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APPENDIX A PROVIDES A KEY MATHEMATICAL RESULT—the definitions of T̃s

and P j
s−1(T̃s�3� i)—and the construction of {P̃ i

s}i�s. Appendix B gives the proofs
for Lemmas 3 and 5 and the definition of r̂(η�u�δ). Appendix C provides the
proofs for Lemmas 6–8 and Proposition 1.B, and shows two claims for the
proof of Lemma 9. Appendix D demonstrates that Theorem 1 is obtained from
Proposition 1 and r̄(ε� δ̄�u�δ) is derived from r̂(η�u�δ).

APPENDIX A

A.1. Mathematical Preparation

For the argument in the appendix, I define additional notations. An infinite
history is generically denoted by h∞. If a finite history h is an initial segment of
a (finite or infinite) history h′, it is denoted by h ≤ h′. In particular, if h ≤ h′

and h �= h′, it is denoted by h< h′. The joint of two finite partitions P and Q is
denoted by P ∧Q, that is, P ∧Q := {α ∩ β | α ∈ P�β ∈ Q}.1 Moreover, I will
often define a subset of H and call it a class although the subset may not be an
element of any given conditioning rule (CR).

Next, I prepare a key mathematical result: a conditional extension of large
deviations. Given a class α, let Sα

m denote the event that state S occurs between
the mth α-active period and the (m+1)th α-active period.2 Let T α

m (h∞) denote
the calendar time of the mth α-active period in h∞; T α

m (h∞) < ∞ means that
α is active at least m times in h∞. Let dα

m[S](h∞) denote the number of times
that S has occurred between two subsequent α-active periods up to the mth
α-active period in h∞.

PROPOSITION A: Take any history hT ∈ H and any class α such that for all h<
hT , h /∈ α. Suppose that a strategy profile σ and events {Sα

m}m satisfy the following
condition: for all h ∈ α and all m = 1�2� 	 	 	 such that h ≥ hT , μσ(h) > 0, and α
has been active exactly (m− 1) times in h,

c1 ≤ μσ

(
Sα
m|h) ≤ c2�

1Note that P ∧Q is also a finite partition, and is finer than P and Q, that is, P�Q ≤ P ∧Q.
2In one example, a particular pure action ai is realized in the mth α-active period. In another

example, AES(σ̂) occurs between the mth α-active period and the (m+ 1)th α-active period.
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where c1 and c2 are nonnegative constants. Then, for all ε > 0 and all m =
1�2� 	 	 	 ,

μσ

(
T α
m < ∞�

dα
m[S]
m

≤ c1 − ε or
dα
m[S]
m

≥ c2 + ε
∣∣∣hT

)

≤ 2 exp
(−2mε2

)
	

PROOF: This is a straightforward generalization of Proposition A in Noguchi
(2015), and the proof is just the same as that of Proposition A in Noguchi
(2015). Q.E.D.

A.2. Periodic Conditioning Rules

Given P j
s and T̃ , I define a conditioning rule P j

s (T̃ �3� i) to construct tempo-
rary beliefs. First, I define a T̃ -periodic conditioning rule P j

s (T̃ ) by partitioning
each class α in P j

s into two subclasses αA and αB: hT ∈ αA if hT ∈ α and T = nT̃

for some integer n, and hT ∈ αB otherwise, that is, hT ∈ α and T �= nT̃ for any
integer n. Let P j

s (T̃ ) := {αA�αB | α ∈ P j
s }. Next, I construct a (T̃ �3)-periodic

conditioning rule P j
s (T̃ �3) by partitioning each αA and αB in P j

s (T̃ ) into three
subclasses: hT ∈ αAF if hT ∈ αA and #{T ′ | hT ′ < hT�hT ′ ∈ αA} = 3n for some
integer n, hT ∈ αAS if hT ∈ αA and #{T ′ | hT ′ <hT�hT ′ ∈ αA} = 3n+ 1 for some
integer n, and hT ∈ αAT if hT ∈ αA and #{T ′ | hT ′ < hT�hT ′ ∈ αA} = 3n + 2
for some integer n. Let AFj

s := ⋃
α αAF, ASj

s := ⋃
α αAS, and ATj

s := ⋃
α αAT.

Define Aj
s := AFj

s ∪ ASj
s ∪ ATj

s; hT ∈ Aj
s if and only if T = nT̃ for some inte-

ger n. I also define αBF as follows: hT ∈ αBF if hT ∈ αB and the most recent Aj
s-

active period is AFj
s-active in hT , that is, hM(T) ∈ AFj

s, where M(T) := max{T ′ |
T ′ < T�T ′ = nT̃ for some integer n}; αBS and αBT are defined similarly. Then
let P j

s (T̃ �3) := {αAF�αAS�αAT�αBF�αBS�αBT | α ∈ P j
s }, and let BFj

s := ⋃
α αBF,

BSj
s := ⋃

α αBS, and BTj
s := ⋃

α αBT. Define Bj
s := BFj

s ∪ BSj
s ∪ BTj

s; hT ∈ Bj
s if

and only if T �= nT̃ for any integer n. Finally, I define an action-based con-
ditioning rule P j

s (T̃ �3� i) by partitioning αBF and αBS in P j
s (T̃ �3) according

to player i’s ( �= j) action: hT ∈ αBF(ai) (resp. αBS(ai)) if hT ∈ αBF (resp. αBS)
and player i played ai in the most recent Aj

s-active period in hT . Then let
P j

s (T̃ �3� i) := {αAF�αAS�αAT�αBF(ai)�αBS(ai)�αBT | α ∈ P j
s � ai ∈ Ai}. Clearly,

P j
s ≤P j

s (T̃ )≤P j
s (T̃ �3)≤P j

s (T̃ �3� i) for all j, all i �= j, all s, and all T̃ .
Next, I arbitrarily take positive integers {T̃s}s such that (T.1) T̃s−1 ≤ T̃s for all

s and (T.2) s(1 − 1
s
)T̃s → 0 as s → ∞.

Finally, given any {P i
s}i�s, I construct CRs {P̃ i

s}i�s such that {P̃ i
s}i�s satisfy (P.1)–

(P.3), and for all i, P i
s ≤ P̃ i

s for all s. Let P̃ i
0 :=P i

0 for all i. For any s ≥ 1, define
{P̃ i

s}i inductively as follows: for all i, let P̃ i
s := P i

s ∧ (
∧

(m�n)
m �= n

P̃m
s−1(T̃s�3� n)) ∧
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(
∧

j �=iFsP̃ j
s−1). Clearly, from the definition of P̃ i

s and the joint property, P i
s ≤

P̃ i
s for all i and all s. Furthermore, by the definitions of P̃ i

s and P̃m
s−1(T̃s�3� n)

and the joint property, P̃ i
s−1 ≤ P̃ i

s−1(T̃s�3� j) ≤ P̃ i
s for all i, all j �= i, and all s.

Hence, {P̃ i
s}i�s satisfy (P.1). Next, take any i, any j �= i, any s, and any T . Then

let k := max[s�T ]. From (P.1), the property of FTP , the definition of P̃ i
s , and

the joint property, it follows that FT P̃ j
s ≤ FkP̃ j

k ≤ Fk+1P̃ j
k ≤ P̃ i

k+1. Thus, {P̃ i
s}i�s

satisfy (P.2). Finally, by the definitions of P̃ i
s and P̃m

s−1(T̃s�3� n) and the joint
property, for all i, all j �= i, and all s, P̃ j

s−1 ≤ P̃ j
s−1(T̃s�3� i) ≤ P̃ i

s � P̃ j
s . Therefore,

{P̃ i
s}i�s satisfy (P.3).

APPENDIX B

B.1. Temporary Belief Leading to Opponent’s Belief Rejection

For the proof of Lemma 3, I first construct player i’s temporary beliefs and
strategies according to her stage game payoff and discount factor. I assume
that T̃ is large. Let U∗

i denote player i’s maximum stage game payoff, that is,
U∗

i := maxa ui(a), and let Ui denote player i’s minmax stage game payoff, that
is, Ui := minπ−i

maxai ui(ai�π−i). Clearly, U∗
i ≥ Ui.

The Case of a Unique Weakly Dominant Action. Let a∗
i denote a unique

weakly dominant action. Note that for some a∗
−i, (a

∗
i � a

∗
−i) ∈ arg maxa ui(a) and

U∗
i = ui(a

∗
i � a

∗
−i). Furthermore, there exists a pure minmax action profile: a−i ∈

arg minπ−i
maxai ui(ai�π−i). Let ā−i ∈ arg mina−i

[ui(a
∗
i � a−i) − maxai �=a∗

i
ui(ai�

a−i)]. Define u∗
i := maxai ui(ai� ā−i) (= ui(a

∗
i � ā−i)) and ūi := maxai �=a∗

i
ui(ai�

ā−i); let āi ∈ arg maxai �=a∗
i
ui(ai� ā−i). Clearly, u∗

i ≥ ūi.
Case 1. δi > 0 and U∗

i > Ui.
3 Given any a−i, let πa

j denote the mixed ac-
tion of player j ( �= i) such that πa

j [bj] = 1 if bj = aj and πa
j [bj] = 0 otherwise,

that is, bj �= aj , and let πa
−i := (πa

j )j �=i. Then define π−i(t) := tπa∗
−i + (1 − t)πā

−i

(:= (tπa∗
j + (1 − t)πā

j )j �=i). I consider three subcases.
Subcase 1. (1 − δi)ūi + δiU

∗
i > (1 − δi)u

∗
i + δiUi. Given P j

s−1(T̃ �3� i), define
player i’s temporary belief ρi

(t�t′�π′′) as follows: let π ′′
−i denote a mixed action

profile of player i’s opponents. Then, for any 0 ≤ t� t ′ ≤ 1 and any π ′′
−i, let

ρi
(t�t′�π′′)(h) :=

⎧⎪⎨
⎪⎩
π−i(t) in any AFj

s−1-active period,

π−i

(
t ′
)

in any ASj
s−1-active period,

π ′′
−i in any ATj

s−1-active period.

3The prisoner’s dilemma stage game payoff is one example.
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Furthermore, in any BFj
s−1-active period (resp. any BSj

s−1-active period), all
players other than i play tπa∗

−i + (1 − t)π
a
−i (resp. t ′πa∗

−i + (1 − t ′)πa
−i) if player i

took a∗
i in the most recent Aj

s−1-active period, they play tπa
−i + (1 − t)πa∗

−i (resp.
t ′πa

−i + (1 − t ′)πa∗
−i) if player i took āi in the most recent Aj

s−1-active period,
and they play π

a
−i (resp. πa

−i) if player i took any other action than a∗
i or āi in

the most recent Aj
s−1-active period. In any BTj

s−1-active period, they play π ′′
−i.

Thus, ρi
(t�t′�π′′) is generated by P j

s−1(T̃ �3� i).
From the first-order condition and Lemma 1, there exists an upper bound

r̂i(η�ui� δi) > 0 such that4 for any 0 < ri ≤ r̂i(η�ui� δi) and any large T̃ , player
i’s best response σt�t′�π′′

i to ρi
(t�t′�π′′) has the following property: for all t ′ and

all π ′′
−i, σ

0�t′�π′′
i (h)[a∗

i ] ≈ 0 and σ1�t′�π′′
i (h)[a∗

i ] ≈ 1 in any AFj
s−1-active period.

