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THIS SUPPLEMENT IS DIVIDED into seven sections. In Section S.1, we describe
the computational algorithms. In Section S.2, we deal with inference, both
from a large-N�T perspective and from a large-N , fixed-T perspective. In Sec-
tion S.3, we treat the issues of misspecification of the number of groups G
and its choice. In Section S.4, we study two extensions of the baseline model,
which allow for unit-specific heterogeneity and for group-specific coefficients,
respectively. In Section S.5, we deal with several other issues, including the
connection with mixture models, and how to incorporate prior information in
estimation. In Section S.6, we report the results of a simulation study. Lastly,
in Section S.7, we show a number of additional results related to the empirical
application.

S.1. COMPUTATION

In this section, we provide details on the two computational algorithms, and
we illustrate their performance in a numerical exercise.

S.1.1. Algorithms

The Simple Iterative Algorithm

Algorithm 1 described in the paper is a clustering algorithm. Indeed, it coin-
cides with the well-known kmeans algorithm (Forgy (1965)) in the special case
where there are no covariates in the model (i.e., when θ= 0). In this case, (4)
boils down to the standard minimum sum-of-squares partitioning problem:

α̂= argmin
α∈AGT

N∑
i=1

(
min

g∈{1�����G}

T∑
t=1

(yit − αgt)2

)
�(S.1)

In geometric terms, (S.1) amounts to finding a collection of “centers” α1�α2�
� � � �αG in R

T such that the sum of the Euclidean distances between yi and
the closest center αg is minimum. Due to its relevance in many different fields
(such as astronomy, genetics, or psychology), this problem has been extensively
studied in operations research and computer science (Steinley (2006)).

A drawback of Algorithm 1 is its dependence on the chosen starting values.
One way to overcome this problem is to choose many random starting values,
and then select the solution that yields the lowest objective. In the numerical
experiments reported below and the empirical application, we use the follow-
ing method to generate starting values:
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1. Draw θ(0) from some prespecified distribution supported on Θ.
2. Draw G units i1� i2� � � � � iG in {1� � � � �N} at random, and set

α(0)gt = yigt − x′
igt
θ(0) for all (g� t)�

See Maitra, Peterson, and Ghosh (2011) for a comparison of various ini-
tialization methods for the kmeans algorithm. Another simple initialization
scheme that we have considered is to select G+ r units at random, and to set
(θ(0)� α(0)) as the global minimum of the GFE objective in that subsample. This
can be done easily for low values of r. A practical advantage of this method
is that the researcher does not need to prespecify a distribution for θ(0). In
our experiments, we observed little difference between the two initialization
methods.

A More Efficient Algorithm

In practice, as in kmeans, a prohibitive number of starting values may
be needed to obtain reliable solutions. The Variable Neighborhood Search
method has recently been pointed out as the state-of-the-art heuristic to solve
the minimum sum-of-squares partitioning problem (Hansen and Mladenović
(2001), Hansen, Mladenović, and Moreno Pérez (2010)). We extend the spe-
cific algorithm used in Pacheco and Valencia (2003) and Brusco and Stein-
ley (2007) to allow for covariates. The algorithm works as follows, where
γ = {g1� � � � � gN} is a generic notation for a partition of the N units into G
groups.

ALGORITHM 2—Variable Neighborhood Search:
1. Let (θ�α) ∈Θ×AGT be some starting value.
Perform one assignment step of Algorithm 1 and obtain an initial grouping γinit.
Set itermax and neighmax to some desired values.
Set j = 0.
Set γ∗ = γinit.
2. Set n= 1.
3. (Neighborhood jump) Relocate n randomly selected units to n randomly se-

lected groups, and obtain a new grouping γ′.
Perform one update step of Algorithm 1 and obtain new parameter values

(θ′�α′).
4. Set (θ(0)� α(0))= (θ′�α′), and apply Algorithm 1.
5. (Local search) Starting from the grouping γ = {g1� � � � � gN} obtained in

Step 4, systematically check all reassignments of units i ∈ {1� � � � �N} to groups
g ∈ {1� � � � �G} (for g �= gi), updating gi when the objective function decreases;
stop when no further reassignment improves the objective function.

Let the resulting grouping be γ′′.
6. If the objective function using γ′′ improves relative to the one using γ∗, then

set γ∗ = γ′′ and go to Step 2; otherwise, set n= n+ 1 and go to Step 7.
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7. If n≤ neighmax, then go to Step 3; otherwise go to Step 8.
8. Set j = j + 1. If j > itermax, then Stop; otherwise go to Step 2.

Algorithm 2 combines two different search technologies. First, a local search
(Step 5) guarantees that a local optimum is attained, in the sense that the so-
lution cannot be improved by reassigning any single individual to a different
group. Note that solutions of Algorithm 1 do not necessarily correspond to lo-
cal minima in this sense. Second, reassigning several randomly selected units
into randomly selected groups (Step 3) allows for further exploration of the
objective function. This is done by means of neighborhood jumps of increasing
size, where the maximum size of the neighborhood neighmax is chosen by the
researcher. Local search allows to get around local minima that are close to
each other, whereas random jumps aim at efficiently exploring the objective
function while avoiding getting trapped in a valley.

Choice of Tuning Parameters

Algorithm 2 depends on two parameters set by the researcher: the maxi-
mum neighborhood size neighmax, and a maximum number of iterations itermax.
The algorithm may also be run using different starting parameter values, even
though the choice of starting values tends to matter much less than in the case
of Algorithm 1. Denoting as Ns the number of starting values, Algorithm 2
is thus indexed by (Ns;neighmax; itermax). The parameter itermax measures the
length of the computation for a given starting value, and may be interpreted
as a stopping rule. The parameter neighmax represents the number of neighbor-
hoods evaluated during the search. We follow previous implementation (see
Brusco and Steinley (2007)) and set neighmax = 10. We also set itermax = 10 and
Ns = 10 in our main estimation exercises.1 A practical rule of thumb for choos-
ing the tuning parameters is to check that different starting values tend to yield
the exact same solution.

S.1.2. Numerical Performance

Tables S.I and S.II show the value of the final objective corresponding to
different computational methods, on the cross-country panel data set that we
use in the empirical application. The data set has dimensions N = 90, T = 7,
and two covariates (including a lagged outcome). We show the value of the
objective and computation time for both algorithms whenG= 2, 3, and 10. We
show the results for the first 30 countries, the first 60 countries (alphabetically
ordered), and all 90 countries in the data set.

1In several of the exercises that we performed, these choices resulted in prohibitive computa-
tion times. As a result, the bootstrapped standard errors in Figure 1 in the paper, as well as the
Monte Carlo estimates in Tables S.III and S.VI, were computed using (Ns;neighmax; itermax) =
(5�10�5). The estimates of bootstrapped standard errors in the Monte Carlo exercise in Ta-
bles S.IV and S.VII were computed using Algorithm 1 with 1,000 starting values.
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TABLE S.I

NUMERICAL PERFORMANCE (G= 2�3)a

Algorithm 1 Algorithm 2
(1,000) (10; 10; 10)

Value Time Value Time Exact Value

G= 2
N = 30 6�159 0�6 6�159 2�1 6�159∗

N = 60 13�209 0�9 13�209 7�6 13�209∗

N = 90 19�846 1�3 19�846 18�2 19�846∗

G= 3
N = 30 4�913 0�6 4�913 6�1 4�913∗

N = 60 10�934 1�1 10�934 16�7 10�934∗∗

N = 90 16�598 1�7 16�598 38�4 16�598∗∗

aBalanced panel data set from Acemoglu, Johnson, Robinson, and Yared (2008), T = 7, two covariates. Results
for Algorithm 1 (Ns), with Ns randomly chosen starting values; and for Algorithm 2 (Ns;neighmax; itermax), with Ns
starting values, maximum size of neighborhoods neighmax, and maximum number of iterations itermax. The value of
the final objective and CPU time (in seconds) are indicated. In the “exact” column, ∗∗ refers to Brusco’s (2006) exact
branch and bound algorithm for given θ̂, and ∗ refers to our extension of Brusco’s algorithm that allows for covariates.

Table S.I suggests that the simple iterative algorithm performs well when the
number of groups is small. Algorithms 1 and 2 yield the same solution (i.e.,
the same objective and optimal grouping) in all configurations of the data. In
contrast, Table S.II shows that Algorithm 2 improves on Algorithm 1 when
the number of groups increases. When G= 10 and N = 30, running the itera-
tive algorithm using 1,000 starting values yields a higher value for the objective
function than when using Algorithm 2. When allN = 90 countries are included
in Table S.II, even 1,000,000 different starting values and a running time of ap-
proximately one hour yields a higher objective than when using Algorithm 2

TABLE S.II

NUMERICAL PERFORMANCE (G= 10)a

Algorithm 1 Algorithm 1 Algorithm 2 Algorithm 2
(1,000) (1,000,000) (10; 10; 10) (1,000; 20; 20)

Value Time Value Time Value Time Value Time Exact Value

N = 30 1�106 1�1 1�025 988�3 1�025 48�3 1�025 10�872�2 1�025∗∗

N = 60 4�373 2�0 4�255 1�729�5 4�255 116�4 4�255 28�301�9 N/A
N = 90 8�035 3�4 7�762 3�235�6 7�749 228�4 7�749 132�555�7 7�749∗∗∗

aSee note to Table S.I. In the “exact” column, ∗∗∗ refers to Aloise, Hansen, and Liberti’s (2012) exact column
generation algorithm for given θ̂.
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during only four minutes of search (7�749 versus 7�762, respectively).2 Inter-
estingly, running Algorithm 2 during 36 hours yields exactly the same objective
and grouping.

Despite these results, one concern is that even the best heuristic methods
can lead to nonoptimal solutions. To assess whether the solutions of Algo-
rithm 2 are optimal in Tables S.I and S.II, we make use of—and extend—exact
algorithms for the minimum sum-of-squares partitioning problem. New meth-
ods have recently been proposed to compute globally optimal solutions in this
challenging problem,3 including Brusco’s (2006) repetitive branch and bound
algorithm, and Aloise, Hansen, and Liberti’s (2012) column generation algo-
rithm. In the “exact” columns of Tables S.I and S.II (indicated with two or
three stars), we report the objective function obtained when applying one of
these exact algorithms to the vector of residuals yit − x′

it θ̂, where θ̂ has been
computed using our best heuristic (Algorithm 2). We see that the objective and
grouping coincide with the ones identified by Algorithm 2 in all cases, includ-
ing whenG= 10. This provides very encouraging evidence on the performance
of our algorithm, and confirms previous evidence obtained for minimum sum-
of-squares partitioning (Brusco and Steinley (2007)).

In addition, we were able to extend Brusco’s (2006) repetitive branch and
bound algorithm to allow for covariates.4 Although our current implementa-
tion is limited to a small number of groups (G= 2 for N ≤ 90, and G= 3 for
N = 30), it yields the same solution as the one obtained using the heuristics; see
the results indicated with one star in Table S.I. This formally demonstrates that
our heuristic algorithm has correctly identified the global minimum in these
cases.

Overall, this section suggests that the computation problem for GFE is chal-
lenging, yet not impossible, thanks to recent advances in data clustering. Our
main algorithm (Algorithm 2) delivers fast and reliable estimates, and we have
provided evidence that the solutions obtained are globally optimal in the data
set of our empirical application. In larger data sets, the simple iterative al-
gorithm (Algorithm 1) is a practical option.5 Assessing the numerical perfor-

2The computer used in our calculations has 64 bits and 24 GB RAM.
3It has been proved that problem (S.1) may be solved exactly in O(NGT+1) operations (Inaba,

Katoh, and Imai (1994)).
4The extension of the algorithm that allows for covariates is available as Supplemental Mate-

rial.
5In large data sets, an alternative is to proceed in three steps: first estimate the GFE estimator

on a random subsample of size n� N , yielding (θ̂(0)� α̂(0)); then classify all N units in the en-
tire sample based on (θ̂(0)� α̂(0)); finally estimate (θ̂� α̂) using an OLS regression on the estimated
groups, using the entire sample. Though not numerically equal to the argument of the global
minimum of the GFE objective function, this three-step estimator will be asymptotically equiva-
lent to the latter in a large-N�T perspective, under the conditions spelled out in Section 3 of the
paper, provided n→ ∞. We thank Denis Chetverikov for pointing this out to us.
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mance of the two algorithms as the dimensions of the problem increase is a
natural next step.

Finally, it is worth pointing out that research on computational algorithms
is still in progress. Mixed Integer Nonlinear Programming (MINLP) is an ac-
tive area of research. Recent work has shown that sophisticated interior point
methods can deliver exact solutions to problem (S.1) in competitive time in
several large instances. While Brusco’s (2006) repetitive branch and bound al-
gorithm computed the global minimum in (S.1) in Fisher’s Iris data (N = 150,
T = 4) for as much asG= 10 groups, Du Merle, Hansen, Jaumard, and Mlade-
novic (2001) and more recently Aloise, Hansen, and Liberti (2012) computed
exact solutions in data sets of dimensions up to N = 2310 and T = 19, for
G= 250 groups.6 We view exact and heuristic methods as complementary tools
to compute GFE estimators.

S.2. INFERENCE

In this section, we first present estimators of the large N�T variance of the
GFE estimator in model (1). Then we study the large-N , fixed-T asymptotic
properties of GFE, and propose variance estimators.

S.2.1. Large-N�T Inference

We start with estimation of the large-T variance of group-specific time ef-
fects and common parameters under the conditions of Corollary 1. Assuming
independent observations across individual units, the variance of α̂gt for all g� t
can be estimated using the White formula:

V̂ar(̂αgt)=

N∑
i=1

1{ĝi = g}̂v2
it(

N∑
i=1

1{ĝi = g}
)2 �(S.2)

where v̂it = yit − x′
it θ̂− α̂ĝit are the estimated GFE residuals.

Following Corollary 1, we estimate the asymptotic variance of θ̂ as follows:

V̂ar(θ̂)= Σ̂−1
θ Ω̂θΣ̂

−1
θ

NT
�(S.3)

6Note that the algorithm of Aloise, Hansen, and Liberti (2012) that we used in Table S.II
delivered the global optimum in 1�7 seconds only.
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where, denoting as xgt the mean of xit in group ĝi = g,7 we take

Σ̂θ = 1
NT

N∑
i=1

T∑
t=1

(xit − xĝi�t)(xit − xĝi�t)′�

and where Ω̂θ is a consistent estimate of the matrix Ωθ.
In the presence of serial correlation, one may use the truncated kernel

method of Newey and West (1987) to construct an estimator Ω̂θ, as in Bai
(2003). Alternatively, one may use the following formula clustered at the indi-
vidual level (Arellano (1987)):

Ω̂θ = 1
NT

N∑
i=1

T∑
t=1

T∑
s=1

v̂it v̂is(xit − xĝi�t)(xis − xĝi�s)′�

The properties of Arellano’s (1987) formula in fixed-effects models as N and
T tend to infinity are studied in Hansen (2007).

Finally, note that the assumptions of Corollary 1 allow for weak dependence
in the cross-sectional dimension, too. However, the variance formulas (S.2)–
(S.3) are generally invalid in that case. The literature provides a number of
variance estimators that account for spatial and time-series dependence, and
can be applied to GFE estimators. For example, when a meaningful notion
of distance dij between units is available, one can construct the following es-
timator of Ωθ that is robust to serial correlation and spatial correlation that
diminishes with distance:

Ω̃θ = 1
NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

κ

(
dij

dN

)
v̂it v̂js(xit − xĝi�t)(xjs − xĝj�s)′�

where κ is a kernel function, and dN is suitably chosen as an increasing function
of the sample size, as in Kelejian and Prucha (2007) and Moscone and Tosetti
(2012).

Below we show numerical evidence on the finite sample performance of the
estimator (S.3) of the variance of the GFE estimator. In the exercises on sim-
ulated and real data, we use variance formulas clustered at the unit (i.e., coun-
try) level. Thus, we implicitly assume away spatial dependence, while taking
into account general forms of time dependence.

7That is: xgt =
∑N
i=1 1{ĝi=g}xit∑N
i=1 1{ĝi=g} . Note that this differs from the mean covariates defined in Assump-

tion 3 in the paper, as here the mean is computed within an estimated group.
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S.2.2. Large-N , Fixed-T Inference

S.2.2.1. Asymptotic Distribution

Let (θ̂� α̂) be the GFE estimator of (θ�α) in model (1). Let also yi =
(yi1� � � � � yiT )

′ (with dimensions T × 1), and xi = (xi1� � � � � xiT )
′ (T ×K, where

K = dimxit). We assume that (yi� xi) are i.i.d. across individuals and have fi-
nite second moments. Note that, in contrast with the large-N�T analysis in the
paper, here we assume random sampling across units. In addition, we assume
that the solution to the following population minimization problem:

(θ�α)= argmin
(θ�α)∈Θ×AGT

E

[
T∑
t=1

(
yit − x′

itθ− αĝi(θ�α)t
)2

]
�(S.4)

is unique up to relabeling. Lastly, we assume that the solution to every mini-
mization problem of the form (S.4) but based on G̃ <G groups is also unique.
Then, extending the analysis of Pollard (1981) to allow for covariates, it can be
shown that, as N tends to infinity with T fixed,

(θ̂� α̂)
p→ (θ�α)�

Note that, in contrast with the asymptotic analysis of Section 3 in the paper,
uniqueness of the solution in (S.4) does not require the data generating process
to have a grouped structure.8

If the conditions of Pollard’s (1981) consistency theorem are satisfied, the
pseudo-true parameter value (θ�α) solves the following system of moment re-
strictions:

E
[
x′
i(yi − xiθ− αĝi(θ�α))

]= 0�(S.5)

and

E
[
1
{
ĝi(θ�α)= g}(yi − xiθ− αg)

]= 0 for all g= 1� � � � �G�(S.6)

where αg = (αg1� � � � �αgT )
′ is T × 1. As in the paper, we will also denote as

α= (α′
1�α

′
2� � � � �α

′
G)

′ the GT × 1 vector that stacks all αgt ’s.
Using empirical process theory, Pollard (1982) showed that, in the absence

of covariates,
√
N(̂α − α) is asymptotically normally distributed under suit-

able conditions. Adapting Pollard’s arguments to allow for covariates, it can be
shown that

√
N

(
θ̂− θ
α̂− α

)
d→N

(
0� Γ −1V Γ −1

)
�(S.7)

8On the other hand, this assumption rules out purely homogeneous DGPs as soon as T ≥ 2.
To see this, suppose that yit are i.i.d. standard normal, and that there are no covariates in the
model. In the case T = 2, it can be shown that the solutions to (S.4) lie on a circle whose radius is
identified, but that the precise location of the points on the circle is not.
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where the (GT + K) × (GT + K) matrices V and Γ are defined below. As
in Pollard’s (1982) main theorem, for (S.7) to hold we assume that yi has a
continuous density given xi, and that Γ is positive definite, in addition to the
assumptions needed for consistency.

