

_ﬁ;(T[ ]) S(X) (XL al) 4+ 0p,e (1)
1 & (d X,, ] o ~
IZ< ) ]> I (X &) + o, (D),

where the second equality is due to [|w:* — u}ll = Op,.({,) (Assumption
D.1(iii)) and Assumption D.1(ii).

Since af € N,,, wpal under the null hypothesis, /n{(u}, aX — ay) = op,., (1),
and by analogous calculations to those in the proof of Lemma A.3, we obtain

dm(X,, /
J_Z( " O‘) ]) S(X) (X0, @) = VnZy + 0p e (1),

and hence equation (D.1) holds. By Assumption 3.6(ii), we have: §,, = N(@0,1)
under the null hypothesis.

For Result (2), we now show that SB also converges weakly (in the sense of
Bootstrap Section 5) to a standard normal under the null hypothesis. It suffices
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to show that

A dm(X,,
(D2) S§F= Z( 4%%[ ])2()() p(Z;, o)

+OPVOO‘ZOO(1) Wpal (onc).

Note that ¢2(X;,a%) — ¢,(X;,a®) = m®(X;, ay) — m(X;, &), and that
nt Y I1mP (X, a) — (X, o) 7 = Opyee oo (Ju/1) Wpal (Pz=) (see the
proof of Lemma A.2). We have, by calculations similar to Step 2,

1 Z(dm (X, @, )[ Z])/E(Xi)1{65(&,&5)—6,,(&@5)}

= OPVoo‘Zoo(l) wpal (Pzx).

By analogous calculations to those in the proof of Lemma A.3, we obtain
equation (D.2). This and Result (1) and Assumption Boot.3(ii) now imply that
under the null and conditional on the data, o,'S? is also asymptotically stan-
dard normally distributed. The last part of Result (2) can be established in the
same way as that of Theorem 5.2(1), and is omitted. Q.E.D.
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