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S.1. INTRODUCTION

IN THIS SUPPLEMENTAL MATERIAL, we provide omitted discussions, results,
and proofs by section in the same order they are referred to in the paper. Let
w.p.a.1 denote “with probability approaching 1” and C denote a generic con-
stant that may be different in different uses.

S.2. SUPPLEMENTS TO SECTION 2

We begin with the omitted discussion and results referred to in Section 2
of the paper. These concern the general, nonseparable model of Assumptions
1–3 and apply whether or not the regressors are discrete.

S.2.1. Time Homogeneity in the Linear Model

We first show that Assumption 2 is a natural generalization of the following
linear model:

Yit =X ′
itβ0 + αi + εit� E[Xisεit] = 0 for all s and t�(S.1)

This is a standard linear model that leads to consistency of the within and
other estimators. Let E(·|Xi) denote the linear projection on vec(Xi), as in
Chamberlain (1982).

THEOREM A1: Suppose that Yi and Xi have finite second moments. Then
equation (S.1) is satisfied if and only if there is ε̃it with

Yit =X ′
itβ0 + ε̃it � E(ε̃it |Xi)= E(ε̃i1|Xi) (t = 2� � � � � T )�(S.2)

PROOF: If equation (S.1) is satisfied, let ε̃it = αi + εit . By orthogonality of
εit , with Xis for all s and t, we have E(εit |Xi)= 0 for all t, so that

E(ε̃it |Xi)= E(αi|Xi)+E(εit |Xi)=E(αi|Xi)

= E(αi|Xi)+E(εi1|Xi)= E(ε̃i1|Xi)�

Now suppose equation (S.2) is satisfied. Let αi = E[ε̃i1|Xi] and εit = ε̃it − αi.
Then Yit =X ′

itβ0 + αi + εit by construction and

E[Xisεit] = E[Xis

(
ε̃it −E[ε̃i1|Xi]

)]=E[Xis

(
ε̃it −E[ε̃it|Xi]

)]= 0�
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where the second equality follows by E(ε̃it |Xi) = E(ε̃i1|Xi) and the third
equality by orthogonality of each element of Xi with the projection residual.

Q.E.D.

This result shows that the standard linear model of equation (S.1) is equiv-
alent to the model of equation (S.2). The second model is one that satisfies
a time-homogeneity condition analogous to Assumption 2. In equation (S.2),
the linear projection of the disturbance on the elements ofXi is time invariant.
What Assumption 2 does is strengthen this to time invariance of the condi-
tional distribution. This strengthening seems like a natural thing to do when
moving from a linear model to a nonlinear, nonseparable model.

S.2.2. Relationship Between Static and Dynamic Models

We next show that the static model is nested within the dynamic model.

THEOREM A2: If Assumptions 1 and 2 are satisfied, then Assumptions 1 and
3 are satisfied.

PROOF: Note that Assumptions 1 and 2 allow some flexibility in the def-
inition of αi, because Assumption 1 just specifies that there exists αi with
Yit = g0(Xit�αi� εit). This equation continues to hold if more variables are
added to αi. Furthermore, we can add any function ofXi to αi without changing
Assumption 2. Let α̃i = (αi�Xi). Then Assumptions 1 and 2 are also satisfied
for this α̃i. Furthermore, sinceXit� � � � �Xi1 are included in α̃ and Assumption 2
for the original αi implies that εit |α̃i d= εi1|α̃i, we have

εit|Xit� � � � �Xi1� α̃i
d= εit |α̃i d= εi1|α̃i d= εi1|Xi1� α̃i�

Thus we see that Assumptions 1 and 2 imply existence of αi = α̃i such that
Assumptions 1 and 3 are also satisfied. That is, Assumptions 1 and 2 imply
Assumptions 1 and 3. Q.E.D.

S.2.3. Relationship Between Nonseparable Models and
Conditional-Mean Models

Next we show that the nonseparable models given here imply conditional-
mean models where the ATE is also the conditional-mean ATE.

THEOREM A3: Suppose that Assumption 1 is satisfied andE[|g0(x�αi� εit)|]<
∞ for all x. If Assumption 2 is satisfied, then, for α̃i = Xi and m0(x� α̃) =∫
g0(x�α�ε)dF(α�ε|α̃),

E[Yit|Xi� α̃i] =m0(Xit� α̃i)� μ(x)=
∫
m0(x� α̃)dF(α̃)�
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If Assumption 3 is satisfied, then, for α̃ = (α�X1) and m0(x� α̃) = ∫
g0(x�

α�ε)dF(ε|α̃),

E[Yit|Xit� � � � �Xi1� α̃i] =m0(Xit� α̃i)� μ(x)=
∫
m0(x� α̃)F(dα̃)�

PROOF: By Assumption 2, for α̃ = X and m0(x� α̃) = ∫
g0(x�α�ε)dF(α�

ε|X) we have

E[Yit|Xi� α̃i] =E[g0(Xit�αi� εit)|Xi

]
=
∫
g0(Xit�α�ε)dF(α�ε|α̃i)=m0(Xit� α̃i)�∫

m0(x� α̃)dF(α̃)=
∫
g0(x�α�ε)dF(α�ε|α̃) dF(α̃)= μ(x)�

Similarly, Assumption 3 implies, for α̃i = (αi�X1i),

E[Yit|Xit� � � � �Xi1� α̃i] =
∫
g0(Xit�αi� ε)dF(ε|Xit� � � � �Xi1�αi)

=
∫
g0(Xit�αi� ε)dF(ε|αi�Xi1)=m0(Xit� α̃i)�∫

m0(x� α̃)dF(α̃)=
∫
g0(x�α�ε)dF(ε|α�X1)dF(α�X1)

=
∫
g0(x�α�ε)dF(ε�α�X1)= μ(x)� Q.E.D.

It may be helpful to explain this result and relate it to Chamberlain (1982).
First, it should be noted that Assumptions 1 and 2 only assume the existence of
some αi such that the conditions are satisfied. Thus, we are free to choose αi
in whatever way is convenient. A convenient choice for Theorem A3 turns out
to be α̃i =Xi, where we use the α̃i notation to distinguish this time-invariant
effect from the one in Assumptions 1 and 2. Note then that the first conclusion
implies that, for m0(x�X)= ∫

g(x�α�ε)dF(α�ε|X),
E[Yit|Xi] =m0(Xit�Xi)�(S.3)

This statement has no content for any one time period, because the effect of
Xit in the first argument of m(Xit�Xi) is indistinguishable from the effect of
Xit that appears in the second argument. However, for multiple time periods it
does have content, because m0(x�X) is time invariant. Equation (S.3) implies
that the effect of changing Xit on E[Yit |Xi] will be different than the effect
on E[Yis|Xi] for s �= t. Furthermore, this form leads directly to identification
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of conditional-mean ATE conditioned on Xi. For any Xi where Xit = xb and
Xis = xa for some t and s,

E[Yis −Yit |Xi] =m0

(
xa�Xi

)−m0

(
xb�Xi

)
�

that is, a conditional-mean ATE given Xi.
It may also help to think of m(Xit�Xi) as a nonlinear version of Chamber-

lain’s (1982) multivariate regression for panel data. In the linear model of
equation (S.1), for E[αi|Xi] = π ′ vec(Xi), we have

E[Yit |Xi] =X ′
itβ0 +π ′ vec(Xi)=m(Xit�Xi)�

m(x�X)= x′β0 +π ′ vec(X)�

For a single time period, β0 is indistinguishable from coefficients in π, but
multiple time periods can be used to identify β0 from these regressions. Equa-
tion (S.3) is like this except it is jointly nonlinear in its first and second argu-
ments.

S.3. SUPPLEMENTS TO SECTION 3

S.3.1. Auxiliary Results

We turn now to identification and estimation with discrete regressors in the
static case. Here we use the idea that “time is an instrument” or “time is ran-
domly assigned.” This allows us to vary the time period so as to match x with
Xit and achieve identification.

The following lemma applies this idea to obtain specific results. Let git(x)=
g0(x�αi� εit).