The GFE estimator (θ̂� α̂) is a just-identified GMM estimator based on non-
smooth moment functions. V is given by

V = E
[
Wi(θ�α)(yi − xiθ− αĝi(θ�α))(yi − xiθ− αĝi(θ�α))′Wi(θ�α)

′]�
where

Wi(θ�α)=
(

x′
i

eĝi(θ�α) ⊗ IT
)
�

and where e1� � � � � eG denotes the canonical basis of RG.
Moreover, Γ is given by

Γ =
⎛⎜⎝ Γθθ Γθ1 · · · ΓθG
Γ1θ Γ11 · · · Γ1G

· · · · · · · · · · · ·
ΓGθ ΓG1 · · · ΓGG

⎞⎟⎠ �
where

Γθθ = − ∂

∂θ′

∣∣∣∣
(θ�α)

E
[
x′
i(yi − xiθ− αĝi(θ�α))

]
�

Γθg = − ∂

∂α′
g

∣∣∣∣
(θ�α)

E
[
x′
i(yi − xiθ− αĝi(θ�α))

]
�

Γgg̃ = − ∂

∂α′
g̃

∣∣∣∣
(θ�α)

E
[
1
{
ĝi(θ�α)= g}(yi − xiθ− αg)

]
�

and where Γgθ = Γ ′
θg.

The next result provides a convenient alternative expression for Γ .

PROPOSITION S.1: Let us denote as f the conditional density of yi given xi. Let
us also define, for all (g�h) ∈ {1� � � � �G}2,

Sgh = {y ∈R
T �‖y − xθ− αg‖2 = ‖y − xθ− αh‖2� and(S.8)

‖y − xθ− αg‖2 ≤ ‖y − xθ− αh̃‖2 for all h̃ �= (g�h)}�
We denote Sgh as Sgh when evaluated at (θ�α).9

9Note that Sgh and Sgh depend on x, although we leave the dependence implicit for concise-
ness. Moreover, the integrals are relative to the (T − 1)-dimensional Lebesgue measure.
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We have

Γθθ = E
[
x′
ixi
]

(S.9)

− 1
2

G∑
g=1

∑
h�=g

E

[(∫
Sgh

f (y|xi)dy
)
x′
i

(
(αh − αg)(αh − αg)′

‖αh − αg‖
)
xi

]
�

Γθg = E
[
x′
i1
{
ĝi(θ�α)= g}](S.10)

+
∑
h�=g

E

[
x′
i(αg − αh)

(∫
Sgh

(y − xiθ− αg)′
‖αh − αg‖ f (y|xi)dy

)]
�

Γgg = E
[
1
{
ĝi(θ�α)= g}]IT(S.11)

−E

[∑
h�=g

(∫
Sgh

(y − xiθ− αg)(y − xiθ− αg)′
‖αh − αg‖ f (y|xi)dy

)]
�

Γgg̃ = E

[(∫
Sgg̃

(y − xiθ− αg)(y − xiθ− αg̃)′
‖αg̃ − αg‖ f (y|xi)dy

)]
(S.12)

for all g̃ �= g�
For the proof see Appendix S.A.3.
The regions Sgh comprise units that are at the margin between belonging

to groups g or h. The large-T variance is obtained when f has no mass on
Sgh. In a fixed-T asymptotic, in contrast, group misclassification adds an extra
contribution to the variance of the GFE estimator, as the following example
illustrates.

Example. Consider the simple case with no covariates, time-invariant het-
erogeneity αgit = αgi , and G = 2. In this case, the pseudo-true value (α1�α2)
satisfies

E
[
1
{
ĝi(α1�α2)= g}(yi − αg)]= 0� g= 1�2�

That is, assuming α1 <α2 without loss of generality,∫ (α1+α2)/2

−∞
(y − α1)f (y)dy = 0

and ∫ +∞

(α1+α2)/2
(y − α2)f (y)dy = 0�

where f (y) denotes the density of yi.
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It is easily verified that

Γ =
(
E
(
1
{
ĝi(α1�α2)= 1

})
0

0 E
(
1
{
ĝi(α1�α2)= 2

}))
−
∣∣∣∣α2 − α1

4

∣∣∣∣f(α1 + α2

2

)(
1 1
1 1

)
�

The second term in Γ represents the contribution to the variance due to
observations that are at the margin between group 1 and group 2. Note that, if
the DGP is given by equation (14) in the paper with α0

1 �= α0
2, and denoting as

φ the standard normal density,∣∣∣∣α2 − α1

4

∣∣∣∣f(α1 + α2

2

)
=
∣∣∣∣α0

2 − α0
1

4
+ op

(
T−δ)∣∣∣∣

×
√
T

σ

[
Pr
(
g0
i = 1

)
φ

(√
T

σ

(
α0

2 − α0
1

2
+ op

(
T−δ)))

+ Pr
(
g0
i = 2

)
φ

(√
T

σ

(
α0

1 − α0
2

2
+ op

(
T−δ)))]�

which tends to zero as T tends to infinity. When groups are well-separated, and
under suitable tail and dependence conditions, the additional variance contri-
bution due to group misclassification vanishes asymptotically. As a result, the
large-N , fixed-T formula tends to the large-N�T formula as T tends to infinity.

S.2.2.2. Variance Estimation

We study two strategies in turn: variance estimation based on analytical for-
mulas, and inference based on the bootstrap.

Analytical Formulas. A consistent estimator of V is readily obtained as

V̂ = 1
N

N∑
i=1

Wi(θ̂� α̂)(yi − xiθ̂− α̂ĝi(θ̂�̂α))(yi − xiθ̂− α̂ĝi(θ̂�̂α))′Wi(θ̂� α̂)
′�

To construct a consistent estimator of Γ , we use the following:

Γ̂θθ = 1
N

N∑
i=1

x′
ixi(S.13)

− 1
2N

G∑
g=1

∑
h�=g

N∑
i=1

�̂igh(εN)x
′
i

(
(̂αh − α̂g)(̂αh − α̂g)′

‖α̂h − α̂g‖
)
xi�
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Γ̂θg = 1
N

N∑
i=1

x′
i1
{
ĝi(θ̂� α̂)= g}(S.14)

+ 1
N

∑
h�=g

N∑
i=1

�̂igh(εN)x
′
i(̂αg − α̂h)(yi − xiθ̂− α̂g)′

‖α̂h − α̂g‖ �

Γ̂gg = 1
N

N∑
i=1

1
{
ĝi(θ̂� α̂)= g}IT(S.15)

− 1
N

∑
h�=g

N∑
i=1

�̂igh(εN)
(yi − xiθ̂− α̂g)(yi − xiθ̂− α̂g)′

‖α̂h − α̂g‖ �

Γ̂gg̃ = 1
N

N∑
i=1

�̂igg̃(εN)
(yi − xiθ̂− α̂g)(yi − xiθ̂− α̂g̃)′

‖α̂g̃ − α̂g‖ for all g̃ �= g�(S.16)

where

�̂igh(εN)= 1
εN
κ

(( α̂h − α̂g
‖α̂h − α̂g‖

)′(
yi − xiθ̂− α̂g + α̂h

2

)
εN

)

× 1
{

max
(‖yi − xiθ̂− α̂g‖2�‖yi − xiθ̂− α̂h‖2

)
≤ min

h̃�=(g�h)
‖yi − xiθ̂− α̂h̃‖2

}
�

and where κ(·) is a kernel function. Note that αh−αg
‖αh−αg‖ is the normal vector to

the hypersurface Sgh. The estimator Γ̂ is reminiscent of Powell’s (1986) vari-
ance estimator for quantile regression. Similarly, Γ̂ will be consistent for Γ
if εN → 0 and

√
NεN → +∞. To implement this method, we take a Gaussian

kernel κ=φ. Optimal choice of εN exceeds the scope of this paper.10

Bootstrap. An alternative to the analytical formulas V̂ and Γ̂ is to use
the bootstrap, resampling unit-specific blocks of observations (yi� xi) from the

10We experimented with the following nonadaptive rule, roughly mimicking Silverman’s (1986)
rule of thumb for density estimation:

εN = 1�06 min
g�h�=g

(√
V̂ar
((

α̂h − α̂g
‖α̂h − α̂g‖

)′
(yi − xiθ̂)

))
N−1/5�

and obtained good results on simulated and real data. This is the choice we used in Tables S.IV,
S.VII, and S.XI.
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original sample. Consistency of the bootstrap for the minimum sum-of-squares
partitioning problem, relying on the asymptotic derivations of Pollard (1982)
and the results on the bootstrap obtained by Giné and Zinn (1990), is shown
in Arcones and Giné (1992). As it requires multiple optimization of the GFE
objective for different samples, however, the bootstrap is computationally in-
tensive compared to the inference approach based on analytical formulas.

S.3. UNKNOWN NUMBER OF GROUPS

The asymptotic results of Section 3 in the paper were derived under the
assumption that the true number of groups G0 was known. In this section, we
relax this assumption and let G be the (possibly incorrect) number of groups
postulated by the researcher.

S.3.1. Incorrect Number of Groups: A Simple Case

Misspecification of the number of groups has different effects on common
parameter estimates, depending on whether the postulated number of groups
is above or below the true one. WhenG<G0, the GFE estimator θ̂ is generally
inconsistent for θ0 if the unobserved effects are correlated with the observed
covariates. The inconsistency arises because of omitted variable bias. In con-
trast, when G>G0, common parameters θ̂ remain consistent for θ0 under the
conditions of Theorem 1, since the proof of the theorem is unaffected in this
case. However, the group-specific effects may suffer from a substantial small-T
bias, as the following simple example illustrates.

PROPOSITION S.2: Let us consider the model

yit = x′
itθ

0 + α0
g0
i
+ vit� vit ∼ i�i�d�N

(
0�σ2

)
� vit independent of xjs�(S.17)

where the true number of groups is G0 = 1, and where α0 = α0
1 denotes the true

value of α.
Let (θ̂� α̂) be the GFE estimator of (θ0�α0) with G = 2 groups. Then, as T is

kept fixed and N tends to infinity, we have θ̂
p→ θ0, and α̂g

p→ α0 ± σ
√

2
πT

, for
g= 1�2.

For the proof see Appendix S.A.4.
In this example, the data generating process is homogeneous (G0 = 1), but

the researcher estimates two groups (G = 2). The proof of Proposition S.2
shows that, asymptotically, the two estimated groups are solely based on ran-
dom errors (depending on whether vi ≥ 0). Given that the spurious groups
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are independent of covariates, their presence does not bias the GFE estimator
of θ0. In fact, allowing for a larger number of groups than the true one in GFE
estimation may be thought of as including (G − G0) irrelevant regressors—
uncorrelated with the covariates of interest—in a linear regression. A sim-
ilar intuition applies to interactive fixed-effects models: Moon and Weidner
(2010a) showed that the asymptotic distribution of the interactive fixed-effects
estimator with G≥G0 factors is identical to that of the estimator based on the
correct number of factors. We conjecture that this result applies to the GFE
estimator in model (1). However, a formal proof of this conjecture is beyond
the scope of this paper.

The group-specific effects α̂1 and α̂2 are both consistent for α0 as T tends
to infinity. However, in contrast with common parameters, they suffer from a
bias of orderO(1/

√
T) for small T , which is one order of magnitude larger than

the usual O(1/T) order in fixed-effects panel data models. The σ
√

2
πT

term in
Proposition S.2 is simply the mean of a truncated normal (0�σ2/T) (i.e., the
mean of vi truncated at zero).

S.3.2. Estimating the Number of Groups

To consistently estimate the number of groups G0 in model (1), we rely on
the connection with the analysis of large factor models and interactive fixed-
effects panel data models and consider the following class of information cri-
teria:

I(G)= 1
NT

N∑
i=1

T∑
t=1

(
yit − x′

it θ̂
(G) − α̂(G)ĝit

)2 +GhNT �(S.18)

where (G) refers to the GFE estimator withG groups, and hNT is a penalty. The
estimated number of groups is then

Ĝ= argmin
G∈{1�����Gmax}

I(G)�(S.19)

where Gmax is an upper bound on G0.
Following the arguments in Bai and Ng (2002) and Bai (2009), it can be

shown that the estimated number of groups Ĝ is consistent for G0 if, as N and
T tend to infinity, hNT tends to zero and min(N�T)hNT tends to infinity. The
first condition ensures that Ĝ ≥G0 with probability approaching 1, while the
second condition guarantees that Ĝ ≤G0. The availability of a known upper
bound Gmax is key in order to derive the asymptotic properties. The problem
of selecting Gmax is not considered here.
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As an example, let us consider the following Bayesian Information Criterion
(BIC):11

BIC(G)= 1
NT

N∑
i=1

T∑
t=1

(
yit − x′

it θ̂
(G) − α̂(G)ĝit

)2
(S.20)

+ σ̂2GT +N +K
NT

ln(NT)�

where σ̂2 is a consistent estimate of the variance of vit .12 One easily sees that
the BIC estimate Ĝ is consistent for G0 if N and T tend to infinity at the same
rate. In contrast, if T tends to infinity more slowly than N so that T/N tends
to zero, the BIC criterion (S.20) implies that plimN�T→∞ Ĝ≥G0, but Ĝ may be
inconsistent for G0.

S.4. EXTENSIONS OF THE BASELINE MODEL

In this section, we analyze the large-N�T properties of the GFE estimator in
two models: model (5) that combines time-invariant unit-specific heterogene-
ity with time-varying grouped patterns, and model (7) that allows for group-
specific coefficients.

S.4.1. Extension 1: Unit-Specific Heterogeneity

Consider model (5), and define(
θ̂FE� μ̂FE� γ̂FE

)
(S.21)

= argmin
(θ�μ�γ)∈Θ×MGT×ΓG

N∑
i=1

T∑
t=1

(
yit − yi − (xit − xi)′θ−μgit

)2
�

11Given that unobserved heterogeneity is discrete, there is some ambiguity on how to define
the number of parameters in the grouped fixed-effects approach. In (S.20), we have simply added
the number of group-specific time effects (i.e.,GT ), the number of common parameters (K), and
the number of group membership variables gi (i.e., N). Below we report simulation results using
(S.20), as well as using an alternative choice with a steeper penalty.

12A possibility is to estimate θ̂, α̂, and {ĝ1� � � � � ĝN } using grouped fixed-effects with Gmax

groups, and to compute

σ̂2 = 1
NT −GmaxT −N −K

N∑
i=1

T∑
t=1

(
yit − x′

it θ̂− α̂ĝi t
)2
�
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and (
θ̃FE� μ̃FE

)= argmin
(θ�μ)∈Θ×MGT

N∑
i=1

T∑
t=1

(
yit − yi − (xit − xi)′θ−μg0

i t

)2
�(S.22)

where

MGT = {μ ∈ R
GT � for some α ∈AGT μgt = αgt − αg

for all (g� t) ∈ {1� � � � �G} × {1� � � � �T }}�
We denote γ̂FE = {ĝFE1 � � � � � ĝ

FE
N }.

Consider the following assumptions.

ASSUMPTION S.1:
(a) For all (g� g̃) ∈ {1� � � � �G}2 such that g �= g̃: plimT→∞

1
T

∑T

t=1(α
0
gt − α0

g −
α0
g̃t + α0

g̃)
2 = cFEg�g̃ > 0.

(b) There exists a constant M∗ > 0 such that, as N�T tend to infinity,

sup
i∈{1�����N}

Pr

(
1
T

T∑
t=1

‖xit − xi‖ ≥M∗
)

= o(T−δ) for all δ > 0�

Assumption S.1(a) is a group separation condition. Assumption S.1(b) is re-
lated to, but weaker than, Assumption 2(e). We have the following two results.

PROPOSITION S.3—Unit-Specific Heterogeneity: Suppose that Assump-
tions 1(a)–1(c) hold, and that Assumptions 1(d)–1(g) hold with xit and vit re-
placed by xit − xi and vit − vi, respectively. Suppose also that Assumptions 2(a)
and 2(c)–2(d) hold, and that Assumption S.1 holds. Then

Pr
(

sup
i∈{1�����N}

∣∣̂gFEi − g0
i

∣∣> 0
)

= o(1)+ o(NT−δ)�(S.23)

and

θ̂FE = θ̃FE + op
(
T−δ)� and(S.24)

μ̂FEgt = μ̃FEgt + op
(
T−δ) for all g� t�(S.25)

For the proof see Appendix S.A.5.

COROLLARY S.1—Unit-Specific Heterogeneity: Suppose that the conditions
of Proposition S.3 are satisfied. Suppose also that Assumption 3 holds, with xit
and vit replaced by xit − xi and vit − vi, respectively. Then, as N and T tend to
infinity such that N/Tν → 0 for some ν > 0, we have

√
NT
(
θ̂FE − θ0

) d→N
(
0�
[
ΣFEθ
]−1
ΩFE
θ

[
ΣFEθ
]−1)

�(S.26)
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and, for all (g� t),

√
N
(
μ̂FEgt − (α0

gt − α0
g

)) d→N
(

0�
ωFE
gt

π2
g

)
�(S.27)

where13

ΣFEθ = plim
N�T→∞

1
NT

N∑
i=1

T∑
t=1

(xit − xi − xg0
i t

+ xg0
i
)(xit − xi − xg0

i t
+ xg0

i
)′�

ΩFE
θ = lim

N�T→∞
1
NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E
[
(vit − vi)(vjs − vj)

× (xit − xi − xg0
i t

+ xg0
i
)(xjs − xj − xg0

j s
+ xg0

j
)′
]
�

ωFE
gt = lim

N→∞
1
N

N∑
i=1

N∑
j=1

E
(
1
{
g0
i = g}1{g0

j = g}(vit − vi)(vjt − vj))�
PROOF: Essentially identical to the proof of Corollary 1. Q.E.D.

Note that the conditions of Proposition S.3 do not rule out the presence of
lagged dependent variables in xit . For example, if yit follows a stable autore-
gressive process with i.i.d. innovations vit in both dimensions, and group-time
effects independent of vit , it can be shown along the lines of Alvarez and Arel-
lano (2003) that14

1
T

T∑
t=1

T∑
s=1

E
[
(vit − vi)(vis − vi)(yi�t−1 − yi�−1)(yi�s−1 − yi�−1)

]

= TE
[(

1
T

T∑
t=1

(vit − vi)(yi�t−1 − yi�−1)

)2]
=O(1)�

so that Assumption 1(d) holds with xit and vit replaced by xit − xi and vit − vi.
Moreover, Assumption S.1(b) holds in the presence of lagged outcomes, under
conditions that we provide in Appendix S.A.5.