Similarly, for all t and all π ′′
−i, σ

t�0�π′′
i (h)[a∗

i ] ≈ 0 and σt�1�π′′
i (h)[a∗

i ] ≈ 1 in any
ASj

s−1-active period. Therefore, for any 0 < c� c′ < 1, there exist 0 ≤ tc� t
′
c′ ≤

1 such that for all π ′′
−i, σ

tc�t
′
c′ �π

′′
i (h)[a∗

i ] ≈ c in any AFj
s−1-active period and

σ
tc�t

′
c′ �π

′′
i (h)[a∗

i ] ≈ c′ in any ASj
s−1-active period.

Subcase 2.5 (1 − δi)ūi + δiU
∗
i = (1 − δi)u

∗
i + δiUi. Given P j

s−1(T̃ �3� i), con-
sider the same belief ρi

(t�t′�π′′) as in Subcase 1. From the first-order condition and
Lemma 1, there exists r̂i(η�ui� δi) > 0 such that, for any 0 < ri ≤ r̂i(η�ui� δi)

and any large T̃ , σt�t′�π′′
i has the following property:6 for all t ′ and all π ′′

−i,
σ0�t′�π′′

i (h)[a∗
i ] ≈ 1/2 and σ1�t′�π′′

i (h)[a∗
i ] ≈ 1 in any AFj

s−1-active period. Simi-
larly, for all t and all π ′′

−i, σ
t�0�π′′
i (h)[a∗

i ] ≈ 1/2 and σt�1�π′′
i (h)[a∗

i ] ≈ 1 in any
ASj

s−1-active period. Hence, for any 1/2 < c� c′ < 1, there exist 0 ≤ tc� t
′
c′ ≤

1 such that for all π ′′
−i, σ

tc�t
′
c′ �π

′′
i (h)[a∗

i ] ≈ c in any AFj
s−1-active period and

σ
tc�t

′
c′ �π

′′
i (h)[a∗

i ] ≈ c′ in any ASj
s−1-active period.

Subcase 3. (1−δi)ūi +δiU
∗
i < (1−δi)u

∗
i +δiUi. There exists r̂i(η�ui� δi) > 0

such that for all 0 < ri ≤ r̂i(η�ui� δi), player i always plays almost the same

4Strictly speaking, the upper bound r̂i(η�ui� δi) does not depend on η in this subcase (and
Subcases 2, 4, 6, and 7 and the case of no weakly dominant action). However, it depends on η
in the case in which player i always plays almost the same mixed action regardless of her prior
belief. See Subcases 3, 5, and 8.

5As noted in footnote 9 in the paper, there are several nongeneric cases where the property of
assigning almost equal probability is used. Subcase 2 is one of them. See Subcases 4, 7, and 8 and
the case of no weakly dominant action for the other cases.

6By the property of assigning almost equal probability, for all t ′ and all π ′′
−i , σ

0�t′�π′′
i (h)[a∗

i ] ≈ 1
2

and σ0�t′�π′′
i (h)[āi] ≈ 1

2 in any AFj
s−1-active period. Similarly, for all t and all π ′′

−i , σ
t�0�π′′
i (h)[a∗

i ] ≈ 1
2

and σt�0�π′′
i (h)[āi] ≈ 1

2 in any ASj
s−1-active period.
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mixed action, which puts almost all the weight on a∗
i , regardless of her prior

belief. This allows us to ignore player i throughout my argument.7
Case 2. Either δi = 0 or δi > 0 and U∗

i = Ui. I consider two subcases.
Subcase 4. u∗

i = ūi. Let Āi := arg maxai �=a∗
i
ui(ai� ā−i), and take an arbi-

trary action āi in Āi. Since āi �= a∗
i , there exists ã−i such that ui(āi� ã−i) <

maxai ui(ai� ã−i) = ui(a
∗
i � ã−i). Then let π̄−i(t) := tπā

−i + (1 − t)πã
−i. Given

P j
s−1(T̃ �3� i), define ρi

(t�t′�π′′) as follows: for any 0 ≤ t� t ′ ≤ 1 and any π ′′
−i, let

ρi
(t�t′�π′′)(h) := π̄−i(t) in any AFj

s−1-active period, let ρi
(t�t′�π′′)(h) := π̄−i(t

′) in
any ASj

s−1-active period, and let ρi
(t�t′�π′′) := π ′′

−i in any other period. Clearly,
ρi
(t�t′�π′′) is generated by P j

s−1(T̃ �3� i). Then, from the first-order condition and
Lemma 1, there exists r̂i(η�ui� δi) > 0 such that for any 0 < ri ≤ r̂i(η�ui� δi)

and any large T̃ , σt�t′�π′′
i has the following property:8 for all t ′ and all π ′′

−i,
σ0�t′�π′′

i (h)[āi] ≈ 0 and σ1�t′�π′′
i (h)[āi] ≈ 1/(#Āi + 1) in any AFj

s−1-active pe-
riod. Similarly, for all t and all π ′′

−i, σt�0�π′′
i (h)[āi] ≈ 0 and σt�1�π′′

i (h)[āi] ≈
1/(#Āi+1) in any ASj

s−1-active period. Hence, for any 0 < c� c′ < 1/(#Āi+1),

there exist 0 ≤ tc� t
′
c′ ≤ 1 such that for all π ′′

−i, σ
tc�t

′
c′ �π

′′
i (h)[āi] ≈ c in any AFj

s−1-

active period and σ
tc�t

′
c′ �π

′′
i (h)[āi] ≈ c′ in any ASj

s−1-active period.
Subcase 5. u∗

i > ūi. This subcase is similar to Subcase 3.

The Case of Multiple Weakly Dominant Actions. Let A∗
i denote the set of

weakly dominant actions, and take any two (weakly dominant) actions a∗
i and

b∗
i in A∗

i .
Case 3. δi > 0 and U∗

i > Ui.
Subcase 6. Note that for some a∗

−i, U∗
i = ui(a

∗
i � a

∗
−i) = ui(b

∗
i � a

∗
−i). Given

P j
s−1(T̃ �3� i), define ρi

(t�t′�π′′) as follows: for any 0 ≤ t� t ′ ≤ 1 and any π ′′
−i, let

ρi
(t�t′�π′′)(h) := a∗

−i in any AFj
s−1-active period and in any ASj

s−1-active period,
and let ρi

(t�t′�π′′)(h) := π ′′
−i in any ATj

s−1-active period. Further, in any BFj
s−1-

active period (resp. any BSj
s−1-active period), all players other than i play

tπa∗
−i + (1− t)π

a
−i (resp. t ′πa∗

−i + (1− t ′)πa
−i) if player i took a∗

i in the most recent
Aj

s−1-active period, they play tπa
−i+(1− t)πa∗

−i (resp. t ′πa
−i+(1− t ′)πa∗

−i) if player
i took b∗

i in the most recent Aj
s−1-active period, and they play π

a
−i (resp. πa

−i)

7Given player i’s opponents’ tolerance levels (ξ̄j)j �=i , I can take a small r̂i(η�ui� δi) > 0 such
that the difference between player i’s (mixed) actions is far less than any ξ̄j (≤ η/3) regardless
of her prior belief. Hence, the opponents are statistically convinced that player i always plays
(almost) the same action.

8Note that Āi ∪ {a∗
i } = arg maxai ui(ai� ā−i). Hence, by the property of assigning almost equal

probability, for all t ′ and all π ′′
−i , σ

1�t′�π′′
i (h)[ai] ≈ 1/(#Āi + 1) for all ai ∈ Āi in any AFj

s−1-active
period. Similarly, for all t and all π ′′

−i , σ
t�1�π′′
i (h)[ai] ≈ 1/(#Āi + 1) for all ai ∈ Āi in any ASj

s−1-
active period.
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if player i took any other action than a∗
i or b∗

i in the most recent Aj
s−1-active

period. In any BTj
s−1-active period, they play π ′′

−i. Thus, ρi
(t�t′�π′′) is generated by

P j
s−1(T̃ �3� i). The rest of the argument is the same as in Subcase 1.
Case 4. Either δi = 0 or δi > 0 and U∗

i = Ui.
9

Subcase 7. u∗
i = ūi. Note that Āi ∪ A∗

i = arg maxai ui(ai� ā−i), where Āi :=
arg maxai /∈A∗

i
ui(ai� ā−i). Take any āi ∈ Āi. Then an argument similar to Sub-

case 4 holds.10 Accordingly, there exists r̂i(η�ui� δi) > 0 such that for any
0 < ri ≤ r̂i(η�ui� δi) and any large T̃ , σt�t′�π′′

i has the following property: for
all t ′ and all π ′′

−i, σ
0�t′�π′′
i (h)[āi] ≈ 0 and σ1�t′�π′′

i (h)[āi] ≈ 1/(#Āi + #A∗
i ) in

any AFj
s−1-active period. Similarly, for all t and all π ′′

−i, σ
t�0�π′′
i (h)[āi] ≈ 0 and

σt�1�π′′
i (h)[āi] ≈ 1/(#Āi + #A∗

i ) in any ASj
s−1-active period. Hence, for any

0 < c� c′ < 1/(#Āi + #A∗
i ), there exist 0 ≤ tc� t

′
c′ ≤ 1 such that for all π ′′

−i,

σ
tc�t

′
c′ �π

′′
i (h)[āi] ≈ c in any AFj

s−1-active period and σ
tc�t

′
c′ �π

′′
i (h)[āi] ≈ c′ in any

ASj
s−1-active period.

Subcase 8. u∗
i > ūi. This subcase is similar to Subcases 3 and 5: player i always

plays almost the same mixed action that assigns almost equal probability to
each weakly dominant action.

The Case of No Weakly Dominant Action.11 Let (a∗
i � a

∗
−i) ∈ arg maxa ui(a);

thus, U∗
i = ui(a

∗
i � a

∗
−i). Further, let Âi := arg maxai ui(ai� a

∗
−i).

12 Clearly, a∗
i ∈

Âi. Since a∗
i is not a weakly dominant action, there exists ã−i such that

ui(a
∗
i � ã−i) < maxai ui(ai� ã−i). Define π̃−i(t) := tπa∗

−i + (1− t)πã
−i. Then replace

π̄−i(·) by π̃−i(·) in the definition of ρi
(t�t′�π′′) in Subcase 4. Accordingly, an ar-

gument similar to Subcase 4 holds. That is, there exists r̂i(η�ui� δi) > 0 such
that for any 0 < ri ≤ r̂i(η�ui� δi) and any large T̃ , σt�t′�π′′

i has the following
property: for all t ′ and all π ′′

−i, σ
0�t′�π′′
i (h)[a∗

i ] ≈ 0 and σ1�t′�π′′
i (h)[a∗

i ] ≈ 1/#Âi in
any AFj

s−1-active period. Similarly, for all t and all π ′′
−i, σ

t�0�π′′
i (h)[a∗

i ] ≈ 0 and
σt�1�π′′

i (h)[a∗
i ] ≈ 1/#Âi in any ASj

s−1-active period. Hence, for any 0 < c� c′ <

1/#Âi, there exist 0 ≤ tc� t
′
c′ ≤ 1 such that for all π ′′

−i, σ
tc�t

′
c′ �π

′′
i (h)[a∗

i ] ≈ c in any

AFj
s−1-active period and σ

tc�t
′
c′ �π

′′
i (h)[a∗

i ] ≈ c′ in any ASj
s−1-active period.

From the above argument, define r̂(η�u�δ) (in Proposition 1) as
r̂(η�u�δ) := mini r̂i(η�ui� δi).

9Let ā−i ∈ arg mina−i
[ui(a

∗
i � a−i)− maxai /∈A∗

i
ui(ai� a−i)], u∗

i := maxai ui(ai� ā−i) (= ui(a
∗
i � ā−i)),

and ūi := maxai /∈A∗
i
ui(ai� ā−i), as in the case of a unique weakly dominant action.