LEMMA A4: If Assumptions 1 and 2 are satisfied, then

E
[
Gi(y�x)|Xi

]= 1
(
Ti(x) > 0

)
E

[
Φ

(
y − gi1(x)

h

)∣∣Xi

]
�

If, in addition, E[|g0(x�αi� εit)|]<∞ for all x, then

E
[
Y i(x)|Xi

]= 1
(
Ti(x) > 0

)
E
[
gi1(x)|Xi

]
�

PROOF: By Assumptions 1 and 2,

E

[
1(Xit = x)Φ

(
y −Yit
h

)∣∣Xi

]

=E
[

1(Xit = x)Φ
(
y − git(x)

h

)∣∣Xi

]
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= 1(Xit = x)E
[
Φ

(
y − git(x)

h

)∣∣Xi

]

= 1(Xit = x)E
[
Φ

(
y − gi1(x)

h

)∣∣Xi

]
�

Therefore, we have

E
[
Gi(y�x)|Xi

]
= 1

(
Ti(x) > 0

)
Ti(x)

−1
T∑
t=1

E

[
1(Xit = x)Φ

(
y −Yit
h

)∣∣Xi

]

= 1
(
Ti(x) > 0

)
Ti(x)

−1
T∑
t=1

1(Xit = x)E
[
Φ

(
y − gi1(x)

h

)∣∣Xi

]

= 1
(
Ti(x) > 0

)
E

[
Φ

(
y − gi1(x)

h

)∣∣Xi

]
�

We also have

E
[
1(Xit = x)Yit |Xi

]
=E[1(Xit = x)git(x)|Xi

]= 1(Xit = x)E
[
git(x)|Xi

]
= 1(Xit = x)E

[
gi1(x)|Xi

]
�

so the second conclusion follows similarly to the first. Q.E.D.

We can use the previous result to show how δ is identified.

LEMMA A5: If Assumptions 1 and 2 are satisfied, E[|g0(x�αi� εit)|] <∞ for
all x, and Pr(Di = 1) > 0, then δ=E[Di{Y i(x

a)−Y i(x
b)}]/E[Di].

PROOF: Note that Di = Di1(Ti(xb) > 0) = Di1(Ti(xa) > 0). Therefore, by
Lemma A4,

E
[
Di

{
Y i

(
xa
)−Y i

(
xb
)}|Xi

]
=DiE

[
Y i

(
xa
)|Xi

]−DiE
[
Y i

(
xb
)|Xi

]
=Di1

(
Ti
(
xa
)
> 0

)
E
[
gi1

(
xa
)|Xi

]−Di1
(
Ti
(
xb
)
> 0

)
E
[
gi1

(
xb
)|Xi

]
=DiE

[
gi1

(
xa
)− gi1

(
xb
)|Xi

]=E[Di

{
gi1

(
xa
)− gi1

(
xb
)}|Xi

]
�

The conclusion then follows by iterated expectations. Q.E.D.
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The asymptotic normality of δ̂ and consistency of the asymptotic variance
estimator are simple applications of standard theory, as in the following result,
that forms a prototype for the asymptotic normality of the nonparametric ATE
bounds. Let P =E[Di].

THEOREM A6: If Assumptions 1 and 2 are satisfied, E[|g0(x�αi� εit)|2] <∞
for all x, and Pr(Di = 1) > 0, then

√
n(δ̂− δ) d−→N(0� V ) and

∑n

i=1 ψ̂
2
i /n

p−→
V , where V = E[ψ2

i ] and ψi = P−1Di[Y i(x
a)−Y i(x

b)− δ].
PROOF: Let di =Di{Y i(x

a)−Y i(x
b)}, so that δ̂= d/D. By the central limit

theorem (CLT), d and D are root-n consistent for μd = E[di] and P . Then, by
P > 0 and δ= μd/P ,

√
n(δ̂− δ)= √

n

(
d

D
− μd

P

)
= √

nD
−1[
d−μd − δ(D− P)]

= √
nP−1

[
d−μd − δ(D− P)]+ op(1)

=
n∑
i=1

ψi/
√
n+ op(1)�

The first conclusion then follows by the CLT. For the second conclusion, note
that ∑

i

(ψ̂i −ψi)2/n

≤ C(D−1 − P−1
)2 ∑

i

d2
i /n+C(D−1

δ̂− P−1δ
)2 ∑

i

D2
i /n

p−→ 0�

Therefore, the second conclusion follows by a standard argument. Q.E.D.

We now give an intermediate result that is useful for showing asymptotic
normality for the estimator of the identified quantile treatment effect. This will
also serve as a prototype for the proofs of Theorems 2 and 3 in the body of the
paper. Let Ĝ1(y�x) = Ĝ(y�x|Di = 1), G1(y�x) =G(y�x|Di = 1), Gi(y�x) =
1(Ti(x) > 0)Ti(x)−1

∑T

t=1 1(Xit = x)1(Yit ≤ y), and G′
1(y�x)= ∂G1(y�x)/∂y .

LEMMA A7: If Assumption 7 is satisfied with G�(y�x) replaced by G1(y�x),
then for any 0< λ< 1 and any x, there exists q̂λ with Ĝ1(q̂λ�x)= λ satisfying

√
n(q̂λ − qλ)= −G′

1(qλ�x)
−1 1√

n
P−1

∑
i

Di

[
Gi(qλ�x)− λ]+ op(1)�

PROOF: Note that Ĝ1(y�x) is strictly monotonic increasing in y and con-
verges to 0 and 1 as y goes to −∞ and ∞, respectively. Therefore, there is a
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unique q̂λ such that Ĝ1(q̂λ�x) = λ. Also, by G1(y�x) strictly monotonic in y ,
there is a unique qλ solving G1(qλ�x)= λ. By G1(y�x) strictly monotonic and
continuous, it follows that, for all ε > 0 small enough,

0<G1(qλ − ε�x) <G1(qλ�x)= λ�
By Ĝ1(qλ − ε�x) p−→G1(qλ − ε�x), it follows that w.p.a.1, for all y ≤ qλ − ε,

Ĝ1(y�x)≤ Ĝ1(qλ − ε�x) <G1(qλ�x)= λ�
Thus, it follows that q̂λ ≥ qλ − ε w.p.a.1. Similarly, it follows that q̂λ ≤ qλ + ε

w.p.a.1. Since ε is arbitrary, we have q̂λ
p−→ qλ.

Next, note thatG1(y�x) is differentiable in y by Assumption 7, so that gi1(x)
is continuously distributed conditional on Di = 1. Thus, git(x) is also contin-
uously distributed conditional on Di = 1 by Assumption 2. It follows that, as
h−→ 0,Φ(y−git (x)

h
)−→ 1(git(x)≤ y) with probability 1. By the dominated con-

vergence theorem, this convergence is also in mean square. Recall that

Gi(y�x)=

⎧⎪⎨
⎪⎩
Ti(x)

−1
T∑
t=1

1(Xit = x)1(Yit ≤ y)� Ti(x) > 0�

0� Ti(x)= 0�

We have Gi(y�x)−→Gi(y�x) in mean square, so that

n∑
i=1

[
DiGi(y�x)−DiGi(y�x)

]
/n

p−→ 0�

n∑
i=1

{
DiGi(y�x)−E[DiGi(y�x)

]

−DiGi(y�x)+E[DiGi(y�x)
]}
/
√
n

p−→ 0�

Let Wi = g0(x�αi� εi1) and f (w) and F(w) denote the p.d.f. and CDF of Wi

conditional on Di = 1 and P = E[Di]. Note that Φ(y−w
h
)F(w) converges to

zero as w−→ ∞ and as w−→ −∞. Therefore, integration by parts gives

E
[
Gi(y�x)|Di = 1

]
=
∫
Φ

(
y −w
h

)
f (w)dw= h−1

∫
φ

(
y −w
h

)
F(w)dw

=
∫
φ(u)F(y − hu)du= F(y)+ (

h2/2
)∫

φ(u)F ′′(y − hu)u2 du

= F(y)+ o(h2
)=G1(y�x)+ o(h2

)
�
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where the fifth equality follows by an expansion

F(y − hu)= F(y)− F ′(y)hu+ F ′′(y − hu)h2u2/2�

and h can depend on u. Therefore, it follows byE[DiGi(qλ�x)]=PG1(qλ�x)=
Pλ that

n∑
i=1

Di

[
Gi(qλ�x)− λ]/√n

=
n∑
i=1

{
DiGi(qλ�x)−E[DiGi(qλ�x)

]}
/
√
n

+ √
n
{
E
[
DiGi(qλ�x)