In contrast, the conditions needed to apply Corollary S.1 rule out the pres-
ence of a lagged outcome in xit . Indeed, the counterpart to Assumption 3(a) is

E
[
(xjt − xj)(vit − vi)

]= 0 for all i� j� t�

13We denote xg =
∑N
i=1 1{g0

i =g}xi∑N
i=1 1{g0

i =g}
, for all g ∈ {1� � � � �G}.

14Here we denote: yi�−1 = 1
T

∑T
t=1 yi�t−1.
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This condition holds when covariates are strictly exogenous, but fails to hold
in models with lagged outcomes where E[(yi�t−1 − yi�−1)(vit − vi)] =O(1/T) is
not zero in general.

Instrumental Variables

When xit are not strictly exogenous (yet the conditions of Proposition S.3
hold), one possibility is to use an instrumental variables strategy in the first-
differenced equation:

�yit = �x′
itθ

0 +�α0
g0
i t

+�vit�(S.28)

where �wit = wit − wi�t−1. This approach relies on the availability of a vec-
tor of instruments zit such that E(zjt�vit)= 0 for all i� j� t. For example, when
xit = (yi�t−1� x̃

′
it)

′ contain a lagged outcome and a vector of strictly exogenous
covariates, and when vit are independent across units and over time, we can
take zit = (yi�t−2��x̃

′
it)

′, in analogy with IV techniques commonly used in linear
panel data models (Anderson and Hsiao (1982)).

If population group membership indicators were known, one could consider
the following IV estimator of θ0, which uses zit and interactions of group and
time dummies as instruments:15

θ̃IV =
[

N∑
i=1

T∑
t=1

zit(�xit −�xg0
i t
)′
]−1 N∑

i=1

T∑
t=1

zit(�yit −�yg0
i t
)�(S.29)

Under standard conditions,
√
NT(θ̃IV − θ0) is asymptotically distributed as

N (0� VIV ) as N and T tend to infinity.
A feasible counterpart to θ̃IV is given by

θ̂IV =
[

N∑
i=1

T∑
t=1

zit(�xit −�xĝFEi t)
′
]−1 N∑

i=1

T∑
t=1

zit(�yit −�yĝFEi t)�(S.30)

where the GFE estimates ĝFEi are given by (S.21). Using (S.23), one can show
that, as N and T tend to infinity such that N/Tν tends to zero for some ν > 0,√
NT(θ̂IV − θ̃IV )= op(1).16 As a result,

√
NT(θ̂IV −θ0)

d→N (0� VIV ). An anal-
ogous result holds for the IV estimates of �α0

gt .

15For simplicity, we focus on the just-identified case where zit and xit have the same dimension.
16Indeed, for all ε > 0, if N/Tν → 0 for some ν > 0,

Pr
[∣∣√NT (θ̂IV − θ̃IV )∣∣> ε]≤ Pr

(
sup

i∈{1�����N}

∣∣̂gFEi − g0
i

∣∣> 0
)

= o(1)�
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S.4.2. Extension 2: Heterogeneous Coefficients

Consider the following extension of model (12) with heterogeneous coeffi-
cients:

yit = x′
itθ

0
g0
i
+ α0

g0
i t

+ vit �(S.31)

In this model, the GFE estimator is defined as17

(
θ̂HC� α̂HC� γ̂HC

)= argmin
(θ�α�γ)∈ΘG×AGT×ΓG

N∑
i=1

T∑
t=1

(
yit − x′

itθgi − αgit
)2
�(S.32)

We denote γ̂HC = {ĝHC1 � � � � � ĝHCN }.
Let us also define the infeasible counterpart to (θ̂HC� α̂HC) as

(
θ̃HC� α̃HC

)= argmin
(θ�α)∈ΘG×AGT

N∑
i=1

T∑
t=1

(
yit − x′

itθg0
i
− αg0

i t

)2
�(S.33)

Consider the following set of assumptions.

ASSUMPTION S.2:
(a) There exists a ρ̂HC

p→ ρHC > 0 such that, for all g, minγ∈ΓG maxg̃∈{1�����G} ρ̂(γ�
g� g̃) ≥ ρ̂HC , where ρ̂(γ�g� g̃) is the minimum eigenvalue of the following
(K + T)× (K + T) matrix (with K = dimxit):

M(γ�g� g̃)≡ 1
N

N∑
i=1

1
{
g0
i = g}1{gi = g̃}

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
T

T∑
t=1

xitx
′
it

1√
T
xi1

1√
T
xi2 · · · 1√

T
xiT

1√
T
x′
i1 1 0 · · · 0

1√
T
x′
i2 0 1 · · · 0

· · · · · · · · · · · · · · ·
1√
T
x′
iT 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

17Extensions of our algorithms can be used to compute the GFE estimator in (S.32). See,
for example, the literature on “clusterwise regression” in operations research (Späth (1979),
Caporossi and Hansen (2005), and more recently, Lin and Ng (2012)). The results of the het-
erogeneous coefficients model that we report in the empirical section below are based on a coun-
terpart to Algorithm 1.
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(b) For all g �= g̃, there exists a cHCg�g̃ > 0 such that plimN�T→∞
1
N

∑N

i=1D
0
gg̃i ≥ cHCg�g̃

and, for all i ∈ {1� � � � �N}, plimT→∞D
0
gg̃i ≥ cHCg�g̃ , where D0

gg̃i = 1
T

∑T

t=1(x
′
it(θ

0
g −

θ0
g̃)+ α0

gt − α0
g̃t)

2.
(c) There exists a constant M∗ > 0 such that

sup
i∈{1�����N}

Pr

(
1
T

T∑
t=1

‖xit‖2 ≥M∗
)

= o(T−δ) for all δ > 0�

(d) For all constants c > 0,

sup
i∈{1�����N}

Pr

(∥∥∥∥∥ 1
T

T∑
t=1

vitxit

∥∥∥∥∥> c
)

= o(T−δ) for all δ > 0�

Assumption S.2(a) is a relevance condition related to Assumption 1(g) in
the paper. In particular, in analogy with the baseline model, this condition fails
when, for some g and γ, the matrix

1
NT

N∑
i=1

T∑
t=1

1
{
g0
i = g}1{gi = g̃}(xit − xg∧g̃�t)(xit − xg∧g̃�t)′

is singular for all g̃.
To provide some intuition for Assumption S.2(a), let us consider the case

where xit are scalar standard normal, i.i.d. in both dimensions. For a given
partition γ, and given (g� g̃), M(γ�g� g̃) takes the form

M(γ�g� g̃)=

⎛⎜⎜⎝ â
1√
T
b̂′

1√
T
b̂

N(g� g̃)

N
IT

⎞⎟⎟⎠ �
â∼ χ2

N(g�g̃)T

NT
� and b̂t ∼ N

(
0�N(g� g̃)

)
N

for all t ∈ {1� � � � �T }�

where IT denotes the T × T identity matrix, and N(g� g̃) ≡∑N

i=1 1{g0
i = g} ×

1{gi = g̃}. Moreover, by Assumption 2(a), maxg̃∈{1�����G}
N(g�g̃)

N
≥ πg

2G with probabil-
ity approaching 1. Hence, for a suitable choice of g̃, E[M(γ�g� g̃)] is asymptoti-
cally bounded from below by a positive constant times IT+1. In Appendix S.A.6,
we formally show that Assumption S.2(a) holds in this case. This requires tak-
ing into account the minimization with respect to γ (which introduces a GN

probability factor), and showing that the rates of convergence of â and 1√
T
b̂

are sufficiently fast to dominate in the limit.
Assumption S.2(b) is a group separation condition. As in the baseline model,

this condition is instrumental to derive asymptotic equivalence. A difference
with Assumptions 2(b) and S.1(a) is that, in this case, the condition depends



GROUPED PATTERNS OF HETEROGENEITY 21

on the data (xi1� � � � � xiT ). Intuitively, it is satisfied if, for all i and g̃ �= g, {xit}t
and {α0

gt − α0
g̃t}t are not collinear. For example, if xit = xi are time-invariant,

then Assumption S.1(a) implies Assumption S.2(b). In practice, however, As-
sumption S.2(b) might fail to hold for some units, exactly or approximately.
One would then expect group classification to be inaccurate for those units.
Providing methods to test for group separation, and to achieve valid inference
on the model’s parameters when it fails, are interesting questions for future
work.

Assumption S.2(c) is a slightly more restrictive version of Assumption 2(e).
Lastly, Assumption S.2(d) imposes a condition on the tail properties of
1
T

∑T

t=1 vitxit . It will hold if, similarly as vit , vitxit satisfy mixing and tail con-
ditions of the form given in Assumption 2 in the paper.18

We then have the following result.

PROPOSITION S.4—Heterogeneous Coefficients: Suppose that Assumptions
1(a)–1(f), Assumptions 2(a) and 2(c)–2(d), and Assumption S.2 hold. Then,
as N�T tend to infinity,

Pr
(

sup
i∈{1�����N}

∣∣̂gHCi − g0
i

∣∣> 0
)

= o(1)+ o(NT−δ)�(S.34)

and

θ̂HCg = θ̃HCg + op
(
T−δ) for all g� and(S.35)

α̂HCgt = α̃HCgt + op
(
T−δ) for all g� t�(S.36)

For the proof see Appendix S.A.6.
We also have a result analogous to Corollary 1, which we give without proof.

ASSUMPTION S.3:
(a) For all i� j, t, and g, E(1{g0

i = g}xjtvit)= 0.
(b) For all g, there exist positive definite matrices ΣHCθg and ΩHC

θg such that

ΣHCθg = plim
N�T→∞

1
NT

N∑
i=1

T∑
t=1

1
{
g0
i = g}(xit − xgt)(xit − xgt)′�

ΩHC
θg = lim

N�T→∞
1
NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E
[
1
{
g0
i = g}1{g0

j = g}
× vitvjs(xit − xgt)(xjs − xgs)′

]
�

18Lagged outcomes may also be strongly mixing under additional conditions. For example, the
conditions in Chanda (1974) for linear stochastic processes to be strongly mixing involve restric-
tions on the characteristic functions of innovations. However, here we do not provide primitive
conditions for Assumption S.2(d) in models with lagged outcomes.
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(c) As N and T tend to infinity, 1√
NT

∑N

i=1

∑T

t=1 1{g0
i = g}(xit − xgt)vit

d→
N (0�ΩHC

θg ).

COROLLARY S.2—Heterogeneous Coefficients: Suppose that the conditions
of Proposition S.4, Assumptions 3(d)–3(e), and Assumption S.3 hold, and let N
and T tend to infinity such that, for some ν > 0, N/Tν → 0. Then we have, for
all g,

√
NT
(
θ̂HCg − θ0

g

) d→N
(
0�
[
ΣHCθg

]−1
ΩHC
θg

[
ΣHCθg

]−1)
�(S.37)

and, for all (g� t),

√
N
(̂
αHCgt − α0

gt

) d→N
(

0�
ωgt

π2
g

)
�(S.38)

S.5. COMPLEMENTS TO THE MAIN ANALYSIS

In this section, we study four issues in turn: the link between GFE and finite
mixtures, how to incorporate prior information in GFE estimation, how to fit
a model to the estimated groups, and GFE estimation in unbalanced panels.

S.5.1. Connection to Finite Mixture Models

Here we show that the grouped fixed-effects estimator in model (1) can be
interpreted as the maximizer of the pseudo-likelihood of a mixture-of-normals
model, where the mixing probabilities are individual-specific and unrestricted.
This contrasts with standard finite mixture modeling (McLachlan and Peel
(2000)), which typically specifies the group probabilities πg(xi) as functions of
the covariates. In comparison, in the grouped fixed-effects approach, the group
probabilities πig = πg(i) are unrestricted functions of the individual dummies.

To state the equivalence result, let σ > 0 be a scaling parameter. Then, it is
easy to see that the GFE estimator (θ̂� α̂) given by equation (2) in the paper
satisfies

(θ̂� α̂)= argmax
(θ�α)∈Θ×AGT

[
max
π1�����πN

N∑
i=1

ln

(
G∑
g=1

πig
1(

2πσ2
)T/2(S.39)

× exp

(
− 1

2σ2

T∑
t=1

(
yit − x′

itθ− αgt
)2

))]
�

where the maximum is taken over all probability vectors πi = (πi1� � � � �πiG) in
the unit simplex of RG. Result (S.39) comes from the fact that the individual-
specific πi are unrestricted. Specifically, given (θ�α) values, the maximum is



GROUPED PATTERNS OF HETEROGENEITY 23

achieved at

π̂i(θ�α)= argmax
πi

G∑
g=1

πig
1(

2πσ2
)T/2

× exp

(
− 1

2σ2

T∑
t=1

(
yit − x′

itθ− αgt
)2

)
�

that is,

π̂ig(θ�α)= 1
{
ĝi(θ�α)= g} for all g�

Note that (S.39) holds for any choice of σ .

S.5.2. Adding Prior Information

Modeling Time Patterns

A simple extension of the benchmark grouped fixed-effects model is to im-
pose linear constraints on the group-specific time effects αgt . For example, one
may specify αgt =∑R

r=1 bgrψr(t), where ψ1� � � � �ψR are known functions, and
where bgr are scalar parameters to be estimated. Linear constraints are easy to
embed within the computational and statistical framework of model (1), and
allow to model a wide variety of patterns of unobserved heterogeneity.

In the empirical application below, we show estimates of a model with two
different layers of heterogeneity (time-varying and time-invariant) that takes
the following form:

yit = x′
itθ+ αgi1t +ηgi1�gi2 + vit�(S.40)

where (gi1� gi2) ∈ {1� � � � �G1} × {1� � � � �G2} indicates joint group membership.
Model (S.40) may be interpreted as a restricted version of model (1) with
G = G1 × G2 groups, and with linear constraints on the group-specific time
effects. Indeed, letting μg1g2t = αg1t + ηg1�g2 , it is easy to see that the following
G1(G2 − 1)(T − 1) linear constraints are satisfied:

μg1g2t −
1
T

T∑
s=1

μg1g2s −
1
G2

G2∑
h=1

μg1ht +
1
G2T

G2∑
h=1

T∑
s=1

μg1hs

= 0 for all (g1� g2� t)�

Prior Information on Group Membership

In certain applications, researchers may want to incorporate prior informa-
tion on the structure of unobserved heterogeneity. For example, in a cross-
country application, one could think that countries in the same continent are
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more likely to belong to the same group. In such situations, one possibility is
to impose the grouped structure on the data by assumption, for example, by al-
lowing for continent fixed-effects possibly interacted with time effects. Another
approach is to use our grouped fixed-effects estimator, which leaves the groups
unrestricted and recovers them endogenously. An intermediate possibility is
to combine a priori information on group membership with data information,
simply by adding a penalty term to the GFE objective.

To proceed, suppose that prior information takes the form of probabilities,
and denote as πig the prior probability that unit i belongs to group g. A penal-
ized GFE estimator of (θ�α) is

(
θ̂(π)� α̂(π)

)= argmin
(θ�α)∈Θ×AGT

N∑
i=1

T∑
t=1

(
yit − x′

itθ− α
ĝ
(πi)
i (θ�α)t

)2
�(S.41)

where the estimated group variables are now

ĝ
(πi)
i (θ�α)= argmin

g∈{1�����G}

T∑
t=1

(
yit − x′

itθ− αgt
)2 −C lnπig�(S.42)

and where C > 0 is a penalty term. The penalty specifies the respective weights
attached to prior and data information in estimation.19

Note that computation of the penalized GFE estimator is very similar to that
of the baseline GFE estimator. In addition, the penalized and unpenalized
GFE estimators are asymptotically equivalent under the conditions given in
Section 3, provided prior information is nondogmatic in the following sense:

ASSUMPTION S.4—Prior Probabilities: For some ε > 0,

ε < πig < 1 − ε for all (i� g)�

We have the following result.

COROLLARY S.3—Penalized GFE: Let the assumptions of Corollary 1 hold,
and let π = {πig} be a set of prior probabilities that satisfies Assumption S.4. Then,
as N and T tend to infinity such that N/Tν → 0 for some ν > 0,

√
NT
(
θ̂(π) − θ0

) d→N
(
0�Σ−1

θ ΩθΣ
−1
θ

)
�(S.43)

19A possible choice, motivated by the special case of the normal linear model, is C = 2σ2,
where σ2 = E(v2

it ). In practice, one may approximate σ2 by taking the mean of (OLS) squared
residuals.
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PROOF: The proof closely follows that of Theorem 2 and Corollary 1. A dif-
ference appears in the proof of Lemma B4. Let us define the following quan-
tity:

Z
(πi)
ig (θ�α)= 1

{
g0
i �= g}

× 1

{
T∑
t=1

(
yit − x′

itθ− αgt
)2 −C lnπig

≤
T∑
t=1

(
yit − x′

itθ− αg0
i t

)2 −C lnπi�g0
i

}
�

The proof consists in bounding Z(πi)
ig (θ�α) instead of bounding Zig(θ�α).

The only difference is that AT has the following extra term: |−C lnπig +
C lnπig̃|, which is bounded by C ln( 1−ε

ε
) by Assumption S.4. Q.E.D.

In standard fixed-effects models, adding prior information on the individual
effects adds generally an O(1/T) term to the small-T bias of the estimator
(Arellano and Bonhomme (2009)). In contrast, Corollary S.3 shows that, in
models where unobserved heterogeneity is discrete and the number of groups
is fixed, and under the conditions of Theorem 2, adding nondogmatic prior
information has no effect on the first-order asymptotic distribution of the esti-
mator as N and T tend to infinity and N/Tν tends to zero. It is worth noting,
however, that prior information will impact the higher-order and finite-sample
properties of the GFE estimator.

S.5.3. Fitting a Probability Model to the Estimated Groups

Suppose one wants to fit a parametric model (e.g., an ordered probit or a
multinomial logit model), indexed by a parameter vector ξ, to the estimated
groups:

ξ̂= argmax
ξ

N∑
i=1

G∑
g=1

1{ĝi = g} ln
(
pg(xi;ξ)

)
�

where pg(x;ξ) are the parametrically specified group probabilities. For exam-
ple, in the empirical application below, we will use a multinomial logit model
to link the estimated groups to country-specific determinants. It is easy to see
that, in a large-N�T perspective and under similar conditions as in Theorem 2,
ξ̂ will be asymptotically equivalent to the following infeasible maximum likeli-
hood estimator:

ξ̃= argmax
ξ

N∑
i=1

G∑
g=1

1
{
g0
i = g} ln

(
pg(xi;ξ)

)
�



26 S. BONHOMME AND E. MANRESA

This implies that parameter estimates (and their standard errors) that treat the
estimated groups as data will be asymptotically valid.

