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APPENDIX A PROVIDES A KEY MATHEMATICAL RESULT—the definitions of T,
and P!_ (T, 3, i)—and the construction of {P’}, ;. Appendix B gives the proofs
for Lemmas 3 and 5 and the definition of 7(7, u, 8). Appendix C provides the
proofs for Lemmas 6-8 and Proposition 1.B, and shows two claims for the
proof of Lemma 9. Appendix D demonstrates that Theorem 1 is obtained from
Proposition 1 and 7 (e, 8, u, 8) is derived from 7(n, u, 8).

APPENDIX A
A.1. Mathematical Preparation

For the argument in the appendix, I define additional notations. An infinite
history is generically denoted by /... If a finite history 4 is an initial segment of
a (finite or infinite) history //, it is denoted by & < A'. In particular, if 7 </’
and & # I/, it is denoted by & < /'. The joint of two finite partitions P and Q is
denoted by P A Q, thatis, PA Q:={aNB|ac P, B e Q}.! Moreover, I will
often define a subset of H and call it a class although the subset may not be an
element of any given conditioning rule (CR).

Next, I prepare a key mathematical result: a conditional extension of large
deviations. Given a class «a, let S2 denote the event that state S occurs between
the mth a-active period and the (m+1)th a-active period.” Let 7,%(h.,) denote
the calendar time of the mth a-active period in A.; 7.%(h) < oo means that
«a is active at least m times in A.. Let d%[S]1(4) denote the number of times
that S has occurred between two subsequent a-active periods up to the mth
a-active period in /.

PROPOSITION A: Take any history ht € H and any class « such that for all h <
hr, h ¢ a. Suppose that a strategy profile o and events {S¢ },, satisfy the following
condition: forall h € a« and all m = 1,2, ... such that h > hy, u,(h) >0, and «
has been active exactly (m — 1) times in h,

€= ,U«U(an|h) =G,

'Note that P A Q is also a finite partition, and is finer than P and Q, thatis, P, Q <P A Q.
’In one example, a particular pure action g; is realized in the mth a-active period. In another
example, AES(6) occurs between the mth a-active period and the (m + 1)th a-active period.
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where c| and c, are nonnegative constants. Then, for all ¢ > 0 and all m =
1,2,...,

e [S] e [S]

<c¢ —eor-=2

Mfr(Tn‘f<00, ZCz+8)hT)

<2exp(—2mée?).

PROOF: Thisis a straightforward generalization of Proposition A in Noguchi
(2015), and the proof is just the same as that of Proposition A in Noguchi
(2015). Q.E.D.

A.2. Periodic Conditioning Rules

Given P/ and T, 1 define a conditioning rule P! (T, 3, i) to construct tempo-
rary beliefs. First, I define a T-periodic conditioning rule P! (T) by partitioning
each class a in P/ into two subclasses ey and ap: iy € ap if hir evand T = nT
for some integer n, and hr € ap otherwise, that is, iy € @ and T # nT for any
integer n. Let Pj(f’) := {aa, ap | @ € P/}. Next, I construct a (T, 3)-periodic
conditioning rule Pj(f, 3) by partitioning each a, and ap in P/ (T) into three
subclasses: i € aar if hy € ap and #{T' | hy < hy, hy € aa} = 3n for some
integer n, hy € apas if hy € ap and #{T' | hy» < hr, hy € ap} =31+ 1 for some
integer n, and hr € axr if hy € apy and #{T' | hy < hr, hp € ap} =3n + 2
for some integer n. Let AF, := |, aar, AS] :=J, aas, and AT} := |, aar.
Define A/ := AF/ U AS! U AT/; h; € Al if and only if T = nT for some inte-
ger n. I also define agg as follows: iy € agg if Ar € ap and the most recent Al-
active period is AFi—active in hr, thatis, Ay € AFﬁ:, where M(T) := max{T" |
T <T,T =nT for some integer n}; aps and apr are defined similarly. Then
let P{(T, 3) = {aAF, QaAS, XAT, ABF, XBS, XBT | a € Pbl}, and let BFﬁ = Ua QaBF,
BS! := |, ass, and BT/ := |, agr. Define B/ := BF UBS/ UBT/; hy € B/ if
and only if T # nT for any integer n. Finally, I define an action-based con-
ditioning rule P/(T,3, i) by partitioning agr and ags in P/(T,3) according
to player i’s (# j) action: hr € agr(a;) (resp. aps(a;)) if hr € apr (resp. aps)
and player i played a; in the most recent A/-active period in /7. Then let
Pj(T,S, i) = {aar, Qas, aar, apr(a;), aps(a;), apr | @ € P/, a; € A;}. Clearly,
Pi <PI(T)<PI(T,3)<Pi(T,3,i) forall j,all i # j,all s, and all 7.

Next, I arbitrarily take positive integers {T.}, such that (T1) T, , < T, for all
sand (T2) s(1 — )™ — 0 as s — oo.

Finally, given any {P'}; ;, I construct CRs {75j }.s such that {7Sj }.s satisfy (P.1)-
(P3), and for all i, P! < P! for all 5. Let P! := P for all i. For any s > 1, define
{75j}i inductively as follows: for all i, let 75§ = PIA (N onm 755"1](’?}, 3,n)) A

m#n
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(N Fs 73’ ). Clearly, from the definition of 73’ and the joint property, P! <
75;' for all i and all s. Furthermore, by the definitions of 73‘ and 73'"1(TS, 3,n)
and the joint property, P, <P (T}, 3, j) < P! for all i, all j # i, and all s.
Hence, {75i},3 satisfy (P.1). Next, take any i, any j # i, any s, and any 7". Then
let k := max[s, T]. From (P.1), the property of 7P, the definition of Pi, and
the joint property, it follows that .7:T’Pf < ka < .7:k+173 < 73/2 +1- Thus, {77 Vis
satisfy (P.2). Finally, by the definitions of 7>; and P (T,,3,n) and the joint
property, for all i, all j # i, and all s, 75'!_1 < 75f_1(7~}, 3,i) < 72’ , 7Sj . Therefore,
{Pi),, satisfy (P3).

APPENDIX B
B.1. Temporary Belief Leading to Opponent’s Belief Rejection

For the proof of Lemma 3, I first construct player i’s temporary beliefs and
strategies according to her stage game payoff and discount factor. I assume
that T is large. Let U denote player i’s maximum stage game payoff, that is,
U :=max, u;(a), and let U, denote player i’s minmax stage game payoff, that
is, U, :==min,  max,, u;(a;, m_;). Clearly, U > U,.

The Case of a Unique Weakly Dominant Action. Let a denote a unique
weakly dominant action. Note that for some a* , (af, a*;) € argmax, u;(a) and
U =u;(at, a*;). Furthermore, there exists a pure minmax action profile: a_; €
argmin, ,max,, u;(a;, m_;). Let a_; € argmin,_[u;(a},a_;) — MaXy,cq: Ui(di,
a_;)]. Define u} := max,, u;(a;,a_;) (= u;(a;,a_;)) and u; := MaX,,.qr Ui,
a_;);leta; e argmaxq,.q: U;(d;, a_;). Clearly, u! > u;.

Case 1. 8; > 0 and Uy > U,.> Given any a_;, let T denote the mixed ac-
tion of player j (# i) such that { [bjl=1if b;=a; and w;‘[bj] = ( otherwise,
that is, b; # a;, and let 7, := (7). Then define 7_;(¢) := (4 (1 —t)m,
(:= (tﬂ']‘?* + (- t)wj‘.")#,-). I consider three subcases.

Subcase 1. (1 — 8,)it; + 8;U; > (1 — 8;)u; + 8,U,. Given P!_ (T, 3, i), define
player i’s temporary belief p{, , .., as follows: 1et 7", denote a mixed action
profile of player i’s opponents. Then, for any 0 < ¢, # <1 and any 7, let

7_;(t) inany AF";fl-active period,
Py () :=1{ m(¢) inanyAS!_ -active period,

7’ in any AT’_,-active period.

1

3The prisoner’s dilemma stage game payoff is one example.
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Furthermore, in any BFLl—active period (resp. any BS";fl—active period), all
players other than i play t7*, + (1 — t)7*, (resp. ¢’ 7", + (1 — ')7*,) if player i
took a in the most recent A’_ -active period, they play t7*, + (1 — 1 (resp.
t7", 4+ (1 — t)w®,) if player i took &, in the most recent A’_,-active period,
and they play 7%, (resp. *,) if player i took any other action than a* or a; in
the most recent A’_,-active period. In any BT/_,-active period, they play 7.
Thus, pi, , ., is generated by P._ (T, 3, i).