10Recall that the weakly dominant action is unique in Subcase 4; that is, A∗
i = {a∗

i }.
11The matching pennies stage game payoff is one example.
12As noted in footnote 5, the case that #Âi ≥ 2 is nongeneric.
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B.2. Proof of Lemma 3

I can form player i’s belief f i[j] on the basis of Appendix B.1. I only consider
Subcase 1 in Appendix B.1. All other cases are similar, and I have omitted
them. I use the following facts to prove Lemma 3.

Given P j
s−1(T̃s�3� i), consider player i’s belief ρi

(t�t′�π′′) defined in Subcase 1
in Appendix B.1. Thus, ρi

(t�t′�π′′) is generated by P j
s−1(T̃s�3� i). Then, from Ap-

pendix B.1, Lemma 1, and (T.2), player i’s best response σt�t′�π′′
i to ρi

(t�t′�π′′)
has the following property: (b.1) there exists s1 such that for any i, any j �= i,
any s ≥ s1, any 1/8(#Ai + 1) < c0 < 1/4(#Ai + 1), and any 3/4(#Ai + 1) <
c′

0 < 7/8(#Ai + 1), there exist 0 ≤ t0� t
′
0 ≤ 1 such that for all π ′′

−i, c0 −
1
6 ξ̄

j ≤ σ
t0�t

′
0�π

′′
i (h)[a∗

i ] ≤ c0 + 1
6 ξ̄

j in any AFj
s−1-active period and c′

0 − 1
6 ξ̄

j ≤
σ

t0�t
′
0�π

′′
i (h)[a∗

i ] ≤ c′
0 + 1

6 ξ̄
j in any ASj

s−1-active period, where a∗
i is the unique

weakly dominant action in Subcase 1 in Appendix B.1. Furthermore, for each
i, let π ′′

0�−i be any mixed action profile such that for any j �= i, π ′′
0�j[a∗

j ] := 1 if
π̂j[a∗

j ] ≤ 1/2 and π ′′
0�j[a∗

j ] := 0 otherwise, where a∗
−i is taken from Subcase 1 in

Appendix B.1. Therefore, (b.2) for any i, any j �= i, any s, and any 0 ≤ t� t ′ ≤ 1,
‖σ̂j(h) − ρi

(t�t′�π′′
0 )�j

(h)‖ ≥ |σ̂j(h)[a∗
j ] − ρi

(t�t′�π′′
0 )�j

(h)[a∗
j ]| = |π̂j[a∗

j ] − π ′′
0�j[a∗

j ]| ≥
1/2 in any ATj

s−1-active period.
I also use the following facts: from (P.1) and (P.3), it follows that (b.3) for

all i, all j �= i, and all s, P j
s−1(T̃s�3� i) ≤ P i

s′�P
j

s′′ for all s′� s′′ ≥ s. Thus, ρi
(t�t′�π′′)

is also generated by P i
s′ and P j

s′′ . Since lims→∞ ni
s = ∞ for all i, (b.4) there ex-

ists s2 such that for all s ≥ s2, all i, and all j �= i, 1/ni
s ≤ ξ̄j/12Bi, where Bi :=

max[1�Ci/(1 − δi)
2] and Ci is taken from Lemma 1. Since limm→∞ Ki(m) = ∞

for all i, Lemma 2 induces that (b.5) there exists s3 such that for any s ≥ s3, any
i, any f i, and any h ∈ Hfi(s), ‖σf

i (h) − σ∗
i (h)‖ ≤ ξ̄j/16 for all j �= i.13 Finally,

it is obvious that (b.6) there exists s4 such that for all s ≥ s4, #Āexp(−s) ≤ 1,
where #Ā := maxi #Ai.

PROOF OF LEMMA 3: Let s̄1 := max1≤k≤4 sk. Suppose that si ≥ sj and si� sj +
qj ≥ s̄1. Then let ŝ := min[si� sj + qj]. Thus, s̄1� s

j ≤ ŝ ≤ si� sj + qj . Given
P j

ŝ−1(T̃ŝ�3� i), consider ρi
(t0�t

′
0�π

′′
0 )

, where t0 and t ′0 are taken from (b.1) and π ′′
0�−i

is taken from (b.2).14 Then, from the 1/ni
s-density of G(P i

s � n
i
s), (b.3), and (b.4),

it follows that player i can form f i[j] in any formation phase during epoch si

such that (b.7) for all h, all j′ �= i, and all j′′ �= i, ‖ρi
(t0�t

′
0�π

′′
0 )�j

′(h) − f i
j′ [j](h)‖ ≤

1/ni
si

≤ ξ̄j′′/12Bi, where Bi := max[1�Ci/(1 − δi)
2]: there exists h−i�Ni

si
such that

13Define Hfi (s) as follows: hT ∈ Hfi (s) if and only if hT ∈ Hfi and time T + 1 is in epoch s of
player i.

14I arbitrarily fix c0 and c′
0 such that 1/8(#Ai + 1) < c0 < 1/4(#Ai + 1) and 3/4(#Ai + 1) <

c′
0 < 7/8(#Ai + 1).
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f i[j] = Bi
si
(h−i�Ni

si
). Furthermore, this, along with Lemma 1, implies that for

all h, ‖σt0�t
′
0�π

′′
0

i (h) − σ
f [j]
i (h)‖ ≤ ξ̄j′′/12 for all j′′ �= i. As for σ∗

i , from (b.5), for
all h ∈ Hfi[j](si), ‖σf [j]

i (h)−σ∗
i (h)‖ ≤ ξ̄j′/16 for all j′ �= i. From these, it follows

that (b.8) for all h ∈Hfi[j](si), ‖σt0�t
′
0�π

′′
0

i (h)− σ∗
i (h)‖ ≤ ξ̄j′/6 for all j′ �= i.

Now, I prove Lemma 3(i). Consider any player j’s test phase in epoch sj in
which player j employs f j that is generated by P j

sj
, and let (P j

sj+qj
�m

j

sj+qj
+ d)

denote the CR and the smallest sample size used in the test phase. Suppose
that player i employs f i[j] at the beginning of the test phase. Let h̄T̄ be the
finite history realized just before the above test phase.

For each β ∈ P j

ŝ−1, define a class β
f
AF such that hT ∈ β

f
AF if and only

if (a) hT ∈ βAF, (b) h̄T̄ ≤ hT , and (c) time T + 1 is in the test phase;
β

f
AS is defined similarly.15 Let L

βAF
f [a∗

i ] := sup
h∈βf

AF
σ∗

i (h)[a∗
i ] and l

βAF
f [a∗

i ] :=
inf

h∈βf
AF
σ∗

i (h)[a∗
i ]; LβAS

f [a∗
i ] and l

βAS
f [a∗

i ] are defined similarly. Furthermore, for

each α ∈ P j

sj+qj
, define a class αf such that hT ∈ αf if and only if (d) hT ∈ α,

(e) h̄T̄ ≤ hT , and (f) time T + 1 is in the test phase. Let d
αf
m [a∗

i ] denote the
number of times that a∗

i has been realized in the first m αf -active periods.

CLAIM B.1: With (conditional) probability at least 1/2, there exist α′�α′′ ∈
P j

sj+qj
and β̄ ∈ P j

ŝ−1 such that (i) α′ ⊆ β̄AF, (ii) α′′ ⊆ β̄AS, (iii) both α′ and

α′′ obtain enough samples during the test phase, that is, m̃α′
� m̃α′′ ≥ m

j

sj+qj
+ d,

and (iv) l
β̄AF
f [a∗

i ] − 1
4 ξ̄

j ≤ D̃
j
i (α

′)[a∗
i ] ≤ L

β̄AF
f [a∗

i ] + 1
4 ξ̄

j and l
β̄AS
f [a∗

i ] − 1
4 ξ̄

j ≤
D̃

j
i (α

′′)[a∗
i ] ≤ L

β̄AS
f [a∗

i ] + 1
4 ξ̄

j , where D̃j(α′) (:= (D̃
j
k(α

′))k �=j) (resp. D̃j(α′′)) de-
notes the empirical distributions of the samples collected in the α′-active periods
(resp. the α′′-active periods) during the test phase.

PROOF: Let M(α′�α′′� β̄) := {h∞ | (i)–(iv) hold in h∞}. Furthermore, let
M := ⋃

α′∈Pj

sj+qj

⋃
α′′∈Pj

sj+qj

⋃
β̄∈Pj

ŝ−1
M(α′�α′′� β̄). Then it suffices to prove that

μσ∗(M|h̄T̄ ) ≥ 1/2. Note that P j

ŝ−1 ≤ P j

ŝ−1(T̃ŝ�3� i) ≤ P j

sj+qj
by (P.1) and (P.3).

Furthermore, for each α ∈ P j

sj+qj
, if α ⊆ βAF for some (unique) β ∈ P j

ŝ−1, let

Nα
m := {h∞ | T αf

m < ∞�d
αf
m [a∗

i ]/m ≤ l
βAF
f [a∗

i ] − ξ̄j/4 or d
αf
m [a∗

i ]/m ≥ L
βAF
f [a∗

i ] +
ξ̄j/4}. If α⊆ βAS for some (unique) β ∈P j

ŝ−1, let Nα
m := {h∞ | T αf

m <∞�d
αf
m [a∗

i ]/
m ≤ l

βAS
f [a∗

i ] − ξ̄j/4 or d
αf
m [a∗

i ]/m ≥ L
βAS
f [a∗

i ] + ξ̄j/4}. Otherwise, let Nα
m := ∅.

Then, from Proposition A, it follows that μσ∗(Nα
m|h̄T̄ ) ≤ 2 exp(− 1

8m(ξ̄j)2) for

15Note that when hT ∈ β
f
AF, player i employs f i[j] at time T + 1. Similarly, when hT ∈ β

f
AS,

player i employs f i[j] at time T + 1.
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all m and all α ∈P j

sj+qj
. Therefore,

μσ∗

( ⋃
α∈Pj

sj+qj

⋃
m≥m

j

sj+qj
+d

Nα
m

∣∣∣h̄T̄

)

≤
∑

α∈Pj

sj+qj

∑
m≥m

j

sj+qj
+d

μσ∗
(
Nα

m|h̄T̄

)

≤
∑

α∈Pj

sj+qj

∑
m≥m

j

sj+qj
+d

2 exp
(

−1
8
m

(
ξ̄j

)2
)

≤ 1
2

[
4
(
#P j

sj+qj

) ∑
m≥m

j

sj+qj

exp
(

−1
8
m

(
ξ̄j

)2
)]

≤ 1
2

exp
(−sj − qj

) ≤ 1
2
	

The fourth inequality holds by the LS condition. All other inequalities are
obvious. Let N := ⋂

α∈Pj

sj+qj

⋂
m≥m

j

sj+qj
+d
(Nα

m)
c , where (Nα

m)
c is the complement

of Nα
m. Then μσ∗(N|h̄T̄ )≥ 1/2.

