SUPPLEMENT TO "COMMENT ON ‘COMMITMENT VS. FLEXIBILITY""

(Econometrica, Vol. 81, No. 5, September 2013, 2113-2124)

By Attila Ambrus and Georgy Egorov

S.1. PROOF OF PROPOSITION 3

In the Appendix of Ambrus and Egorov (2013), the proof of Proposition 3 contained only the idea of proof of the result that $w\left(\theta_{p}\right)<z\left(u\left(\theta_{p}\right)\right)$ is possible, so money-burning for high types is possible. Here, we present the complete proof of this fact.
Our strategy is to build on Example 1, approximate it with a continuous distribution, and show that, for sufficiently close approximations, the optimal contract must have money-burning. Take $U(c)=\sqrt{c}, W(k)=\sqrt{k}, y=1$ (then $\left.z(u)=\sqrt{1-u^{2}}\right), \beta=\frac{1}{20}$. Take $\varepsilon \in\left(0, \frac{1}{10}\right)$, and let F_{ε} be the atomless distribution with finite support given by the following p.d.f.:

$$
f_{\varepsilon}(\theta)= \begin{cases}0, & \text { if } \theta<\frac{1}{10}-\varepsilon \\ \frac{\frac{10}{11}-\frac{\varepsilon}{2}}{\varepsilon}, & \text { if } \frac{1}{10}-\varepsilon \leq \theta<\frac{1}{10} \\ \frac{\varepsilon}{10-\frac{1}{10},} & \text { if } \frac{1}{10} \leq \theta<10 \\ \frac{1}{11-\frac{\varepsilon}{2}}{ }^{\frac{1}{\varepsilon}}, & \text { if } 10 \leq \theta<10+\varepsilon \\ 0, & \text { if } 10+\varepsilon \leq \theta\end{cases}
$$

We have $G_{\varepsilon}(\theta)=F_{\varepsilon}(\theta)+\theta(1-\beta) f_{\varepsilon}(\theta)$ equal to

$$
G_{\varepsilon}(\theta)= \begin{cases}0, & \text { if } \theta<\frac{1}{10}-\varepsilon, \\ \left(\theta-\frac{1}{10}+\varepsilon\right) \frac{\frac{10}{11}-\frac{\varepsilon}{2}}{\varepsilon} & \text { if } \frac{1}{10}-\varepsilon \leq \theta<\frac{1}{10}, \\ & +\theta\left(1-\frac{1}{20}\right) \frac{\frac{10}{11}-\frac{\varepsilon}{2}}{\varepsilon}, \\ & +\theta\left(1-\frac{1}{20}\right) \frac{10}{10}-\frac{\varepsilon}{2}+\left(\theta-\frac{1}{10}\right) \frac{\varepsilon}{10-\frac{1}{10}}, \\ & \text { if } \frac{1}{10} \leq \theta<10, \\ & \\ \frac{10}{11}+\frac{\varepsilon}{2}+(\theta-10) \frac{1}{11}-\frac{\varepsilon}{2} \\ 1, & \text { if } 10 \leq \theta<10+\varepsilon, \\ & \text { if } 10+\varepsilon \leq \theta .\end{cases}
$$

Direct computations give the threshold θ_{p} as a decreasing function of ε on ($0, \frac{1}{10}$), which monotonically increases from $\frac{5620-\sqrt{28754482}}{780}=0.33$ to $\frac{1}{2}$ as ε decreases from $\frac{1}{10}$ to 0 :

$$
\begin{aligned}
\theta_{p}(\varepsilon)= & \frac{1}{390 \varepsilon}(1010 \varepsilon+180 \\
& \left.-\sqrt{5} \sqrt{3861 \varepsilon^{3}+202538 \varepsilon^{2}+58680 \varepsilon+6480}\right)
\end{aligned}
$$

In particular, this implies that all individuals with $\theta \geq \frac{1}{2}$ are pooled.
Let us prove that this contract must involve money-burning for ε small enough for all individuals with $\theta \geq \frac{1}{2}$. Recall the values V and \tilde{V} we defined
in Example 1 as the ex ante payoff from the optimal contract and the optimal contract subject to no money-burning in state $\theta_{h}=10$; we had $V>\tilde{V}$. In this example, for $\varepsilon \in\left(0, \frac{1}{10}\right)$, let us define the ex ante payoff from the optimal contract as V_{ε} and that from the optimal contract with the constraint that types $\theta \geq \frac{1}{2}$ do not burn money (and thus types $\theta>\theta_{p}(\varepsilon)$ do not burn money) by \tilde{V}_{ε}. We now prove that $\liminf _{\varepsilon \rightarrow 0} V_{\varepsilon} \geq V$ and that $\lim \sup _{\varepsilon \rightarrow 0} \tilde{V}_{\varepsilon} \leq \tilde{V}$; this would establish that, for ε small enough, money-burning must be used for the types $\theta \geq \frac{1}{2}$.