From the first-order condition and Lemma 1, there exists an upper bound
7i(m, u;, §;) > 0 such that* for any 0 < r; < 7i(n, u;, §;) and any large T, player
i’s best response """ to P!, . has the following property: for all # and
all 7, "™ (h)[a;]1~ 0 and "™ (h)[a}] ~ 1 in any AF/_ -active period.

Similarly, for all ¢ and all 7”,, U?’O’W//(h)[a}‘] ~ (0 and crf"’””(h)[af] ~ 1 in any

1

AS!_-active period. Therefore, for any 0 < ¢, ¢’ < 1, there exist 0 < ,, t, <

1 such that for all 7", o (hW)[ar] =~ ¢ in any AFL]—active period and

lc’[""’wrl(h)[a;‘] ~ ¢’ in any AS/_,-active period.

Subcase 2.° (1 — 8,)u; + 8;U; = (1 — 8, )u; + 6,U,. Given P{q(f’ 3,1), con-
sider the same belief p{, , ., as in Subcase 1. From the first-order condition and
Lemma 1, there exists 7;(n, u;, §;) > 0 such that, for any 0 < r; < 7i(n, u;, 8;)
and any large T, o™ has the following property:® for all # and all =",
o-?”/’””(h)[a;‘] ~ 1/2 and o-il”/’””(h)[a;?] ~ 1 in any AF’_,-active period. Simi-
larly, for all ¢ and all 7, crl.”o’””(h)[af] ~ 1/2 and Uit’l’"ﬂ(h)[a;k] ~ 1 in any
ASL]—active period. Hence, for any 1/2 < ¢, ¢’ < 1, there exist 0 < ¢.,#, <

1 such that for all 7, o

i

s, . J . .
. ¢ (h)[a;] ~ c in any AF|_,-active period and
te,t), 7"

(h)[a] ~ ¢ in any AS/_,-active period.
Subcase 3. (1—8,)u;+ 8;U; < (1—6;)ur+ 8,U,. There exists 7:(n, u;, 6;) > 0
such that for all 0 < r; < 7i(m, u;, 8;), player i always plays almost the same

i

4Strictly speaking, the upper bound (0, u;, 8;) does not depend on 7 in this subcase (and
Subcases 2, 4, 6, and 7 and the case of no weakly dominant action). However, it depends on 7
in the case in which player i always plays almost the same mixed action regardless of her prior
belief. See Subcases 3, 5, and 8.

5As noted in footnote 9 in the paper, there are several nongeneric cases where the property of
assigning almost equal probability is used. Subcase 2 is one of them. See Subcases 4, 7, and 8 and
the case of no weakly dominant action for the other cases.

6By the property of assigning almost equal probability, for all #' and all =, a',o"/'"” (W[a;]1~

and o™ (h)[a,]) ~ ! inany AF!_, -active period. Similarly, for all  and all 77, o™ (h)[a;

(ST

1~

and Ui"o”"”(h)[[li] A 5 in any ASﬁ_l-active period.



BAYESIAN LEARNING 5

mixed action, which puts almost all the weight on a7, regardless of her prior
belief. This allows us to ignore player i throughout my argument.’

Case 2. Either 6; =0or 6, > 0 and U} = U.. I consider two subcases.

Subcase 4. u; = u;. Let A; := argmax,, .. ui(a;, a_;), and take an arbi-
trary action g, in A,. Since a; # a?, there exists a_; _such that u;(a;, a_;) <
max,, u;(a;,a_;) = u;(af,a_;). Then let 7_;(t) = tw®, + (1 — H)w*,. Given
PL(T,3,1), define p{,, . as follows: for any 0 <,# <1 and any 7", let
p’('t,t,m,,)(h) := 7_;(t) in any AF._-active period, let pit’,,m,,)(h) = 7_;(¢) in
any AS/_ -active period, and let Plryn =, in any other period. Clearly,
PE;,;/,W//) is generated by Pj_l(T, 3,1). Then, from the first-order condition and
Lemma 1, there exists 7,(n, u;, §;) > 0 such that for any 0 < r; < 7:(n, u;, 6;)

IR

and any large T, o, has the following property:® for all ¢ and all 7,
o™ (W[a;] ~ 0 and o™ (h)[a;] ~ 1/(#A4; + 1) in any AF/_ -active pe-
riod. Similarly, for all ¢ and all 7, o""" (h)[@] ~ 0 and o""" (h)[a;] ~
1/(#/1,4— 1) in any ASLl—active period. Hence, forany 0 < ¢, ¢’ < 1/(#/_1,-—1— 1),

te,t!),

there exist 0 < ¢, £, <1 such that for all #”,, o; ° " (h)[a;] = c in any AFLI—

’
t,,

. . tc, a’ — . i . .
active period and o; <" (h)[a;] ~ ¢ in any AS!_,-active period.
Subcase 5. u; > u;. This subcase is similar to Subcase 3.

The Case of Multiple Weakly Dominant Actions. Let AF denote the set of
weakly dominant actions, and take any two (weakly dominant) actions a} and
b in A:.

Case 3. 6;>0and U} > U,

Subcase 6. Note that for some a*;,, U’ = u;(a},a*,) = u;(b}, a*,). Given

j_l(T, 3,1), define pft’,m,,) as follows: for any 0 < ¢,¢' < l_and any 7", let
Plr.yvmn(h) == a*; in any AF|_ -active period and in any AS;_,-active period,
and let p{,, ., (h) := @, in any AT’_, -active period. Further, in any BF/_,-
active period (resp. any BS/_-active period), all players other than i play
tm 4+ (1—t)ym?,; (resp. ¢, + (1 — t')7*,) if player i took a* in the most recent
A!_,-active period, they play ta*,+ (1— )7, (resp. t'w*,+ (1 —t)m®,) if player
i took b7 in the most recent A!_,-active period, and they play 7¢; (resp. 7%;)

"Given player i’s opponents’ tolerance levels (é/' )ixi> I can take a small 7;(n, u;, 8;) > 0 such
that the difference between player i’s (mixed) actions is far less than any & (< 7/3) regardless
of her prior belief. Hence, the opponents are statistically convinced that player i always plays
(almost) the same action.

8Note that A; U {a}} = argmax,, u;(a;, a_;). Hence, by the property of assigning almost equal

probability, for all # and all 7, o™ (h)[a;] ~ 1/(#A; + 1) for all a; € A; in any AF/_ -active

period. Similarly, for all # and all 7, """ (h)[a;] ~ 1/(#A; + 1) for all a; € A; in any AS/_,-
active period.



6 YUICHI NOGUCHI

if player i took any other action than a? or b in the most recent A/ ,-active
period. In any BT/_,-active period, they play @, Thus, p{, , .., is generated by
Pj_l (T, 3, i). The rest of the argument is the same as in Subcase 1.

Case 4. Either §;=00r 6;>0and U =U,.’

Subcase 7. uf = u;. Note that AU Af = argmax,, u;(a;, a_;), where A, =
argmaxg,g : U;(di, ;). Take any a; € A;. Then an argument similar to Sub-
case 4 holds."® Accordingly, there exists 7;(n, u;, §;) > 0 such that for any
0 <r <#(n,u;,8) and any large T, o"""™ has the following property: for
all ¢ and all 7, o™ (h)[@;] ~ 0 and "™ (h)[a;] ~ 1/(#A; + #A?) in

any AFi_l—active period. Similarly, for all ¢ and all #”,, a-f’o’””(h)[&i] ~ (0 and

o-i”l’””(h)[c'li] ~ 1/(#;1,» + #A?) in any ASLl—active period. Hence, for any
0<ec,c < 1/(#/_11- + #A7), there exist 0 < ¢, ¢, <1 such that for all 7”,,
itc’[;"ﬁ”(h)[&,-] ~ ¢ in any AF’_j-active period and a-itc’té”
AS/_,-active period.
Subcase 8. u} > u;. This subcase is similar to Subcases 3 and 5: player i always
plays almost the same mixed action that assigns almost equal probability to
each weakly dominant action.