I show that N ⊆ M. Suppose that h∞ ∈ N. Note that the length of the
test phase is at least 3T̃sj+qj (m

j

sj+qj
+ d)(#P j

sj+qj
)2 periods. Furthermore,

T̃ŝ ≤ T̃sj+qj by (T.1). Recall that P j

ŝ−1 ≤ P j

ŝ−1(T̃ŝ�3� i) ≤ P j

sj+qj
. Therefore,

the test phase is long enough so that there always exist α′�α′′ ∈ P j

sj+qj
and

β̄ ∈ P j

ŝ−1 such that (i) α′ ⊆ β̄AF, (ii) α′′ ⊆ β̄AS, and (iii) α′ and α′′ obtain
enough samples during the test phase, that is, m̃α′

� m̃α′′ ≥ m
j

sj+qj
+ d. Since

h∞ ∈ N, these imply that l
β̄AF
f [a∗

i ] − ξ̄j/4 ≤ d
α′
f

m′ [a∗
i ]/m′ ≤ L

β̄AF
f [a∗

i ] + ξ̄j/4 and

l
β̄AS
f [a∗

i ]− ξ̄j/4 ≤ d
α′′
f

m′′ [a∗
i ]/m′′ ≤L

β̄AS
f [a∗

i ]+ ξ̄j/4, where m′ := m̃α′ and m′′ := m̃α′′ .

By the definitions of D̃j
i (α

′)[a∗
i ] and d

α′
f

m′ [a∗
i ]/m′, D̃j

i (α
′)[a∗

i ] = d
α′
f

m′ [a∗
i ]/m′; simi-

larly, D̃j
i (α

′′)[a∗
i ] = d

α′′
f

m′′ [a∗
i ]/m′′. Thus, I obtain (iv). Hence, h∞ ∈ M(α′�α′′� β̄).

Therefore, N ⊆ M. Let C(h̄T̄ ) denote the cylinder set based on h̄T̄ : C(h̄T̄ ) :=
{h∞ | h̄T̄ < h∞}. Then μσ∗(M|h̄T̄ ) = μσ∗(M ∩ C(h̄T̄ ))/μσ∗(C(h̄T̄ )) ≥
μσ∗(N ∩ C(h̄T̄ ))/μσ∗(C(h̄T̄ )) = μσ∗(N|h̄T̄ ) ≥ 1/2. This completes the proof.

Q.E.D.

From (b.1) and (b.8), it follows that Lβ̄AF
f [a∗

i ] ≤ c0 + 1
3 ξ̄

j and l
β̄AS
f [a∗

i ] ≥ c′
0 −

1
3 ξ̄

j . Since c′
0 −c0 >

1
2(#Ai+1) , this implies that lβ̄AS

f [a∗
i ]−L

β̄AF
f [a∗

i ] ≥ c′
0 −c0 − 1

3 ξ̄
j −
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1
3 ξ̄

j > 1
2(#Ai+1) − 2

3 ξ̄
j . Recall that ξ̄j ≤ min[η/3�1/8(#Ā+ 1)]. From these and

Claim B.1(iv), it follows that |D̃j
i (α

′)[a∗
i ] − D̃

j
i (α

′′)[a∗
i ]|> 1

2(#Ai+1) − 2
3 ξ̄

j − 1
4 ξ̄

j −
1
4 ξ̄

j = 1
2(#Ai+1) − 7

6 ξ̄
j ≥ 1

2(#Ai+1) − 7
6

1
8(#Ai+1) = 17

6
1

8(#Ai+1) > ξ̄j . From Claim B.1(i)–

(ii), it follows that there exists β′ ∈ P j

sj−1 such that α′�α′′ ⊆ β′ because P j

sj−1 ≤
P j

ŝ−1 by (P.1). These, along with Claim B.1(iii), imply that the complexity test
rejects f j at the end of the test phase with (conditional) probability at least
1/2. This completes the proof of Lemma 3(i).

Next, I prove Lemma 3(ii). As an additional assumption, let sj ≥ s̄1. Then
consider any player i’s test phase in epoch si in which player i employs f i[j]
that is generated by P i

si
, and let (P i

si+qi
�mi

si+qi
+ d′) denote the CR and the

smallest sample size used in the test phase. Suppose that player j employs an
AEB ĝj (near σ̂) at the beginning of the test phase. Let ĥT̂ be the (finite)
history realized just before the above test phase.

By (4	1) in Section 4.3, for all h, ‖σĝ
j (h) − σ̂j(h)‖ ≤ ξ̄i′/18 for all i′ �= j.

However, then, since sj ≥ s̄1, (b.5) induces that for all h ∈ Hĝj (s
j), ‖σ∗

j (h) −
σ

ĝ
j (h)‖ ≤ ξ̄i′/16 for all i′ �= j. These imply that for all h ∈ Hĝj (s

j), ‖σ∗
j (h) −

σ̂j(h)‖ ≤ ξ̄i′/8 for all i′ �= j. Accordingly, for each β ∈ P j

ŝ−1, define a class
β

ĝ
AT such that hT ∈ β

ĝ
AT if and only if (a) hT ∈ βAT, (b) ĥT̂ ≤ hT , and (c) time

T + 1 is in the test phase.16 Let LβAT
ĝ [aj] := sup

h∈βĝ
AT
σ∗

j (h)[aj] and l
βAT
ĝ [aj] :=

inf
h∈βĝ

AT
σ∗

j (h)[aj] for all aj . Furthermore, for each α ∈ P i
si+qi

, define a class αĝ

such that hT ∈ αĝ if and only if (d) hT ∈ α, (e) ĥT̂ ≤ hT , and (f) time T + 1 is in
the test phase. Let d

αĝ
m [aj] denote the number of times that aj has been realized

in the first m αĝ-active periods.

CLAIM B.2: With (conditional) probability at least 1/2, there exist α′′′ ∈ P i
si+qi

and β̂ ∈ P j

ŝ−1 such that (i) α′′′ ⊆ β̂AT, (ii) α′′′ obtains enough samples during the

test phase, that is, m̃α′′′ ≥ mi
si+qi

+ d′, and (iii) l
β̂AT
ĝ [aj] − 1

4 ξ̄
i ≤ D̃i

j(α
′′′)[aj] ≤

L
β̂AT
ĝ [aj] + 1

4 ξ̄
i for all aj , where D̃i(α′′′) (:= (D̃i

k(α
′′′))k �=i) denotes the empirical

distributions of the samples collected in the α′′′-active periods during the test phase.

PROOF: Let Q(α′′′� β̂) := {h∞ | (i)–(iii) hold in h∞}. Furthermore, let Q :=⋃
α′′′∈Pi

si+qi

⋃
β̂∈Pj

ŝ−1
Q(α′′′� β̂). Then it suffices to prove that μσ∗(Q|ĥT̂ ) ≥ 1/2.

Note that P j

ŝ−1 ≤ P j

ŝ−1(T̃ŝ�3� i) ≤ P i
si+qi

by (P.1) and (P.3). Then, for each

α ∈ P i
si+qi

, if α ⊆ βAT for some (unique) β ∈ P j

ŝ−1, let Rα
m[aj] := {h∞ | T αĝ

m <

∞�d
αĝ
m [aj]/m ≤ l

βAT
ĝ [aj] − ξ̄i/4 or d

αĝ
m [aj]/m ≥ L

βAT
ĝ [aj] + ξ̄i/4} for all aj .

16Note that when hT ∈ β
ĝ
AT, player j employs ĝj at time T + 1.
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Otherwise, let Rα
m[aj] := ∅ for all aj . The remainder of the proof is quite

similar to that of Claim B.1. Indeed, by Proposition A, the LS condition,
and (b.6), μσ∗(

⋃
α∈Pi

si+qi

⋃
m≥mi

si+qi
+d′

⋃
aj∈Aj

Rα
m[aj]|ĥT̂ ) ≤ 1/2. Then let R :=⋂

α∈Pi
si+qi

⋂
m≥mi

si+qi
+d′

⋂
aj∈Aj

(Rα
m[aj])c , where (Rα

m[aj])c is the complement of

Rα
m[aj]. Thus, μσ∗(R|ĥT̂ ) ≥ 1/2. Furthermore, it is easy to show that R ⊆ Q.

Hence, μσ∗(Q|ĥT̂ )≥ μσ∗(R|ĥT̂ )≥ 1/2. This completes the proof. Q.E.D.

Note that σ̂j takes the same (mixed) action σ̂j(β̂) (= π̂j) in all β̂-active
periods. Since ‖σ∗

j (h) − σ̂j(h)‖ ≤ ξ̄i/8 for all h ∈ Hĝj (s
j), this means that

L
β̂AT
ĝ [aj] ≤ σ̂j(β̂)[aj] + 1

8 ξ̄
i and σ̂j(β̂)[aj] − 1

8 ξ̄
i ≤ l

β̂AT
ĝ [aj] for all aj . Further-

more, σ̂j(α
′′′) = σ̂j(β̂) (= π̂j) because of Claim B.2(i). These, along with

Claim B.2(iii), imply that ‖σ̂j(α
′′′) − D̃i

j(α
′′′)‖ ≤ 1

8 ξ̄
i + 1

4 ξ̄
i = 3

8 ξ̄
i. Next, re-

call from (b.7) that for all h, ‖f i
j [j](h) − ρi

(t0�t
′
0�π

′′
0 )�j

(h)‖ ≤ ξ̄j/12Bi. Therefore,

‖f i
j [j](α′′′) − ρi

(t0�t
′
0�π

′′
0 )�j

(α′′′)‖ ≤ ξ̄j/12Bi.17 In addition, from (b.2), ‖σ̂j(h) −
ρi
(t0�t

′
0�π

′′
0 )�j

(h)‖ ≥ 1/2 in any ATj

ŝ−1-active period. Thus, by Claim B.2(i),

‖σ̂j(α
′′′) − ρi

(t0�t
′
0�π

′′
0 )�j

(α′′′)‖ ≥ 1/2 > 1/2(#Ā + 1). Finally, recall that ξ̄i� ξ̄j ≤
min[η/3�1/8(#Ā+ 1)]. These imply that

∥∥D̃i
j

(
α′′′) − f i

j [j]
(
α′′′)∥∥

≥ ∥∥σ̂j

(
α′′′) − ρi

(t0�t
′
0�π

′′
0 )�j

(
α′′′)∥∥ − ∥∥f i

j [j]
(
α′′′) − ρi

(t0�t
′
0�π

′′
0 )�j

(
α′′′)∥∥

− ∥∥σ̂j

(
α′′′) − D̃i

j

(
α′′′)∥∥

>
1

2(#Ā+ 1)
− ξ̄j

12Bi

− 3
8
ξ̄i

≥ 1

2(#Ā+ 1)
− 11

24
1

8(#Ā+ 1)

>
3

8(#Ā+ 1)
> ξ̄i	

This, along with Claim B.2(ii), implies that (even if the complexity test is
passed) f i[j] is rejected by some current class (i.e., class α′′′) at the end of the
test phase with (conditional) probability at least 1/2. This completes the proof
of Lemma 3(ii). Q.E.D.

17Since f i[j] and ρi
(t0�t

′
0�π

′′
0 )

are generated by P i
si+qi

, f i[j](α′′′) and ρi
(t0�t

′
0�π

′′
0 )
(α′′′) are well defined.
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B.3. Proof of Lemma 5

The (Disjoint) ER(s) Interval in the General Case. First, I define the (i� j)
subinterval for i �= j. Given any formation phase of player i, consider the short-
est time interval such that (a) it begins in the first period of the given formation
phase, (b) it includes at least one active interval of player j ( �= i), and (c) it
ends in the last period of a test phase of player i. The time interval is called
an (i� j) subinterval. Then I define the ER(s) interval. Suppose that the first
belief rejection by the maximum epoch player in maximum epoch s has oc-
curred; assume that (maximum epoch) player i has made the belief rejection.
Then consider the shortest time interval such that (a) it begins in the next pe-
riod following player i’s belief rejection, (b) it consists of a sequence of disjoint
(i� j) subintervals (i.e., it includes exactly one (i� j) subinterval for each j �= i),
a formation phase, and a transition phase of player i, and (c) all players’ epoch
stages are no more than s through the interval regardless of the realized history
in the interval. The time interval is called the first ER(s) interval. Inductively,
suppose that belief rejection by the maximum epoch player has occurred for
the first time after the mth ER(s) interval.18 Then the shortest time interval
satisfying (a)–(c) is called the (m+ 1)th ER(s) interval.