We first prove that $\liminf _{\varepsilon \rightarrow 0} V_{\varepsilon} \geq V$. Let us take the optimal contract for the two-type case, $\Xi=\left(c_{l}, k_{l}, c_{h}, k_{h}\right)$, and provide these two options, $\left(c_{l}, k_{l}\right)$ and $\left(c_{h}, k_{h}\right)$, to all types from $\frac{1}{10}-\varepsilon$ to $10+\varepsilon$. From Proposition 1, we know that type $\theta_{l}=\frac{1}{10}$ is indifferent between the two contracts; then singlecrossing considerations will imply that types $\theta<\frac{1}{10}$ will choose (c_{l}, k_{l}), while types $\theta>\frac{1}{10}$ will choose $\left(c_{h}, k_{h}\right)$. The ex ante utility from such contract equals

$$
\begin{aligned}
V_{\varepsilon}^{\prime}= & \left(\frac{10}{11}-\frac{\varepsilon}{2}\right)\left(\left(\frac{1}{10}-\frac{\varepsilon}{2}\right) u_{l}+w_{l}\right)+\varepsilon\left(\left(5+\frac{1}{20}\right) u_{h}+w_{h}\right) \\
& +\left(\frac{1}{11}-\frac{\varepsilon}{2}\right)\left(\left(10+\frac{\varepsilon}{2}\right) u_{h}+w_{h}\right) .
\end{aligned}
$$

Clearly, we have $\lim _{\varepsilon \rightarrow 0} V_{\varepsilon}^{\prime}=V_{\varepsilon}$. But we have taken some contract, not necessarily optimal, so $V_{\varepsilon} \geq V_{\varepsilon}^{\prime}$ for all ε. This implies $\liminf _{\varepsilon \rightarrow 0} V_{\varepsilon} \geq V$.

Let us now prove that $\lim \sup _{\varepsilon \rightarrow 0} \tilde{V}_{\varepsilon} \leq \tilde{V}$. Suppose this is not the case, and there exists $\delta>0$ and a monotonically decreasing sequence $\varepsilon_{1}, \varepsilon_{2}, \ldots$ with $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$ such that $\tilde{V}_{\varepsilon_{n}}>\tilde{V}+\delta$ for all $n \in \mathbb{N}$. Suppose that $\Xi^{\varepsilon_{n}}=$ $\left\{\left(c^{\varepsilon_{n}}(\theta), k^{\varepsilon_{n}}(\theta)\right)\right\}_{\theta \in\left[1 / 10-\varepsilon_{n}, 10+\varepsilon_{n}\right]}$ is the optimal contract for ε_{n}, subject to no money-burning for types $\theta \geq \frac{1}{2}$. Let us construct a binary contract ($c_{l}^{\varepsilon_{n}}, k_{l}^{\varepsilon_{n}}$, $\left.c_{h}^{\varepsilon_{n}}, k_{h}^{\varepsilon_{n}}\right)$ in the following way. We let $\left(c_{h}^{\varepsilon_{n}}, k_{h}^{\varepsilon_{n}}\right)=\left(c^{\varepsilon_{n}}(10), k^{\varepsilon_{n}}(10)\right)$ be the contract that type $\theta_{h}=10$ chooses under $\Xi^{\varepsilon_{n}}$ (as well as all types $\theta>\theta_{p}(\varepsilon)$). We let $\left(c_{l}^{\varepsilon_{n}}, k_{l}^{\varepsilon_{n}}\right)$ be the contract that maximizes $\max _{\theta \in\left[1 / 10-\varepsilon_{n}, \varepsilon_{n}\right]} \theta U\left(c^{\varepsilon_{n}}(\theta)\right)+$ $W\left(k^{\varepsilon_{n}}(\theta)\right)$ (the reason we do not take $\left(c^{\varepsilon_{n}}\left(\frac{1}{10}\right), k^{\varepsilon_{n}}\left(\frac{1}{10}\right)\right)$ is that, even in the optimal contract, the type θ_{l} may get a relatively low payoff, which is not a problem if this type has zero mass, but may be a problem if it has a mass of $\frac{10}{11}$); suppose that this maximum is reached at $\theta=\tilde{\theta}_{\varepsilon_{n}}$.