" (W)@ ~ ¢ in any

The Case of No Weakly Dominant Action." Let (a}, a*,) € argmax, u;(a);
thus, U} = u;(a?, a*,). Further, let 121,» = argmax,, u;(a;, a*;)."* Clearly, a* €

1
/L. Since a} is not a weakly dominant action, there exists a_; such that
u;(ar,a_;) <max, u;(a;,a_;). Define () := t7", + (1 — t)7*,. Then replace
7_;(+) by 7_;(-) in the definition of pit,[,’#,,) in Subcase 4. Accordingly, an ar-
gument similar to Subcase 4 holds. That is, there exists 7,(n, u;, §;) > 0 such

IR

that for any 0 < r; < 7,(n, u;, §;) and any large T, o; has the following
property: for all # and all =", (rp’[/’”"(h)[aj‘] ~( and (ril"”””(h)[a;‘] ~1/#A;in

1

any AFL]-active period. Similarly, for all ¢ and all 7", o/ ’0’””(h)[aj‘] ~ (0 and

(r;’l’”//(h)[aj] R 1/#121,- in any ASLl—active period. Hence, for any 0 < ¢, ¢’ <

/ v
fc’tc/yﬂ'

1/#1211-, there exist 0 < ¢, ¢, <1 such that for all 7”;, o, (h)[a;]~ c in any

7
L

AFL]—active period and critc’ " (h)[a;]~ ¢’ in any AS/_,-active period.
From the above argument, define 7(m,u,8) (in Proposition 1) as
?(777 u, 8) = mini fi(n’ u;, 8,‘).

Leta_; € argmin,_,[u;(af,a_;) — maXgg ar Ui(a;, a-;)], uf :=max, u;(a;, a_;) (=ui(a;, a-y)),
and u; := maXg¢ar Ui(d;, A-;), as in the case of a unique weakly dominant action.

l0Recall that the weakly dominant action is unique in Subcase 4; that is, A = {a}}.

"'The matching pennies stage game payoff is one example.

12 A5 noted in footnote 5, the case that #4; > 2 is nongeneric.
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B.2. Proof of Lemma 3

I can form player i’s belief f7[j] on the basis of Appendix B.1. I only consider
Subcase 1 in Appendix B.1. All other cases are similar, and I have omitted
them. I use the following facts to prove Lemma 3.

Given 73 1(TX, 3, i), consider player i’s belief p(, v defined in Subcase 1
in Appendix B.1. Thus, p([,,,,ﬂ,,) is generated by H(TS, 3,1i). Then, from Ap-
pendix B.1, Lemma 1, and (T.2), player i’s best response o’ to pl,

has the following property: (b.1) there exists s; such that for any i, any j # i,
any s > sy, any 1/8(#A4,+1) <cy <1/4(#A;+ 1), and any 3/4(#A4;+ 1) <
¢, < T/8(#A; + 1), there exist 0 < f,#, <1 such that for all #”,, ¢, —

< to,t), 7" - . i . . <
18 < (rl.o " (W)af] < ¢ + & in any AF,_ -active period and ¢) — 1& <

7 , s

oo (h)[a*] <cy+ ff in any AS/_-active period, where a is the unique
weakly domrnant actron in Subcase 1 m Appendix B.1. Furthermore for each
i, let mj _, be any mrxed action profile such that for any j # i, g ;[a7] := 1 if
milaj] < <1 /2 and =g [a7] := 0 otherwise, where a”, is taken from Subcase 1in
Appendrx B.1. Therefore (b.2) for any i, any j #i,any s,and any 0 < ¢, ¢ <1,
167(R) = plyp s (DI = |05 (M) 4] — pf,,ﬂ,,,()/),,-(h)[a}*]l = |m;la}] — mg [a7]] =
1/2 in any AT/_,-active period.

I also use the following facts: from (P.1) and (P.3), it follows that (b. 3) for
all i, all j # i, and all s, 73 1(Ts7 3,i) <P, P!, for all 8/, s” > s. Thus, p(m,’ "

is also generated by P and P),. Since lim, ., n = oo for all i, (b.4) there ex-
ists s, such that for all s > s,, all i, and all j # i, 1/n < £€/12B,, where B, :=
max[1, C;/(1 — 8;)?] and C; is taken from Lemma 1. Since lim,,_, ., K'(m) = co
for all i, Lemma 2 induces that (b.5) there exists s; such that for any s > s;, any
i, any f', and any h € H;i(s), ||(rl.f(h) —or(h)| < €/16 for all j # i."* Finally,
it is obvious that (b.6) there exists s4 such that for all s > s, #A exp(—s) <1,
where # A4 := max; # A,.

PROOF OF LEMMA 3: Let §; := max;_;-4 5. Suppose that s > s/ and s', s/ +
q > 5. Then let § := min[s’, s’ + ¢g/]. Thus, 5,5/ <§ <s',s' + ¢/. Given
P! (T3, 3, 1), consider pito, Gl where £, and ¢ are taken from (b.1) and
is taken from (b.2)."* Then, from the 1 /n n'-density of G(P!, n!), (b.3), and (b. 4)

it follows that player i can form fi[j] in any formation phase during epoch s’
such that (b.7) for all h, all j’ # i, and all j” # i, ||p(t0’tw(,], V. (h) — f U1 <

1/ni, < &' /12B;, where B; := max[1, C;/(1 — §,)*]: there exists h_; i such that

BDefine H;:i(s) as follows: hr € Hi(s) if and only if A7 € Hyi and time T + 1 is in epoch s of
player i.

T arbitrarily fix ¢, and ¢ such that 1/8(#A4; + 1) < ¢y < 1/4(#A4; + 1) and 3/4(#A4; + 1) <
cy <T/8(#A;+1).
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filjl1= Bii(h_i, ~i.). Furthermore, this, along with Lemma 1, implies that for

all h, o™ (h) — a/Y(h)|| < &' /12 for all j” # i. As for o7, from (b.5), for
all h € Hyigy(s%), |lo/V'(h) — a7 (h)|| < & /16 for all j # i. From these, it follows
that (b.8) for all & € Hyiy(s), 0™ (h) — o (h)|| < & /6 for all j' # i.

Now, I prove Lemma 3(i). Consider any player j’s test phase in epoch s/ in
which player j employs f/ that is generated by 73 and let (P’ g _3, ot d)
denote the CR and the smallest sample size used in the test phase. Suppose

that player i employs f'[j] at the beginning of the test phase. Let &7 be the
finite history realized just before the above test phase.

For each B € P, |, define a class BQF such that Ay € ,BQF if and only
if (a) hr € Bar, (b) hj < hr, and (c) time T + 1 is in the test phase;
BQS is defined similarly.” Let LfAF[ajf] i=sup, s o7 (h)[a;] and lfAF[a;‘] =

AF
infheﬁf or(h)lazl; LfAS [a] and I?AS [a?] are defined similarly. Furthermore, for
each a € P’,+ ;» define a class a; such that ir € o, if and only if (d) A7 € a,

(e) hi < hy, and (f) time T + 1 is in the test phase. Let d,/ [a}] denote the
number of times that a} has been realized in the first m a;-active periods.

CLAIM B.1: With (conditional) probability at least 1/2, there exist o/, o €
PS’] g and B € PL, such that (i) & C Bar, (i) @’ C Bas, (iii) both o and
o obtain enough samples during the test phase, that is, m®,m® > m Mq, +d,
and (iv) IP¥[a7] — 1& < Di(a)a}] < LP[a;) + Y& and 10[a7] — 18 <
[){(oz”)[aj‘] < LfAs[a;?‘] + iéf, where Di(a/) (= (Di((x’))k#) (resp. [)f(a”)) de-
notes the empirical distributions of the samples collected in the o'-active periods
(resp. the o"-active periods) during the test phase.

PROOF: Let M(«,a’, B) := {hs | (i)-(iv) hold in A..}. Furthermore, let

Mi=U,ep Uper Upep M@ e, B). Then it suffices to prove that
_ sl o +el !

o (M|hz) > 1/2. Note that P, < PL (T3, 3,i) < H ; by (P1) and (P3).

Furthermore, for each « € P! il if o € Bar for some (unique) B € P;_,, let

= {ho | T < 00, d,/[a*]/m < zBAF[a*] &/ /4 or daf[aj‘]/m > L_?AF[a;r] +

51/4} If a C Bas for some (unique) B € P, |, let N® :={h | T < 00, dfnf[aj]/

m < l_’?As[aj‘] & /4 or dmf[a;‘]/m > LfAS[aj‘] + 51/4}. Otherwise, let N¢ :=¢.