S.5.4. Grouped Fixed-Effects in Unbalanced Panels

Let us consider an unbalanced panel whose maximum time length is T . We
denote as dit the indicator variable that takes value 1 if observations yit and
xit belong to the data set, and zero otherwise. We adopt the convention that
dityit = 0 and ditxit = 0 when the latter situation happens. It is assumed that xit
and vit are contemporaneously uncorrelated given dit = 1.

The GFE estimator is then

(θ̂� α̂� γ̂)= argmin
(θ�α�γ)∈Θ×AGT×ΓG

N∑
i=1

T∑
t=1

dit
(
yit − x′

itθ− αgit
)2
�(S.44)

In terms of computation, one difference with Algorithm 1 arises in the up-
date step, as it may happen that

ngt ≡
N∑
i=1

dit1
{
g(s+1)
i = g}

is zero, for some (g� t) ∈ {1� � � � �G} × {1� � � � �T }. In this case, there are no
observations to compute α(s+1)

gt and the algorithm stops (i.e., we run it with
another starting value). When using Algorithm 2, we start a local search (i.e.,
Step 5) as soon as ngt = 0 for some value (g� t).

S.6. SIMULATION EXERCISES

In this section, we study the suitability of our asymptotic results as a guide
for finite-sample inference. We do this by means of a Monte Carlo exercise on
simulated data, which we design to mimic the cross-country data set that we
use in the empirical application.

S.6.1. Design and Main Results

We consider the same sample size as in the empirical application: N = 90
units and T = 7 periods. For a given number of groups, the data generating
process follows model (12), where xit = (yi�t−1� x̃it) contains a lagged outcome
and a strictly exogenous regressor, and where the process x̃it is taken from the
log-income per capita data. For this specification, we first estimate the model
on the empirical data set using grouped fixed-effects. Then, we fix the parame-
ters of the DGP: θ0, α0, and all the group membership variables g0

i , to their esti-
mated GFE values. Lastly, the error terms are generated as i.i.d. normal draws
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TABLE S.III

BIAS OF THE GFE ESTIMATORa

θ1 (Coeff. yi�t−1) θ2 (Coeff. x̃it )
θ2

1−θ1

True GFE True GFE True GFE Misclassified

G= 3 0.407 0.391 0.089 0.099 0.151 0.163 9.50%
G= 5 0.255 0.262 0.079 0.086 0.107 0.117 9.68%
G= 10 0.277 0.286 0.075 0.078 0.104 0.110 44.73%

aModel (12) with G groups. The columns labeled “GFE” refer to the mean of GFE parameter estimates across
1,000 simulations. Algorithm 2—with parameters (5;10;5)—was used for computation. The last column shows the
average of the misclassification frequency (ĝi �= g0

i ) across simulations. Errors are i.i.d. normal.

across units and time periods, with variance equal to the mean of squared GFE
residuals.

We start by showing the mean of the GFE estimator across 1,000 Monte
Carlo simulations in Table S.III.20 We show the results for the two coefficients
(θ1 and θ2, respectively), as well as for the “long-run” coefficient of x̃it (i.e.,
θ2/(1 − θ1)). Here the number of groups used in estimation (G) is the same as
the true number of groups (G0). Biases appear moderate despite the short
length of the panel, at most 10% in relative terms. The last column in Ta-
ble S.III shows the average misclassification frequency across simulations.21

When G= 3 or 5, units are well classified in approximately 90% of cases.
When G = 10, however, the frequency of correct classification drops to 55%.
Nonetheless, the bias of the GFE estimator remains rather low. This suggests
that the GFE estimator of common parameters may behave well in situations
when G is not small relative to the sample size.

We next turn to inference. The top panel in Table S.IV reports the stan-
dard deviation of the GFE estimator of θ across Monte Carlo simulations, to-
gether with the medians across simulations of three different standard errors
estimates: the (square root of the) clustered variance formula (S.3), estimates
based on Pollard’s (1982) fixed-T formula, and estimates based on the boot-
strap (computed by resampling unit-specific sequences of observations with
replacement).22 All variance formulas are robust to the presence of serial cor-
relation, but rely on the assumption that observations are independent across
units. The results show that the clustered formula based on a large-T approxi-
mation systematically underpredicts the variability of the GFE estimator. This

20Medians across simulations are almost identical to the means (not reported).
21The misclassification frequency is computed as 1

N

∑N
i=1 1{ĝi �= g0

i }. To deal with invariance to
relabeling, we take, in each simulated sample, the labeling that yields the minimum amount of
misclassification across all G! permutations of group indices. When G= 10, this computation is
prohibitive, so we take the minimum over 500�000 randomly generated permutations.

22Means of standard errors across simulations are very similar.
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TABLE S.IV

INFERENCE FOR THE GFE ESTIMATORa

Standard Errors

θ1 (Coeff. yi�t−1) θ2 (Coeff. x̃it )
θ2

1−θ1

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

G= 3 0�035 0�051 0�068 0�043 0�0093 0�0132 0�0156 0�0137 0�013 0�022 0�030 0�021
G= 5 0�037 0�068 0�097 0�058 0�0088 0�0135 0�0160 0�0112 0�011 0�022 0�035 0�022
G= 10 0�037 0�048 0�091 0�059 0�0074 0�0095 0�0156 0�0103 0�009 0�012 0�026 0�015

Coverage (Nominal Level 5%)

θ1 (Coeff. yi�t−1) θ2 (Coeff. x̃it )
θ2

1−θ1

(1) (2) (3) (1) (2) (3) (1) (2) (3)

G= 3 0�847 0�965 0�970 0�723 0�883 0�914 0�693 0�917 0�900
G= 5 0�848 0�961 0�973 0�788 0�932 0�943 0�710 0�936 0�928
G= 10 0�798 0�902 0�992 0�841 0�912 0�996 0�783 0�904 0�986

aModel (12) with G groups. Median standard errors across 1,000 simulations (top panel) and empirical nonre-
jection probabilities (bottom panel, nominal size 5%). Column (1) reports results based on the large-T clustered
variance formula (S.3), (2) reports estimates based on Pollard’s (1982) fixed-T formula, and (3) shows results based
on the bootstrap (100 replications, Algorithm 1 with 1,000 starting values). Column (4) in the top panel shows Monte
Carlo standard deviations across simulations. Errors are i.i.d. normal.

shows that group misclassification may have a sizable effect on inference in
small samples. In contrast, the two consistent estimates of the fixed-T variance
are larger, and more in line with the finite-sample dispersion. Moreover, the
bottom panel in the table shows that these two methods provide approximately
correct coverage for the true parameter θ0, while estimates based on the large-
T approximation tend to lead to overrejection.

S.6.2. Additional Results

Here we show the results of several additional exercises.

Comparison With Interactive Fixed-Effects

We first consider an alternative estimator, the interactive fixed-effects esti-
mator of Bai (2009) with three factors, when the DGP follows the GFE model
(1) with G= 3 groups. Note that model (1) can be written as

yit = x′
itθ+ λ′

ift + vit�(S.45)

where ft and λi are G× 1, and λ0
ig = 1{g0

i = g} and f 0
tg = α0

gt for all g� i� t.
Table S.V shows the results of 1,000 Monte Carlo replications, and compares

the interactive fixed-effects estimator to the GFE estimator withG= 3 groups.



GROUPED PATTERNS OF HETEROGENEITY 29

TABLE S.V

COMPARISON WITH INTERACTIVE FIXED-EFFECTS (G= 3)a

GFE IFE

True Mean Std. Mean Std.

θ1 (coeff. yi�t−1) 0�407 0�391 0�043 −0�329 0�040
θ2 (coeff. x̃it) 0�089 0�099 0�014 0�146 0�035
θ2

1−θ1
0�151 0�163 0�021 0�110 0�026

Mean Median Mean Median

1
NT

∑N
i=1

∑T
t=1(̂cit − α0

g0
i t
)2 – 0�023 0�014 0�164 0�099

aModel (12) with G = 3 groups. GFE is the grouped fixed-effects estimator, IFE is the interactive fixed-effects
estimator (computed using true parameter values as starting conditions). ĉit = α̂ĝi t

in GFE, and ĉit = λ̂′
i f̂t in IFE.

Means, medians, and standard deviations across 1,000 simulations. Errors are i.i.d. normal.

Although the interactive fixed-effects estimator is consistent as N and T tend
to infinity, the first three rows of the table show that it suffers from a very sub-
stantial finite sample bias, much larger than the bias of the GFE estimator on
this (relatively small) sample. Specifically, the mean of the autoregressive pa-
rameter and the coefficient of x̃it are −0�329 and 0�146, whereas the true values
are 0�407 and 0�089, respectively. This result is consistent with the theoretical
properties of GFE and interactive fixed-effects: while the former is unbiased
as N/Tν → ∞ for some ν > 0, the latter generally suffers from a O(1/T) bias
even as N/T tends to a constant.23

The last row in Table S.V shows the mean and median across simulations
of the following average of squared errors of the estimated components of
unobserved heterogeneity:

1
NT

N∑
i=1

T∑
t=1

(̂
cit − α0

g0
i t

)2
�

where ĉit = α̂ĝit in GFE, and ĉit = λ̂′
if̂t in interactive fixed-effects. The results

show large differences between the two estimators. Considering the median
across simulations, the difference |̂αĝit − α0

g0
i t
| is

√
0�014 ≈ 0�12 on average. In

contrast, |̂λ′
if̂t −α0

g0
i t
| is

√
0�099 ≈ 0�32 on average. Hence, in this design, inter-

active fixed-effects yields imprecise estimates of the components of unobserved

23Bai (2009) discussed bias reduction in interactive fixed-effects models with strictly exogenous
regressors. Moon and Weidner (2010b) provided truncation-based bias reduction formulas in
models with predetermined regressors. Note that, in contrast with interactive fixed-effects, under
the conditions of Corollary 1, the small-T bias of the GFE estimator vanishes at a faster-than-
polynomial rate, even in the presence of lagged outcomes.
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heterogeneity when compared to GFE. Moreover, in Section 3.3 of the paper
we showed that the theoretical rate of convergence of 1

NT

∑N

i=1

∑T

t=1(̂cit −α0
g0
i t
)2

is Op(1/N) in GFE, compared to Op(1/min(N�T))=Op(1/T) in interactive
fixed-effects. The results reported at the bottom of Table S.V are in line with
these theoretical rates, as 0�32/0�12 and

√
N/T are of a similar order of magni-

tude. Overall, this comparison suggests that the more parsimonious GFE esti-
mator may outperform interactive fixed-effects in relatively short panels when
the data have a grouped structure.

Group-Specific Time Effects

Turning next to group-specific time effects, Figure S.1 shows the pointwise
means of α̂gt across 1,000 simulations. Both when G = 3 and when G = 5, all
time profiles are shifted downwards relative to the true ones. Nevertheless, the
overall patterns of heterogeneity are well reproduced. In fact, we checked that
the group-specific means of yit and xit are almost unbiased (not reported).24

Nonnormal Design

The main simulation results are based on a design with i.i.d. normal errors,
which might seem too favorable given that the asymptotic behavior of the GFE
estimator crucially depends on tail and dependence properties of errors. To ad-
dress this concern, we report results using a different DGP, in which errors are
resampled (with replacement) from the unit-specific vectors of GFE residu-

FIGURE S.1.—Monte Carlo bias of group-specific time effects. Note: Model (12) with G
groups. Solid line shows the true values α0

gt , dashed lines show the mean of α̂gt across 1,000
simulations with i.i.d. normal errors. x-axis shows time t ∈ {1� � � � �7}.

24We also computed the finite-sample variances of the group-specific time effects, and com-
pared them with the clustered estimator (S.2) based on a large-N�T approximation. As in Ta-
ble S.IV, the results show some sizable differences between the two.
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TABLE S.VI

BIAS OF THE GFE ESTIMATOR (ALTERNATIVE DGP)a

θ1 (Coeff. yi�t−1) θ2 (Coeff. x̃it )
θ2

1−θ1

True GFE True GFE True GFE Misclassified

G= 3 0�407 0�381 0�089 0�099 0�151 0�163 9�86%
G= 5 0�255 0�314 0�079 0�082 0�107 0�125 13�50%
G= 10 0�277 0�322 0�075 0�074 0�104 0�109 33�27%

aModel (12) with G groups. The columns labeled “GFE” refer to the mean of GFE parameter estimates across
1,000 simulations. Algorithm 2—with parameters (5;10;5)—was used for computation. The last column shows the
average of the misclassification frequency (ĝi �= g0

i ) across simulations. Unit-specific sequences of errors are drawn
with replacement from the estimated GFE residuals.

als.25 Note that, given the nature of the original data, these residuals exhibit se-
rial correlation and are clearly not normally distributed. Tables S.VI and S.VII
report the mean and the standard deviation and coverage of the GFE estimator
for θ, respectively, across 1,000 simulations. Compared with the i.i.d. normal
case, the results show slightly larger small-sample biases, and a stronger un-
derestimation of the finite-sample variance when using the formula based on
large-T approximation. At the same time, Pollard’s fixed-T formula and the
bootstrap yield more accurate inference.26

Estimated Number of Groups

Additionally, we check the performance of the BIC criterion (S.20) to esti-
mate the number of groups. To do so, we count the number of times that BIC
selects a given G, across 100 simulated data sets. The results reported in Ta-
ble S.VIII suggest that the criterion performs reasonably well, even in cases
where the true number of groups is relatively large (G0 = 10).27

We also run simulations where the number of groups G used in estimation
differs from the true number G0. Figure S.2 shows that the mean and standard
deviation of the GFE estimator of common parameters do not differ much
when G > G0 compared to when G0 = 3, consistently with the discussion in
Section S.3, although we observe some increase in the finite-sample dispersion
of the estimator as G grows.

25This exercise is partly motivated by the fact that the measures of democracy that we use in
the empirical application (Freedom House and Polity indicators) take a small number of values.

26The results for group-specific time effects are similar to those shown in Figure S.1 (not re-
ported).

27We also tried the alternative choice σ̂2 G(T+N−G)
NT

ln(NT) for the penalty, instead of
σ̂2 GT+N+K

NT
ln(NT) in equation (S.20). This corresponds to a common choice of penalty in fac-

tor models (e.g., Bai and Ng (2002)). We found that, in this case, BIC selected 1 group in all 100
simulations, when the truth wasG0 = 3. In comparison, Table S.VIII shows that our choice (S.20)
yields better results on these data.
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TABLE S.VII

INFERENCE FOR THE GFE ESTIMATOR (ALTERNATIVE DGP)a

Standard Errors

θ1 (Coeff. yi�t−1) θ2 (Coeff. x̃it )
θ2

1−θ1

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

G= 3 0�050 0�068 0�146 0�118 0�0104 0�0129 0�0179 0�0162 0�011 0�018 0�041 0�028
G= 5 0�042 0�074 0�137 0�125 0�0083 0�0108 0�0126 0�0103 0�010 0�018 0�041 0�033
G= 10 0�038 0�050 0�092 0�064 0�0067 0�0082 0�0115 0�0086 0�008 0�011 0�021 0�013

Coverage (Nominal Level 5%)

θ1 (Coeff. yi�t−1) θ2 (Coeff. x̃it )
θ2

1−θ1

(1) (2) (3) (1) (2) (3) (1) (2) (3)

G= 3 0�637 0�792 0�983 0�733 0�835 0�994 0�715 0�906 0�911
G= 5 0�689 0�837 0�875 0�887 0�956 0�986 0�685 0�855 0�883
G= 10 0�701 0�862 0�935 0�859 0�929 0�989 0�821 0�934 0�986

aModel (12) with G groups. Median standard errors across 1,000 simulations (top panel) and empirical nonrejec-
tion probabilities (bottom panel, nominal size 5%). Column (1) is based on the large-T variance formula, (2) is based
on Pollard’s (1982) fixed-T formula, (3) is based on the bootstrap, and (4) in the top panel shows Monte Carlo stan-
dard deviations across simulations. Unit-specific sequences of errors are drawn with replacement from the estimated
GFE residuals.

Lastly, Table S.IX shows the mean and standard deviation of the GFE esti-
mator across 100 simulations, when the number of groups is estimated using
BIC in every simulation. The results on common parameter estimates show
small differences compared to the results obtained with known G0 (see Ta-
bles S.III and S.IV). At the same time, misspecification of the number of
groups has important consequences for inference on the group-specific time

TABLE S.VIII

CHOICE OF THE NUMBER OF GROUPS, BICa

G0 = 3

G= 1 2 3 4 5 6

%(Ĝ=G) 0 0 98 2 0 0

G0 = 10

G= 7 8 9 10 11 12

%(Ĝ=G) 0 10 42 42 6 0

aSee the notes to Table S.III. The results show the number of times that the BIC selects G groups, when the true
number is G0 = 3 (upper panel) or G0 = 10 (lower panel), respectively, out of 100 simulations.
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FIGURE S.2.—GFE based on G groups, when G0 = 3. Note: See the notes to Table S.III.
Model (12) with G0 = 3 groups. GFE estimates are computed using G groups, where G is re-
ported on the x-axis. Solid thick lines and dashed lines indicate the mean and 95% pointwise
confidence bands, respectively, across 1,000 simulations. The horizontal solid lines indicate true
parameter values.

effects, as we emphasized in Section S.3. In this paper, we do not formally ad-
dress the question of inference after selection of the number of groups.

S.7. INCOME AND (WAVES OF) DEMOCRACY: ADDITIONAL RESULTS

S.7.1. Huntington’s Theory

The grouped fixed-effects approach provides a useful complement to fixed-
effects in order to study the observed and unobserved determinants of
democracy. A conceptual motivation for the GFE model can be found in
Samuel Huntington’s influential work on the “third wave” of democratization.
Huntington (1991) emphasized the importance of international and regional
factors as drivers of transitions to democracy and autocracy, resulting in groups
of countries making transitions at similar points in time; that is, in “waves” of
democratization. Huntington distinguished three waves of democratization:
the first one starting in the 1820s in the United States and ending with World

TABLE S.IX

MEAN AND STANDARD DEVIATION OF GFE WHEN G IS ESTIMATEDa

θ1 (Coeff. yi�t−1) θ2 (Coeff. x̃it )
θ2

1−θ1

True GFE Std. True GFE Std. True GFE Std.

G0 = 3 0�407 0�392 0�047 0�089 0�101 0�015 0�151 0�166 0�023
G0 = 10 0�277 0�281 0�048 0�075 0�079 0�011 0�104 0�110 0�014

aModel (12) with G0 groups. The columns labeled “GFE” and “Std.” refer to the mean and standard deviation of
GFE parameter estimates across 100 simulations, respectively. The number of groups G is selected according to BIC
in every simulation. Errors are i.i.d. normal.
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War I, the second wave lasting between the end of World War II and the early
1960s, and the third wave starting with the Portuguese revolution in 1974. The
first two waves were followed by two “counterwaves,” in the 1930s and the
1960s, respectively.