]− λP}− λ
n∑
i=1

(Di − P)/
√
n

=
n∑
i=1

{
DiGi(qλ�x)−E[DiGi(qλ�x)

]}
/
√
n+ op(1)

+O(√nh2
)− λ

n∑
i=1

(Di − P)/
√
n

=
n∑
i=1

Di

[
Gi(qλ�x)− λ]/√n+ op(1)=Op(1)�

Next, note that from standard uniform convergence of kernel density results,
Ĝ′

1(y�x) converges uniformly in probability to G′
1(y�x), where the “prime”

superscript denotes the partial derivative with respect to y . Therefore, for
qλ

p−→ qλ, Ĝ′
1(qλ�x)

p−→ G′
1(qλ�x) > 0, and hence Ĝ′

1(qλ�x)
−1 = Op(1). An

expansion then gives λ= Ĝ1(q̂λ�x)= Ĝ1(qλ�x)+ Ĝ′
1(qλ�x)(q̂λ − qλ). Solving

and inverting gives

√
n(q̂λ − qλ)
= −Ĝ′

1(qλ�x)
−1√n[Ĝ1(qλ�x)− λ]

= −Ĝ′
1(qλ�x)

−1

(
n∑
i=1

Di/n

)−1 n∑
i=1

Di

[
Gi(qλ�x)− λ]/√n

= −G′
1(qλ�x)

−1P−1
n∑
i=1

Di

[
Gi(qλ�x)− λ]/√n+ op(1)�

Q.E.D.
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THEOREM A8: If Assumptions 1, 2, and 7 are satisfied and E[Di] > 0, then√
n(δ̂λ − δλ) d−→N(0� Vλ) and

∑n

i=1 ψ̂
2
λi/n

p−→ Vλ, where Vλ =E[ψ2
λi] and

ψiλ = −Di

P

{
Gi(q

a�xa)− λ
G′

1(q
a�xa)

− Gi(q
b�xb)− λ

G′
1(q

b�xb)

}
�

PROOF: By Lemma A7, we have

√
n(δ̂λ − δλ)=

n∑
i=1

ψiλ/
√
n+ op(1)�

The CLT gives the first conclusion. Next, note that by Φ(v) having a bounded
derivative,

n∑
i=1

[
Gi

(
q̂a� xa

)−Gi

(
qa�xa

)]2
/n

≤ Ch−1
(
q̂a − qa)=Op

(
(h

√
n)−1

) p−→ 0�

Then by mean square convergence of Gi(q
a�xa) to Gi(q

a�xa) and the triangle
inequality, we have

∑n

i=1[Gi(q̂
a�xa)−Gi(q

a�xa)]2/n
p−→ 0. The second con-

clusion then follows similarly to the proof of Theorem A6. Q.E.D.

S.3.2. Proof of Theorem 1

Note that σ2
i > 0 if and only if Di = 1, so that

σ2
i =Diσ

2
i � Xit −Xi =Di(Xit −Xi)�

Furthermore, since Xit is a dummy variable, the usual difference in means for-
mula for the slope of a regression on a constant and dummy variable gives

Di

∑T

t=1(Xit −Xi)Yit∑T

t=1(Xit −Xi)2
=Di

{
Y i(1)−Y i(0)

}
�

Also, by Khintchine’s weak law of large numbers (LLN),

n−1(T − 1)−1
n∑
i=1

T∑
t=1

(Xit −Xi)
2

= n−1
n∑
i=1

σ2
i

p−→E
[
σ2
i

]=E[Diσ
2
i

]
�
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Furthermore, by LLN,

n−1(T − 1)−1
n∑
i=1

T∑
t=1

(Xit −Xi)Yit

= n−1(T − 1)−1
n∑
i=1

T∑
t=1

Di(Xit −Xi)Yit

= n−1
n∑
i=1

Diσ
2
i

{
Y i(1)−Y i(0)

}
p−→E

[
Diσ

2
i

{
Y i(1)−Y i(0)

}]
�

The conclusion then follows by the continuous mapping theorem. Q.E.D.

S.4. SUPPLEMENTS TO SECTION 4

Here we include the proof of Theorem 2 as well as bounds that impose
monotonicity.

S.4.1. Proof of Theorem 2

Let (
m�i

mui

)
=
(
Y i

(
xa
)−Y i

(
xb
)+B�1

(
Ti
(
xa
)= 0

)−Bu1
(
Ti
(
xb
)= 0

)
Y i

(
xa
)−Y i

(
xb
)+Bu1

(
Ti
(
xa
)= 0

)−B�1
(
Ti
(
xb
)= 0

)
)
�

Note that Δ̂� = ∑n

i=1m�i/n and Δ̂u = ∑n

i=1mui/n. Then, for Σ = Var((m�i�
mui)), Δ� = E[m�i], and Δu = E[mui], the first and second conclusions follow
by standard arguments for a vector of sample means.

Next, note that, by Lemma A4 and iterated expectations,

Δ� = E
[
1
(
Ti
(
xa
)
> 0

)
gi1

(
xa
)+B�1

(
Ti
(
xa
)= 0

)]
(S.4)

−E[1(Ti(xb)> 0
)
gi1

(
xb
)+Bu1

(
Ti
(
xb
)= 0

)]
≤ E[gi1(xa)]−E[gi1(xb)]= Δ�

It follows similarly that Δ≤ Δu. To show sharpness, let α̃i = (αi�Xi). Define

g(x� α̃i� εit�Ca�Cb)= 1
(
Ti(x) > 0

)
g0(x�αi� εit)

+ 1
(
Ti(x)= 0

)[
Ca1

(
x= xa)+Cb1

(
x= xb)]�

where B� ≤ Ca ≤ Bu and B� ≤ Cb ≤ Bu. Note that Ti(Xit) > 0 with probability
1, so that g(Xit� α̃i� εit�Ca�Cb) = g0(Xit�αi� εit) = Yit . Hence the conditional
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distribution of (Yi1� � � � �YiT )′ given Xi is the same for g and α̃i as for g0 and
αi. Also, because (αi�Xi) is a one-to-one function of (α̃i�Xi), it follows that
Assumption 2 is satisfied with α̃i replacing αi. When (Ca�Cb) = (B��Bu), we
have

Δ= E
[
g
(
xa� α̃i� εit�B��Bu

)− g(xb� α̃i� εit�B��Bu)]
= E

[
1
(
Ti
(
xa
)
> 0

)
gi
(
xa
)+ 1

(
Ti
(
xa
)= 0

)
B�
]

−E[1(Ti(xb)> 0
)
gi
(
xb
)+ 1

(
Ti
(
xb
)= 0

)
Bu

]= Δ��
and the lower bound is attained. Similarly, the upper bound is attained when
(Ca�Cb)= (Bu�B�).

Turning now to the quantile bounds, it follows as in the proof of Lemma A7
applied to Ĝ�(y�x

a) and to Ĝ�(y�x
b)+ P(xb) that

q̂du
p−→ qdu� q̂d�

p−→ qd� � G�

(
qdu�x

d
)= λ�

G�

(
qd� �x

d
)+ P

(
xd
)= λ� d ∈ {a�b}�

It also follows as in equation (S.4) that G�(y�x)≤G(y�x)≤G�(y�x)+ P(x),
implying Δλ� ≤ Δλ ≤ Δλu. Next, it follows as in Lemma A7 that

√
n
(
q̂au − qau

)= −G′
�

(
qau�x

a
)−1 1√

n

∑
i

[
Gi

(
qau�x

)− λ]+ op(1)�
√
n
(
q̂b� − qb�

)= −G′
�

(
qb��x

b
)−1

× 1√
n

∑
i

[
Gi

(
qb��x

b
)+ 1

(
Ti
(
xb
)= 0

)− λ]+ op(1)�

Differencing then gives

√
n(Δ̂u −Δu)= −

n∑
i=1

Ψu
λi√
n

+ op(1)�

Ψu
λi =

Gi(q
a
u�x

a)− λ
G′
�(q

a
u�x

a)
− Gi(q

b
� �x

b)+ 1(Ti(xb)= 0)− λ
G′
�(q

b
� � x

b)
�

It follows similarly that

√
n(Δ̂� −Δ�)= −

n∑
i=1

Ψ�
λi√
n

+ op(1)�

Ψ �
λi =

Gi(q
a
� �x)+ 1(Ti(xa)= 0)− λ

G′
�(q

a
� � x

a)
− Gi(q

b
u�x

b)− λ
G′
�(q

b
u�x

b)
�
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Then, for Σλ = Var(Ψ �
λi�Ψ

u
λi), the next conclusion follows by the CLT. It also

follows by arguments similar to the proof of Theorem A8 that
∑n

i=1(Ψ̂
�
λi −

Ψ�
λi)

2/n
p−→ 0 and

∑n

i=1(Ψ̂
u
λi −Ψu

λi)
2/n

p−→ 0. The consistency of Σ̂λ then fol-
lows by standard methods.