Then, from Proposition A, it follows that w.«(N% A7) < ZeXp(—ém(éj )?) for

5Note that when hr € BLF, player i employs fi[j] at time T + 1. Similarly, when A7 € BQS,
player i employs fi[/] at time T + 1.
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673’/

hT>
m>m
gl Ty gi

= 2 2 re(NIRe)

aePS/-+qjm s]+q/+d
1 -2
Z Z 2€xp<—§m(§’)>
ae7>’ gl mzﬂ]+q]+d
1 j 1 Zi\2
ar ) ¥ ew(-im@)
m= m]

sl +ql

1 . 1
zexp( s —q') < 3

The fourth inequality holds by the LS condition. All other inequalities are

obvious. Let N:=( i (.0 a(Ny)<, where (N;,)¢ is the complement
sl+ql sl +q)

of N®. Then p,+(N|hz) > 1/2.
I show that N € M. Suppose that . € N. Note that the length of the
test phase is at least 3Tﬁ gl (m’ + d)(#P . )? periods. Furthermore,

s/ +ql ]+ J

T, < T,+q, by (T1). Recall that 73’ < 73’ 1(Ts,3 i) < 73’ . Therefore,

the test phase is long enough so that there always exist o' a” € PS’, g and

B e 73’ _, such that (i) & C Bar, (ii) @’ C Bas, and (iii) « and «” obtain

enough samples during the test phase, that is, m®, m* > md g T d. Since

h. €N, these 1mply that IBAF[a*] Ela<d ’[a*]/m/ < LBAF[a*] + &/4 and
lﬁAS [ar]— E4 < d Jarl/m’ < LBAS[a*] + &1 /4, where m' == m® and m" := m®
By the definitions of D’(a)[a*] and d ’[a*]/m Df(a)[a*] = f[a*]/m simi-

larly, l~)j (aM)[ai]= [a*]/m” Thus, I obtain (iv). Hence, /., eM(a o, B).
Therefore, N C M. Let C(hT) denote the cylinder set based on hT C(hT)
{he | hr < hy}. Then pug,- -(M|hz ) = pe(M N C(hp))/po(C(hz)) >
mox(NNC(h7))/ o (C(hT)) = g (N|hT) > 1/2. This completes the proof.
Q.E.D.

From (b.1) and (b.8), it follows that L?*[a?] < ¢+ 1& and [?[a}] = ¢} —

&1, Since ¢ —¢) > m, this implies that lfAS [a}] —LfAF[a;‘] >cp—co—3é—
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1g > m 2¢/. Recall that & < min[n/3, 1/8(# A+ 1)] From these and
Claim B.1(iv), it follows that |D](a/)[a}] — D’(a”)[a*]| > 2(#A = —ig_lg
1g :2(#;—%5 > ST~ esFATD = > &l FromClalmBl(l)—

Aj+1) Al 68H#A+D) 6 8(#A 1)
(ii), it follows that there exists ' € P/, such that o/, &’ C ' because P/, | <
P/, by (P.1). These, along with Claim B.1(iii), imply that the complexity test
rejects f/ at the end of the test phase with (conditional) probability at least
1/2. This completes the proof of Lemma 3(i).
Next, I prove Lemma 3(ii). As an additional assumption, let s/ > 5,. Then
consider any player i’s test phase in epoch s' in which player i employs f'[/]
that is generated by 73’,, and let (P, + d’) denote the CR and the

sitq it g
smallest sample size used in the test phase. Suppose that player j employs an

AEB g’ (near ) at the beginning of the test phase. Let 4; be the (finite)
history realized just before the above test phase.

By (4.1) in Section 4.3, for all h, ||(r]‘-€'(h) — G;(h)| < €718 for all i’ # j.
However, then, since s/ > 5, (b.5) induces that for all 1 € Hy(s'), |0} (h) —
af ()|l < &'/16 for all i # j. These imply that for all h € Hy(s), [|o7(h) —
ai(h)| < £7/8 for all i/ # J. Accordingly, for each B € 735_1, define a class
B such that hy € B3 if and only if (a) ir € Bar, (b) A4 < hz, and (c) time
T + 1 is in the test phase.'® Let LBAT[a-] = Sup, gt o} (h)la;] and ISAT[aj] =
infheﬁg o
such that hr € a; if and only if (d) /7 € a, (€) hT <hr,and (f) time 7 + 1 is in
the test phase. Let d,i[a ;1 denote the number of times that a; has been realized
in the first m a;-active periods.

*(h)[a ] for all a;. Furthermore, for each a € P, ,, define a class a;

l+l?

CLAIM B.2: With (conditional) probability at least 1/2, there exist o € P, g

and B € 7331;1 such that (i) " C Bar, (il) o obtains enough samples during the
test phase, that is, m* > m' iig T d', and (iii) ZBAT[a, — ié’ < b;(a’/’)[aj] <
L?AT[aj] + ié’ for all a;, where Di(a”) (= (D;{(a’”))k#,-) denotes the empirical
distributions of the samples collected in the o/"-active periods during the test phase.

PROOF: Let Q(a”, ,é) := {h | (i)-(iii) hold in % }. Furthermore, let Q :=
Uerepi _U,;Epf Q(«”, B). Then it suffices to prove that w,-(Q|hz) > 1/2.
st+qt §—1

Note that P/, < P/ (T;,3,i) < Pi,, by (Pl) and (P3). Then, for each
ac 7?‘,+ Lifa C ,BAT for some (unique) B € P, , let R} [a;] = {h | Tt <

00, dyf [a;]/m < lf“[aj] — £'/4 or dmg[aj]/m z LEAT[aj] + &/4} for all aj.

16Note that when /7 € B, player j employs &/ at time T + 1.
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Otherwise, let R} [a;] :== @ for all a;. The remainder of the proof is quite

similar to that of Claim B.1. Indeed, by Proposition A, the LS condition,

and (0.6), o (Usep, Ui, e Unen, R¢[a;]lh;) < 1/2. Then let R :=

MNeeri, ,mm>m' I ﬂq e (R‘i [Z ;D¢ where (R%[a;])¢ is the complement of
iy gi

R¢ [a;]. Thus, ,ug*(R|h )>1 /2 Furthermore, it is easy to show that R € Q.

Hence, ,u,(,*(Q|hT) > /.L(,*(R|h7-) > 1/2. This completes the proof. O.E.D.

Note that g; takes the same (mixed) action &:(B) (= #,) in all B-active
periods. Since [|o7(h) — G;(h)|| < ¢'/8 for all h € Hy(s'), this means that
LgAT[aj] < (Arj(BA)[a_,-] + %g’ and &j(ﬁ)[aj] — %5’ < lgAT[aj] for all a;. Further-
more, 0;(a") = 0;(B) (= ;) because of Claim B.2(i). These, along with
Claim B.2(iii), imply that [|6;(e’") — Di(a")|| < 1€ + 1& = 2. Next, re-
call from (b.7) that for all 4, ||fi[j](h) p(to b, W= £//12B;. Therefore,
||f 1) — P(to " 7T,,)](a/”)” < ¢//12B,."V In addition, from (b.2), loj(h) —
p(lo ‘ ,,//),(h)H > 1/2 in any AT ,-active period. Thus, by Claim B.2(i),
155() = Py (@ = 1/2 > 1/2(#21 + 1). Finally, recall that £, & <

min[n/3, 1/8(# A + 1)]. These imply that
||D; (a///) . f;[]] (a///) ||
> [ 03(e”) = Pl gy (@) = [U1@) = Pl . i (@) ]
— || a-j (a///) . ﬁ; (a///) ||

1 g 3.
> = - - ¢
2#A+1) 12B; 8
. 1 11 1
T2A#A+1) 248#A+1)
3 i
> >
8(#A+1)

This, along with Claim B.2(ii), implies that (even if the complexity test is
passed) f'[/] is rejected by some current class (i.e., class «”) at the end of the
test phase with (conditional) probability at least 1/2. This completes the proof
of Lemma 3(ii). Q.E.D.

7Since fi[j] and péto,fé,ﬂ , are generated by P,

gt , Filj1(a™) and p’('to)twg)(a”’) are well defined.
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B.3. Proof of Lemma 5

The (Disjoint) ER(s) Interval in the General Case. First, I define the (i, j)
subinterval for i # j. Given any formation phase of player i, consider the short-
est time interval such that (a) it begins in the first period of the given formation
phase, (b) it includes at least one active interval of player j (# i), and (c) it
ends in the last period of a test phase of player i. The time interval is called
an (i, j) subinterval. Then I define the ER(s) interval. Suppose that the first
belief rejection by the maximum epoch player in maximum epoch s has oc-
curred; assume that (maximum epoch) player i has made the belief rejection.
Then consider the shortest time interval such that (a) it begins in the next pe-
riod following player i’s belief rejection, (b) it consists of a sequence of disjoint
(i, j) subintervals (i.e., it includes exactly one (i, j) subinterval for each j # i),
a formation phase, and a transition phase of player i, and (c) all players’ epoch
stages are no more than s through the interval regardless of the realized history
in the interval. The time interval is called the first ER(s) interval. Inductively,
suppose that belief rejection by the maximum epoch player has occurred for
the first time after the mth ER(s) interval.'® Then the shortest time interval
satisfying (a)—(c) is called the (m + 1)th ER(s) interval.