Along with other examples, Huntington mentioned the influence of the U.S.
administration in the 1970s and changes in the Soviet Union in the early 1980s,
the influence of the European Union in the late 1970s, or changes in the
Catholic Church following the second Vatican council, as possible drivers of the
clustering of transitions towards democracy that occurred between 1974 and
1990. Huntington’s arguments are consistent with the grouped fixed-effects
model: for example, gi = g could denote being predominantly Catholic, and
αgt could be the effect of the influence of the Catholic Church on the political
evolution of the country. However, our estimation framework is agnostic about
the causes of the “waves” of democracy, as it recovers heterogeneous patterns
of political evolution from the data.

S.7.2. Complements to the Main Estimation Results

Replicating Acemoglu et al. (2008)

Table S.X replicates the main specification from Acemoglu et al. given by
equation (22) in the paper, with ηi +δt instead of αgit . Democracy is measured
according to the Freedom House indicator, and log-GDP per capita is taken
from the Penn World tables. All data are taken at the five-year frequency. We
consider two different samples: a balanced panel, which covers 90 countries on
the period 1970–2000, and an unbalanced panel, which covers 150 countries on
the period 1960–2000. According to the pooled OLS regressions, and regard-
less of the sample used, there is a statistically significant association between
income and democracy. The point estimates of the cumulative income effect
θ2/(1 − θ1) imply that a 10% increase in income per capita is associated with
a 2.5% increase in the Freedom House score.28 However, in both data sets,
the fixed-effects estimates of the income coefficient are small or negative, and
insignificant from zero.

Coefficients of Income and Lagged Democracy

Table S.XI reports three standard error estimates (all of them clustered at
the country level): based on a large-T normal approximation, based on Pol-
lard’s (1982) fixed-T normal approximation, and based on the bootstrap (our
more conservative estimates, shown in Figure 1 in the paper). According to

28To assess the magnitude of this effect, note that the Freedom House measure is normalized
to lie between zero and 1, and that its mean and standard deviation in the balanced sample are
0�55 and 0�37, respectively.
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TABLE S.X

INCOME AND DEMOCRACY, OLS AND FIXED-EFFECTSa

Unbalanced Panel Balanced Panel

(1) (2) (3) (4)

Lag democracy (θ1) 0�706 0�379 0�665 0�283
(0�035) (0�051) (0�049) (0�058)

Income (θ2) 0�072 0�010 0�083 −0�031
(0�010) (0�035) (0�014) (0�049)

Cumulative income ( θ2
1−θ1

) 0�246 0�017 0�246) −0�044
(0�031) (0�056) (0�019) (0�069)

Observations 945 945 630 630
Countries 150 150 90 90
R-squared 0�725 0�796 0�721 0�799
Time dummies Yes Yes Yes Yes
Country fixed-effects No Yes No Yes

aBalanced (1970–2000) and unbalanced (1960–2000) five-year panel data from Acemoglu et al. (2008). Freedom
House indicator of democracy. Robust standard errors clustered at the country level in parentheses.

our estimates, the cumulative income effect is statistically significant.29 How-
ever, it is quantitatively small: only 40% of the pooled OLS estimate when
G ≥ 5. Moreover, we will see in the next subsection that the association be-
tween income and democracy disappears in a specification that combines both
time-varying grouped effects and time-invariant country-specific effects.

The values reported in Table S.XI show that the objective function decreases
steadily as G increases: by almost 50% when G= 5 compared to OLS, and by
75% when G = 13. Interestingly, the last row of the table shows that the ob-
jective function of grouped fixed-effects is lower than the one of fixed-effects
as soon as G≥ 3. This suggests that a substantial amount of cross-country het-
erogeneity is time-varying in these data.

Another result of Table S.XI is that G= 10 is optimal according to BIC. Re-
call from Section S.3 that this criterion provides an upper bound on the true
number of groups if T grows at a slower rate than N . Note also that the GFE
estimates in Figure 1 do not vary much between G = 5 and G = 15. Accord-
ing to the discussion in Section S.3, this is consistent with the true number of
groups being actually smaller than 10. Optimal choice of G in practice is a no-

29Note that the within-group (i.e., within-(ĝi� t)) variance of income remains sizable as the
number of groups increases: it is 65% of the total income variance when G = 3, 48% when
G= 10, and still 43% when G = 15. This is substantially larger than the within-country vari-
ance of income (6%). In contrast, the within-group variance of democracy is 10% when G= 15,
whereas the within-country variance is 26%. This difference arises because the groups are esti-
mated in order to fit the outcome (democracy), but not necessarily the regressor (income).
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TABLE S.XI

INCOME AND DEMOCRACY, GFE ESTIMATESa

Lag. Dem. Income Cum. Income

G Objective BIC (θ1) (θ2) ( θ2
1−θ1

)

1 24�301 0�052 0�665 0�083 0�247
(0�049) (0�014) (0�018)

2 19�847 0�046 0�601 0�061 0�152
(0�041�0�061�0�072) (0�011�0�013�0�019) (0�021�0�030�0�058)

3 16�599 0�042 0�407 0�089 0�151
(0�052�0�083�0�129) (0�011�0�015�0�019) (0�013�0�022�0�036)

4 14�319 0�039 0�302 0�082 0�118
(0�054�0�108�0�140) (0�009�0�012�0�017) (0�011�0�021�0�038)

5 12�593 0�037 0�255 0�079 0�107
(0�050�0�088�0�134) (0�010�0�012�0�015) (0�009�0�014�0�040)

6 11�132 0�036 0�465 0�064 0�119
(0�043�0�054�0�122) (0�007�0�008�0�012) (0�011�0�014�0�030)

7 10�059 0�035 0�403 0�065 0�108
(0�043�0�074�0�117) (0�008�0�013�0�013) (0�011�0�019�0�027)

8 9�251 0�035 0�333 0�070 0�104
(0�044�0�085�0�122) (0�008�0�012�0�013) (0�010�0�014�0�033)

9 8�426 0�034 0�312 0�069 0�101
(0�045�0�072�0�123) (0�008�0�010�0�013) (0�010�0�011�0�031)

10∗ 7�749 0�034 0�277 0�075 0�104
(0�049�0�062�0�124) (0�008�0�010�0�015) (0�009�0�011�0�034)

11 7�218 0�034 0�293 0�073 0�104
(0�042�0�062�0�130) (0�008�0�012�0�014) (0�009�0�013�0�030)

12 6�809 0�034 0�304 0�074 0�107
(0�044�0�054�0�109) (0�008�0�009�0�015) (0�009�0�010�0�037)

13 6�391 0�035 0�236 0�072 0�094
(0�040�0�046�0�120) (0�009�0�010�0�014) (0�009�0�010�0�031)

14 5�996 0�035 0�237 0�071 0�094
(0�042�0�047�0�119) (0�009�0�010�0�017) (0�009�0�010�0�038)

15 5�664 0�035 0�244 0�071 0�094
(0�043�0�046�0�127) (0�009�0�010�0�015) (0�009�0�010�0�040)

Fixed-effects 17�517 – 0�284 −0�031 −0�044
(0�058) (0�049) (0�069)

aSee the notes to Figure 1 in the paper. The table reports the value of the objective function, the Bayesian informa-
tion criterion, and GFE coefficient estimates with their standard errors for various values of the number of groups G.
Three different standard error estimates (clustered at the country level) are shown in parentheses: based on the
large-T normal approximation, on Pollard’s (1982) fixed-T normal approximation, and on the bootstrap, respectively.
Computation using Algorithm 2 (5;10;5). The parameter σ̂2 in BIC was computed using Gmax = 15. The last row in
the table shows the same figures for fixed-effects regression.

toriously difficult problem in related contexts (e.g., mixture and factor models),
which deserves further study.

Lastly, the implied cumulative effect of income shown in Figure 1 is almost
identical to the estimated income effect when using a specification that only
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controls for lagged GDP per capita and does not include lagged democracy
(not reported).

Grouped Patterns

In addition to the group-specific means shown in Figure 2 in the paper, Fig-
ure S.3 reports uniform 50%-confidence bands for both Freedom House score
and lagged log-GDP per capita (thick dashed-dotted lines) for each of the four
estimated groups.30 The figure also shows all country paths of democracy and
income over time (thin dotted lines). The left panel shows that, within each
group, most countries tend to follow a common group pattern of democracy.31

At the same time, however, there is evidence of a substantial amount of het-
erogeneity in democracy paths, which is only imperfectly captured using the
parsimonious 4-groups model. In the next subsection, we will present estimates
that allow for additional, within-group heterogeneity.

The grouped patterns in Figure 2 remain rather stable as the number of
groups changes. Table S.XIII shows group membership by country, and Fig-
ure S.4 the corresponding time patterns, for G = 2� � � � �6. The specification
with G = 3 shows two groups essentially identical to Groups 1 and 2 above,
and a third one that clusters Groups 3 and 4, which experiences an upward
democracy profile over the period. Taking G= 5 yields four groups similar to
Groups 1–4, plus another group whose democracy level is intermediate be-
tween those of Groups 1 and 2, roughly stable over time. This additional group
includes Mexico, Indonesia, and Turkey (12 countries in total). When the num-
ber of groups is 6 or higher, the estimated group-specific time profiles tend to
become more volatile and less easily interpretable.

Although the estimated groups exhibit a strong spatial clustering, they do
not match a simple geographic division. To illustrate this, we report in Fig-
ure S.5 the group-specific time effects and averages of democracy and income,
respectively, when the continents are used to form five groups. The results
show that, although this simple geographic division yields a clear separation
in terms of income and democracy levels, the time patterns are not as clearly
separated as in Figure 2. In particular, this specification is not able to distin-
guish between stable and transition patterns within South America or Africa.
In contrast, the grouped fixed-effects estimator selects the grouping that max-
imizes between-group variation, leading to better identification of stable and
transition patterns.

As a different strategy, one could use external data to attempt to classify
countries. This is the approach taken by Papaioannou and Siourounis (2008),

30The bands are constructed such that they contain more than 50% of paths of democracy
(resp., income).

31As a complement, Table S.XII reports the 1970–2000 evolution of a binary measure of
democracy, which classifies as “democratic” (resp., “nondemocratic”) a country whose Freedom
House score is strictly higher (resp., lower) than 0�50.
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FIGURE S.3.—Confidence bands and data paths of democracy and income (G= 4). Note: See
the notes to Figure 2 in the paper. The left column shows the mean normalized Freedom House
score (thick solid lines), a uniform 50%-confidence band (thick dashed-dotted lines), as well as
the plot of all democracy paths in the data (thin dotted lines), by group. The right column shows
the same figures for lagged log-GDP per capita.
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TABLE S.XII

BINARY MEASURE OF DEMOCRACY, TRANSITIONS 1970/2000 BY GROUP (G= 4)a

Transition 1970/2000 0/0 0/1 1/0 1/1 All

Group 1 (“high-democracy”) 0 0 3 30 33
Group 2 (“low-democracy”) 25 1 0 0 26
Group 3 (“early transition”) 0 12 0 1 13
Group 4 (“late transition”) 3 12 1 2 18

All 28 25 4 33 90

aSee the notes to Table S.XI. Here we code as “nondemocratic” (i.e., 0) countries whose Freedom House score
is lower than 0�50, and as “democratic” (i.e., 1) countries with a score > 0�50. The numbers a/b in the table denote
transition from state a ∈ {0�1} in 1970 to state b ∈ {0�1} in 2000.

who combined electoral archives and historical resources for this purpose. In-
terestingly, their classification of the type of political evolution closely matches
the results of GFE estimation. One of the few clear differences between the
classification in Papaioannou and Siourounis (2008) and ours is Iran, which is
consistently classified as a “low democracy” country according to our results
(e.g., in Group 2), while they classify it as a “borderline” democratization case.
Note that, unlike this data-intensive approach, our automatic method does not
require the use of external data.

S.7.3. Additional Specifications

We next summarize the results corresponding to several additional specifi-
cations.

Unbalanced Panel

First, we use the unbalanced panel that covers the period 1960–2000. After
dropping all countries with fewer than three observations, we obtain an unbal-
anced sample of 118 countries.32 See Section S.5.4 for a description of GFE in
unbalanced panels. The cumulative income effect is close to the one that we
estimated on the balanced sample: for example, it is 0�13 forG= 4 and 0�12 for
G = 10. Interestingly, the group classification is very similar between the two
samples: when G= 4, the group-specific patterns also highlight high- and low-
democracy countries, as well as early and late transition countries. Moreover,
out of the 90 countries of the balanced sample, only 6 change groups when esti-
mated on the unbalanced panel. All the countries whose group changes switch
from “late” to “early” transition. For example, Mexico, Philippines, and Taiwan
become part of the early transition countries. As for those countries that are

32The 32 countries we drop using this selection criterion mostly belong to the ex-Republics of
the Soviet Union, which became independent in the second part of the sample.
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TABLE S.XIII

GROUP MEMBERSHIP ESTIMATES, VARIOUS SPECIFICATIONSa

Model (1) Model (S.40) Model (5)

Country G= 2 G= 3 G= 4 G= 5 G= 6 {G1�G2} = {3� (5�2�2)} G= 3

Algeria 2 2 2 2 2 Stable Low Stable
Argentina 1 3 3 3 3 Early Low Early
Australia 1 1 1 1 1 Stable High Stable
Austria 1 1 1 1 1 Stable High Stable
Belgium 1 1 1 1 1 Stable High Stable
Benin 2 3 4 4 4 Late Low Late
Bolivia 1 3 3 3 3 Early Low Late
Brazil 1 3 3 3 3 Early Low Early
Burkina Faso 1 1 4 5 5 Stable Medium-Low Stable
Burundi 2 2 2 2 2 Stable Low Stable
Cameroon 2 2 2 2 2 Stable Low Stable
Canada 1 1 1 1 1 Stable High Stable
Central African Rep. 2 3 4 4 4 Late Low Late
Chad 2 2 2 2 2 Stable Low Stable
Chile 1 3 4 5 5 Late High Late
China 2 2 2 2 2 Stable Low Stable
Colombia 1 1 1 1 1 Stable Medium-High Stable
Congo, Dem. Rep. 2 2 2 2 2 Stable Low Stable
Congo Republic 2 2 2 2 2 Stable Low Stable
Costa Rica 1 1 1 1 1 Stable High Stable
Cote d’Ivoire 2 2 2 2 2 Stable Low Stable
Cyprus 1 1 1 1 1 Stable Medium-High Late
Denmark 1 1 1 1 1 Stable High Stable
Dominican Republic 1 1 1 1 1 Stable Medium-High Stable
Ecuador 2 3 3 3 6 Early Low Early
Egypt 2 2 2 2 2 Stable Medium-Low Stable
El Salvador 1 1 1 1 3 Stable Medium-High Stable
Finland 1 1 1 1 1 Stable Medium-High Stable
France 1 1 1 1 1 Stable High Stable
Gabon 2 2 2 2 2 Stable Low Stable
Ghana 2 3 4 4 6 Late High Late
Greece 2 3 3 3 3 Early High Early
Guatemala 1 1 1 5 5 Stable Medium Stable
Guinea 2 2 2 2 2 Stable Low Stable
Honduras 2 3 3 3 3 Early Low Early
Iceland 1 1 1 1 1 Stable High Stable
India 1 1 1 1 1 Stable High Stable
Indonesia 1 2 2 5 5 Stable Medium-Low Stable
Iran 2 2 2 2 2 Stable Low Stable
Ireland 1 1 1 1 1 Stable High Stable
Israel 1 1 1 1 1 Stable Medium-High Stable
Italy 1 1 1 1 1 Stable High Stable

(Continues)
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TABLE S.XIII—Continued

Model (1) Model (S.40) Model (5)

Country G= 2 G= 3 G= 4 G= 5 G= 6 {G1�G2} = {3� (5�2�2)} G= 3

Jamaica 1 1 1 1 1 Stable High Stable
Japan 1 1 1 1 1 Stable High Stable
Jordan 2 2 2 2 2 Stable Medium-Low Late
Kenya 2 2 2 2 2 Stable Medium-Low Stable
Korea, Rep. 1 3 3 3 3 Early Low Late
Luxembourg 1 1 1 1 1 Stable High Stable
Madagascar 2 3 4 4 4 Late High Late
Malawi 2 3 4 4 4 Late Low Late
Malaysia 1 1 1 5 1 Stable Medium Stable
Mali 2 3 4 4 4 Late Low Late
Mauritania 2 2 2 2 2 Stable Low Stable
Mexico 2 2 4 5 6 Stable Medium Stable
Morocco 1 2 2 5 2 Stable Medium-Low Stable
Nepal 1 1 3 3 1 Early Low Early
Netherlands 1 1 1 1 1 Stable High Stable
New Zealand 1 1 1 1 1 Stable High Stable
Nicaragua 1 3 4 5 5 Stable Medium Stable
Niger 2 3 4 4 4 Late Low Late
Nigeria 2 2 2 5 6 Stable Medium-Low Stable
Norway 1 1 1 1 1 Stable High Stable
Panama 2 3 4 4 6 Late Low Late
Paraguay 1 2 2 5 5 Stable Medium-Low Stable
Peru 2 2 3 3 6 Early Low Early
Philippines 2 3 4 3 4 Late High Late
Portugal 1 1 3 3 1 Early High Early
Romania 2 3 4 4 4 Late Low Late
Rwanda 2 2 2 2 2 Stable Low Stable
Sierra Leone 2 2 2 5 5 Stable Medium-Low Stable
Singapore 2 2 2 2 2 Stable Low Stable
South Africa 1 3 4 4 4 Late High Late
Spain 1 1 3 3 1 Early High Early
Sri Lanka 1 1 1 1 1 Stable Medium-High Stable
Sweden 1 1 1 1 1 Stable High Stable
Switzerland 1 1 1 1 1 Stable High Stable
Syria 2 2 2 2 2 Stable Low Stable
Taiwan 2 3 4 4 5 Late High Late
Tanzania 2 3 4 4 4 Stable Medium-Low Stable
Thailand 1 1 3 3 3 Early High Early
Togo 2 2 2 2 2 Stable Low Stable
Trinidad and Tobago 1 1 1 1 1 Stable High Stable
Tunisia 2 2 2 2 2 Stable Low Stable
Uganda 2 2 2 2 2 Stable Medium-Low Stable
United Kingdom 1 1 1 1 1 Stable High Stable
United States 1 1 1 1 1 Stable High Stable

(Continues)
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TABLE S.XIII—Continued

Model (1) Model (S.40) Model (5)

Country G= 2 G= 3 G= 4 G= 5 G= 6 {G1�G2} = {3� (5�2�2)} G= 3

Uruguay 1 3 3 3 3 Early High Late
Venezuela 1 1 1 1 1 Stable Medium-High Stable
Zambia 2 3 4 4 4 Stable Medium-Low Stable

aGroup membership, on the balanced panel from Acemoglu et al. (2008). Columns 2 to 6 show the GFE estimates
based on the baseline model, for G = 2� � � � �6. The next two columns show estimates from a two-layer specification,
with G1 = 3 (“Stable,” “Early,” and “Late,” respectively), and G2 = {5�2�2} (“High” and “Low,” with “Medium-
High,” “Medium,” and “Medium-Low” as intermediate categories for stable countries). The last column shows GFE
estimates in deviations to country-specific means, for G= 3; see equation (S.21).

not in the balanced sample: Haiti and Zimbabwe are classified in Group 2 (low-
democracy), Poland and Hungary in Group 4 (late transition), and Botswana
is classified in Group 1 (high-democracy).