To show sharpness of the QTE bounds, define α̃i and g(x� α̃i� εit�Ca�Cb)
as in the proof of the ATE bounds, but now for any Ca�Cb ∈ R. Let
G(y�x�Ca�Cb)=E[1(g(x� α̃i� εit�Ca�Cb)≤ y)]. Note that, for d ∈ {a�b},

G
(
y�xd�Ca�Cb

)=G�

(
y�xd

)+ 1(y ≥ Cd)P
(
xd
)
�

Let q(λ�x�Ca�Cb) be the associated QSF. For d ∈ {a�b},
q
(
λ�xd�Ca�Cb

)

=
⎧⎨
⎩
qu
(
λ�xd

)
� λ <G�

(
Cd�x

d
)
�

Cd� G�

(
Cd�x

d
)≤ λ≤G�

(
Cd�x

d
)+ P

(
xd
)
�

q�
(
λ�xd

)
� λ >G�

(
Cd�x

d
)+ P

(
xd
)
�

For λ with P(xd) < λ < 1 − P(xd), we have q(λ�xd�Ca�Cb) = q�(λ�x
d) for

Cd small enough that G�(Cd�x)+ P(xd) < λ and q(λ�xd�Ca�Cb)= qu(λ�x
d)

for Cd big enough. For λ ≤ P(xd), we have q(λ�xd�Ca�Cb)= qu(λ�x) for all
Cd big enough (by λ < 1 − P(xd)) and limCd−→−∞ q(λ�xd�Ca�Cb) = −∞ =
q�(λ�x). For λ ≥ 1 − P(xd), we have q(λ�xd�Ca�Cb) = q�(λ�x

d) for all Cd
small enough and limCd−→∞ q(λ�xd�Ca�Cb)= +∞ = qu(λ�xd). Therefore, we
have

lim
Ca−→−∞�Cb−→+∞

[
q
(
λ�xa�Ca�Cb

)− q(λ�xb�Ca�Cb)]
= q�

(
λ�xa

)− qu
(
λ�xb

)
�

lim
Ca−→+∞�Cb−→−∞

[
q
(
λ�xa�Ca�Cb

)− q(λ�xb�Ca�Cb)]
= qu

(
λ�xa

)− q�
(
λ�xb

)
�

showing the bounds are sharp. Q.E.D.

S.4.2. Bounds Under Monotonicity

We now turn to the bounds when g0 is known to be monotonic, satisfying the
following condition.

ASSUMPTION A1: For some xa and xb, g0(x
a�αi� εit)≥ g0(x

b�αi� εit).

This condition leads to tighter bounds for the ASF and QSF. Here we give re-
sults showing estimable population bounds under monotonicity. We also briefly



NONSEPARABLE PANEL MODELS 13

describe how to estimate them, but for brevity do not give the full asymptotic
theory. Define 1ai = 1(Ti(xa) > 0), 1bi = 1(Ti(xb) > 0), P(xb�xa)= Pr(Ti(xa)=
Ti(x

b)= 0), and

G∗
u

(
y�xa

)=E[Gi

(
y�xa

)+ (
1 − 1ai

)
Gi

(
y�xb

)]+ P
(
xb�xa

)
�

G∗
�

(
y�xb

)=E[Gi

(
y�xb

)+ (
1 − 1bi

)
Gi

(
y�xa

)]
�

THEOREM A9: Suppose that Assumptions 1, 2, 5, and A1 are satisfied. If
E[|g0(x�αi� εit)|] < ∞ for x ∈ {xa�xb} then Δ ≥ Pδ. Also, if G∗

u(y�x
a) and

G∗
�(y�x

b) are continuous and strictly increasing on the interior of their range, then
q(λ�xa)≥Q(λ�G∗

u(·�xa)) and q(λ�xb)≤Q(λ�G∗
�(·�xb)), so that

Δλ ≥Q(λ�G∗
u

(·�xa))−Q(λ�G∗
�

(·�xb))�
PROOF: Note that 1 = 1ai + (1 − 1ai )1

b
i + (1 − 1ai )(1 − 1bi ). By Lemma A4,

E
[
1ai gi1

(
xa
)]=E[Y i

(
xa
)]
� E

[
1bi gi1

(
xb
)]=E[Y i

(
xb
)]
�

Then by monotonicity,

μ
(
xa
) = E

[
gi1

(
xa
)]

≥ E[{1ai + (
1 − 1ai

)(
1 − 1bi

)}
gi1

(
xa
)]+E[(1 − 1ai

)
1bi gi1

(
xb
)]

= E
[
1ai Y i

(
xa
)+ (

1 − 1ai
)
1bi Y i

(
xb
)+ (

1 − 1ai
)(

1 − 1bi
)
gi1

(
xa
)]
�

Similarly,

μ
(
xb
)≤E[1bi Y i

(
xb
)+ (

1 − 1bi
)
1ai Y i

(
xa
)+ (

1 − 1ai
)(

1 − 1bi
)
gi1

(
xb
)]
�

Subtracting this inequality from the previous one, and noting that 1ai − (1 −
1bi )1

a
i = 1bi 1

a
i =Di and −1bi + (1 − 1ai )1

b
i = −Di,

μ
(
xa
)−μ(xb)

≥E[Di

{
Y i

(
xa
)−Y i

(
xb
)}]

+E[(1 − 1ai
)(

1 − 1bi
){
g0

(
xa�αi� εit

)− g0

(
xb�αi� εit

)}]
≥E[Di

{
Y i

(
xa
)−Y i

(
xb
)}]= Pδ�

giving the first conclusion.
Next, similarly to above,

G
(
y�xa

)=E[{1ai + (
1 − 1ai

)(
1 − 1bi

)+ (
1 − 1ai

)
1bi
}
1
(
gi1

(
xa
)≤ y)]

≤ E[Gi

(
y�xa

)]+E[(1 − 1ai
)
Gi

(
y�xb

)]+ P
(
xb�xa

)
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=G∗
u

(
y�xa

)
�

G
(
y�xb

)≥G∗
�

(
y�xb

)
�

Inverting gives the second conclusion. Q.E.D.

Estimation of the bounds under monotonicity is straightforward. We can es-
timate the lower bound for the ATE by (

∑n

i=1Di/n)δ̂. We can estimate the
quantile bounds by inverting

Ĝ∗
u

(
y�xa

)=
n∑
i=1

[
Gi

(
y�xa

)+ (
1 − 1ai

)
Gi

(
y�xb

)
+ 1

(
Ti
(
xb
)= Ti

(
xa
)= 0

)]
/n�

Ĝ∗
�

(
y�xb

)=
n∑
i=1

[
Gi

(
y�xb

)+ (
1 − 1bi

)
Gi

(
y�xa

)]
/n�

Asymptotic theory for these estimators of bounds under monotonicity is
straightforward. We do not know if they are sharp.

S.5. SUPPLEMENTS TO SECTION 5

Here we give the proof of Theorem 3 as well as bounds that impose mono-
tonicity.