PROOF OF LEMMA 5: Take § such that forall s > 5, p = ()N < (3)27D x
(T, 1) DI=DNs [T et 55 := max[5), 5, 5]. I may assume that the ER(s) interval
is initiated by (maximum epoch) player 1 and that the ER(s) interval con-
sists of (1, 2), (1, 3), ..., (1, I) subintervals, a formation phase, and a transition
phase of player 1. Accordingly, let 5; < s/ < s!' = s for all j > 2.

Step 1. First, from Lemma 3, player 1 forms f![2] in the initial formation
phase during the (1, 2) subinterval with probability at least (], ” ) i)Ng. Then
player 1 retains f'[2] until the last test phase in the (1, 2) subinterval with prob-
ability ([T, 1)@ N5 even if player 1 rejects f'[2] in any interim test phase,
she forms it again in the next formation phase with probability (], L)NSI and,
by the RB condition, there are at most (¢ — 1) interim test phases of player
1 in the (1,2) subinterval. Hence, by Lemma 3(i), player 2 rejects her cur-
rent belief f? in her first test phase in the (1,2) subinterval with probabil-
ity % Furthermore, from Lemma 4, player 2 forms an AEB g? in the next

formation phase with probability (], {i)stz. Then player 2 retains g* until

the end of the (1,2) subinterval with probability ([T, )“ ™" for the same
reason as in the case of f![2]. By Lemma 3(ii), this, in turn, leads player 1
to reject f'[2] in the last test phase with probability 1. That is, player 1 re-
jects f1[2] at the end of the (1, 2) subinterval. By the AS condition, the prob-
ability of the sequential events is at least the product of the probabilities of

8Note that a maximum epoch player other than player i, for example, player k (s i), may
make the belief rejection. In that case, player i is replaced by player & in (a) and (b).
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those events, that is, (T, [)™ ([T, L)< "™ (O (T L) 2(1‘[#21)“ 1>NZ( )
(= XL )C(N e 2)). In addition, player 2 retains g until the end of the

ER(s) interval with probability (][], 1)2‘(1 DN, = {1, l)zc” 2)NZ) because,
by the RB condition, there are at most 2¢ test phases of player 2 in the (1, j)
subinterval for any j > 3, and (/ — 2) subintervals remain after the (1, 2) subin-
terval.

Step 2. 1 consider the remaining subintervals inductively: for any j > 3,
from Lemma 3, player 1 forms f'[j] in the first formation phase dur-
ing the (1, j) subinterval with probability ([], 1 Z)N The remainder is the
same as in the case of the (1,2) subinterval by replacing player 2 with
player j. Again, from the AS condition, the probability of the sequen-

tial events is at least ([T,., Z)™ ([T 1N (DT 1™ (T 10 l)N’( )

(= T ll)c(N NG ); player j retains an AEB g’ and player 1 rejects f'[/]
at the end of the (1, j) subinterval. By the inductive hypothesis, players 2 to
j — 1 retain their AEBs (8'),<;<;_; until the end of the ER(s) interval. Further-
more, player j also retains g’ until the end of the ER(s) interval with proba-

bility ([T, )™ NG (= (TT,1)*" N7y since, by the RB condition, there are
at most 2¢ test phases of player j in the (1, j') subinterval for all j’ > j, and
(I — j) subintervals remain after the (1, j) subinterval.

Step 3. By the inductive argument, all players other than 1 employ their
AEBs (8/);.1 and player 1 rejects f'[I] at the end of the (1,7) subinterval
with probability at least (3)*/~"([],1,)?, where 6 :=¢(I — )N} + CZI 2N’
2c Zj:z (I—-j)N :, Finally, player 1 also forms an AEB g' in the final formation
phase with probability (], )™ and changes f'[I] to &' in the final transi-
tion phase: all players employ their AEBs g at the end of the ER(s) interval.
That is, AES(&) is reached at the end of the ER(s) interval with probability
at least (3)*""(TT;1) (]_[Héll W (= (%)2(’*1)(Hili)"+N3). Note that s’ < s for
all i. Thus, Nsii < N! < N; for all i. From these, it follows that for all s > 55 (> 5),

1\ 2U0-D (€I+1)(I-1)N 1 sN
k) (M) =) -
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APPENDIX C
C.1. Proof of Lemma 6

The (i, j) Belief-Rejectable Interval for i # j. Suppose that player i has re-
jected her belief for the first time in epoch s’. Then consider the time interval
such that (a) it begins in the next period following the rejection, (b) it ends in
the last period of the first test phase of player j (# i) after the rejection, and
(c) the epoch stage of player i is no more than s’ through the interval regard-
less of the realized history in the interval. This time interval is called the first
(i, J) belief-rejectable interval in epoch s' of player i. It is abbreviated as the first
BR;(si) interval. Inductively, suppose that in epoch s', player i has rejected her
belief for the first time after the mth BR;(si ) interval. Then the time interval
satistying (a)—(c) is called the (m + 1)th BR;(si ) interval.

I prepare one claim to prove Lemma 6.

CLAM C.1: For any i, j with i # j, any s' > §, and any BR'(s') interval in
which s' > s’ and s/ + q' > 5, player j rejects her belief at the end of the BR (s")
interval with (conditional) probability at least ([, 1 O 19

PROOF: Consider any BR'(s') interval and let Ps’, . be the CR used in the
only test phase of player j during the BRj.(si) interval. Suppose that s* > s/, and
s', s/ + ¢/ > 5, where 5, is taken from Lemma 3. Then Lemma 3 ensures that
player i forms f'[] in the first formation phase during the BR}(si) interval with

probability ([ ],/ k)N;f. Then player i retains f7[j] until the end of the BR;(si )
interval with probability (], i 1 k)(E_l)N:vi since, by the RB condition, there are
at most (¢ — 1) test phases of player 7 in any BR;(s’) interval. Thus, since player
i retains f'[j] through the only test phase of player j, by Lemma 3(i), player
J rejects her current belief f/ at the end of the test phase with probability 1.
From the AS condition, the (conditional) probability of the sequential events

is at least ([T, 20" ([T, 20" (1) = 2T, L0™. QE.D.

For any s' > §, define a class y(s', i, j) such that hr € y(s', , j) if and only
if (a) a BR}(s") interval starts at time 7'+ 1, (b) s’ > s/ in the BR;.(si) inter-
val, and (c) player j uses a CR P{fﬂf whose index is no less than sy, that is,
s/ 4+ ¢/ > 5, in her only test phase during the BR'(s’) interval. Furthermore,

for any s' > §, let d,yn(si”"f)(hoo) denote the number of times up to the mth

"This is the probability conditional on the finite history realized just before the BR|(s") inter-
val.
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v(s', i, j)-active period that player j has rejected her belief in a BR;(si) inter-
val in which s' > s/, and s/ + ¢’ > 5,. Then define A, (s', i, j) 1= {ho | 7" <
00, 265D /m < P, — 3P} Note that 5([T, 1k)EN.fi > p,, for any large s'. From
this, Claim C.1, and Proposition A, it follows that, for any large s' (> s)),
o (A (st 0, ) < 26Xp(—2m(%£gi)2) = Zexp(—%m(gsi)z) for all i, all j # i,
and all m. Furthermore, since w;, = %(pi,-)si(l*l), for all i, w\,R!, < R!,/c for
any large s'. From the RB condition, for all i, N, < AN, for all s'. Therefore,
for any large s, (p;,)si <(pPH)"=() N <( NG — p,, for all i. From these

mequahtles and the MR condltlon it follows that for any i, any j # i, and any
large ' (= §),

(U Y riv)

st>s' m=R'; /¢
st

52 Z 2exp(—%m(p§,-)zsi)

st>s' me’iR’i

< ZZexp 2(1 —exp(—1))" exp(—s’).

si>s'

The first inequality holds because, for any large s, (p/, )Y < P and w!, R}, <
R!,/¢. The second inequality is obtained by the MR condition. Hence for all i
and all j # i, por (Mo, Usiny Upsri e An(s', i, j)) = 0. Therefore,

w(UUNU U a6 =o.

i J#1s'251 s> m>Ri,j¢
)
From this, I obtain Lemma 6.