Let us compute the ex ante payoff from the following contract $\tilde{\Xi}^{\varepsilon_{n}}$: $\left(\tilde{c}^{\varepsilon_{n}}(\theta), \tilde{k}^{\varepsilon_{n}}(\theta)\right)=\left(c_{l}^{\varepsilon_{n}}, k_{l}^{\varepsilon_{n}}\right)$ if $\theta \leq \frac{1}{10}$ and $\left(\tilde{c}^{\varepsilon_{n}}(\theta), \tilde{k}^{\varepsilon_{n}}(\theta)\right)=\left(c_{h}^{\varepsilon_{n}}, k_{h}^{\varepsilon_{n}}\right)$ if $\theta>\frac{1}{10}$ for different distributions of θ. We first take $f_{\varepsilon_{n}}$; the payoff from this contract
(note that this contract need not be incentive compatible!) is

$$
\begin{aligned}
\tilde{V}_{\varepsilon_{n}}^{\prime}= & \left(\frac{10}{11}-\frac{\varepsilon_{n}}{2}\right)\left(\left(\frac{1}{10}-\frac{\varepsilon_{n}}{2}\right) u_{l}^{\varepsilon_{n}}+w_{l}^{\varepsilon_{n}}\right) \\
& +\varepsilon_{n}\left(\left(5+\frac{1}{20}\right) u_{h}^{\varepsilon_{n}}+w_{h}^{\varepsilon_{n}}\right) \\
& +\left(\frac{1}{11}-\frac{\varepsilon_{n}}{2}\right)\left(\left(10+\frac{\varepsilon_{n}}{2}\right) u_{h}^{\varepsilon_{n}}+w_{h}^{\varepsilon_{n}}\right)
\end{aligned}
$$

(where $u_{l}^{\varepsilon_{n}}=U\left(c_{l}^{\varepsilon_{n}}\right)=\sqrt{c_{l}^{\varepsilon_{n}}}$, etc. are defined as usual). But under the contract $\Xi^{\varepsilon_{n}}$, types $\theta>10$ get exactly the same allocation as in $\tilde{\tilde{\Xi}^{\varepsilon_{n}}}$, and types $\theta<\frac{1}{10}$ get payoff

$$
\begin{aligned}
\theta u_{l}^{\varepsilon_{n}}+w_{l}^{\varepsilon_{n}} & \geq\left|\theta-\theta_{\varepsilon_{n}}\right|+\tilde{\theta}_{\varepsilon_{n}} u_{l}^{\varepsilon_{n}}+w_{l}^{\varepsilon_{n}} \\
& \geq\left|\theta-\theta_{\varepsilon_{n}}\right|+\theta U\left(c^{\varepsilon_{n}}(\theta)\right)+W\left(k^{\varepsilon_{n}}(\theta)\right),
\end{aligned}
$$

since $u_{l}^{\varepsilon_{n}} \in(0,1)$. Consequently,

$$
\tilde{V}_{\varepsilon_{n}}^{\prime}-\tilde{V}_{\varepsilon_{n}} \geq-\left(\frac{10}{11}-\frac{\varepsilon_{n}}{2}\right) \varepsilon_{n}-\varepsilon_{n}\left(5+\frac{1}{20}+1\right)
$$

where the second term certainly exceeds the possible difference between $\tilde{V}_{\varepsilon}^{\prime}$ and \tilde{V}_{ε} coming from $\theta \in\left(\frac{1}{10}, 10\right)$. But the right-hand side tends to 0 as $\varepsilon_{n} \rightarrow 0$, so for n high enough, $\tilde{V}_{\varepsilon_{n}}^{\prime}>\tilde{V}_{\varepsilon_{n}}-\frac{\delta}{3}$.

Let us now take the binary distribution as in Example 1 and consider the payoff under $\tilde{\Xi}^{\varepsilon_{n}}$ (again, this contract need not be incentive compatible under this distribution). We have

$$
\tilde{V}_{\varepsilon_{n}}^{\prime \prime}=\frac{10}{11}\left(\frac{1}{10} u_{l}^{\varepsilon_{n}}+w_{l}^{\varepsilon_{n}}\right)+\frac{1}{11}\left(10 u_{h}^{\varepsilon_{n}}+w_{h}^{\varepsilon_{n}}\right) .
$$