S.5.1. Proof of Theorem 3

We first prove the second part of Lemma A4 for the dynamic model. Let
dit(x)= 1(Xi ∈ Xt(x)). By Assumption 3,

∑T

t=1 dit(x)= 1(Ti(x) > 0), and the
fact that dit(x) depends only on Xit�Xi�t−1� � � � �Xi1, we have

E
[
Ŷi(x)|Xi1

] =
T∑
t=1

E
[
dit(x)Yit |Xi1

]

=
T∑
t=1

E
[
dit(x)E

[
git(x)|Xit� � � � �Xi1

]|Xi1

]

=
T∑
t=1

E
[
dit(x)E

[
gi1(x)|Xi1

]|Xi1

]
= E

[
1
(
Ti(x) > 0

)|Xi1

]
E
[
gi1(x)|Xi1

]
�
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Let (
m�i

mui

)
=
(
Ŷi
(
xa
)− Ŷi

(
xb
)+B�1

(
Ti
(
xa
)= 0

)−Bu1
(
Ti
(
xb
)= 0

)
Ŷi
(
xa
)− Ŷi

(
xb
)+Bu1

(
Ti
(
xa
)= 0

)−B�1
(
Ti
(
xb
)= 0

)
)
�

Note that Δ̂� = ∑n

i=1m�i/n and Δ̂u = ∑n

i=1mui/n. Then, for Σ = Var((m�i�
mui)), Δ� = E[m�i], and Δu = E[mui], the first and second conclusions follow
by standard arguments for a vector of sample means.

Next, note that E[gi1(xa)|Xi1] ≤ Bu by Assumption 6, so that

E
[
Bu1

(
Ti
(
xa
)= 0

)|Xi1

]≥E[1(Ti(xa)= 0
)|Xi1

]
E
[
gi1

(
xa
)|Xi1

]
�

Then by iterated expectations and Ti(xa)≥ 0,

E
[
Ŷi
(
xa
)+Bu1

(
Ti
(
xa
)= 0

)|Xi1

]
≥E[1(Ti(xa)> 0

)|Xi1

]
E
[
gi1

(
xa
)|Xi1

]
+E[1(Ti(xa)= 0

)|Xi1

]
E
[
gi1

(
xa
)|Xi1

]
=E[gi1(xa)|Xi1

]
�

Taking expectations of both sides of this inequality gives

E
[
Ŷi
(
xa
)+Bu1

(
Ti
(
xa
)= 0

)]≥ μ(xa)�
Similarly, we have E[Ŷi(xa) + B�1(Ti(xa) = 0)] ≤ μ(xa). Replacing xa by xb
and differencing gives Δ� ≤ Δ≤ Δu.

Turning to the quantile bounds, we next prove the first part of Lemma A4
for a dynamic model. Let Gi(y�x) here, in the dynamic case, be given by

Gi(y�x)=
T∑
t=1

dit(x)1(Yit ≤ y)=
T∑
t=1

dit(x)1
(
git(x)≤ y)�

G�(y�x)=E[E[1(Ti(x) > 0
)|Xi1

]
1
(
gi1(x)≤ y)]�

Note that since
∑T

t=1 dit(x) = 1(Ti(x) > 0) and dit(x) depends only on
Xit�Xit−1� � � � �Xi1, Assumption 3 implies

E
[
Gi(y�x)

] = E

[
T∑
t=1

dit(x)1
(
git(x)≤ y)

]

= E

[
T∑
t=1

dit(x)E
[
1
(
git(x)≤ y)|Xit� � � � �Xi1

]]
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= E

[
T∑
t=1

dit(x)E
[
1
(
gi1(x)≤ y)|Xi1

]]

= E
[
1
(
Ti(x) > 0

)
E
[
1
(
gi1(x)≤ y)|Xi1

]]
=G�(y�x)�

Also, since dit(x)dis(x) = 0 for any s �= t and dit(x)2 = dit(x), Assumption 3
implies that

E
[{
Ĝi(y�x)−Gi(y�x)

}2]
=E

[
T∑
t=1

dit(x)

{
Φ

(
y − git(x)

h

)
− 1

(
git(x)≤ y)}2

]

≤E
[

T∑
t=1

dit(x)

×E
[{
Φ

(
y − git(x)

h

)
− 1

(
git(x)≤ y)}2∣∣Xit� � � � �Xi1

]]

=E
[

1
(
Ti(x) > 0

)
E

[{
Φ

(
y − gi1(x)

h

)
− 1

(
gi1(x)≤ y)}2∣∣Xi1

]]

=E
[
E
[
1
(
Ti(x) > 0

)|Xi1

]{
Φ

(
y − gi1(x)

h

)
− 1

(
gi1(x)≤ y)}2]

�

By Assumption 7 with Xi1 replacing Xi, it follows that gi1(x) is contin-
uously distributed for the probability measure weighted by E[1(Ti(x) >
0)|Xi1]. Therefore, it follows, similarly to the proof of Lemma A7, that
E[{Ĝi(y�x) − Gi(y�x)}2] −→ 0 as h −→ 0. It also follows, similarly to the
proof of Lemma A7, that

E
[
Ĝi(y�x)

]=E[Gi(y�x)
]+O(h2

)
�

The conclusion now follows exactly like the proof of Theorem 2. Q.E.D.

S.5.2. Bounds Under Monotonicity

We now turn to the bounds when g0 is known to be monotonic, satisfying
Assumption A1, in the dynamic model. This condition leads to tighter bounds
for the ASF and QSF. Here we give results showing estimable population
bounds under monotonicity. We also briefly describe how to estimate them,
but for brevity do not give the full asymptotic theory. For d ∈ {a�b}, define
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1dit = 1(Xi ∈ Xt(x
d)), t = 1� � � � �T , 1di = 1(Xi ∈ X (xd)), and 1̃diT = 1(XiT = xd).

Let

G∗
u

(
y�xa

)=E[Gi

(
y�xa

)+ 1ai
{
1̃biT1(YiT ≤ y)+ (

1 − 1̃biT
)}]
�

G∗
�

(
y�xb

)=E[Gi

(
y�xb

)+ 1bi 1̃
a
iT1(YiT ≤ y)]�

THEOREM A10: Suppose that Assumptions 1, 3, 5, and A1 are satisfied. If
E[|g0(x�αi� εit)|]<∞ for x ∈ {xa�xb}, then

Δ ≥ E[Ŷi(xa)− Ŷi
(
xb
)]+E[1ai (1̃biTYiT + (

1 − 1̃biT
)
B�
)]

−E[1bi (1̃aiTYiT + (
1 − 1̃aiT

)
Bu

)]
�

Also, if G∗
u(y�x

a) and G∗
�(y�x

b) are continuous and strictly increasing on
the interior of their range, then q(λ�xa) ≥ Q(λ�G∗

u(·�xa)) and q(λ�xb) ≤
Q(λ�G∗

�(·�xb)), so that

Δλ ≥Q(λ�G∗
u

(·�xa))−Q(λ�G∗
�

(·�xb))�
PROOF: Note that 1 =∑T

t=1 1ait + 1ai 1̃
b
iT + 1ai (1 − 1̃biT ). By Lemma A4,

T∑
t=1

E
[
1aitgit

(
xa
)]=E[Ŷi(xa)]� T∑

t=1

E
[
1bitgit

(
xb
)]=E[Ŷi(xb)]�

Then by Assumption 3, monotonicity, and giT (xa)≥ B�,

μ
(
xa
) =

T∑
t=1

E
[
1aitgit

(
xa
)]+E[1ai giT (xa)]

≥
T∑
t=1

E
[
1aitgit

(
xa
)]+E[1ai 1̃biT giT (xb)]+E[1ai (1 − 1̃biT

)]
B�

= E
[
Ŷi
(
xa
)]+E[1ai 1̃biTYiT ]+E[1ai (1 − 1̃biT

)]
B��

Similarly, we have

μ
(
xb
)≤E[Ŷi(xb)]+E[1bi 1̃aiTYiT ]+E[1bi (1 − 1̃aiT

)]
Bu�

Subtracting this inequality from the previous one gives the first conclusion.
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Next, similarly to above,

G
(
y�xa

)=
T∑
t=1

E
[
1ait1

(
git
(
xa
)≤ y)]+E[1ai 1(giT (xa)≤ y)]

≤ E[Gi

(
y�xa

)]+E[1ai 1̃biT1(YiT ≤ y)]+E[1ai (1 − 1̃biT
)]

=G∗
u

(
y�xa

)
�

G
(
y�xb

)≥G∗
�

(
y�xb

)
�

Inverting gives the second conclusion. Q.E.D.

If Xit ∈ {0�1}, xb = 0, and xa = 1, then 1bi (1 − 1̃aiT )= 1ai (1 − 1̃biT )= 0 and the
lower bound for Δ does not depend on B� and Bu.