Measure of Democracy

As a second exercise, we follow Acemoglu et al. (2008) and use a different
measure of democracy: the (normalized) composite Polity index. The balanced
panel contains 75 countries, for the same time periods. The grouped fixed-
effects estimates are similar to the results obtained using the Freedom House
measure. The income effect is 0�20 in the pooled OLS regression, 0�06 for GFE
with G= 2, and decreases slightly to 0�05 when G= 15, significant. Moreover,
time patterns and country classification are also similar, although there are
some differences related to the measurement of democracy. For example, for
G= 4, group membership coincides with the one shown in Table S.XIII except
in 11 cases. One of the major disagreements between the two sets of results is
South Africa, whose 1980 Polity index is 0�70, while its Freedom House score
is 0�33.

Additional Covariates

As a third exercise, we include additional controls in model (22). Specifically,
following Acemoglu et al. (2008), we control for education, log-population
size, and age group percentages (five categories, plus median age). The re-
sults are very similar to the main specification. When controlling for education
and population size only, the income effect has a similar magnitude (≈ 0�10,
significant), while when adding age structure as a control, the cumulative in-
come effect drops to 0�05, marginally significant. For both specifications, the
time patterns and country classification documented in Figure 2 in the paper
remain almost unchanged.33

33In both models that control for additional covariates, the BIC criterion selectsG= 7 groups,
a more parsimonious specification than in the case without additional covariates.
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FIGURE S.4.—Patterns of heterogeneity, various G. Note: See the notes to Figure 1 in the
paper. The left column reports the group-specific time effects α̂gt for G= 2, G= 3, G= 5, and
G= 6, from top to bottom. The other two columns show the group-specific averages of democracy
and lagged log-GDP per capita, respectively. Calendar years (1970–2000) are shown on the x-axis.
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FIGURE S.5.—Continent-specific time-effects. Note: See the notes to Figure S.4. The five
groups are Europe, North-America (including Mexico), South-America, Asia (including Aus-
tralia and New-Zealand), and Africa.

Grouped Patterns and Country Fixed-Effects

As a fourth and important exercise, we show the results of a model that com-
bines time-varying group-specific effects and time-invariant country-specific ef-
fects, as in equation (5) in the paper. The model is estimated using grouped
fixed-effects in deviations to country-specific means; see equation (S.21). Ta-
ble S.XIV shows the estimates of the coefficients of income and lagged democ-
racy. According to these results, the implied cumulative effect of income on
democracy is insignificant, in contrast with the quantitatively small but statisti-
cally significant effect obtained using baseline GFE (see Figure 1 in the paper).
In Table S.XV, we report Instrumental Variables estimates in first differences,
using group membership estimates based on GFE in deviations to country-
specific means, and using the second lag of democracy as instrument. These

TABLE S.XIV

INCOME AND DEMOCRACY, GFE ESTIMATES WITH COUNTRY-SPECIFIC FIXED-EFFECTSa

Lag. Dem. Income Cum. Income

G Objective (θ1) (θ2) ( θ2
1−θ1

)

1 17�517 0�284 −0�031 −0�044
(0�058) (0�049) (0�069)

2 12�859 0�061 −0�038 −0�040
(0�049) (0�027) (0�029)

3 10�400 −0�033 −0�035 −0�034
(0�043) (0�027) (0�027)

4 9�221 −0�072 0�045 0�042
(0�046) (0�027) (0�025)

5 8�174 −0�093 −0�013 −0�011
(0�042) (0�026) (0�024)

aSee the notes to Table S.XI. The table reports GFE estimates in deviations to country-specific means (i.e., net of
country fixed-effects); see equation (S.21). Clustered standard errors based on the large-T normal approximation in
parentheses.
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TABLE S.XV

INCOME AND DEMOCRACY, INSTRUMENTAL VARIABLES ESTIMATESa

Lag. Dem. Income Cum. Income

G (θ1) (θ2) ( θ2
1−θ1

)

1 0�472 −0�075 −0�142
(0�131) (0�068) (0�114)

2 0�338 −0�063 −0�095
(0�120) (0�062) (0�105)

3 0�202 −0�064 −0�080
(0�094) (0�055) (0�084)

4 0�065 −0�037 −0�040
(0�089) (0�049) (0�085)

5 0�085 −0�078 −0�085
(0�089) (0�049) (0�081)

aSee the notes to Table S.XI. The table reports IV estimates in first differences, using group estimates based on
GFE in deviations to country-specific means (i.e., net of country fixed-effects) and using the second lag of democracy as
instrument; see equation (S.30). Clustered standard errors based on the large-T normal approximation in parentheses.

estimates are computed using (S.30). The estimates of the coefficient of lagged
democracy are larger than in Table S.XIV, consistently with the intuition that
IV corrects for downward small-T bias. Moreover, the point estimates of the
income effect are negative, and are always insignificant at conventional levels.
Both Tables S.XIV and S.XV thus show that, when estimated using GFE es-
timators that allow for time-invariant fixed-effects and time-varying grouped
patterns at the same time, the income effects are in line with the fixed-effects
estimate.

However, the estimated time patterns are remarkably robust to the inclusion
of country fixed-effects. Under the conditions spelled out in Section S.4, our
approach allows to consistently estimate group membership even in the pres-
ence of country-specific fixed-effects. The upper panel in Figure S.6 shows that
a specification allowing for three different types of time patterns in addition
to the country-specific fixed-effects yields a similar division between “stable,”
“early transition,” and “late transition” countries. Moreover, the last column
in Table S.XIII shows that the match with the classification without country
fixed-effects and G = 4 is perfect for 80 out of the 90 countries, the “stable”
group mostly comprising countries that belonged to Groups 1 and 2 in the
baseline specification (see Figure 2 in the paper). We also estimated the model
without including lagged democracy as a control and found very similar results.
Indeed, similar time profiles and group classifications emerge when using the
standard kmeans algorithm (without covariates), in levels or in deviations to
country-specific means.

We also estimated the model in first differences (not reported). One issue
with the first-differenced data is the presence of a mass point at zero for almost
60% of observations in the balanced panel when using the Freedom House
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FIGURE S.6.—Grouped patterns and time-invariant heterogeneity. Note: See the notes to Fig-
ure S.4. The top panel shows the results of GFE estimation in deviation to country-specific means;
see equation (S.21). The bottom panel shows the results of the two-layer specification (S.40).

measure of democracy. Although the results show some discrepancies with our
baseline group classification, particularly for the early transition group, they
similarly highlight the presence of three types of time profiles: stable, early,
and late transition.

As a related exercise, we experiment with the two-layer model of unobserved
heterogeneity (S.40). This model has G1 groups with time-varying patterns,
and within each of these groups it has G2 subgroups whose time patterns dif-
fer from the common one by an intercept shift. The two-layer model is more
parsimonious than model (5), and it may be well-suited given the short length
of the panel. We allow for a different number of subgroups within each group,
and assume the following two-layer grouped structure:

(g1� g2) ∈ {(1�1)� (1�2)� (1�3)� (1�4)� (1�5)�

(2�1)� (2�2)� (3�1)� (3�2)
}
�

The lower panel of Figure S.6 shows the time-varying group-specific pat-
terns, and the next-to-last two columns in Table S.XIII show group member-
ship by country. We see that the two-layer model delivers a clear separation
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between stable countries, early transition countries, and late transition coun-
tries. This output is similar to the baseline GFE specification withG= 4, and to
the estimates in deviations to country-specific means. Note that the two-layer
specification and the latter one deliver almost identical group classifications
(except in five cases).

In addition, the results provide evidence that the three time-varying groups
are heterogeneous themselves. Stable countries show the highest degree of
heterogeneity, with five subgroups: high-democracy countries (such as the
United States, Japan, Western Europe), medium-high-democracy (Colombia,
Venezuela), intermediate (Turkey, Malaysia), medium-low (Paraguay, Indone-
sia, Egypt), and low-democracy countries (China, Iran). Early transition coun-
tries are divided into high (Spain, Portugal) and low (part of Latin America)
democracy levels. Similarly, late transition countries are also divided into high
(South Africa, Panama) and low (part of Sub-Saharan Africa). Note that the
fact that stable countries are separated into five subgroups, whereas early and
late transition countries are divided into two subgroups each, is a result of
estimation, not of modeling assumptions. At the same time, the division into
(5�2�2) groups is an assumption. Optimal choice of the number of groups in
this context is an interesting question that we do not address here.

Heterogeneous Coefficients

As a last exercise, we estimate two versions of model (7) with heterogeneous
coefficients. In the first version, only the income coefficient is group-specific,
while in the second version, the coefficients of income and democracy are
both group-specific. For computation we use an extension of Algorithm 1, with
1,000,000 randomly generated starting parameter values. In Table S.XVI, we
report the results for G= 4. The parameter estimates show some evidence of
heterogeneity in income effects across groups. For example, in Group 2 (which
empirically corresponds to a group of low-income, low-democracy countries),
the income effect is lower while still significant. At the same time, as in the
baseline case, allowing for country-specific effects in addition yields insignifi-
cant income effects in all groups (not reported). Interestingly, Figure S.7 shows
that, in both versions of the heterogeneous coefficients model, the groups of
countries have very similar income and democracy evolution as in the baseline
results (compare with Figure 2 in the paper). In particular, these two specifica-
tions highlight again the presence of “stable” groups, and of “early” and “late”
transition groups. The results of the models with heterogeneous coefficients
thus further illustrate the robustness of this classification.

S.7.4. Explaining the Estimated Grouped Patterns

The country classification shown in Figure 2 in the paper seems to be a robust
feature of the democracy/income relationship in the last third of the twentieth
century. An important question is then why the estimated time profiles differ
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TABLE S.XVI

INCOME AND DEMOCRACY, GFE ESTIMATES WITH HETEROGENEOUS COEFFICIENTS (G= 4)a

Lag. Dem. Income Cum. Income

(θ1) (θ2) ( θ2
1−θ1

)

Heterogeneous θ2

Group 1 0�288 0�103 0�145
(0�054) (0�019) (0�024)

Group 2 0�288 0�047 0�066
(0�054) (0�014) (0�019)

Group 3 0�288 0�087 0�122
(0�054) (0�018) (0�024)

Group 4 0�288 0�082 0�116
(0�054) (0�013) (0�016)

Heterogeneous θ1 and θ2

Group 1 0�644 0�070 0�195
(0�077) (0�019) (0�031)

Group 2 0�319 0�041 0�061
(0�113) (0�014) (0�020)

Group 3 0�016 0�122 0�124
(0�081) (0�022) (0�021)

Group 4 0�248 0�090 0�120
(0�097) (0�018) (0�015)

aSee the notes to Table S.XI. The table reports GFE estimates with heterogeneous coefficients based on two
versions of model (7); see equation (S.32). Extension of Algorithm 1 with 1,000,000 randomly generated starting
parameter values. Group 1 is “high democracy,” 2 is “low democracy,” 3 is “early transition,” and 4 is “late transition.”
Clustered standard errors based on the large-T normal approximation in parentheses.

across countries. We now attempt to identify factors that explain why these
four estimated groups of countries are associated with such different levels
and evolution of democracy and income during this period.

The first set of factors we consider are long-run, historical determinants.
Following Acemoglu et al. (2008), we use a measure of constraints on the ex-
ecutive at independence, the rationale being that more stringent constraints
may be beneficial to embark on a pro-growth, pro-democracy development
path. We also consider the date of independence and a measure of log-GDP
per capita in 150034 as potential long-run determinants. In addition, we con-
sider the initial democracy level (in 1965), as well as two factors that have
been emphasized by the “modernization” theory (Lipset (1959)): log-GDP per
capita (in 1965), and a measure of education (average years of schooling, in
1970). We also include shares of Catholic and Protestant in the population (in
1980).

34We construct this measure as the difference between log-GDP per capita in 2000, and the
change in log-GDP per capita between 1500 and 2000 used by Acemoglu et al. (2008).
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FIGURE S.7.—Grouped patterns, heterogeneous coefficients (G = 4). Note: See the notes to
Figure S.4 and Table S.XVI. GFE estimates based on model (7); see equation (S.32). Averages
of democracy and income by group. The top panel shows GFE results in a version of the model
where the income coefficient is group-specific. The bottom panel corresponds to a version of the
model where the coefficients of income and lagged democracy are both group-specific.

Table S.XVII shows descriptive statistics by group. Both the high-democracy
countries (Group 1) and the early transition ones (Group 3) became inde-
pendent in the nineteenth century on average, while the countries in the two
other groups became independent more recently. The high-democracy group
had more stringent constraints on the executive at the time of independence.
This group also has a higher initial democracy level in 1965,35 higher initial
income and education, and a larger share of Protestant. The early transition
group (Group 3) has a higher average education level than the low-democracy
group, and a larger share of Catholic (63% versus 23%). Lastly, the late tran-
sition group (Group 4) differs little from the low-democracy one in terms of
observables, apart from a slightly higher education level.

35Note that the group averages of democracy in 1965 are higher for Groups 2–4 than the 1970
levels that can be seen on Figure 2. This reflects the fact that the 1960s were characterized by
a number of transitions to autocracy, a feature that we also observed on our estimates from the
1960–2000 unbalanced sample.
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TABLE S.XVII

DESCRIPTIVE STATISTICS, BY GROUPa

Group

1 (High Dem.) 2 (Low Dem.) 3 (Early Trans.) 4 (Late Trans.)

log GDP p.c. (1500) 6�52 6�39 6�49 6�30
(0�300) (0�437) (0�141) (0�236)

Independence Year 1860 1939 1824 1924
(63�3) (50�7) (37�7) (56�3)

Constraints 0�581 0�258 0�125 0�250
(0�446) (0�254) (0�166) (0�246)

Democracy (1965) 0�892 0�446 0�510 0�508
(0�157) (0�171) (0�267) (0�281)

log GDP p.c. (1965) 8�76 7�33 8�02 7�39
(0�765) (0�604) (0�709) (0�773)

Education (1970) 5�78 1�52 3�63 2�59
(2�59) (1�05) (1�61) (1�92)

Share Catholic (1980) 0�434 0�232 0�626 0�379
(0�404) (0�284) (0�437) (0�349)

Share Protestant (1980) 0�248 0�068 0�024 0�140
(0�330) (0�088) (0�032) (0�160)

Number of observations 33 26 13 18

aBalanced panel from Acemoglu et al. (2008). “Constraints” are constraints on the executive at independence,
measured as in Acemoglu, Johnson, and Robinson (2005). Group-specific means, and group-specific standard devia-
tions in parentheses. Group membership is shown on Figure 2 in the paper.

In order to jointly assess the effects of the different factors, we next report
in Table S.XVIII the results of multinomial logit regressions of the four esti-
mated groups, using several specifications. In Section S.5.3, we have provided a
large-N�T justification for treating the group estimates as data when running
the regressions and computing standard errors. The base category is Group 2
(low-democracy). The third row of the top panel of Table S.XVIII shows that
constraints on the executive at independence are a significant predictor of the
probability of belonging to Group 1 relative to Group 2. This is consistent with
the idea that Group 1 and Group 2 countries have embarked on divergent
paths at the time of independence, and is suggestive of a very high persistence
of early institutions. Note that the effect remains significant at the 10% level
even when all other controls (democracy in 1965, income, education. . . ) are in-
cluded. At the same time, early independence is also associated with a higher
likelihood of belonging to Group 1.

However, as shown by the middle and bottom panels of Table S.XVIII, con-
straints on the executive at independence do not significantly affect the prob-
ability of belonging to either of the two transition groups (Groups 3 and 4).
This suggests that, while conditions at independence partly explain differences
between low- and high-democracy countries, they do not seem to explain the
remarkable evolution of transition countries during the recent period.
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TABLE S.XVIII

EXPLAINING GROUP MEMBERSHIPa

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Group 1: High-Democracy (vs. Group 2: Low-Democracy)
log GDP p.c. (1500) 1�39 0�865 0�698 – – – −0�224 −0�307 −0�465 −0�628

(0�971) (1�74) (1�76) (2�41) (2�61) (2�75) (2�67)
Independence Year/100 – −4�55 −4�44 – – – −3�51 −3�72 −3�68 −3�59

(1�22) (1�27) (1�43) (1�56) (1�75) (1�75)
Constraints – 7�26 7�12 – – – 5�67 4�74 4�70 4�52

(2�00) (2�06) (2�49) (2�60) (2�62) (2�77)
Democracy (1965) – – – 7�10 5�80 5�92 – 6�72 6�81 6�24

(2�11) (2�56) (2�66) (3�39) (3�44) (3�65)
log GDP p.c. (1965) – – – 1�51 – 1�09 – – 0�194 0�447

(0�587) (0�883) (1�25) (1�35)
Education (1970) – – – – 0�798 0�492 0�949 0�443 0�418 0�258

(0�324) (0�402) (0�373) (0�435) (0�536) (0�560)
Share Catholic (1980) – – 0�611 – – – – – – −0�627

(1�20) (1�70)
Share Protestant (1980) – – 6�81 – – – – – – 3�85

(4�37) (6�32)

Group 3: Early Transition (vs. Group 2: Low-Democracy)
log GDP p.c. (1500) 0�959 −0�894 −0�504 – – – −1�19 −2�27 −3�48 −3�13

(1�19) (1�85) (1�87) (2�44) (2�56) (3�03) (2�97)
Independence Year/100 – −3�53 −3�32 – – – −2�72 −2�96 −4�02 −3�82

(1�11) (1�23) (1�23) (1�30) (1�63) (1�76)
Constraints – 2�25 2�23 – – – 0�939 0�473 0�070 0�010

(2�10) (2�34) (2�47) (2�56) (2�57) (2�95)
Democracy (1965) – – – −0�232 −1�63 −1�79 – −1�36 −0�831 −1�37

(1�69) (2�03) (2�08) (3�03) (3�02) (3�16)

(Continues)
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TABLE S.XVIII—Continued

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

log GDP p.c. (1965) – – – 1�40 – 0�503 – – −1�87 −1�58
(0�567) (0�793) (1�34) (1�42)

Education (1970) – – – – 0�883 0�749 0�570 0�729 1�19 1�18
(0�311) (0�357) (0�361) (0�425) (0�565) (0�601)

Share Catholic (1980) – – 1�00 – – – – – – −0�215
(1�22) (1�67)

Share Protestant (1980) – – −0�552 – – – – – – −1�55
(7�87) (8�93)

Group 4: Late Transition (vs. Group 2: Low-Democracy)
log GDP p.c. (1500) −1�06 −0�968 −0�751 – – – −1�63 −1�97 −1�99 −2�08

(1�14) (1�07) (1�14) (1�95) (2�07) (2�13) (2�16)
Independence Year/100 – −0�681 −0�785 – – – −0�027 −0�144 −0�219 −0�007

(0�635) (0�763) (0�926) (0�939) (1�03) (1�38)
Constraints – 0�485 0�848 – – – −0�607 −1�05 −1�11 −0�527

(1�30) (1�39) (1�74) (1�86) (1�88) (2�22)
Democracy (1965) – – – 1�23 0�047 0�134 − 2�39 2�46 1�50

(1�43) (1�93) (1�89) (2�45) (2�45) (2�77)
log GDP p.c. (1965) – – – 0�021 – −0�215 – – −0�263 0�214

(0�464) (0�701) (0�902) (1�07)
Education (1970) – – – – 0�494 0�544 0�597 0�423 0�502 0�331

(0�302) (0�349) (0�358) (0�389) (0�439) (0�476)
Share Catholic (1980) – – 0�888 – – – – – – 1�20

(1�19) (1�90)
Share Protestant (1980) – – 5�40 – – – – – – 5�23

(3�87) (5�78)
aBalanced panel from Acemoglu et al. (2008). “Constraints” are constraints on the executive at independence, measured as in Acemoglu, Johnson, and Robinson (2005).