Clearly,

$$
\tilde{V}_{\varepsilon_{n}}^{\prime \prime}-\tilde{V}_{\varepsilon_{n}}^{\prime} \geq-\varepsilon_{n}\left(5+\frac{1}{20}+1\right)-\left(\frac{1}{11}-\frac{\varepsilon_{n}}{2}\right) \frac{\varepsilon_{n}}{2}
$$

so for n high enough, we have $\tilde{V}_{\varepsilon_{n}}^{\prime \prime}>\tilde{V}_{\varepsilon_{n}}^{\prime}-\frac{\delta}{3}$.
Consider now the sequence of contracts $\tilde{\Xi}^{\varepsilon_{n}}$. It is characterized by two pairs $\left(c_{l}^{\varepsilon_{n}}, k_{l}^{\varepsilon_{n}}\right)$ and $\left(c_{h}^{\varepsilon_{n}}, k_{h}^{\varepsilon_{n}}\right)$; moreover, $c_{h}^{\varepsilon_{n}}+k_{h}^{\varepsilon_{n}}=y$ is satisfied for every n. Let us pick a subsequence $\left\{n_{r}\right\}$ such that ($c_{l}^{\varepsilon_{n_{r}}}, k_{l}^{\varepsilon_{n_{r}}}$) and ($c_{h}^{\varepsilon_{n_{r}}}, k_{h}^{\varepsilon_{n_{r}}}$) converge to some $\left(\hat{c}_{l}, \hat{k}_{l}\right)$ and $\left(\hat{c}_{h}, \hat{k}_{h}\right)$; this is possible since B is compact and, moreover, we have
$\hat{c}_{h}+\hat{k}_{h}=y$. Denote the ex ante payoff from this contract under the binary distribution by \hat{V}. We have

$$
\hat{V}=\frac{10}{11}\left(\frac{1}{10} \hat{u}_{l}+\hat{w}_{l}\right)+\frac{1}{11}\left(10 \hat{u}_{h}+\hat{w}_{h}\right) ;
$$

here we used the fact that $U(\cdot)$ and $W(\cdot)$ are continuous. We have

$$
\lim _{r \rightarrow \infty}\left(\hat{V}-\tilde{V}_{\varepsilon_{n_{r}}^{\prime}}^{\prime \prime}\right)=0
$$

by construction, and therefore, for r high enough, $\hat{V}>\tilde{V}_{\varepsilon_{n r}}^{\prime \prime}-\frac{\delta}{3}$.
This shows that there is some n such that $\hat{V}>\tilde{V}_{\varepsilon_{n}}-\delta$. But we took the sequence such that $\tilde{V}_{\varepsilon_{n}}>\tilde{V}+\delta$ for all n, which implies that $\hat{V}>\tilde{V}$. Recall, however, that \tilde{V} is the ex ante payoff in the optimal contract with no moneyburning for the high type, and \hat{V} is the ex ante payoff in one of such contracts. We would get a contradiction if we prove that the contract $\left(\hat{c}_{l}, \hat{k}_{l}\right)$ and $\left(\hat{c}_{h}, \hat{k}_{h}\right)$ is incentive compatible. To do so, let us write the following two incentive compatibility constraints that the contract $\tilde{\Xi}^{\varepsilon_{n r}}$ satisfies:

$$
\begin{aligned}
& \tilde{\theta}_{\varepsilon_{n r}} u_{l}^{\varepsilon_{n r}}+\frac{1}{20} w_{l}^{\varepsilon_{n r}} \geq \tilde{\theta}_{\varepsilon_{n}} u_{h}^{\varepsilon_{n_{r}}}+\frac{1}{20} w_{h}^{\varepsilon_{n_{r}}} \\
& 10 u_{h}^{\varepsilon_{n r}}+\frac{1}{20} w_{h}^{\varepsilon_{n r}} \geq 10 u_{l}^{\varepsilon_{n r}}+\frac{1}{20} w_{l}^{\varepsilon_{n r}}
\end{aligned}
$$

Taking the limits as $r \rightarrow \infty$ and using the fact that $\tilde{\theta}_{\varepsilon_{n_{r}}} \in\left[\frac{1}{10}-\varepsilon_{n_{r}}, \frac{1}{10}\right]$ and thus tends to $\frac{1}{10}$, we get

$$
\begin{aligned}
& \frac{1}{10} \hat{u}_{l}+\frac{1}{20} \hat{w}_{l} \geq \frac{1}{10} \hat{u}_{h}+\frac{1}{20} \hat{w}_{h} \\
& 10 \hat{u}_{h}+\frac{1}{20} \hat{w}_{h} \geq 10 \hat{u}_{l}+\frac{1}{20} \hat{w}_{l}
\end{aligned}
$$

This proves that the contract $\left(\hat{c}_{l}, \hat{k}_{l}, \hat{c}_{h}, \hat{k}_{h}\right)$ is incentive compatible, and thus $\hat{V} \leq \tilde{V}$. We have reached a contradiction which proves that $\limsup _{\varepsilon \rightarrow 0} \tilde{V}_{\varepsilon} \leq \tilde{V}$.