Estimation of the bounds under monotonicity is straightforward. We can es-
timate the lower bound for the ATE by

n∑
i=1

[
Ŷi
(
xa
)− Ŷi

(
xb
)+ 1ai

(
1̃biTYiT + (

1 − 1̃biT
)
B�
)

− 1bi
(
1̃aiTYiT + (

1 − 1̃aiT
)
Bu

)]
/n�

We can estimate the quantile bounds by inverting

Ĝ∗
u

(
y�xa

)=
n∑
i=1

[
Ĝi

(
y�xa

)+ 1ai
{
1̃biT1(YiT ≤ y)+ (

1 − 1̃aiT
)}]
/n�

Ĝ∗
�

(
y�xb

)=
n∑
i=1

[
Ĝi

(
y�xb

)+ 1bi 1̃
a
iT1(YiT ≤ y)]/n�

Asymptotic theory for these estimators of bounds under monotonicity is
straightforward. We do not know if they are sharp.

S.6. SUPPLEMENTS TO SECTION 6

In addition to the proofs of the rate results of Section 6, we here give nec-
essary and sufficient conditions for identification as T −→ ∞ and extend the
identification and rate results to the QTE.

S.6.1. Identification as T → ∞
We begin with the identification result. The necessary and sufficient condi-

tion for identification of Δ as T grows is the following.
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ASSUMPTION A2: Pr(Pr(Xit = x|αi) > 0) = 1 for x ∈ {xa�xb} and some t ∈
{1� � � � �T }.

If this condition does not hold for both xb and xa, then some individuals,
as represented by αi, will never reach either xb or xa, so we cannot nonpara-
metrically identify the treatment effect for those individuals, and hence the
overall treatment effect is not identified. A related condition was formulated
in Chamberlain (1982, p. 17) but was used for a different purpose, as a suffi-
cient condition for a least-squares estimate for a single individual to converge
to that individual’s coefficient.

The following result shows the key role of Assumption A2 in achieving iden-
tification as T −→ ∞.

THEOREM A11: Suppose that Assumptions 1 and 5 are satisfied. If Assump-
tion A2 is not satisfied, then P(x) is bounded away from zero uniformly in T for
x= xa or x= xb, so that if Assumption 6 is satisfied, Δu − Δ� does not converge
to zero as T grows. Suppose also that (Xi1�Xi2� � � �) is stationary and ergodic con-
ditional on αi. If Assumptions 2 and A2 are satisfied and E[|g0(x�αi� εi1)|]<∞
for x = xa and x = xb, then δ −→ Δ as T −→ ∞. If Assumptions 3, 6, and A2
are satisfied, then Δu −Δ� −→ 0 as T −→ ∞.

PROOF: First, note that if Assumption A2 is not satisfied, then, for some
xd ∈ {xa�xb}, there is a set A with Pr(A) > 0 such that Pr(Xit = xd|αi)= 0 for
all t and αi ∈ A. Then

E
[
Ti
(
xd
)|αi ∈ A

]=
T∑
t=1

E
[
1
(
Xit = xd

)|αi ∈ A
]= 0�

Since Ti(xd) is a nonnegative random variable, this implies that Pr(Ti(xd) =
0|αi)= 1 for all T and αi ∈ A. Therefore

P
(
xd
) = E

[
Pr
(
Ti
(
xd
)= 0|αi

)]≥ E[1(A)Pr
(
Ti
(
xd
)= 0|αi

)]
= Pr(A) > 0�

Thus P(xd) is bounded away from zero for all T , and hence, under Assump-
tion 6, (Bu −B�)[P(xa)+ P(xb)] ≥ (Bu −B�)P(xd) does not converge to zero.

Next suppose that Assumptions 2 and A2 are satisfied, (Xi1�Xi2� � � �) is
stationary and ergodic conditional on αi, and that x ∈ {xa�xb}. Recall that
Ti(x) = ∑T

t=1 1(Xit = x). By the ergodic theorem, there is a set of αi having
probability 1 such that

Ti(x)/T
a�s�−→E

[
1(Xit = x)|αi

]= Pr(Xit = x|αi)�
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Under Assumption A2, Pr(Xit = x|αi) > 0 on a set of αi with probability 1 (a.s.
αi henceforth). Therefore 1(Ti(x) > 0)

a�s�−→ 1 a.s. αi. Since this holds for both
xa and xb, it follows that

Di = 1
(
Ti
(
xa
)
> 0

)
1
(
Ti
(
xb
)
> 0

) a�s�−→ 1

a.s. αi. Let Δi = gi1(x
a)− gi1(x

b). Note that |DiΔi| ≤ |Δi| and E[|Δi||αi] <∞
a.s. αi. Then by the dominated convergence theorem (DCT henceforth),

E[DiΔi|αi] −→E[Δi|αi]� E[Di|αi] −→ 1 a.s. αi�

Then, by applying the DCT again,

E[DiΔi] −→E[Δi] = Δ� E[Di] −→ 1�

giving the first conclusion.
Suppose next that Assumptions 3 and 6 are satisfied, and (Xi1�Xi2� � � �) is sta-

tionary and ergodic conditional on αi. Recall that Δu−Δ� = (Bu−B�)[P(xa)+
P(xb)]. If Assumption A2 is satisfied, then, since 1(Ti(xa) > 0)≥Di, we have

P
(
xa
)=E[1(Ti(xa)= 0

)]≤ 1 −E[Di] −→ 0�

Similarly, we have P(xb)−→ 0 so the second conclusion holds. Q.E.D.

S.6.2. Proof of Theorem 4

Let
∏T

t=1 1(Xit �= x) be the indicator function for the event that none of the
elements of Xi is equal to x, so that P(x) = E[∏T

t=1 1(Xit �= x)]. By iterated
expectations, for T > J,

P(x)= E

[
T−1∏
t=1

1(Xit �= x)E
[
1(XiT �= x)|Xi�T−1� � � � �Xi1�αi

]]

= E

[{
T−1∏
t=1

1(Xit �= x)
}

Pr(XiT �= x|Xi�T−1� � � � �Xi�T−J�αi)

]

≤ (1 − ε)E
[
T−1∏
t=1

1(Xit �= x)
]
�

Repeating the argument for T − 1� � � � � J gives

P(x)≤ (1 − ε)T−JE

[
J−1∏
t=1

1(Xit �= x)
]

≤ (1 − ε)T−J�
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giving the first conclusion.
For the second conclusion, note that the conditional i.i.d. assumption and

the bound imply that, for Pi = Pr(Xit �= x|αi), we have P(x)= E[PTi ] being no
greater than a constant times the T th raw moment of a Beta distribution with
parameters γ and v. Also, it is well known that T v�(T +γ)/�(T +γ+v)−→ 1
as T −→ ∞. Therefore, we have

E
[
PTi

] ≤ C[�(γ+ v)/�(γ)�(v)] ∫ 1

0
pT+γ−1(1 −p)v−1 dp

≤ C[�(γ+ v)/�(γ)�(v)][�(T + γ)�(v)/�(T + γ+ v)]
= C�(T + γ)/�(T + γ+ v)≤ CT−v� Q.E.D.

S.6.3. Proof of Theorem 5

Note that Pr(Yit = 0|Yi�t−1 = 0�αi)= 1 −H(α1i),

P(1)= E
[
Pr(Yi�T−1 = Yi�T−2 = · · · = Yi0 = 0|αi)

]
= E

[
T−1∏
t=1

Pr(Yit = 0|Yi�t−1 = 0�αi)Pr(Yi0 = 0|αi)
]

≤ E[{1 −H(αi1)
}T−1]

�

By a change of variables, we find that the p.d.f. f (p) of 1 −H(αi1) is

f (p)= f1

(
H−1(1 −p))/fε(H−1(1 −p))≤ C(1 −p)v−1pv−1�

Thus, the p.d.f. of 1−H(αi1) is bounded above by a Beta p.d.f. with parameters
v� v. It then follows, as in the proof of Theorem 4, that P(1) ≤ C(T − 1)−v ≤
CT−v. It follows similarly that P(0)≤ CT−v. Q.E.D.

S.6.4. Identification Rates for QTE

Finally, we show that the nonparametric rates and nonidentification results
apply to the QTE. We do this by giving lemmas for quantile bounds that apply
to both static and dynamic models. The first lemma shows that the identifica-
tion rate is at least as fast as the rate at which P(x) decreases.