PROOF OF LEMMA 5: Take s̄ such that for all s ≥ s̄, p
s
= ( 1

s
)sN̄s ≤ ( 1

2)
2(I−1) ×

(
∏

i li)
(c̄I+1)(I−1)N̄s . Let s̄3 := max[s̄1� s̄2� s̄]. I may assume that the ER(s) interval

is initiated by (maximum epoch) player 1 and that the ER(s) interval con-
sists of (1�2)� (1�3)� 	 	 	 � (1� I) subintervals, a formation phase, and a transition
phase of player 1. Accordingly, let s̄3 ≤ sj ≤ s1 = s for all j ≥ 2.

Step 1. First, from Lemma 3, player 1 forms f 1[2] in the initial formation
phase during the (1�2) subinterval with probability at least (

∏
i �=1 li)

N1
s . Then

player 1 retains f 1[2] until the last test phase in the (1�2) subinterval with prob-
ability (

∏
i �=1 li)

(c̄−1)N1
s ; even if player 1 rejects f 1[2] in any interim test phase,

she forms it again in the next formation phase with probability (
∏

i �=1 li)
N1
s and,

by the RB condition, there are at most (c̄ − 1) interim test phases of player
1 in the (1�2) subinterval. Hence, by Lemma 3(i), player 2 rejects her cur-
rent belief f 2 in her first test phase in the (1�2) subinterval with probabil-
ity 1

2 . Furthermore, from Lemma 4, player 2 forms an AEB ĝ2 in the next

formation phase with probability (
∏

i �=2 li)
N2
s2 . Then player 2 retains ĝ2 until

the end of the (1�2) subinterval with probability (
∏

i �=2 li)
(c̄−1)N2

s2 for the same
reason as in the case of f 1[2]. By Lemma 3(ii), this, in turn, leads player 1
to reject f 1[2] in the last test phase with probability 1

2 . That is, player 1 re-
jects f 1[2] at the end of the (1�2) subinterval. By the AS condition, the prob-
ability of the sequential events is at least the product of the probabilities of

18Note that a maximum epoch player other than player i, for example, player k ( �= i), may
make the belief rejection. In that case, player i is replaced by player k in (a) and (b).
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those events, that is, (
∏

i �=1 li)
N1
s (

∏
i �=1 li)

(c̄−1)N1
s ( 1

2)(
∏

i �=2 li)
N2
s2 (

∏
i �=2 li)

(c̄−1)N2
s2 ( 1

2)

(≥ ( 1
2)

2(
∏

i li)
c̄(N1

s +N2
s2
)). In addition, player 2 retains ĝ2 until the end of the

ER(s) interval with probability (
∏

i �=2 li)
2c̄(I−2)N2

s2 (≥ (
∏

i li)
2c̄(I−2)N2

s2 ) because,
by the RB condition, there are at most 2c̄ test phases of player 2 in the (1� j)
subinterval for any j ≥ 3, and (I−2) subintervals remain after the (1�2) subin-
terval.

Step 2. I consider the remaining subintervals inductively: for any j ≥ 3,
from Lemma 3, player 1 forms f 1[j] in the first formation phase dur-
ing the (1� j) subinterval with probability (

∏
i �=1 li)

N1
s . The remainder is the

same as in the case of the (1�2) subinterval by replacing player 2 with
player j. Again, from the AS condition, the probability of the sequen-

tial events is at least (
∏

i �=1 li)
N1
s (

∏
i �=1 li)

(c̄−1)N1
s ( 1

2)(
∏

i �=j li)
N

j

sj (
∏

i �=j li)
(c̄−1)Nj

sj ( 1
2)

(≥ ( 1
2)

2(
∏

i li)
c̄(N1

s +N
j

sj
)); player j retains an AEB ĝj and player 1 rejects f 1[j]

at the end of the (1� j) subinterval. By the inductive hypothesis, players 2 to
j − 1 retain their AEBs (ĝi)2≤i≤j−1 until the end of the ER(s) interval. Further-
more, player j also retains ĝj until the end of the ER(s) interval with proba-

bility (
∏

i �=j li)
2c̄(I−j)N

j

sj (≥ (
∏

i li)
2c̄(I−j)N

j

sj ) since, by the RB condition, there are
at most 2c̄ test phases of player j in the (1� j′) subinterval for all j′ > j, and
(I − j) subintervals remain after the (1� j) subinterval.

Step 3. By the inductive argument, all players other than 1 employ their
AEBs (ĝj)j �=1 and player 1 rejects f 1[I] at the end of the (1� I) subinterval
with probability at least ( 1

2)
2(I−1)(

∏
i li)

θ, where θ := c̄(I − 1)N1
s + c̄

∑I

j=2 N
j

sj
+

2c̄
∑I

j=2(I− j)N
j

sj
. Finally, player 1 also forms an AEB ĝ1 in the final formation

phase with probability (
∏

i �=1 li)
N1
s and changes f 1[I] to ĝ1 in the final transi-

tion phase: all players employ their AEBs ĝ at the end of the ER(s) interval.
That is, AES(σ̂) is reached at the end of the ER(s) interval with probability
at least ( 1

2)
2(I−1)(

∏
i li)

θ(
∏

i �=1 li)
N1
s (≥ ( 1

2)
2(I−1)(

∏
i li)

θ+N1
s ). Note that si ≤ s for

all i. Thus, Ni
si

≤Ni
s ≤ N̄s for all i. From these, it follows that for all s ≥ s̄3 (≥ s̄),

(
1
2

)2(I−1)(∏
i

li

)θ+N1
s

≥
(

1
2

)2(I−1)(∏
i

li

)(c̄+1)(I−1)N̄s+c̄(I−1)N̄s+2c̄(1/2)(I−1)(I−2)N̄s

=
(

1
2

)2(I−1)(∏
i

li

)(c̄I+1)(I−1)N̄s

≥
(

1
s

)sN̄s

= p
s
	

Q.E.D.
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APPENDIX C

C.1. Proof of Lemma 6

The (i� j) Belief-Rejectable Interval for i �= j. Suppose that player i has re-
jected her belief for the first time in epoch si. Then consider the time interval
such that (a) it begins in the next period following the rejection, (b) it ends in
the last period of the first test phase of player j ( �= i) after the rejection, and
(c) the epoch stage of player i is no more than si through the interval regard-
less of the realized history in the interval. This time interval is called the first
(i� j) belief-rejectable interval in epoch si of player i. It is abbreviated as the first
BRi

j(s
i) interval. Inductively, suppose that in epoch si, player i has rejected her

belief for the first time after the mth BRi
j(s

i) interval. Then the time interval
satisfying (a)–(c) is called the (m+ 1)th BRi

j(s
i) interval.

I prepare one claim to prove Lemma 6.

CLAIM C.1: For any i� j with i �= j, any si ≥ s̄1, and any BRi
j(s

i) interval in
which si ≥ sj and sj + qj ≥ s̄1, player j rejects her belief at the end of the BRi

j(s
i)

interval with (conditional) probability at least 1
2(

∏
k lk)

c̄Ni
si .19

PROOF: Consider any BRi
j(s

i) interval and let P j

sj+qj
be the CR used in the

only test phase of player j during the BRi
j(s

i) interval. Suppose that si ≥ sj , and
si� sj + qj ≥ s̄1, where s̄1 is taken from Lemma 3. Then Lemma 3 ensures that
player i forms f i[j] in the first formation phase during the BRi

j(s
i) interval with

probability (
∏

k �=i lk)
Ni
si . Then player i retains f i[j] until the end of the BRi

j(s
i)

interval with probability (
∏

k �=i lk)
(c̄−1)Ni

si since, by the RB condition, there are
at most (c̄−1) test phases of player i in any BRi

j(s
i) interval. Thus, since player

i retains f i[j] through the only test phase of player j, by Lemma 3(i), player
j rejects her current belief f j at the end of the test phase with probability 1

2 .
From the AS condition, the (conditional) probability of the sequential events
is at least (

∏
k lk)

Ni
si (

∏
k lk)

(c̄−1)Ni
si ( 1

2)= 1
2(

∏
k lk)

c̄Ni
si . Q.E.D.

For any si ≥ s̄1, define a class γ(si� i� j) such that hT ∈ γ(si� i� j) if and only
if (a) a BRi

j(s
i) interval starts at time T + 1, (b) si ≥ sj in the BRi

j(s
i) inter-

val, and (c) player j uses a CR P j

sj+qj
whose index is no less than s̄1, that is,

sj + qj ≥ s̄1, in her only test phase during the BRi
j(s

i) interval. Furthermore,
for any si ≥ s̄1, let dγ(si�i�j)

m (h∞) denote the number of times up to the mth

19This is the probability conditional on the finite history realized just before the BRi
j(s

i) inter-
val.
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γ(si� i� j)-active period that player j has rejected her belief in a BRi
j(s

i) inter-
val in which si ≥ sj , and sj + qj ≥ s̄1. Then define Am(s

i� i� j) := {h∞ | T γ(si�i�j)
m <

∞�dγ(si�i�j)
m /m < p

si
− 1

2psi
}. Note that 1

2(
∏

k lk)
c̄Ni

si ≥ p
si

for any large si. From
this, Claim C.1, and Proposition A, it follows that, for any large si (≥ s̄1),
μσ∗(Am(s

i� i� j)) ≤ 2 exp(−2m( 1
2psi

)2) = 2 exp(− 1
2m(p

si
)2) for all i, all j �= i,

and all m. Furthermore, since wi
si

= 1
si
(pi

si
)s

i(I−1), for all i, wi
si
Ri

si
≤ Ri

si
/c̄ for

any large si. From the RB condition, for all i, N̄si ≤ n̄Ni
si

for all si. Therefore,

for any large si, (pi
si
)s

i ≤ (pi
si
)n̄ = ( 1

si
)
sin̄Ni

si ≤ ( 1
si
)s

iN̄
si = p

si
for all i. From these

inequalities and the MR condition, it follows that for any i, any j �= i, and any
large s′ (≥ s̄1),

μσ∗

(⋃
si≥s′

⋃
m≥Ri

si
/c̄

Am

(
si� i� j

))

≤
∑
si≥s′

∑
m≥wi

si
Ri
si

2 exp
(

−1
2
m

(
pi

si

)2si
)

≤ 2
∑
si≥s′

exp
(−si

) = 2
(
1 − exp(−1)

)−1
exp

(−s′)	

The first inequality holds because, for any large si, (pi
si
)s

i ≤ p
si

, and wi
si
Ri

si
≤

Ri
si
/c̄. The second inequality is obtained by the MR condition. Hence, for all i

and all j �= i, μσ∗(
⋂

s′≥s̄1

⋃
si≥s′

⋃
m≥Ri

si
/c̄ Am(s

i� i� j))= 0. Therefore,

μσ∗

(⋃
i

⋃
j �=i

⋂
s′≥s̄1

⋃
si≥s′

⋃
m≥Ri

si
/c̄

Am

(
si� i� j

)) = 0	

From this, I obtain Lemma 6.