Consequently, we have established both $\liminf _{\varepsilon \rightarrow 0} V_{\varepsilon} \geq V$ and $\lim \sup _{\varepsilon \rightarrow 0} \tilde{V}_{\varepsilon} \leq$ \tilde{V}. But $V>\tilde{V}$; therefore, for ε close to $0, V_{\varepsilon}>\tilde{V}_{\varepsilon}$. This means that there is $\varepsilon>0$ for which the optimal contract must involve money-burning in the allocation that types $\theta>\theta_{p}(\varepsilon)$ get, and the mass of these agents is at least $\frac{1}{11}$ (as $\left.\theta_{p}(\varepsilon)<\frac{1}{2}\right)$. This completes the proof that $w\left(\theta_{p}\right)<z\left(u\left(\theta_{p}\right)\right)$ is possible. Q.E.D.

S.2. ADDITIONAL FORMAL RESULTS

Proposition 1: Take any convex functions $U(\cdot)$ and $W(\cdot)$ such that the function $z(u)$ has at least one point $u_{0} \in(0, y)$ with $\left.\left|\frac{d z}{d u}\right|_{u=u_{0}} \right\rvert\, \geq 1$ (this would be the case, for example, if $W=U$, or if $W^{\prime}(0)=\infty$ and $\left.W(0) \neq-\infty\right)$. Then there exists an open set of parameter values μ, θ_{l}, β (with θ_{h} found from $\mu \theta_{l}+(1-\mu) \theta_{h}=1$) such that the optimal contract necessarily includes money-burning.

Proof: Given $U(\cdot)$ and $W(\cdot)$, the set A is fixed. Let $w=z(u)$ be the equation that determines the upper boundary of this set and let $k=\left|\frac{d z}{d u}\left(u_{0}\right)\right| \geq 1$. By assumption that $W(0) \neq-\infty$ and convexity of A, the number $s=\frac{z\left(u_{0}\right)-W(0)}{U(y)-u_{0}} \in$ (k, ∞). For any $\beta \in\left(0, \frac{1}{s}\right) \subset(0,1)$, let $\theta_{l}(\beta)=\beta s$. In this case, u_{0} will be the u_{0} from formulation of Proposition 2 in Ambrus and Egorov (2013). We have

$$
\mu\left((1-\beta) /\left(\frac{1}{\left|\frac{d z}{d x}\left(u_{0}\right)\right|}-\frac{\beta}{\theta_{l}(\beta)}\right)\right)=\mu \frac{1-\beta}{\frac{1}{k}-\frac{1}{s}}
$$

But $s \in(k, \infty)$ and $k \geq 1$ imply $\frac{1}{k}-\frac{1}{s} \in(0,1)$, which means that inequality

$$
\mu\left((1-\beta) /\left(\frac{1}{\left.\left|\frac{d z}{d u}\right|_{u=u_{0}} \right\rvert\,}-\frac{\beta}{\theta_{l}}\right)\right)>1
$$

must hold for β sufficiently close to 0 and μ sufficiently close to 1 (and θ_{l}, θ_{h} derived by $\theta_{l}=\beta s$ and $\theta_{h}=\frac{1-\mu \theta_{l}}{1-\mu}$). Moreover, for μ close to 1 , we will have θ_{h} arbitrarily high; in particular, $\theta_{h}>s=\frac{\theta_{l}(\beta)}{\beta}$. The latter implies $\beta>\frac{\theta_{l}}{\theta_{h}}$, and we have $\beta<\beta^{*}$ by construction, so in this case, indeed, a separating contract is optimal by Proposition 1 in Ambrus and Egorov (2013). Finally, since varying u_{0} would not change the inequalities above, then the set of parameters β, μ, θ_{l} for which money-burning is optimal contains an open set.
Q.E.D.

REFERENCE

Ambrus, A., And G. Egorov (2013): "Comment on 'Commitment vs. Flexibility'," Econometrica, 81, 2113-2124. [1,6]

Dept. of Economics, Duke University, 419 Chapel Drive, Durham, NC 27708, U.S.A.;aa231@duke.edu

and

Kellogg School of Management, Northwestern University, 2001 Sheridan Road, Evanston, IL 60208, U.S.A.; g-egorov@kellogg.northwestern.edu.