PROOF OF LEMMA 6: Let A := (), Uyos, Ny mmzRii/E(Am(sl, i, )5,
where (A, (s', i, j)) is the complement of A,,(s', i, j). Then u,+(A) = 1. Sup-
pose that there are infinite belief rejections but that some player, for example,
player jj, only rejects her belief a finite number of times along 4, € A. On
the one hand, since player j; does not reject her belief from some period on,
she stays in some epoch, for example, epoch s,', forever from some period.
Moreover, she continues switching to finer CRs in her test phases throughout
epoch s;', as defined in Section 4.1.2: s5;' + ¢t — oo as T — co. On the other
hand, since there are infinite belief rejections, there exists #; (# j;) such that
player i; rejects her belief infinitely many times; her epoch stage goes to in-
finity, that is, s; — oo as T — oo. These imply that for any large s (> §,),
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st > sl and s} + ¢/ > 5, in any BR;{ (s") interval during epoch s'. In addition,
there are at least (R} /¢) BR] (s") intervals in each epoch s because, by the
RB condition, there are at most (¢ — 1) test phases of player #; in any BR?l (s)
interval. Since 4., € A, these imply that, for any large s (> s > §,), (i) for all
m, dzz(sil’il’fl)(hoo) equals the number of times that player j, has rejected her
belief in the first m BR/ (s) intervals and (ii) d;f.i”/’;l’“)(hoo) > 1P, (R}, /2).
st
This means that player j; rejects her belief at least % P (Ri’,-] /¢) times in epoch
s' for any large s". However, Remark 1 implies that p R;l — 00 as st — oo.
Therefore, player j; rejects her belief infinitely many times along /... This is a
contradiction. QE.D.

C.2. Proof of Lemma 7

For all s > 1, define a class w (s) such that 47 € w(s) if and only if (a) time
T + 1 is the first period of an ERyq;(s) interval and (b) all players’ epoch
stages are no less than §; at the beginning of the ER,0q4;(s) interval, where s; is
taken from Lemma 5. Let d2® (4,,) denote the number of times that AES(¢)
has been reached in the first m ER,0q;(s) intervals in which all players’ epoch
stages are no less than §;. Then define B, := {h, | T, < 00,d2"/m <
P, - %ES}. By Lemma 5 and Proposition A, u,(B:,) < 26Xp(—2m(%£s)2) =
2exp(—%m( ps)z) for all s and all m. Recall that there are at least (R, /2¢l x

(I — 1)) ERpoq;(s) intervals in each maximum epoch s. Note that for any large
s, there exists i; such that R /s < R%/2¢I(I — 1) = R,/2¢I(I — 1). Therefore,
Wi RY = %( pi)U=VRs < R /2¢I(I —1) for any large s. Furthermore, from the
RB condition, it follows that for any large s, (p))* < (p))" = (1)" < (%)s"_’f =
P, for all i. From these inequalities and the MR condition, the same computa-

tion as in Appendix C.1 induces that

Mo*(ﬂU U B;")=o.

s'>1 s>s' m>R/2cI(I-1)

Let B:= Ui Ny Nizr, pera-1y (B),)¢, where (B;)¢ is the complement of
B; . Then w,-(B) = 1. From this, I obtain Lemma 7.

PROOF OF LEMMA 7: Consider BN Z, where Z := {h,, | if there are infinite
belief rejections, then every player rejects her belief infinitely many times in
hoo}; me+(Z) =1 by Lemma 6. Then u,«(BNZ)=1. Take any h,, € BN Z
and suppose that there are infinite belief rejections in 4,. Since 4, € Z, every
player rejects her belief infinitely many times in /.. This means that there
exists 55 (> §5) such that for all s > §,, all players’ epoch stages are no less
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than 5; through maximum epoch s in A, Therefore, for all s > 5} and all m,
d°® (h) equals the number of times that AES(&) has been reached in the first
m ERo4;(s) intervals. In addition, since /., € B, there exists 5, (> §5) such that
for all s > 54, d2® (hy) > %psm for all m > R, /2¢I(I — 1). Since there are at
least R,/2¢I (1 —1)ERoa 1(5 intervals in maximum epoch s for all s, this means
that for all s > 54, AES(0) is reached at least % ps(ﬂs /2¢I(I — 1)) times in the
first R /2¢1 (I — 1)ERpo4,(s) intervals in maximum epoch s in /. O.E.D.

C.3. Proof of Lemma 8

For convenience, I introduce the a-sampling. Given (P} st Mg + d) and
aePl, 4> Dy the (d + 1)th a-sampling in epoch s of player i, I mean that player
i collects samples (i.e., her opponents’ realized actions) in a-active periods for
the statistical test that uses (P! gy Mg T d). Further, the (d + 1)th a-sampling
(in epoch s of player i) is effective at time T if player i continues collecting
samples in «-active periods at time T for the corresponding statistical test.
Then, for all i, all s > 1, all ¢ >0, all « € P! g and all d > 0, define a class
a(s, q,d) such that hr € a(s, q, d) if and only if (a) hr € a, that is, time T + 1
is a-active, (b) the (d + 1)th a-sampling is effective at time 7 + 1, and (c) for
any hr < hy such that time 7" + 1 is a-active and the (d + 1)th a-sampling is
effective at time 7" + 1, ||§j.(h7/) — a;‘(hT/)H < &/8 for all J # i, where player
i’s AEB g' has been formed just after the most recent belief rejection by player
iin hr. Let da(s’q’d)[a ;] denote the number of times that a; has been realized

in the first m a(s, g, d)-active periods, and let d“(s 4 (d“(s & d)[a 1)a;- Recall
that for all i, Piq < P; for all 5. Accordingly, for all i, all s > 1, all ¢ > 0, all

o X= Pm,: all j # i, and all a;, let 5;(a)[aj] = oj(a)a;] + %E’ and Qj.(a)[aj] =

ai(e)la;] — %g’ Then define

dq(s,q,d) [aj] ) Ei
CeaDg;] = {hoo \ Ta <00, = — < Gj(@)la;] - 7 or
m

a(s q, d)[ ]
aj

J,m

(a)[a,] + = & }

and C*&-4-4) .= U, Uﬂ/ Ce-4-D[q;]. From the definition of a(s, ¢, d) and (4.1)
in Section 4.3, it follows that for all i, all s > 1, all ¢ > 0, all « € 73;+q, alld > 0,
all i € a(s,q,d), and all j # i, &(a)la,] < o7 (W)[a;] < &,(e)[a;] for all a;.
From this and Proposition A, it follows that for all i, all s > 1, all g > 0, all
aePi ,andalld >0, we(CaoD) < (3., #A;)2exp(—gm(£H?) for all m.

s+ J#i
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Hence, forall i and all s > 1,

w(UUUU U er)

szs' q=0 aEP§+q d=0 mZméJqurd

XYY X (T#a)een(—gm@))

szs' =0 a€77§+q d=0 mzm§+q+d J#

=2(T#a) T ¥ X (1-ew(-1@))

Jj#i 528" 420 qepl,  d20

« exp< Elg(ms+q+d)(§) )

= 2<Z #A,-) (1 - exp(—%@")z))]
1
8

X ;; #P..,) m)Xm: exp(— m(éf)2)
<2 wa)(: ~on( @) > Y-
= 2(/; #A,-) (1 - exp(—%(é’f))l(l — exp(—1)) " exp(—s).

The fourth inequality results from the LS condition. All other (in-) equalities
are obvious. Therefore, for all i,

w(NUUUU U )0

s'>1s>s" ¢>0 ‘1€7’§+q d>0 m2m§+,,+d

Then letting C = Ui ﬂs’zl Uszs’ UqZO Uae?’§+q Ud>0 Um>m s+q Ca(s - d)
Mo+ (C) =0. From this, I obtain Lemma 8.