PROOF OF LEMMA 6: Let A := ⋂
i

⋂
j �=i

⋃
s′≥s̄1

⋂
si≥s′

⋂
m≥Ri

si
/c̄(Am(s

i� i� j))c ,

where (Am(s
i� i� j))c is the complement of Am(s

i� i� j). Then μσ∗(A) = 1. Sup-
pose that there are infinite belief rejections but that some player, for example,
player j1, only rejects her belief a finite number of times along h∞ ∈ A. On
the one hand, since player j1 does not reject her belief from some period on,
she stays in some epoch, for example, epoch s

j1
0 , forever from some period.

Moreover, she continues switching to finer CRs in her test phases throughout
epoch s

j1
0 , as defined in Section 4.1.2: sj10 + qj1 → ∞ as T → ∞. On the other

hand, since there are infinite belief rejections, there exists i1 ( �= j1) such that
player i1 rejects her belief infinitely many times; her epoch stage goes to in-
finity, that is, si1T → ∞ as T → ∞. These imply that for any large si1 (≥ s̄1),
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si1 ≥ s
j1
0 and s

j1
0 +qj1 ≥ s̄1 in any BRi1

j1
(si1) interval during epoch si1 . In addition,

there are at least (Ri1

si1
/c̄) BRi1

j1
(si1) intervals in each epoch si1 because, by the

RB condition, there are at most (c̄− 1) test phases of player i1 in any BRi1
j1
(si1)

interval. Since h∞ ∈ A, these imply that, for any large si1 (≥ s′ ≥ s̄1), (i) for all
m, dγ(si1 �i1�j1)

m (h∞) equals the number of times that player j1 has rejected her
belief in the first m BRi1

j1
(si1) intervals and (ii) dγ(si1 �i1�j1)

R
i1
si1

/c̄
(h∞) ≥ 1

2psi1
(R

i1

si1
/c̄).

This means that player j1 rejects her belief at least 1
2psi1

(R
i1

si1
/c̄) times in epoch

si1 for any large si1 . However, Remark 1 implies that p
si1
R

i1

si1
→ ∞ as si1 → ∞.

Therefore, player j1 rejects her belief infinitely many times along h∞. This is a
contradiction. Q.E.D.

C.2. Proof of Lemma 7

For all s ≥ 1, define a class ω(s) such that hT ∈ ω(s) if and only if (a) time
T + 1 is the first period of an ERmod I(s) interval and (b) all players’ epoch
stages are no less than s̄3 at the beginning of the ERmod I(s) interval, where s̄3 is
taken from Lemma 5. Let dω(s)

m (h∞) denote the number of times that AES(σ̂)
has been reached in the first m ERmod I(s) intervals in which all players’ epoch
stages are no less than s̄3. Then define Bs

m := {h∞ | T ω(s)
m < ∞�dω(s)

m /m <

p
s
− 1

2ps
}. By Lemma 5 and Proposition A, μσ∗(Bs

m) ≤ 2 exp(−2m( 1
2ps

)2) =
2 exp(− 1

2m(p
s
)2) for all s and all m. Recall that there are at least (Rs/2c̄I ×

(I − 1)) ERmod I(s) intervals in each maximum epoch s. Note that for any large
s, there exists is such that Ris

s /s ≤ Ris
s /2c̄I(I − 1) = Rs/2c̄I(I − 1). Therefore,

wis
s R

is
s := 1

s
(pis

s )
s(I−1)Ris

s ≤ Rs/2c̄I(I − 1) for any large s. Furthermore, from the
RB condition, it follows that for any large s, (pi

s)
s ≤ (pi

s)
n̄ = ( 1

s
)sn̄N

i
s ≤ ( 1

s
)sN̄s =

p
s

for all i. From these inequalities and the MR condition, the same computa-
tion as in Appendix C.1 induces that

μσ∗

(⋂
s′≥1

⋃
s≥s′

⋃
m≥Rs/2c̄I(I−1)

Bs
m

)
= 0	

Let B := ⋃
s′≥1

⋂
s≥s′

⋂
m≥Rs/2c̄I(I−1)(B

s
m)

c , where (Bs
m)

c is the complement of
Bs

m. Then μσ∗(B)= 1. From this, I obtain Lemma 7.

PROOF OF LEMMA 7: Consider B ∩ Z, where Z := {h∞ | if there are infinite
belief rejections, then every player rejects her belief infinitely many times in
h∞}; μσ∗(Z) = 1 by Lemma 6. Then μσ∗(B ∩ Z) = 1. Take any h∞ ∈ B ∩ Z
and suppose that there are infinite belief rejections in h∞. Since h∞ ∈ Z, every
player rejects her belief infinitely many times in h∞. This means that there
exists s̄′

3 (≥ s̄3) such that for all s ≥ s̄′
3, all players’ epoch stages are no less
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than s̄3 through maximum epoch s in h∞. Therefore, for all s ≥ s̄′
3 and all m,

dω(s)
m (h∞) equals the number of times that AES(σ̂) has been reached in the first

m ERmod I(s) intervals. In addition, since h∞ ∈ B, there exists s̄4 (≥ s̄′
3) such that

for all s ≥ s̄4, dω(s)
m (h∞) ≥ 1

2ps
m for all m ≥ Rs/2c̄I(I − 1). Since there are at

least Rs/2c̄I(I−1)ERmod I(s) intervals in maximum epoch s for all s, this means
that for all s ≥ s̄4, AES(σ̂) is reached at least 1

2ps
(Rs/2c̄I(I − 1)) times in the

first Rs/2c̄I(I − 1)ERmod I(s) intervals in maximum epoch s in h∞. Q.E.D.

C.3. Proof of Lemma 8

For convenience, I introduce the α-sampling. Given (P i
s+q�m

i
s+q + d) and

α ∈P i
s+q, by the (d+ 1)th α-sampling in epoch s of player i, I mean that player

i collects samples (i.e., her opponents’ realized actions) in α-active periods for
the statistical test that uses (P i

s+q�m
i
s+q +d). Further, the (d+ 1)th α-sampling

(in epoch s of player i) is effective at time T if player i continues collecting
samples in α-active periods at time T for the corresponding statistical test.
Then, for all i, all s ≥ 1, all q ≥ 0, all α ∈ P i

s+q, and all d ≥ 0, define a class
α(s�q�d) such that hT ∈ α(s�q�d) if and only if (a) hT ∈ α, that is, time T + 1
is α-active, (b) the (d + 1)th α-sampling is effective at time T + 1, and (c) for
any hT ′ ≤ hT such that time T ′ + 1 is α-active and the (d + 1)th α-sampling is
effective at time T ′ + 1, ‖ĝi

j(hT ′) − σ∗
j (hT ′)‖ ≤ ξ̄i/8 for all j �= i, where player

i’s AEB ĝi has been formed just after the most recent belief rejection by player
i in hT . Let dα(s�q�d)

j�m [aj] denote the number of times that aj has been realized
in the first m α(s�q�d)-active periods, and let dα(s�q�d)

j�m := (dα(s�q�d)
j�m [aj])aj . Recall

that for all i, PId ≤ P i
s for all s. Accordingly, for all i, all s ≥ 1, all q ≥ 0, all

α ∈ P i
s+q, all j �= i, and all aj , let σ̂

i

j(α)[aj] := σ̂j(α)[aj] + 1
4 ξ̄

i and σ̂
i

j(α)[aj] :=
σ̂j(α)[aj] − 1

4 ξ̄
i. Then define

Cα(s�q�d)
m [aj] :=

{
h∞

∣∣∣ T α(s�q�d)
m < ∞�

dα(s�q�d)
j�m [aj]

m
< σ̂

i

j(α)[aj] − ξ̄i

4
or

dα(s�q�d)
j�m [aj]

m
> σ̂

i

j(α)[aj] + ξ̄i

4

}

and Cα(s�q�d)
m := ⋃

j �=i

⋃
aj

Cα(s�q�d)
m [aj]. From the definition of α(s�q�d) and (4	1)

in Section 4.3, it follows that for all i, all s ≥ 1, all q ≥ 0, all α ∈P i
s+q, all d ≥ 0,

all h ∈ α(s�q�d), and all j �= i, σ̂ i

j(α)[aj] ≤ σ∗
j (h)[aj] ≤ σ̂

i

j(α)[aj] for all aj .
From this and Proposition A, it follows that for all i, all s ≥ 1, all q ≥ 0, all
α ∈ P i

s+q, and all d ≥ 0, μσ∗(Cα(s�q�d)
m ) ≤ (

∑
j �=i #Aj)2 exp(− 1

8m(ξ̄i)2) for all m.
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Hence, for all i and all s′ ≥ 1,

μσ∗

(⋃
s≥s′

⋃
q≥0

⋃
α∈Pi

s+q

⋃
d≥0

⋃
m≥mi

s+q+d

Cα(s�q�d)
m

)

≤
∑
s≥s′

∑
q≥0

∑
α∈Pi

s+q

∑
d≥0

∑
m≥mi

s+q+d

(∑
j �=i

#Aj

)
2 exp

(
−1

8
m

(
ξ̄i

)2
)

= 2
(∑

j �=i

#Aj

)∑
s≥s′

∑
q≥0

∑
α∈Pi

s+q

∑
d≥0

(
1 − exp

(
−1

8
(
ξ̄i

)2
))−1

× exp
(

−1
8
(
mi

s+q + d
)(
ξ̄i

)2
)

= 2
(∑

j �=i

#Aj

)(
1 − exp

(
−1

8
(
ξ̄i

)2
))−1

×
∑
s≥s′

∑
q≥0

(
#P i

s+q

) ∑
m≥mi

s+q

exp
(

−1
8
m

(
ξ̄i

)2
)

≤ 2
(∑

j �=i

#Aj

)(
1 − exp

(
−1

8
(
ξ̄i

)2
))−1 ∑

s≥s′

∑
q≥0

exp(−s − q)

= 2
(∑

j �=i

#Aj

)(
1 − exp

(
−1

8
(
ξ̄i

)2
))−1(

1 − exp(−1)
)−2

exp
(−s′)	

The fourth inequality results from the LS condition. All other (in-) equalities
are obvious. Therefore, for all i,

μσ∗

(⋂
s′≥1

⋃
s≥s′

⋃
q≥0

⋃
α∈Pi

s+q

⋃
d≥0

⋃
m≥mi

s+q+d

Cα(s�q�d)
m

)
= 0	

Then letting C := ⋃
i

⋂
s′≥1

⋃
s≥s′

⋃
q≥0

⋃
α∈Pi

s+q

⋃
d≥0

⋃
m≥mi

s+q+d Cα(s�q�d)
m ,

μσ∗(C)= 0. From this, I obtain Lemma 8.