Multinomial logit regressions of the estimated groups (G= 4). Standard errors clustered at the country level in parentheses. The reference group is Group 2 (low-democracy).
Group membership is shown on Figure 2 in the paper. Sample size in the most flexible specification—column (10)—is N = 68.
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Education positively affects the probability of belonging to Group 3 relative
to Group 2, in line with the “modernization” theory. The date of independence
also has a positive effect on the likelihood of belonging to the early transition
group. These results are consistent with Papaioannou and Siourounis (2008),
who modeled the probability of democratization of countries that started the
period as autocracies. They found little evidence of an effect of early institu-
tions. In addition, their results also suggest that more educated societies are
more likely to become democratic.

In contrast, the bottom panel of Table S.XVIII shows that none of the de-
terminants that we consider (e.g., education or religion) is able to distinguish
late transition countries (Group 4) from low-democracy countries (Group 2).
Note that most of the late transition countries in Figure 2 are Sub-Saharan
African countries, which made democratic transitions in the 1990s. Inter-
estingly, Brückner and Ciccone (2011) documented an association between
drought and posterior increases in democracy levels in Sub-Saharan Africa.
They interpreted this evidence as suggesting that a fall in transitory income
may foster democratic change.

Overall, these results point to the need to further study the short- and long-
run determinants of political development. Constraints at independence were
significantly more stringent in countries that remained democratic between
1970 and 2000, compared to those that remained nondemocratic during the
period. However, this measure does not explain why some countries that were
nondemocratic at the beginning of the sample period experienced a demo-
cratic transition, while others did not. For a sizable share of the world, history
appears to have evolved at a fast pace.

APPENDIX

S.A.1. Proof of Corollary 1

We have
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follows from the fact that
√
NT(θ̂− θ̃)= op(1).



54 S. BONHOMME AND E. MANRESA
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and (20) follows from a similar argument as before.
This ends the proof of Corollary 1.

S.A.2. Proof of the Convergence Rate in Equation (21) in the Paper

To show (21), we will bound the following three quantities in turn:
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By Assumption 1(a) and Lemma B.4,
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This proves (21).
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S.A.3. Proof of Proposition S.1

We start with a lemma.

LEMMA S.1: We have
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ĝi(θ�α)= g}|xi = x]=∑

h�=g

(∫
Sgh

(y − xθ− αg)′
‖αh − αg‖ f (y|x)dy

)
�(S.49)

∂

∂α′
g̃

E
[
1
{
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for all g̃ �= g�
where Sgh is given by (S.8).

PROOF: Let
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It thus follows that Vg is the intersection of (G− 1) half-spaces in R
T .

We have
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Hence, using differential calculus as in Pollard (1982), we have, for all k ∈
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where ∂Vg is the frontier of Vg, and where νg(y;θk) is the velocity associated to
a marginal change in θk.

36Note that, with some abuse of notation, here the integral is relative to the (T − 1)-
dimensional Lebesgue measure.
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To compute νg(y;θk), we start by noting that ∂Vg is the union of (G − 1)
hypersurfaces:

∂Vg =
⋃
h�=g
Sgh�

where Sgh is given by (S.8).
As a result, we have the following identity:∫

∂Vg

f (y|x)νg(y;θk)dy =
∑
h�=g

∫
Sgh

f (y|x)νg(y;θk)dy�

Let us now define, for a given (small) ξ ∈ R,

θ∗(ξ)= θ+ ξek�
where ek is a K × 1 vector whose elements are all zero except a one in the kth
row.

Finally, let

S∗
gh(ξ)= {y ∈R

T �
∥∥y − xθ∗(ξ)− αg

∥∥2 = ∥∥y − xθ∗(ξ)− αh
∥∥2
� and∥∥y − xθ∗(ξ)− αg

∥∥2 ≤ ∥∥y − xθ∗(ξ)− αh̃
∥∥2

for all h̃ �= (g�h)}�
To any given y ∈ Sgh we associate the point y∗(ξ) ∈ S∗

gh(ξ) such that y∗(ξ)−y
is orthogonal to the hypersurface Sgh. Then the velocity is defined by

νg(y;θk)= lim
ξ→0

(
y∗(ξ)− y)′ →

n

ξ
�

where
→
n is the normal vector to Sgh that points outside of Vg.

In the present case, we have

→
n= αh − αg

‖αh − αg‖ �

Moreover, y∗(ξ) satisfies

y∗(ξ)= y + λ(ξ)(αh − αg)�(S.51)

where λ(ξ) is such that

(αh − αg)′
(
y∗(ξ)− xθ∗(ξ)− αg + αh

2

)
= 0�
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That is,

(αh − αg)′
(
y − xθ− αg + αh

2
+ λ(ξ)(αh − αg)− ξxek

)
= 0�

from which we get, as y ∈ Sgh,

λ(ξ)= ξ(αh − αg)′xek
‖αh − αg‖2 �

It thus follows that

νg(y;θk)= lim
ξ→0

λ(ξ)(αh − αg)′
(
αh − αg

‖αh − αg‖
)

ξ

= (αh − αg)′xek
‖αh − αg‖ �

Combining, we get∫
∂Vg

f (y|x)νg(y;θk)dy =
∑
h�=g

(∫
Sgh

f (y|x)dy
)
(αh − αg)′
‖αh − αg‖xek�

and hence

∂

∂θ′E
[
1
{
ĝi(θ�α)= g}|xi = x]=∑

h�=g

(∫
Sgh

f (y|x)dy
)
(αh − αg)′
‖αh − αg‖x�

This shows (S.48).
To show (S.49) and (S.50), we proceed similarly. The only difference is the

characterization of the velocity. We start by computing νg(y;αgt) for y ∈ Sgh.
To do this, we define λ(ξ) as in (S.51), but now y∗(ξ) solves

(
αh − α∗

g(ξ)
)′(
y∗(ξ)− xθ− α∗

g(ξ)+ αh
2

)
= 0�

where

α∗
g(ξ)= αg + ξet�

and where, with a slight abuse of notation, et now denotes a T ×1 vector whose
elements are all zero except a one in the tth row.

That is,

(αh − αg − ξet)′
(
y − xθ− αg + αh

2
+ λ(ξ)(αh − αg)− ξ

2
et

)
= 0�
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so

λ(ξ)= ξ(y − xθ− αg)′et
‖αh − αg‖2 + o(ξ)�

It thus follows that

νg(y;αgt)= lim
ξ→0

λ(ξ)(αh − αg)′
(
αh − αg

‖αh − αg‖
)

ξ

= (y − xθ− αg)′et
‖αh − αg‖ �

Combining the results yields (S.49).
Lastly, we compute νg(y;αg̃t) for y ∈ Sgh, for all g̃ �= g and all t. There are

two cases:
• If g̃ �= h, then λ(ξ)= 0 so νg(y;αg̃t)= 0.
• If instead g̃= h, then y∗(ξ) solves(

α∗
h(ξ)− αg

)′(
y∗(ξ)− xθ− αg + α∗

h(ξ)

2

)
= 0�

where

α∗
h(ξ)= αh + ξet�

That is,

(αh − αg + ξet)′
(
y − xθ− αg + αh

2
+ λ(ξ)(αh − αg)− ξ

2
et

)
= 0�

so

λ(ξ)= −ξ(y − xθ− αh)′et
‖αh − αg‖2 + o(ξ)�

Following the above steps yields (S.50). Q.E.D.

We then have the following result.

LEMMA S.2:

∂

∂α′
g

∣∣∣∣
(θ�α)

E
[
1
{
ĝi(θ�α)= g}(yi − xiθ− αg)|xi = x

]
(S.52)

=
∑
h�=g

(∫
Sgh

(y − xθ− αg)(y − xθ− αg)′
‖αh − αg‖ f (y|x)dy

)
�
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and, for all g̃ �= g,

∂

∂α′
g̃

∣∣∣∣
(θ�α)

E
[
1
{
ĝi(θ�α)= g}(yi − xiθ− αg)|xi = x

]
(S.53)

= −
(∫

Sgg̃

(y − xθ− αg)(y − xθ− αg̃)′
‖αg̃ − αg‖ f (y|x)dy

)
�

The lemma is a simple consequence of Lemma S.1, so its proof is omitted.
Lastly, we prove Proposition S.1. We have

Γθθ = − ∂

∂θ′

∣∣∣∣
(θ�α)

E
[
x′
i(yi − xiθ− αĝi(θ�α))

]
= E

[
x′
ixi
]+ G∑

g=1

E

[
x′
iαg

∂

∂θ′

∣∣∣∣
(θ�α)

E
[
1
{
ĝi(θ�α)= g}|xi]]

= E
[
x′
ixi
]+ G∑

g=1

E

[
x′
iαg

(∑
h�=g

(∫
Sgh

f (y|xi)dy
)
(αh − αg)′
‖αh − αg‖xi

)]
�

where we have used (S.48). We also note that, with probability 1,
G∑
g=1

∑
h�=g

(∫
Sgh

f (y|xi)dy
)

αgα
′
g

‖αh − αg‖

=
G∑
g=1

∑
h�=g

(∫
Sgh

f (y|xi)dy
)

αhα
′
h

‖αh − αg‖ �

since Sgh = Shg for all (g�h). Likewise,
G∑
g=1

∑
h�=g

(∫
Sgh

f (y|xi)dy
)

αgα
′
h

‖αh − αg‖

=
G∑
g=1

∑
h�=g

(∫
Sgh

f (y|xi)dy
)

αhα
′
g

‖αh − αg‖ �

Hence
G∑
g=1

∑
h�=g

(∫
Sgh

f (y|xi)dy
)
αg
(αh − αg)′
‖αh − αg‖

=
G∑
g=1

∑
h�=g

(∫
Sgh

f (y|xi)dy
)
αgα

′
h − αgα′

g

‖αh − αg‖
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=
G∑
g=1

∑
h�=g

(∫
Sgh

f (y|xi)dy
) 1

2
αgα

′
h + 1

2
αhα

′
g − 1

2
αgα

′
g − 1

2
αhα

′
h

‖αh − αg‖

= −1
2

G∑
g=1

∑
h�=g

(∫
Sgh

f (y|xi)dy
)
(αh − αg)(αh − αg)′

‖αh − αg‖ �

This shows (S.9).
Next, for given g ∈ {1� � � � �G},

Γθg = − ∂

∂α′
g

∣∣∣∣
(θ�α)

E
[
x′
i(yi − xiθ− αĝi(θ�α))

]
= E

[
x′
i1
{
ĝi(θ�α)= g}]+E

[
x′
iαg

∂

∂α′
g

∣∣∣∣
(θ�α)

E
[
1
{
ĝi(θ�α)= g}|xi]]

+
∑
g̃ �=g

E

[
x′
iαg̃

∂

∂α′
g

∣∣∣∣
(θ�α)

E
[
1
{
ĝi(θ�α)= g̃}|xi]]

= E
[
x′
i1
{
ĝi(θ�α)= g}]

+E

[
x′
iαg

(∑
h�=g

(∫
Sgh

(y − xiθ− αg)′
‖αh − αg‖ f (y|xi)dy

))]

−
∑
g̃ �=g

E

[
x′
iαg̃

(∫
Sgg̃

(y − xiθ− αg)′
‖αg̃ − αg‖ f (y|xi)dy

)]
�

where we have used (S.49) and (S.50).
We then have

Γgg = − ∂

∂α′
g

∣∣∣∣
(θ�α)

E
[
1
{
ĝi(θ�α)= g}(yi − xiθ− αg)

]
= E

[
1
{
ĝi(θ�α)= g}]IT

−E

[
∂

∂α′
g

∣∣∣∣
(θ�α)

E
[
1
{
ĝi(θ�α)= g}(y − xiθ− αg)|xi

]]
= E

[
1
{
ĝi(θ�α)= g}]IT

−E

[∑
h�=g

(∫
Sgh

(y − xiθ− αg)(y − xiθ− αg)′
‖αh − αg‖ f (y|xi)dy

)]
�

where we have used (S.52).
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Lastly, we have, for g̃ �= g,

Γgg̃ = − ∂

∂α′
g̃

∣∣∣∣
(θ�α)

E
[
1
{
ĝi(θ�α)= g}(yi − xiθ− αg)

]
= −E

[
∂

∂α′
g̃

∣∣∣∣
(θ�α)

E
[
1
{
ĝi(θ�α)= g}(y − xiθ− αg)|xi

]]

= E

[(∫
Sgg̃

(y − xiθ− αg)(y − xiθ− αg̃)′
‖αg̃ − αg‖ f (y|xi)dy

)]
�

where we have used (S.53).
This ends the proof of Proposition S.1.

S.A.4. Proof of Proposition S.2

Let θ= plimN→∞θ̂, and αg = plimN→∞α̂g for g ∈ {1�2}, where the probability
limits are taken for fixed T as N tends to infinity. We assume without loss of
generality that α1 ≤ α2.

Following the arguments in Pollard (1981), it can be shown that the pseudo-
true values θ and αg satisfy

E

[
T∑
t=1

xit
(
vit + x′

it

(
θ0 − θ))(S.54)

+
T∑
t=1

xit1
{
vi ≤ x′

i

(
θ− θ0

)+ α1 + α2

2
− α0

}(
α0 − α1

)
+

T∑
t=1

xit1
{
vi > x

′
i

(
θ− θ0

)+ α1 + α2

2
− α0

}(
α0 − α2

)]
= 0�

E

[
1
{
vi ≤ x′

i

(
θ− θ0

)+ α1 + α2

2
− α0

}(
vi + x′

i

(
θ0 − θ)+ α0 − α1

)]
(S.55)

= 0�

E

[
1
{
vi > x

′
i

(
θ− θ0

)+ α1 + α2

2
− α0

}(
vi + x′

i

(
θ0 − θ)+ α0 − α2

)]
(S.56)

= 0�
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Now, let a1 and a2 be the solutions of

TE

[
1
{
vi ≤ a1 + a2

2
− α0

}(
vi + α0 − a1

)]= 0�(S.57)

TE

[
1
{
vi >

a1 + a2

2
− α0

}(
vi + α0 − a2

)]= 0�(S.58)

Note that (θ0� a1� a2) satisfies the moment restrictions (S.54)–(S.56) because,
as vit and xit are independent of each other, we have

E

[
T∑
t=1

xitvit +
T∑
t=1

xit1
{
vi ≤ a1 + a2

2
− α0

}(
α0 − a1

)

+
T∑
t=1

xit1
{
vi >

a1 + a2

2
− α0

}(
α0 − a2

)]

= 0 +E

[
T∑
t=1

xit

]

×E

[
1
{
vi ≤ a1 + a2

2
− α0

}(
α0 − a1

)+ 1
{
vi >

a1 + a2

2
− α0

}(
α0 − a2

)]
︸ ︷︷ ︸

=0

�

where we have used that the sum of the left-hand sides in (S.57) and (S.58) is
zero.

Provided the solution to the population moment restrictions (S.54)–(S.56)
be unique,37 it thus follows that

(θ�α1�α2)= (θ0� a1� a2

)
�(S.59)

Hence θ̂
p→ θ0. In addition, it follows from (S.57)–(S.58) and (S.59) that

E

[
1
{
vi ≤ α1 + α2

2
− α0

}(
vi + α0 − α1

)]= 0�

E

[
1
{
vi >

α1 + α2

2
− α0

}(
vi + α0 − α2

)]= 0�

In particular we have, by symmetry: (α1 + α2)/2 = α0. So

α1 = α0 +E(vi|vi ≤ 0)� α2 = α0 +E(vi|vi > 0)�

37Uniqueness of the population minimum is a key ingredient for showing that (θ̂� α̂)
p→ (θ�α)

as N tends to infinity (Pollard (1981)); see Appendix S.A.3. Uniqueness is implicitly assumed in
the statement of Proposition S.2.
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The final result comes from the normality assumption, as

E(vi|vi ≤ 0)= − σ√
T

φ(0)
�(0)

= −σ
√

2
πT

�

This ends the proof of Proposition S.2.