LEMMA A12: Suppose thatG(y) is a CDF that is strictly increasing and contin-
uously differentiable on {y : 0<G(y) < 1} and that GT(y) is a continuous func-
tion and PT a nonnegative constant satisfying

GT(y)≤G(y)≤GT(y)+ PT � GT(−∞)= 0� GT(∞)+ PT = 1�
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If PT −→ 0 as T −→ ∞, then, for 0 < λ < 1 and large enough T , there are
q�T ≤ q≤ quT satisfying

λ=GT(quT )=G(q)=GT(q�T )+ PT �

Also, any such quT and q�T satisfy quT − q�T =O(PT ).

PROOF: Choose T large enough that PT <min(λ�1 − λ). Then GT(∞) =
1 − PT > λ and GT(−∞)+ PT = PT < λ. Therefore, by continuity of GT(y),
there exist quT such that λ = GT(quT ) and q�T such that λ = GT(q�T ) + PT .
Also, by G(y) being a strictly increasing CDF, there is a unique q with λ =
G(q). Note that G(q) = GT(quT ) ≤ G(quT ), so that quT ≥ q by G(q) strictly
monotonic. It follow similarly that q�T ≤ q. Also, for any ε > 0, we have G(q−
ε) <G(q), so that, for large enough T , it follows that

G(q− ε) <G(q)− PT =GT(q�T )≤G(q�T )�
By strict monotonicity of G(q), it follows that q�T > q− ε for large enough T .
Since ε is arbitrary, we have q�T −→ q. It follow similarly that quT −→ q.

Next, choose ε small enough that ∂G(q̃)/∂q≥ C > 0 for q̃ ∈ I = [q− ε�q+
ε]. Note that, for T large enough, q�T �quT ∈ I . Also we have

G(q�T )+ 2PT ≥GT(q�T )+ 2PT =G(q)+ PT

=GT(quT )+ PT ≥G(quT )�
Subtracting G(q�T ) from both sides and expanding gives

2PT ≥G(quT )−G(q�T )= ∂G(qT )

∂q
(quT − q�T )≥ C(quT − q�T )�

Dividing through by C gives quT − q�T ≤ CPT , implying the conclusion.
Q.E.D.

The next result gives conditions under which the identification rate is no
faster than the rate at which P(x) decreases. This result will also show that
quantile effects are not identified as T −→ ∞ if P(x) does not go to zero.

LEMMA A13: If the conditions of Lemma A12 are satisfied and GT(y) is con-
tinuously differentiable with |∂GT(y)/∂y| ≤C for all y and T , then there is C such
that, for PT > 0,

quT − q�T ≥ CPT �
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PROOF: As in the proof of Lemma A12, we have GT(quT )=GT(q�T )+ PT .
By the intermediate value theorem, it follows that, for some q�T ≤ q≤ quT ,

∂GT(q)

∂q
(quT − q�T )= PT �

For PT > 0, we must have ∂GT(q)/∂q �= 0, so that

quT − q�T =
[
∂GT(q)

∂q

]−1

PT ≥ C−1 PT � Q.E.D.

Taken together, these two results show that the identification rate for the
QTE is the same as the rate at which P(x) decreases. Together they also show
that if P(x) does not go to zero, the bounds do not shrink to a point. It is
straightforward to check that the conditions of these results are satisfied.

S.7. SUPPLEMENTS TO SECTION 7

We now turn to the results of Section 7 and to one additional result on the
consistency of non-linear fixed-effects estimators for the identified ATE.

S.7.1. Proof of Theorem 6

Consider first the static case where Xit ∈ {0�1}. We show the result for Xk =
(0� � � � �0)′. The result for Xk = (1� � � � �1)′ will follow similarly. Note that β∗

is identified for logit so B = {β∗}. Let Z = H(α) and let G(z) be the CDF
of Z when F ∈ Fk = Fk(β

∗�P) is the CDF of α. By (Yi1� � � � �YiT ) mutually
independent conditional on α, we have

Mt = Pr
(
Yit = 1� � � � �Yi1 = 1|Xi ∈Xk

)
=
∫
H(α)t dF(α)=

∫
Zt dG(Z)�

so that Mt is identified for t = 1� � � � �T . Now consider a T th-order polynomial
P(z�T)= b0 + b1z+ · · · + bTzT in z. Note that

∫
P(Z�T)dG(Z)= b0 +

T∑
t=1

btMt

does not depend on F ∈ Fk. As a special case,
∫
ZdG(Z)=M1 also does not

depend on F ∈ Fk. Define the function h(z)=H(β∗ +H−1(z))= zeβ∗
/1−(1−

eβ
∗
)z. Note that Δk = ∫ [h(Z)−Z]dG(Z) for all F ∈ Fk. For any polynomial
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P(z� t), let R(z� t)= h(z)− P(z� t) be the remainder. Then we have

Δku −Δk�(S.5)

= sup
F∈Fk

∫ [
h(Z)−Z]dG(Z)− inf

F∈Fk

∫ [
h(Z)−Z]dG(Z)

= sup
F∈Fk

∫ [
P(Z�T)+R(Z�T)]dG(Z)

− inf
F∈Fk

∫ [
P(Z�T)+R(Z�T)]dG(Z)

= sup
F∈Fk

∫
R(Z�T)dG(Z)− inf

F∈Fk

∫
R(Z�T)dG(Z)

≤ 2 sup
0≤z≤1

∣∣R(z�T)∣∣�
The function h(z) is continuously differentiable of order r for every r with∣∣∣∣drh(z)dzr

∣∣∣∣≤ r!e|β∗|(e|β∗| − 1|)r−1
�

Then, by Jackson’s theorem (e.g., Judd (1998), chap. 3), there exists P(z�T)
such that, for γ = π(e|β∗| − 1|)/4,

sup
0≤z≤1

∣∣R(z�T)∣∣ ≤ (T − r)!
T !

(
π

4

)r
sup

0≤z≤1

∣∣∣∣drh(z)dzr

∣∣∣∣
≤ (T − r)!r!

T !
(
π

4

)r
e|β∗|(e|β∗| − 1|)r−1 ≤ C

(
rγ

T

)r
�

This inequality continues to hold if γ is replaced by max{γ�1}, so we can as-
sume γ > 1. Then choose r equal to T/γe, so that

sup
0≤z≤1

∣∣R(z�T)∣∣≤ Ce−T/γe�

The conclusion then follows by equation (S.5).
Next consider the dynamic binary-logit model whereXit = Yi�t−1. It is known

from Cox (1958) and Chamberlain (1985) that β∗ is identified for T large
enough. We show the result for Δ1 where X 1 = {Xi :Xi1 = 0}. The result for
the ATE conditional on Xi1 = 1 will follow analogously. Here

Pr(Yit = 0� � � � �Yi1 = 0|Xi1 = 0)=
∫ [

1 −H(α)]t dF(α)
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is identified for t = 1� � � � � T . It follows by a standard argument that Mt =∫
H(α)t dF(α) is identified for t = 1� � � � �T . The proof then proceeds exactly

as for the static case. Q.E.D.

S.7.2. Consistency of Fixed Effects for Identified ATE

We now consider the fixed-effects estimator in a binary-choice model with a
binary regressor and T = 2. In some models, fixed-effects (FE) estimators of
the ATE appear to have small biases; for example, see Hahn and Newey (2004)
and Fernández-Val (2009). Here we show consistency of FE for δ. To describe
this result, note that the FE estimator of the ASF conditional on Xi =Xk is

μ̂FE
k (x)=

n∑
i=1

1
(
Xi =Xk

)
H(xβ̂FE + α̂i)

/ n∑
i=1

1
(
Xi =Xk

)
�

β̂FE� α̂1� � � � � α̂n = arg max
β�α1�����αn

∑
i�t

ln
{
H(Xitβ+ αi)Yit

× [
1 −H(Xitβ+ αi)

]1−Yit}�
Let βT denote the limit of β̂FE. In the multinomial choice model, α̂i have a
limit distribution conditional on Xi =Xk that is discrete with J support points
αkj (βT ) and Pr(α= αkj (βT ))= Pk

j (j = 1� � � � � J). These limits satisfy

βT = arg max
β

K∑
k=1

Pk

J∑
j=1

Pk
j log Lk

j

(
αkj (β)�β

)
�(S.6)

αkj (β)= arg max
α

Lk
j (α�β) (j = 1� � � � � J;k= 1� � � � �K)�

where Pk = E[1(Xi = Xk)]. The corresponding limit of μ̂FE
k (x) is then given

by

μTk(x)=
J∑
j=1

Pk
j H

(
x′βT + αkj (βT )

)
�

Note that, with binary Xit and T = 2, we have K = 4. Let X1 = (0�0), X2 =
(0�1), X3 = (1�0), and X4 = (1�1), so that the identified effect equals δ =∑3

k=2 PkΔk/
∑3

k=2 Pk.