PROOF OF LEMMA 8: Define W := {A,, | there are infinite belief rejections in
AES(&) under accurate testing along /..}. Then it suffices to prove that W C C
because u,«(C) = 0. Suppose that /., € W. This means that some player, for
example, player i, infinitely rejects her AEB in AES(6") under accurate testing
along h.. Moreover, from Lemma 2 and (4.1) in Section 4.3, it follows that
there exists T such that forall T > T, if time T+ 1 is in AES(&), then ||§j.(h7) —
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(r]’.*(hT)H <& /8 for all j # i and all i. Clearly, in infinitely many epochs {s,}, of
player i after time 7, player i rejects her belief in AES(&) under accurate
testing. Then, for each s,, either there exist g, « Bn, d,, and g, such that
() a,,a, P, and B, e P; ,, (i) a,,, a;/ c ,B,,, (111) a) and o) obtain enough
samples during the test phase of using (P ., ,m .. +d,), thatis, Mo, men >
mg . +d,, (iv) AEBs g, are employed during the test phase, (v) [I§ g ](hT) —
ai(hr)| < &/8 for all j # i during the test phase, and (vi) &' is rejected by the
complexity test, ||D;(a;1) - D (a”)|| > ¢&' for some j # i, or there exist g,, a,,
d,, and gn such that (vii) «, € 77; e (viii) o, obtains enough samples, that is,
m > m; . +d,, (ix) AEBs g, are employed as long as the (d, + 1)th a,-
sampling is effective, (x) for all ~r < h,, such that time T + 1 is a,-active _and
the (d,+1)th «,-sampling is effective at time 7+ 1, ||§f1’j(hT) — Ujf“(hT)H <&'/8
for all j # i, (xi) for all A, ||, (h) — &;(h)|| < & /18 for all j # i, and (xii) g, is
rejected by a,, | Di(e,) — &, ;(a,) || > & for some j # .

First, I consider the former case: ||D~j.(aj1) — D~j.(a;1’)|| > & for some j # i by
(vi). From (i), (iv), (v), and the definition of «(s, g, d), it follows that D;(a;) =

,‘slad -~ ”‘5’7’1 ~ o ~ o

df’;if” @) m' and Di(ey) = 7';5?," i) 1 where m' = m® and m’ ;= m*
cee . ~ ’

Furthermore, m®, m® > m . o T dn by (iii). However, then if | Di(a,) —

&j(e,)|| < 1€ and | Di(a)) — &;(a)|| < 1€, then [|Di(a,) — Di(a;)l| < & be-
cause o(a)) = o(a)) (= J(Bn) = ) by (i) and (11) This contradlcts (vi).
Hence, for some a;, either |D’(a Majl — (r](a Najl| > 251 or |D’(a”)[a1] -
oi(aa;ll > 25’ ThlS implies that either D’(a Na;]l < g](a Na;l — —f’ or
D;(an)[a]] > Uj(a,,)[a]]+ 4§Z,OFD}(C¥Z)[61_,] < Q}(aﬁ)[aj — zf’ or D}(aﬁ{)[a,‘] >
oy (a)la)]+ LE. )

I proceed to the latter case: ||Di(a,) — &, ;(a,)| > & for some j # i by
(xii). However, then, from (xi), it follows that &;(a,)[a;] — % &< g j(ala] <
oi(ay)la;] + 116 & for all a;.** These imply that for some a;, either Dj.(a,,)[aj] <
gnj(an)[a]] - fl = (O-j(an)[a]] + 16§ ) - ‘fl = U (an)[a/ - H ! Q}(an)[aj] -
1€ or Di(ay)laj] > g, (aw)la;] + &> (6j(an)la] — &)+ & = &;(an)[aj] +
%_i > gl(an)[a i+ 1@ Moreover, from (vii), (viii), (ix), (x), and the defini-
t10n of a(s, g, d), it follows that D'(a,) = “"(f,’,’ Andn) 1y where m” = m® >

+d,.
—bn+ n
B(;Ith cases show that /., € C. Therefore, W C C. O.E.D.

“Note that g and & are generated by P! , P. < P!

g and @, € P£,1+q,l' Hence, g (a,) and
o (a,) are well defined; see Section 4.1.1 for detalls
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C.4. Two Claims for the Proof of Lemma 9

As mentioned in Section 4.3.2, I can obtain the following claim.

CLAaM C.2: With w,«-probability 1, if there are infinite belief rejections, there
exists S5 such that for each s > 55, AES(0), which has been reached at the end
of an ERca1(8) interval, survives the first (I — 1) belief rejections (after the
ER,0a;(s) interval) at least (%pv)l‘1 : %pg(BAY/ZEI(I — 1)) times in maximum
epoch s. ‘ ‘

Since the proof of Claim C.2 is the same as that of Lemma 7, I omit it.
Next, player i’s AEB g’ is under accurate testing in an AES(&) at time T if all
effective statistical tests of player i at time T have begun after the AES(¢) has
been reached. Therefore, an AES(¢) is under accurate testing at time 7 if and
only if all players’ AEBs are under accurate testing in the AES(5) at time 7.
Moreover, the proof of Lemma 8 (in Appendix C.3) implies that (i) with .-
probability 1, from some period on, if a player’s AEB is under accurate testing in
AES(7), her AEB is never rejected. In addition, from the definition of statistical
testing, it is obvious that (ii) for all i, whenever player i rejects her belief, all of
her effective statistical tests that began before the rejection are terminated. From
(1) and (ii), I obtain the following claim.

CLAM C.3: With p,«-probability 1, from some period on, AES(&) is under
accurate testing just after it survives subsequent (I — 1) belief rejections.

PROOF: Suppose that AES(5) survives the first (I — 1) belief rejections af-
ter the AES(&) has been reached. Then consider the final step to reach the
AES(0) (e.g., see the proof of Lemma 5 in Appendix B.3): the corresponding
player, for example, player i, rejects her (wrong) belief and forms an AEB
&" in the test and formation phases, respectively, while all the other players
have already been employing their AEBs (g’),;,. Thus, AES(&) is reached at
the end of the next transition phase. Hence, from (ii), it follows that player
ii’s AEB g is under accurate testing in the AES(0) just after the AES(&)
is reached. This, along with (i), implies that some other player, for exam-
ple, player i, (# i;), must make the first belief rejection after the AES(o) is
reached. However, since the AES(&) survives the (I — 1) belief rejections,
player i, forms g” again just after the first belief rejection. Then, from (ii),
player i,’s AEB g is also under accurate testing in the AES(&) after the first
belief rejection, and this, along with (i), implies that the second belief rejection
must be made by a player other than #; or i,. I repeat this argument so that all
players’ AEBs g are under accurate testing in the AES(o) after the AES(o)
survives the (I — 1) belief rejections; that is, the AES(d) is under accurate
testing. Clearly, this implies Claim C.3. Q.E.D.
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C.5. Proof of Proposition 1.B

For any i and any positive integer L (> 2), let A% := {m; € A(A,) | Va, € A,
3l e N(m;[a;1=1/L)} and S} () := {7 € A(A,) | | 7] — ;|| <2/L}. Note that
(for all i), (¢.1) Us,cay St (m;) = A(A;) and (c.2) for any subset A of A(A,)
with its diameter no larger than 1/2L, that is, diam(A) < 1/2L,* there exists
a; € A} such that A C S/ ().

Step 1. Let L,, :=min{L | 2/L < n/6}; for convenience, let n < 1. Then for all
i,all j#i,alls>1,allg>0,alla e 73;+q, and all 7; € A’Ln, define a class a(7;)
as follows: hr € a(r;) if and only if (a) hr € a, that is, time T + 1 is a-active,
(b) the first a-sampling in epoch s of player i is effective at time T + 1, and
(c) for all Ay < hr such that time 7" 4 1 is a-active and the first a-sampling is
effective at time T’ + 1, m;[a;] — t7 < ot (hr)la;] < mla]+ ¢n for all a;. (See

Appendix C.3 for the a-sampling.) Moreover, let dz(,:f 'la ;1 denote the number
of times that a; has been realized in the first m a(;)-active periods, and let

da(‘“’/ . (da(ﬂ'] [ j])ﬂj' Let ’iTj[Clj] = Wj[a,] + é'ﬂ and ’7Tj[(lj] = Wj‘[aj] — %’T] for
all a;. Then for all i, all j # i, all 5, all g, all @ € P}, all 7; € AIL,,, and all m,
define

Dj.(s, q,a, mj, m)

()
——{hm‘ [ " <00
(mj)

LY(7T/ a
d . la;
3a1< j,m [ j] E}[aj] _ g or L[j] > 7_71[“/] =+ g) }.
m m

Recall that & < min[n/3,1/ S(# A+ 1)] for all i. From this, the LS condition,
and Proposition A, it follows that for all i, all j # i, all s, and all g,

w(UU U U psgenm)

9=9 aGP;Jrq i EA} ’n>ﬂv+q

2
<> #pi #a S (#Aj)2€xp<—2m<g>>

q=q m>ms+q
<2HA, #AY H#PL, Y exp(—ém(éi)z)
q=q m>mb+q

Y The diameter of A is defined as diam(A) := sup{||7 — 7| | m, 7’ € A}.
2Thatis, d = 0.
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<2#A] #A;) exp(—s—q)
q=q
=2#A] #A;(1—exp(—1)) exp(—s— 7).