PROOF OF LEMMA 8: Define W := {h∞ | there are infinite belief rejections in
AES(σ̂) under accurate testing along h∞}. Then it suffices to prove that W ⊆ C
because μσ∗(C) = 0. Suppose that h∞ ∈ W. This means that some player, for
example, player i, infinitely rejects her AEB in AES(σ̂) under accurate testing
along h∞. Moreover, from Lemma 2 and (4	1) in Section 4.3, it follows that
there exists T̄ such that for all T ≥ T̄ , if time T +1 is in AES(σ̂), then ‖ĝi

j(hT )−
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σ∗
j (hT )‖ ≤ ξ̄i/8 for all j �= i and all i. Clearly, in infinitely many epochs {sn}n of

player i after time T̄ , player i rejects her belief in AES(σ̂) under accurate
testing. Then, for each sn, either there exist qn, α′

n, α′′
n, βn, dn, and ĝn such that

(i) α′
n�α

′′
n ∈P i

sn+qn
and βn ∈P i

sn−1, (ii) α′
n�α

′′
n ⊆ βn, (iii) α′

n and α′′
n obtain enough

samples during the test phase of using (P i
sn+qn

�mi
sn+qn

+dn), that is, m̃α′
n� m̃α′′

n ≥
mi

sn+qn
+ dn, (iv) AEBs ĝn are employed during the test phase, (v) ‖ĝi

n�j(hT ) −
σ∗

j (hT )‖ ≤ ξ̄i/8 for all j �= i during the test phase, and (vi) ĝi
n is rejected by the

complexity test, ‖D̃i
j(α

′
n) − D̃i

j(α
′′
n)‖ > ξ̄i for some j �= i, or there exist qn, αn,

dn, and ĝn such that (vii) αn ∈ P i
sn+qn

, (viii) αn obtains enough samples, that is,
mαn ≥ mi

sn+qn
+ dn, (ix) AEBs ĝn are employed as long as the (dn + 1)th αn-

sampling is effective, (x) for all hT < h∞ such that time T + 1 is αn-active and
the (dn+1)th αn-sampling is effective at time T +1, ‖ĝi

n�j(hT )−σ∗
j (hT )‖ ≤ ξ̄i/8

for all j �= i, (xi) for all h, ‖ĝi
n�j(h)− σ̂j(h)‖ ≤ ξ̄i/18 for all j �= i, and (xii) ĝi

n is
rejected by αn, ‖Di

j(αn)− ĝi
n�j(αn)‖> ξ̄i for some j �= i.

First, I consider the former case: ‖D̃i
j(α

′
n) − D̃i

j(α
′′
n)‖ > ξ̄i for some j �= i by

(vi). From (i), (iv), (v), and the definition of α(s�q�d), it follows that D̃i
j(α

′
n)=

dα′
n(sn�qn�dn)

j�m′ /m′ and D̃i
j(α

′′
n) = dα′′

n(sn�qn�dn)

j�m′′ /m′′, where m′ := m̃α′
n and m′′ := m̃α′′

n .
Furthermore, m̃α′

n� m̃α′′
n ≥ mi

sn+qn
+ dn by (iii). However, then if ‖D̃i

j(α
′
n) −

σ̂j(α
′
n)‖ ≤ 1

2 ξ̄
i and ‖D̃i

j(α
′′
n) − σ̂j(α

′′
n)‖ ≤ 1

2 ξ̄
i, then ‖D̃i

j(α
′
n) − D̃i

j(α
′′
n)‖ ≤ ξ̄i be-

cause σ̂(α′
n) = σ̂(α′′

n) (= σ̂(βn) = π̂) by (i) and (ii). This contradicts (vi).
Hence, for some aj , either |D̃i

j(α
′
n)[aj] − σ̂j(α

′
n)[aj]| > 1

2 ξ̄
i or |D̃i

j(α
′′
n)[aj] −

σ̂j(α
′′
n)[aj]| > 1

2 ξ̄
i. This implies that either D̃i

j(α
′
n)[aj] < σ̂

i

j(α
′
n)[aj] − 1

4 ξ̄
i or

D̃i
j(α

′
n)[aj] > σ̂

i

j(α
′
n)[aj]+ 1

4 ξ̄
i, or D̃i

j(α
′′
n)[aj]< σ̂

i

j(α
′′
n)[aj]− 1

4 ξ̄
i or D̃i

j(α
′′
n)[aj] >

σ̂
i

j(α
′′
n)[aj] + 1

4 ξ̄
i.

I proceed to the latter case: ‖Di
j(αn) − ĝi

n�j(αn)‖ > ξ̄i for some j �= i by
(xii). However, then, from (xi), it follows that σ̂j(αn)[aj]− 1

16 ξ̄
i ≤ ĝi

n�j(αn)[aj] ≤
σ̂j(αn)[aj] + 1

16 ξ̄
i for all aj .20 These imply that for some aj , either Di

j(αn)[aj] <
ĝi
n�j(αn)[aj] − ξ̄i ≤ (σ̂j(αn)[aj] + 1

16 ξ̄
i) − ξ̄i = σ̂

i

j(αn)[aj] − 11
16 ξ̄

i < σ̂
i

j(αn)[aj] −
1
4 ξ̄

i or Di
j(αn)[aj] > ĝi

n�j(αn)[aj] + ξ̄i ≥ (σ̂j(αn)[aj] − 1
16 ξ̄

i) + ξ̄i = σ̂
i

j(αn)[aj] +
11
16 ξ̄

i > σ̂
i

j(αn)[aj] + 1
4 ξ̄

i. Moreover, from (vii), (viii), (ix), (x), and the defini-
tion of α(s�q�d), it follows that Di

j(αn) = dαn(sn�qn�dn)

j�m′′′ /m′′′, where m′′′ := mαn ≥
mi

sn+qn
+ dn.

Both cases show that h∞ ∈ C. Therefore, W ⊆ C. Q.E.D.

20Note that ĝi
n and σ̂ are generated by P i

sn
, P i

sn
≤ P i

sn+qn
, and αn ∈ P i

sn+qn
. Hence, ĝi

n(αn) and
σ̂(αn) are well defined; see Section 4.1.1 for details.
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C.4. Two Claims for the Proof of Lemma 9

As mentioned in Section 4.3.2, I can obtain the following claim.

CLAIM C.2: With μσ∗ -probability 1, if there are infinite belief rejections, there
exists s̄5 such that for each s ≥ s̄5, AES(σ̂), which has been reached at the end
of an ERmod I(s) interval, survives the first (I − 1) belief rejections (after the
ERmod I(s) interval) at least ( 1

2ps
)I−1 · 1

2ps
(Rs/2c̄I(I − 1)) times in maximum

epoch s.

Since the proof of Claim C.2 is the same as that of Lemma 7, I omit it.
Next, player i’s AEB ĝi is under accurate testing in an AES(σ̂) at time T if all
effective statistical tests of player i at time T have begun after the AES(σ̂) has
been reached. Therefore, an AES(σ̂) is under accurate testing at time T if and
only if all players’ AEBs are under accurate testing in the AES(σ̂) at time T .
Moreover, the proof of Lemma 8 (in Appendix C.3) implies that (i) with μσ∗ -
probability 1, from some period on, if a player’s AEB is under accurate testing in
AES(σ̂), her AEB is never rejected. In addition, from the definition of statistical
testing, it is obvious that (ii) for all i, whenever player i rejects her belief, all of
her effective statistical tests that began before the rejection are terminated. From
(i) and (ii), I obtain the following claim.

CLAIM C.3: With μσ∗ -probability 1, from some period on, AES(σ̂) is under
accurate testing just after it survives subsequent (I − 1) belief rejections.

PROOF: Suppose that AES(σ̂) survives the first (I − 1) belief rejections af-
ter the AES(σ̂) has been reached. Then consider the final step to reach the
AES(σ̂) (e.g., see the proof of Lemma 5 in Appendix B.3): the corresponding
player, for example, player i1, rejects her (wrong) belief and forms an AEB
ĝi1 in the test and formation phases, respectively, while all the other players
have already been employing their AEBs (ĝj)j �=i1 . Thus, AES(σ̂) is reached at
the end of the next transition phase. Hence, from (ii), it follows that player
i1’s AEB ĝi1 is under accurate testing in the AES(σ̂) just after the AES(σ̂)
is reached. This, along with (i), implies that some other player, for exam-
ple, player i2 ( �= i1), must make the first belief rejection after the AES(σ̂) is
reached. However, since the AES(σ̂) survives the (I − 1) belief rejections,
player i2 forms ĝi2 again just after the first belief rejection. Then, from (ii),
player i2’s AEB ĝi2 is also under accurate testing in the AES(σ̂) after the first
belief rejection, and this, along with (i), implies that the second belief rejection
must be made by a player other than i1 or i2. I repeat this argument so that all
players’ AEBs ĝ are under accurate testing in the AES(σ̂) after the AES(σ̂)
survives the (I − 1) belief rejections; that is, the AES(σ̂) is under accurate
testing. Clearly, this implies Claim C.3. Q.E.D.



BAYESIAN LEARNING 21

C.5. Proof of Proposition 1.B

For any i and any positive integer L (≥ 2), let Δi
L := {πi ∈ Δ(Ai) | ∀ai ∈ Ai

∃l ∈ N(πi[ai] = l/L)} and Si
L(πi) := {π ′

i ∈ Δ(Ai) | ‖π ′
i − πi‖ ≤ 2/L}. Note that

(for all i), (c.1)
⋃

πi∈Δi
L
Si
L(πi) = Δ(Ai) and (c.2) for any subset Δ of Δ(Ai)

with its diameter no larger than 1/2L, that is, diam(Δ) ≤ 1/2L,21 there exists
πi ∈ Δi

L such that Δ⊆ Si
L(πi).

Step 1. Let Lη := min{L | 2/L≤ η/6}; for convenience, let η ≤ 1. Then for all
i, all j �= i, all s ≥ 1, all q ≥ 0, all α ∈P i

s+q, and all πj ∈ Δ
j
Lη

, define a class α(πj)

as follows: hT ∈ α(πj) if and only if (a) hT ∈ α, that is, time T + 1 is α-active,
(b) the first α-sampling in epoch s of player i is effective at time T + 1,22 and
(c) for all hT ′ ≤ hT such that time T ′ + 1 is α-active and the first α-sampling is
effective at time T ′ + 1, πj[aj]− 1

6η≤ σ∗
j (hT ′)[aj] ≤ πj[aj]+ 1

6η for all aj . (See

Appendix C.3 for the α-sampling.) Moreover, let d
α(πj)

j�m [aj] denote the number
of times that aj has been realized in the first m α(πj)-active periods, and let
d
α(πj)

j�m := (d
α(πj)

j�m [aj])aj . Let π̄j[aj] := πj[aj] + 1
6η and πj[aj] := πj[aj] − 1

6η for
all aj . Then for all i, all j �= i, all s, all q, all α ∈ P i

s+q, all πj ∈ Δ
j
Lη

, and all m,
define

Di
j(s� q�α�πj�m)

:=
{
h∞

∣∣∣ T α(πj)
m < ∞�

∃aj

(
d
α(πj)

j�m [aj]
m

<πj[aj] − η

6
or

d
α(πj)

j�m [aj]
m

> π̄j[aj] + η

6

)}
	

Recall that ξ̄i ≤ min[η/3�1/8(#Ā+1)] for all i. From this, the LS condition,
and Proposition A, it follows that for all i, all j �= i, all s, and all q̄,

μσ∗

(⋃
q≥q̄

⋃
α∈Pi

s+q

⋃
πj∈Δj

Lη

⋃
m≥mi

s+q

Di
j(s� q�α�πj�m)

)

≤
∑
q≥q̄

#P i
s+q#Δ

j
Lη

∑
m≥mi

s+q

(#Aj)2 exp
(

−2m
(
η

6

)2)

≤ 2#Δ
j
Lη

#Aj

∑
q≥q̄

#P i
s+q

∑
m≥mi

s+q

exp
(

−1
8
m

(
ξ̄i

)2
)

21The diameter of Δ is defined as diam(Δ) := sup{‖π −π ′‖ | π�π ′ ∈ Δ}.
22That is, d = 0.
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≤ 2#Δ
j
Lη

#Aj

∑
q≥q̄

exp(−s − q)

= 2#Δ
j
Lη

#Aj

(
1 − exp(−1)

)−1
exp(−s − q̄)	

Therefore, μσ∗(
⋂

q̄≥0

⋃
q≥q̄

⋃
α∈Pi

s+q

⋃
πj∈Δj

Lη

⋃
m≥mi

s+q
Di

j(s� q�α�πj�m)) = 0

for all i, all j �= i, and all s. Thus,

μσ∗

(⋃
i

⋃
j �=i

⋃
s≥1

⋂
q̄≥0

⋃
q≥q̄

⋃
α∈Pi

s+q

⋃
πj∈Δj

Lη

⋃
m≥mi

s+q

Di
j(s� q�α�πj�m)

)
= 0	

Step 2. Let U := {h∞ | there are at most a finite number of belief rejections
in h∞}. I say that ρ∗ are η-different from σ∗ infinitely many times in h∞ if
for infinitely many h (< h∞), there exist i and j ( �= i) such that ‖ρi

∗�j(h) −
σ∗

j (h)‖ >η. Let V := {h∞ | ρ∗ are η-different from σ∗ infinitely many times in
h∞}. Then I obtain that

U ∩ V ⊆
⋃
i

⋃
j �=i

⋃
s≥1

⋃
q̄≥0

⋂
q≥q̄

⋃
α∈Pi

s+q

⋃
πj∈Δj

Lη

⋃
m≥mi

s+q

Di
j(s� q�α�πj�m)

⊆
⋃
i

⋃
j �=i

⋃
s≥1

⋂
q̄≥0

⋃
q≥q̄

⋃
α∈Pi

s+q

⋃
πj∈Δj

Lη

⋃
m≥mi

s+q

Di
j(s� q�α�πj�m)	

The second inclusion is obvious. I show the first inclusion from Step 3 to
Step 6.