S.A.5. Proof of Proposition S.3

From (S.21) and Assumptions 1(a)–1(c) and 1(d)–1(g) applied to xit−xi and
vit − vi, and denoting μ0

gt = α0
gt − α0

g, Theorem 1 yields

θ̂FE
p→ θ0�

and

1
NT

N∑
i=1

T∑
t=1

(
μ̂FE
ĝFEi t

−μ0
g0
i t

)2 p→ 0�

In the rest of the proof, we closely follow the proof of Theorem 2. It is imme-
diate to show that dH(μ̂FE�μ0)

p→ 0. We then follow the proof of Lemma B4 to
show an analogous result, by replacing xit , αgt , α0

gt , and vit by xit − xi, αgt − αg,
α0
gt − α0

g, and vit − vi, respectively. Equation (B.6) in the paper thus becomes

Pr(Z̃ig = 1) ≤
∑
g̃ �=g

[
Pr

(
1
T

T∑
t=1

‖xit − xi‖ ≥ M̃
)

(S.60)

+ Pr

(
1
T

T∑
t=1

(
μ0
g̃t −μ0

gt

)2 ≤ cFEg�g̃

2

)

+ Pr

(
1
T

T∑
t=1

(vit − vi)2 ≥ M̃
)

+ Pr

(
T∑
t=1

(
μ0
g̃t −μ0

gt

)
(vit − vi)≤−T c

FE
g�g̃

4
+ TC1

√
η
√
M̃

+ TC2
√
ηM̃ + TC3

√
η

)]
�

where cFEg�g̃ = plimT→∞
1
T

∑T

t=1(μ
0
gt −μ0

g̃t)
2.
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We bound the last three terms on the right-hand side of (S.60), similarly as
in the proof of Theorem 2. Start with the second term. By assumption, we have
limT→∞ 1

T

∑T

t=1 E[(μ0
gt −μ0

g̃t)
2] = cFEg�g̃. So for T large enough, we have

1
T

T∑
t=1

E
[(
μ0
gt −μ0

g̃t

)2]≥ 2cFEg�g̃
3
�

Hence

Pr

(
1
T

T∑
t=1

(
μ0
g̃t −μ0

gt

)2 ≤ cFEg�g̃

2

)

≤ Pr

(
1
T

T∑
t=1

[(
μ0
g̃t −μ0

gt

)2 −E
((
μ0
g̃t −μ0

gt

)2)]≤ −c
FE
g�g̃

6

)
�

To simplify the notation, let us denote at = α0
g̃t − α0

gt . We have

1
T

T∑
t=1

[(
μ0
g̃t −μ0

gt

)2 −E
((
μ0
g̃t −μ0

gt

)2)]
(S.61)

= 1
T

T∑
t=1

[
(at − a)2 −E

(
(at − a)2

)]
=
[

1
T

T∑
t=1

[
a2
t −E

(
a2
t

)]]− [a2 −E
(
a2)]�

The first term on the right-hand side of (S.61) can be bounded using
Lemma B.5. To bound the second term, note that

∣∣a2 −E
(
a2)∣∣= ∣∣a2 − [E(a)]2 − Var(a)

∣∣
= ∣∣(a+E(a)

)(
a−E(a)

)− Var(a)
∣∣

≤ ∣∣(a+E(a)
)∣∣× ∣∣(a−E(a)

)∣∣+ ∣∣Var(a)
∣∣�

Now, at is uniformly bounded by Assumption 1(a). Moreover, by Assump-
tions 2(c)–2(d), limT→∞ Var(a)= 0. Using Lemma B.5 with zt = at−E(at) thus
yields that, for any z > 0, Pr(|a2 − E(a2)| ≥ z)= o(T−δ) for all δ > 0. As a re-
sult, the second term on the right-hand side of (S.60) is o(T−δ).
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The third and fourth terms on the right-hand side of (S.60) are easy to
bound. Indeed: 1

T

∑T

t=1(vit − vi)
2 ≤ 1

T

∑T

t=1 v
2
it . Moreover, denoting as cFE the

minimum of cFEg�g̃ over all g �= g̃ and taking

η≤
(

cFE

8(C1

√
M̃ +C2M̃ +C3)

)2

�

the fourth term on the right-hand side of (S.60) is bounded by

Pr

(
T∑
t=1

(
μ0
g̃t −μ0

gt

)
(vit − vi)≤ −T c

FE
g�g̃

8

)

= Pr

(
1
T

T∑
t=1

(
α0
g̃t − α0

gt

)
vit −

(
α0
g̃ − α0

g

)
vi ≤ −c

FE
g�g̃

8

)
�

Lemma B.5, applied to zt = (α0
g̃t −α0

gt)vit , allows to bound 1
T

∑T

t=1(α
0
g̃t −α0

gt)vit .
Moreover, |α0

g̃ − α0
g| is uniformly bounded, so Lemma B.5 applied to zt = vit

allows to bound (α0
g̃ −α0

g)vi. This shows that the fourth term on the right-hand
side of (S.60) is o(T−δ). Lastly, the first term on the right-hand side of (S.60) is
bounded analogously as in the proof of Theorem 2, using Assumption S.1(b).

The end of the proof is as in the proof of Theorem 2.

Sufficient Conditions for Assumption S.1(b)

Note that, if xit satisfies Assumption 2(e), then it also satisfies Assump-
tion S.1(b), as

Pr

(
1
T

T∑
t=1

‖xit − xi‖ ≥M∗
)

≤ Pr

(
2
T

T∑
t=1

‖xit‖ ≥M∗
)
�

Moreover, in models where xit contains a lagged outcome, we have the follow-
ing result.

PROPOSITION S.5: Consider model (5). Suppose that Assumptions 1(a), 1(c),
and 2(c)–2(d) are satisfied. In addition, suppose that xit = (yi�t−1� x̃

′
it)

′, and θ =
(ρ�θ′

1)
′, where |ρ0|< 1, x̃it satisfy Assumption 2(e), and, for all constants F1 > 0,

F2 > 0,

sup
i∈{1�����N}

Pr
(|yi0| ≥ F1T

)= o(T−δ) for all δ > 0�(S.62)

sup
i∈{1�����N}

Pr
(|ηi| ≥ F2T

)= o(T−δ) for all δ > 0�(S.63)
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Then there exists a constant M∗ > 0 such that, as N�T tend to infinity,

sup
i∈{1�����N}

Pr

(
1
T

T∑
t=1

‖xit − xi‖ ≥M∗
)

= o(T−δ) for all δ > 0�

PROOF: As Assumption 2(e) implies Assumption S.1(b), we have
supi∈{1�����N} Pr( 1

T

∑T

t=1 ‖x̃it − x̃i‖ ≥M∗)= o(T−δ). Moreover,

yit = ỹit + 1 − (ρ0
)t

1 − ρ0 ηi�

where

ỹit ≡
t−1∑
s=0

(
ρ0
)s(
x̃′
i�t−sθ

0
1 + α0

g0
i �t−s

+ vi�t−s
)+ (ρ0

)t
yi0�

So, for all i,

1
T

T∑
t=1

|yi�t−1 − yi�−1|

≤ 1
T

T∑
t=1

|̃yi�t−1 − ỹ i�−1| +
1
T

T∑
t=1

∣∣∣∣∣ 1
T

T∑
s=1

(
ρ0
)s−1

1 − ρ0 −
(
ρ0
)t−1

1 − ρ0

∣∣∣∣∣|ηi|
≤ 1
T

T∑
t=1

|̃yi�t−1 − ỹ i�−1| +
1
T

2(
1 − ∣∣ρ0

∣∣)2 |ηi|�

Now, as in the proof of Proposition B.1 in the paper (and using (S.62)), there
exists a positive constant M∗ such that

sup
i∈{1�����N}

Pr

(
1
T

T∑
t=1

|̃yi�t−1 − ỹ i�−1| ≥
M∗

2

)

≤ sup
i∈{1�����N}

Pr

(
2
T

T∑
t=1

|̃yi�t−1| ≥ M∗

2

)
= o(T−δ)�

Moreover, for this M∗, (S.63) implies that

sup
i∈{1�����N}

Pr
(

1
T

2(
1 − ∣∣ρ0

∣∣)2 |ηi| ≥ M∗

2

)
= o(T−δ)�

This concludes the proof of Proposition S.5. Q.E.D.
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S.A.6. Proof of Proposition S.4

Let

Q̂(θ�α�γ)= 1
NT

N∑
i=1

T∑
t=1

(
yit − x′

itθgi − αgit
)2
�

and

Q̃(θ�α�γ)= 1
NT

N∑
i=1

T∑
t=1

(
x′
it

(
θ0
g0
i
− θgi

)+ α0
g0
i t

− αgit
)2

+ 1
NT

N∑
i=1

T∑
t=1

v2
it �

As in the proof of Theorem 1, we start by showing the following uniform
convergence result.

LEMMA S.3: Let Assumptions 1(a)–1(f) hold. Then

plim
N�T→∞

sup
(θ�α�γ)∈ΘG×AGT×ΓG

∣∣Q̂(θ�α�γ)− Q̃(θ�α�γ)
∣∣= 0�

PROOF: We have

Q̂(θ�α�γ)− Q̃(θ�α�γ)

= 2
NT

N∑
i=1

T∑
t=1

vit
(
x′
it

(
θ0
g0
i
− θgi

)+ α0
g0
i t

− αgit
)

= 2
NT

N∑
i=1

T∑
t=1

vitx
′
itθ

0
g0
i
+ 2
NT

N∑
i=1

T∑
t=1

vitα
0
g0
i t

− 2
NT

N∑
i=1

T∑
t=1

vitαgit −
2
NT

N∑
i=1

T∑
t=1

vitx
′
itθgi �

The second and third terms on the right-hand side are bounded as in the
proof of Lemma A.1. To bound the fourth term, note that(

1
NT

N∑
i=1

T∑
t=1

vitx
′
itθgi

)2

≤ 1
N

N∑
i=1

‖θgi‖2

∥∥∥∥∥ 1
T

T∑
t=1

vitxit

∥∥∥∥∥
2

�

which is uniformly op(1) by Assumptions 1(a) and 1(d). The first term is thus
op(1), too. Q.E.D.
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With some abuse of notation, we use dH(θ1� θ2) and dH(α1�α2) to denote
the Hausdorff distances on R

GK and R
GT , respectively, where K = dimxit .38

We have the following consistency result.

LEMMA S.4: Suppose that the conditions of Proposition S.4 are satisfied. Then,
as N�T tend to infinity,

dH
(
θ̂HC�θ0

) p→ 0� and dH
(̂
αHC�α0

) p→ 0�

PROOF: Let (θ�α�γ) ∈ ΘG × AGT × ΓG. Let also αg = (αg1� � � � �αgT )
′. We

have

Q̃(θ�α�γ)− Q̃
(
θ0�α0�γ0

)
(S.64)

= 1
NT

N∑
i=1

T∑
t=1

(
x′
it

(
θ0
g0
i
− θgi

)+ α0
g0
i t

− αgit
)2

=
G∑
g=1

G∑
g̃=1

⎛⎝ θ0
g − θg̃

1√
T

(
α0
g − αg̃

)
⎞⎠′

M(γ�g� g̃)

⎛⎝ θ0
g − θg̃

1√
T

(
α0
g − αg̃

)
⎞⎠

≥
G∑
g=1

G∑
g̃=1

ρ̂(γ�g� g̃)

[∥∥θ0
g − θg̃

∥∥2 + 1
T

T∑
t=1

(
α0
gt − αg̃t
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]

≥
G∑
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(
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ρ̂(γ�g� g̃)

)
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g̃∈{1�����G}
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∥∥2 + 1
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]

≥
G∑
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(
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g̃∈{1�����G}
ρ̂(γ�g� g̃)

)
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g̃∈{1�����G}

[∥∥θ0
g − θg̃

∥∥2 + 1
T

T∑
t=1

(
α0
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]

≥
G∑
g=1

ρ̂HC × min
g̃∈{1�����G}

[∥∥θ0
g − θg̃

∥∥2 + 1
T

T∑
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(
α0
gt − αg̃t

)2

]
�

where ρ̂HC is bounded away from zero asymptotically by Assumption S.2(a).
Moreover, using Lemma S.3, we have, as in the proof of Theorem 1,

Q̃
(
θ̂HC� α̂HC� γ̂HC

)− Q̃
(
θ0�α0�γ0

)= op(1)�(S.65)

38We use the norms (also with abuse of notation): ‖θg‖ = (
∑K

k=1 θ
2
gk)

1/2, and ‖αg‖ =
( 1
T

∑T
t=1 α

2
gt)

1/2. Note that K is kept fixed as N�T tend to infinity.
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Combining with (S.64), it follows that

max
g∈{1�����G}

[
min

g̃∈{1�����G}

(∥∥θ0
g − θ̂HCg̃

∥∥2 + 1
T

T∑
t=1

(
α0
gt − α̂HCg̃t

)2

)]
= op(1)�(S.66)

As in the proof of Lemma B.3, we then define

σ(g)= argmin
g̃∈{1�����G}

(∥∥θ0
g − θ̂HCg̃

∥∥2 + 1
T

T∑
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(
α0
gt − α̂HCg̃t

)2

)
�

We have, for all g̃ �= g,(
1
NT

N∑
i=1

T∑
t=1

(
x′
it

(
θ̂HCσ(g) − θ̂HCσ(g̃)

)+ α̂HCσ(g)t − α̂HCσ(g̃)t)2

)1/2

≥
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1
NT

N∑
i=1

T∑
t=1

(
x′
it

(
θ0
g − θ0

g̃

)+ α0
gt − α0

g̃t

)2

)1/2

−
(

1
NT

N∑
i=1

T∑
t=1

(
x′
it

(
θ̂HCσ(g) − θ0

g

)+ α̂HCσ(g)t − α0
gt

)2

)1/2

−
(

1
NT

N∑
i=1

T∑
t=1

(
x′
it

(
θ̂HCσ(g̃) − θ0

g̃

)+ α̂HCσ(g̃)t − α0
g̃t

)2

)1/2

�

The first term on the right-hand side is asymptotically bounded away from
zero by Assumption S.2(b). The second and third terms are op(1) by (S.66).
This implies that, with probability approaching 1, σ(g) �= σ(g̃). It thus follows
that, with probability approaching 1, for all g̃ ∈ {1� � � � �G},

min
g∈{1�����G}

∥∥θ0
g − θ̂HCg̃

∥∥2 + 1
T

T∑
t=1

(
α0
gt − α̂HCg̃t

)2

≤ ∥∥θ0
σ−1(g̃)

− θ̂HCg̃
∥∥2 + 1

T

T∑
t=1

(
α0
σ−1(g̃)t

− α̂HCg̃t
)2

= min
h∈{1�����G}

∥∥θ0
σ−1(g̃)

− θ̂HCh
∥∥2 + 1

T

T∑
t=1

(
α0
σ−1(g̃)t

− α̂HCht
)2
�

which is op(1) by (S.66).
Finally, combining with (S.66) and using the definition of the Hausdorff dis-

tance ends the proof of Lemma S.4. Q.E.D.



GROUPED PATTERNS OF HETEROGENEITY 71

The proof of Lemma S.4 shows that there exists a permutation σ : {1� � � � �
G} → {1� � � � �G} such that

∥∥θ̂HCσ(g) − θ0
g

∥∥2 + 1
T

T∑
t=1

(̂
αHCσ(g)t − α0

gt

)2 p→ 0�

By relabeling, we may take σ(g)= g. The rest of the proof of Proposition S.4
follows closely that of Theorem 2. One difference is that, in addition to bound-
ing 1

T

∑T

t=1 ‖xit‖, we use Assumption S.2(c) to bound 1
T

∑T

t=1 ‖xit‖2. The main
difference with the proof of Theorem 2 comes from the fact that, instead of
(B.8) one needs to show that

Pr

(
1
T

T∑
t=1

(
x′
it

(
θ0
g̃ − θ0

g

)+ α0
g̃t − α0

gt

)
vit ≤ −c

HC
g�g̃

8

)
= o(T−δ)�(S.67)

where cHCg�g̃ is given by Assumption S.2(b). Equation (S.67) holds because, as in
the proof of Theorem 2,

Pr

(∣∣∣∣∣ 1
T

T∑
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(
α0
g̃t − α0

gt

)
vit

∣∣∣∣∣≥ cHCg�g̃

16

)
= o(T−δ)�

and because, by Assumptions 1(a) and S.2(d),

Pr

(∣∣∣∣∣ 1
T

T∑
t=1

vitx
′
it

(
θ0
g̃ − θ0

g

)∣∣∣∣∣≥ cHCg�g̃

16

)
= o(T−δ)�

Assumption S.2(a) in a Special Case

We consider the case where xit are scalar standard normal, i.i.d. in both di-
mensions, and independent of g0

j for all j. We will show that Assumption S.2(a)
is satisfied. We have

M(γ�g� g̃)=
⎛⎜⎝ â

1√
T
b̂′

1√
T
b̂

N(g� g̃)

N
IT

⎞⎟⎠ �
â∼ χ2

N(g�g̃)T

NT
� and b̂t ∼ N

(
0�N(g� g̃)

)
N

for all t�

where N(g� g̃)≡∑N

i=1 1{g0
i = g}1{gi = g̃}.
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Let g ∈ {1� � � � �G}, and let δ̃g = 1
2NG

∑N

i=1 1{g0
i = g}. For all θ ∈ R and α ∈ R

T ,
we have ( θ
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)′
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( θ
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T
�

where we have used that 2ab≥ −a2 − b2, and the Cauchy–Schwarz inequality.
Hence

ρ̂(γ�g� g̃) ≥ min
(
â− δ̃g� N(g� g̃)

N
− b̂′b̂

δ̃gT

)
�

In the following derivations, we condition on δ̃g, and omit the conditioning
argument for simplicity. Using standard probability algebra, we have
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[
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N
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where we have used that the number of partitions γ ∈ ΓG is bounded by GN .
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Now, for any (γ�g� g̃), â ∼ χ2
N(g�g̃)T

NT
and b̂′b̂

T
∼ N(g�g̃)χ2

T

N2T
. We use the following

Chernoff bounds.

LEMMA S.5: Let Z ∼ χ2
K , and let z > 0. Then

Pr[Z ≥ z] ≤ exp
(

ln 2
2
K − z

4

)
�

Pr[Z ≤ z] ≤ exp
(
z

4
− ln

(
3
2

)
K

2
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�

PROOF: For all 0< u< 1
2 we have, by the Markov inequality,

Pr[Z ≥ z] = Pr
[
exp(uZ)≥ exp(uz)

]≤ E
[
exp(uZ)

]
exp(uz)

= (1 − 2u)−K/2

exp(uz)
�

where we have used the expression of the moment generating function of Z.
Taking u= 1

4 yields the result. The other bound is obtained similarly. Q.E.D.

As the groups form a partition of {1� � � � �N}, for any γ and g there is a g̃
such that

N(g� g̃)

N
≥ 1
NG

N∑
i=1

1
{
g0
i = g}= 2δ̃g�

For this value of g̃ we have, using Lemma S.5,
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where we have used that N(g�g̃)

N
≥ 2δ̃g.

Similarly, we have
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where in addition we have used that N(g� g̃)≤N .
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Combining results, and now indicating the conditioning of δ̃g, we thus have
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min
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Now, by Assumption 2(a), δ̃g
p→ πg

2G > 0. Moreover, unconditionally,
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where we have used that 3
8 < ln( 3

2). As the right-hand side of this inequality
tends to zero as N and T tend to infinity, this shows that

min
γ∈ΓG

max
g̃∈{1�����G}

ρ̂(γ�g� g̃)≥ δ̃g

2
+ op(1)�

so Assumption S.2(a) is satisfied.
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