Therefore, o (Vg0 Uyzg Uneri
for all i, all j #£ i, and all s. Thus,

w(UUUNU U U U Pitsgeomem) =0

i szl q>04>61ae79§+qﬂ-lsA mzmi .

s+q

. . i . —
U'”J'GAL,, Umimiurqu(s’ q7 a, 77],77’1)) - O

Step 2. Let U := {h,, | there are at most a finite number of belief rejections
in hy}. I say that p, are n-different from ¢* infinitely many times in A, if
for infinitely many & (< h.), there exist i and j (# i) such that ||p] ;(h) —
ai(h)|l > n. Let V:= {h | p. are n-different from o* infinitely many times in
hs}. Then I obtain that

veveUUUUN U U U Dtsaamm

bt szl 420 424 aePl, miea] mzmi,
m

cUuuNuU U u u oits.q.a.m.m.

i #2120 42 qepl, '”'/'EAL, mzmi,

The second inclusion is obvious. I show the first inclusion from Step 3 to
Step 6.
_ Step 3. Suppose that /., € UNV. On the one hand, since &, € U, there exists
Ty such that (i) no belief rejection occurs from time Ty, (ii) there exist beliefs
(f")i such that each player i retains f* forever from time 7p, and (iii) there exist
(sp): such that each player i stays in epoch s; forever from time 7;. Hence, for
all i, f' is generated by P',, and p’(hy) = f'(hy) for all T > T;. On the other

%0

hand, since &, € V, there exist i, and j, (# ip) such that || fm (hr,) (r;(‘](th)H =
||p* Lo () — o (hg)|l > 7 for infinitely many Az, < h.

Step 4. From Step 3, (P.1), (P.2), footnote 29 (in Section 4.1.2), and Lemma 1,
it follows that for all i all j +# i, and all s, there exists q(i, j, s) such that for all
q>q(,j,s), (c3) Py, is a CR of f' and (c.4) P i1 18 an 1/96-ACR of crjf:

foralla e P! andall h, W' € a, f ‘(h) —f '(h') and ||ajf(h) — ajf(h’)|| < 1/96;

s+q

hence, fi(a) is well defined for all & € P

oo for all i, it follows from L_emmzl2 that, for all i, ||(rl.f(h7) — o/ (hr)|| — 0as
T — oo. Thus, there exists T (> T;) such that (c.5) for all 7, all j # i, all s, all
q>q(i,j,s),alaeP, ,andall hy, b} € H, if hy, b} € @, hr, By < hy, and

s+q°

- Moreover, since lim,,_, ., K'(m) =
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T,T > T, then ||(r;‘(hT) — cr;‘(h )|l < n/48: for each a € 73+q, diam({(rj’.*(hT) |
hr € a, hy < hy, T > T1}) < 1/48 < 1/2L,. Therefore, by (c.2) and (c.5), for
alli,all j#£1i,all s,all g > g(i, j,s),and all « € 77;+ , there exists 7; € A]L such

that {O'f(h]') | hT € aQ, hT < hoo, T > Tl} - SL,,(WJ)'
Step 5. In addition, since no belief rejection occurs from time 7T, and {77“?0 }q
sy t4

is a set of finite partitions, it is clear that there exists g > g(iy, jo, sf)o) such that
for all ¢ > g, there exists p; € P such that (c.6) the first or,-sampling begins
So t4

after time 7,2 and (c.7) hr,, € a, for all n, where {hr, }, is an infinite sub-
sequence of {A7, };. Furthermore, from Step 3, (c.3), (c.5), and (c.7), it follows
that (c.8) ||f_;:(hr) — (rj";(hT)H >n— —Sn = 81; forall Ay < h, suchthat T > T,
and hr € a,.

Step 6. From Steps 4 and 5, it is derived that for all g > g, there exists
7l € A such that (c.9) {0} (k) | hr € ag, hr < hoo, T = T1) € ) ().
From (c.6), (c.8), and the definition of a,(#}), it then follows that (c.10)
||f’°(h) —o; (h)|| >4 n for all 4 < h, such that & € (] ) Clearly, (c.6) and
(c. 9) imply that (c. 11) in any «,-active perlod in Wthh the first ar,-sampling is
effective, ™, [a ol — 7) <o; (h)[a ol < [am] + - n for all a;,. Furthermore,
from (c.6), (c.7), (c.ll), and no belief rejection from time Ty, it follows that
#{h|heayn]),h<hy)=m%> mi?0+q, where m® is the number of the

0

samples obtained for «, in A,. This implies that «, obtains enough samples
q(w,-qu>
J m*q

but does not reject f in ., and that D () = /m®. Therefore, h,, €

;?)(s(, ,q, g, m ,m*). Indeed, if not, then ||d, ot ’” 5 /m — | < mn/3. How-

q
g7
ever, then «, does not reject f ‘o, which means that || f’“(h) m]mi?, me|| =

I f’“(aq) - D"’(aq)|| < &0 <m/3forall h e a,. Furthermore, by the definition
of aq(w_m), for all i € Olq(’]T ), 77 JLaj] — 1) <o; (h)[a ] <} [ajo] + 67) for

all a,. Therefore, |/ (h) — o (1) < 7 (h) — d"""% /s 4

Jo m*

ag(m! o)

Jo,m*4 /maq -

il + ) — o (Wl < 3n+3m+ ¢n=32n=gn for all & < h,, such that
he aq(q-r]%) ThlS is a contradiction to (c.10).

Step 7. Finally, from all the above steps, it follows that w,(UNV) = 0. Since
o+ (U) =1 by Proposition 1.A, u,«(UN V) =1, where V¢ is the complement

BSince no belief rejection occurs from time Ty, for any large g, Pi?u is used only once in
) So +4
the test phases: d = 0. This means that for each a € P* , the first a-sampling starts from the
So +4

beginning of the only test phase of using Pi?u
So +4
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of V. Therefore, u,+(V¢) = 1. Moreover, for each 4, € V¢, there exists T such
that for all i and all j # i, ||p}, ;(hr) — o} (hy)| < mforall T > T.

APPENDIX D
I prepare one lemma to derive Theorem 1 from Proposition 1.
LEMMA D: For any i, any oy, and any o_;, 0’ ,,

b

V(o) =V (0l)

Vi(oi, o) = V(01,0

—1

b

<D, Zéf‘l max max|o;(h) — oj(h)
T=1

heHr_y j#i
where Dl' = #A_,(I — 1)(U, + r,~) and A—i = Hj;éi A].

PROOF: Lemma D is immediately obtained from the recursive structure.
Q.E.D.

Now, take any & > 0 and any 0 < § < 1.** Then define 7 := &(1 — §)/
6#A(I — 1).” For 1), take prior beliefs p, from Proposition 1. Next, fix any
(u, 8) such that 0 < §; < 6 for all i. Then take 7(7,u,8) from Proposi-
tion 1 and define 7(¢, 8, u, 8) := min[1, (79, u, 6)]. Finally, fix any r such that
0 <r; <r(e, 0, u,d) for all i. Then it is sufficient to verify that oy _satisfies the
definition of &-NE for any large 7. Take any T such that 2D;87/(1-6,)<¢€/3
for all i. From Proposition 1, each player i eventually makes #-accurate pre-

dictions regarding all her opponents’ actions in the next T periods. From these
and Lemma D, it follows that for any large 7 and any i,

Vi@l i) = V(020

i L,hr> ¥ —i,ht

4 (Pi,hT) - ZU(Uii,hT) |

= |Viv(o-:hr’ O-ii»hr) - ViU(O-ZhT’ pi,hTH +

=2D; Z & max Hjlle” Ty () = Pl (M)
t=1

1-87 57
<2Dz [ i
= [k&’”l—ﬁj

I need to impose the upper bound & on the discount factors because even if I make arbitrarily
small n-errors of predictions of p' at each period, these small errors may accumulate over time
so that if the discount factor §; is taken to be sufficiently close to 1, player i’s payoif V"(a;;)
may be bounded away from the maximum payoff I%”(aj,.’ #p)- Therefore, oj;  may not satisfy the
definition of ANE.

%Note that ) < e(1 — §)/3#A_;(I — 1)(U; + 1) for all i because U; < 1 for all i.
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< (1-3?)§e+ %s

<e.

Therefore, o, satisfies the definition of e-NE for any large 7.
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