Step 3. Suppose that h∞ ∈ U ∩ V. On the one hand, since h∞ ∈ U, there exists
T̄0 such that (i) no belief rejection occurs from time T̄0, (ii) there exist beliefs
(f̄ i)i such that each player i retains f̄ i forever from time T̄0, and (iii) there exist
(si0)i such that each player i stays in epoch si0 forever from time T̄0. Hence, for
all i, f̄ i is generated by P i

si0
, and ρi

∗(hT ) = f̄ i(hT ) for all T ≥ T̄0. On the other

hand, since h∞ ∈ V, there exist i0 and j0 ( �= i0) such that ‖f̄ i0
j0
(hTk)−σ∗

j0
(hTk)‖ =

‖ρi0
∗�j0(hTk)− σ∗

j0
(hTk)‖>η for infinitely many hTk < h∞.

Step 4. From Step 3, (P.1), (P.2), footnote 29 (in Section 4.1.2), and Lemma 1,
it follows that for all i, all j �= i, and all s, there exists q̂(i� j� s) such that for all
q ≥ q̂(i� j� s), (c.3) P i

s+q is a CR of f̄ i and (c.4) P i
s+q is an η/96-ACR of σ

f̄
j :

for all α ∈ P i
s+q and all h�h′ ∈ α, f̄ i(h) = f̄ i(h′) and ‖σf̄

j (h)− σ
f̄
j (h

′)‖ ≤ η/96;
hence, f̄ i(α) is well defined for all α ∈ P i

s+q. Moreover, since limm→∞ Ki(m) =
∞ for all i, it follows from Lemma 2 that, for all i, ‖σf̄

i (hT )− σ∗
i (hT )‖ → 0 as

T → ∞. Thus, there exists T̄1 (≥ T̄0) such that (c.5) for all i, all j �= i, all s, all
q ≥ q̂(i� j� s), all α ∈ P i

s+q, and all hT �h
′
T ′ ∈ H, if hT �h

′
T ′ ∈ α, hT �h

′
T ′ < h∞, and
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T�T ′ ≥ T̄1, then ‖σ∗
j (hT )−σ∗

j (h
′
T ′)‖ ≤ η/48: for each α ∈P i

s+q, diam({σ∗
j (hT ) |

hT ∈ α�hT < h∞�T ≥ T̄1}) ≤ η/48 ≤ 1/2Lη. Therefore, by (c.2) and (c.5), for
all i, all j �= i, all s, all q ≥ q̂(i� j� s), and all α ∈P i

s+q, there exists πj ∈ Δ
j
Lη

such
that {σ∗

j (hT ) | hT ∈ α�hT < h∞�T ≥ T̄1} ⊆ S
j
Lη
(πj).

Step 5. In addition, since no belief rejection occurs from time T̄0 and {P i0

s
i0
0 +q

}q
is a set of finite partitions, it is clear that there exists q̄ ≥ q̂(i0� j0� s

i0
0 ) such that

for all q ≥ q̄, there exists αq ∈P i0

s
i0
0 +q

such that (c.6) the first αq-sampling begins

after time T̄1
23 and (c.7) hTkn

∈ αq for all n, where {hTkn
}n is an infinite sub-

sequence of {hTk}k. Furthermore, from Step 3, (c.3), (c.5), and (c.7), it follows
that (c.8) ‖f̄ i0

j0
(hT )−σ∗

j0
(hT )‖ >η− 1

48η= 47
48η for all hT < h∞ such that T ≥ T̄1

and hT ∈ αq.
Step 6. From Steps 4 and 5, it is derived that for all q ≥ q̄, there exists

π
q
j0

∈ Δ
j0
Lη

such that (c.9) {σ∗
j0
(hT ) | hT ∈ αq�hT < h∞�T ≥ T̄1} ⊆ S

j0
Lη
(π

q
j0
).

From (c.6), (c.8), and the definition of αq(π
q
j0
), it then follows that (c.10)

‖f̄ i0
j0
(h)−σ∗

j0
(h)‖> 47

48η for all h < h∞ such that h ∈ αq(π
q
j0
). Clearly, (c.6) and

(c.9) imply that (c.11) in any αq-active period in which the first αq-sampling is
effective, πq

j0
[aj0] − 1

6η ≤ σ∗
j0
(h)[aj0] ≤ π

q
j0
[aj0] + 1

6η for all aj0 . Furthermore,
from (c.6), (c.7), (c.11), and no belief rejection from time T̄0, it follows that
#{h | h ∈ αq(π

q
j0
)�h < h∞} = mαq ≥ m

i0

s
i0
0 +q

, where mαq is the number of the

samples obtained for αq in h∞. This implies that αq obtains enough samples

but does not reject f̄ i0 in h∞ and that Di0
j0
(αq) = d

αq(π
q
j0
)

j0�m
αq /mαq . Therefore, h∞ ∈

Di0
j0
(s

i0
0 � q�αq�π

q
j0
�mαq). Indeed, if not, then ‖d

αq(π
q
j0
)

j0�m
αq /mαq − π

q
j0
‖ ≤ η/3. How-

ever, then αq does not reject f̄ i0 , which means that ‖f̄ i0
j0
(h) − d

αq(π
q
j0
)

j0�m
αq /mαq‖ =

‖f̄ i0
j0
(αq) − D

i0
j0
(αq)‖ ≤ ξ̄i0 ≤ η/3 for all h ∈ αq. Furthermore, by the definition

of αq(π
q
j0
), for all h ∈ αq(π

q
j0
), πq

j0
[aj0] − 1

6η ≤ σ∗
j0
(h)[aj0] ≤ π

q
j0
[aj0] + 1

6η for

all aj0 . Therefore, ‖f̄ i0
j0
(h)−σ∗

j0
(h)‖ ≤ ‖f̄ i0

j0
(h)−d

αq(π
q
j0
)

j0�m
αq /mαq‖+‖d

αq(π
q
j0
)

j0�m
αq /mαq −

π
q
j0
‖ + ‖πq

j0
− σ∗

j0
(h)‖ ≤ 1

3η + 1
3η + 1

6η = 5
6η = 40

48η for all h < h∞ such that
h ∈ αq(π

q
j0
). This is a contradiction to (c.10).

Step 7. Finally, from all the above steps, it follows that μσ∗(U ∩ V)= 0. Since
μσ∗(U) = 1 by Proposition 1.A, μσ∗(U ∩ Vc) = 1, where Vc is the complement

23Since no belief rejection occurs from time T̄0, for any large q, P i0

s
i0
0 +q

is used only once in

the test phases: d = 0. This means that for each α ∈ P i0

s
i0
0 +q

, the first α-sampling starts from the

beginning of the only test phase of using P i0

s
i0
0 +q

.
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of V. Therefore, μσ∗(Vc) = 1. Moreover, for each h∞ ∈ Vc , there exists T̄ such
that for all i and all j �= i, ‖ρi

∗�j(hT )− σ∗
j (hT )‖ ≤ η for all T ≥ T̄ .

APPENDIX D

I prepare one lemma to derive Theorem 1 from Proposition 1.

LEMMA D: For any i, any σi, and any σ−i� σ
′
−i,∣∣V̄ v

i (σ−i)− V̄ v
i

(
σ ′

−i

)∣∣� ∣∣V v
i (σi�σ−i)− V v

i

(
σi�σ

′
−i

)∣∣
≤Di

∞∑
T=1

δT−1
i max

h∈HT−1
max
j �=i

∥∥σj(h)− σ ′
j(h)

∥∥�
where Di := #A−i(I − 1)(Ui + ri) and A−i := ∏

j �=i Aj .

PROOF: Lemma D is immediately obtained from the recursive structure.
Q.E.D.

Now, take any ε > 0 and any 0 ≤ δ̄ < 1.24 Then define η̂ := ε(1 − δ̄)/
6#A(I − 1).25 For η̂, take prior beliefs ρ∗ from Proposition 1. Next, fix any
(u�δ) such that 0 ≤ δi ≤ δ̄ for all i. Then take r̂(η̂�u�δ) from Proposi-
tion 1 and define r̄(ε� δ̄�u�δ) := min[1� r̂(η̂�u�δ)]. Finally, fix any r such that
0 < ri ≤ r̄(ε� δ̄�u�δ) for all i. Then it is sufficient to verify that σ∗

hT
satisfies the

definition of ε-NE for any large T . Take any T̂ such that 2Diδ
T̂
i /(1 − δi)≤ ε/3

for all i. From Proposition 1, each player i eventually makes η̂-accurate pre-
dictions regarding all her opponents’ actions in the next T̂ periods. From these
and Lemma D, it follows that for any large T and any i,∣∣V v

i

(
σ∗

i�hT
�σ∗

−i�hT

) − V̄ v
i

(
σ∗

−i�hT

)∣∣
≤ ∣∣V v

i

(
σ∗

i�hT
�σ∗

−i�hT

) − V v
i

(
σ∗

i�hT
� ρi

∗�hT
)∣∣ + ∣∣V̄ v

i

(
ρi

∗�hT
) − V̄ v

i

(
σ∗

−i�hT

)∣∣
≤ 2Di

∞∑
t=1

δt−1
i max

h∈Ht−1
max
j �=i

∥∥σ∗
j�hT

(h)− ρi
∗j�hT (h)

∥∥

≤ 2Di

[
1 − δT̂

i

1 − δi

η̂+ δT̂
i

1 − δi

]

24I need to impose the upper bound δ̄ on the discount factors because even if I make arbitrarily
small η-errors of predictions of ρi

∗ at each period, these small errors may accumulate over time
so that if the discount factor δi is taken to be sufficiently close to 1, player i’s payoff V v

i (σ
∗
hT
)

may be bounded away from the maximum payoff V̄ v
i (σ

∗
−i�hT

). Therefore, σ∗
hT

may not satisfy the
definition of ANE.

25Note that η̂≤ ε(1 − δ̄)/3#A−i(I − 1)(Ui + 1) for all i because Ui ≤ 1 for all i.
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≤ (
1 − δT̂

i

)2
3
ε+ 1

3
ε

≤ ε	

Therefore, σ∗
hT

satisfies the definition of ε-NE for any large T .
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