THEOREM A14: If H ′(x) > 0, H(−x) = 1 −H(x), Xit ∈ {0�1}, T = 2, and
P2 + P3 > 0, then

3∑
k=2

Pk
[
μTk(1)−μTk(0)

]/ 3∑
k=2

Pk = δ�
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PROOF: Let Y 1 = (0�0)′�Y 2 = (0�1)′�Y 3 = (1�0)′�Y 4 = (1�1)′, and X1 =
(0�0)′, X2 = (0�1)′�X3 = (1�0)′, X4 = (1�1)′. The identified effect is

δ= {
P 2E

[
Yi2 −Yi1|Xi =X2

]+ P 3E
[
Yi1 −Yi2|Xi =X3

]}
/
(

P 2 + P 3
)

= [
P 2

(
P 2

2 − P 2
3

)+ P 3
(

P 3
3 − P 3

2

)]
/
(

P 2 + P 3
)
�

Next, the symmetry H(−x)= 1 −H(x) implies that αkj (β) take the form

αkj (β)=
⎧⎨
⎩

−∞� j = 1�
−β(Xk

1 +Xk
2

)
/2� j = 2�3�

∞� j = 4�

Note that, for k = 2 or k = 3, we have Xk
1 +Xk

2 = 1, so that αkj (β) = −β̃ for
β̃= β/2. Thus,

H
(
β+ αkj (β)

)−H(
αkj (β)

)=H(β̃)−H(−β̃)= 2H(β̃)− 1�

Therefore, the limit of the fixed-effects estimator of the identified effect is

A
[
2H(β̃)− 1

]
� A= [

P 2
(

P 2
2 + P 2

3

)+ P 3
(

P 3
2 + P 3

3

)]
/
(

P 2 + P 3
)
�

Next, the limit of the concentrated log-likelihood is

2P 2
[

P 2
2 lnH(β̃)+ P 2

3 lnH(−β̃)]+ 2P 3
[

P 3
2 lnH(−β̃)+ P 3

3 lnH(β̃)
]
�

The first-order conditions for maximization of this object are

0 = 2P 2
[

P 2
2λ(β̃)− P 2

3λ(−β̃)
]+ 2P 3

[−P 3
2λ(−β̃)+ P 3

3λ(β̃)
]
�

where λ(x) = H ′(x)/H(x). By symmetry, H ′(−β̃) = H ′(β̃). Divide the first-
order conditions by H ′(β̃) and multiply by H(β̃)H(−β̃) to obtain

0 = 2P 2
[

P 2
2H(−β̃)− P 2

3H(β̃)
]+ 2P 3

[−P 3
2H(β̃)+ P 3

3H(−β̃)
]

= 2
(

P 2 + P 3
)[
δ−A(

2H(β̃)− 1
)]
� Q.E.D.

In numerical examples, this same result continues to hold for T = 3 and
T = 4. It would be interesting to extend this result to larger T , but it is beyond
the scope of this paper to do so. Unfortunately, this result does not extend to
the overall ATE.

S.8. SUPPLEMENTS TO SECTION 8

Here we give the proofs of Section 8 and additional numerical results for the
logit model.
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S.8.1. Proof of Lemma 7

Let the vector of model probabilities for (Y 1� � � � �Y J) be

Lk(α�β)≡ (
Lk

1(α�β)� � � � �Lk
J (α�β)

)′
�

Let Γk(β) ≡ {Lk(α�β) :α ∈ Υ } and Γ̆k(β) be the convex hull of Γk(β). By
Lemma 3 of Chamberlain (1987), Γ̆k(β) = {∫ Lk(α�β)dF(α) :F is a CDF on
Υ }. Therefore,

∫
Lk(α�β)dFk(α) ∈ Γ̆k(β). Note that Γk(β) is contained in the

unit simplex and so has dimension J − 1. By the Carathéodory theorem, there
exist J vectors Lk(αkm�β) (m = 1� � � � � J) and 0 ≤ πkm ≤ 1 with

∑J

m=1π
k
m = 1

such that∫
Lk(α�β)dFk(α)=

J∑
m=1

πkmLk
(
αkm�β

)
�

giving the conclusion for the discrete distribution FJk with J support points at
(αk1 � � � � �α

k
J ) and probabilities (πk1 � � � � �π

k
J ).

Next, for any ε > 0, let β ∈ B and Fkβ ∈ Fk(β�P) satisfy

Δku − ε <
∫
Δ(α�β)dFkβ(α)≡ Δ(β)�

Similarly to the previous paragraph, let Γ Δ
k (β)≡ {(Lk(α�β)′�Δ(α�β))′ :α ∈ Υ }

and Γ̆ Δ
k (β) be the convex hull of Γ Δ

k (β). Then (Pk
1 � � � � �Pk

J �Δ(β))
′ ∈ Γ̆ Δ

k (β),
so by Caratheodory’s theorem, there exists a discrete distribution FJ+1

kβ with
J + 1 support points (αk1 � � � � �α

k
J+1) and probabilities πk1 � � � � �π

k
J+1 such that

FJ+1
kβ ∈ Fk(β�P) and

∫
Δ(α�β)dFJ+1

kβ (α)= Δ(β).
We now show that it suffices to have mass over just J points. Consider the

problem of allocating πk1 � � � � �π
k
J+1 among (αk1 � � � � �α

k
J+1) so as to solve

max
(πk1 �����π

k
J+1)

J+1∑
m=1

Δ
(
αkm�β

)
πkm� s.t.

J+1∑
m=1

πkmLk
j

(
αkm�β

)= Pk
j �

J+1∑
m=1

πkm = 1�πkm ≥ 0 (m= 1� � � � � J + 1)�

This is a linear program of the form

max
πk∈RJ+1

c′πk such that πk ≥ 0� Aπk = b� 1′πk = 1�

and any basic feasible solution to this program has J + 1 active constraints,
of which at most rank(A)+ 1 can be equality constraints. This means that at
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least J+1− rank([A′�1]′) of active constraints are of the form πkm = 0; see, for
example, Theorem 2.3 and Definition 2.9(ii) in Bertsimas and Tsitsiklis (1997).
Since each column of A sums to 1, rank([A′�1]′) ≤ J and a basic solution to
this linear programming problem will have at least one zero. Thus, there are
at most J strictly positive πkm’s.1 Therefore, we have shown that there exists a
distribution FJkβ ∈ Fk(β�P) with just J points of support such that

Δku − ε <
∫
Δ(α�β)dFJ+1

kβ (α)≤
∫
Δ(α�β)dFJkβ(α)�

This construction works for every ε > 0. Q.E.D.

S.8.2. Numerical Results for Logit Model

We carry out some additional numerical calculations for the logit model
where

Yit = 1
(
β∗Xit + αi ≥ εit

)
� εit ∼L(0�1)�

Xit = 1(αi ≥ ηit)� ηit ∼N(0�1)� αi ∼N(0�1)�

where L(0�1) denotes the standard logistic distribution normalized to have
zero mean and unit variance. We consider different DGPs indexed by β∗ ∈
[−2�2] and T ∈ {2�3}. Figures S.1 and S.2 show nonparametric bounds for
ATEs and semiparametric bounds for β∗ and ATEs for T = 2 and T = 3,
respectively. The semiparametric bounds are obtained using the computa-
tional algorithm described in Section 8 of the paper with M = 100 and λM =
1�3 × 10−8. The elements of the fixed grid ΥM are located at the percentiles of
the standard normal distribution. As is well known, we find that β∗ is identified
for T ≥ 2. The nonparametric bounds for the ATEs (NP-bounds) can be very
wide, even when we impose monotonicity (NPM-bounds). The semiparametric
bounds for the ATEs (SP-bounds) are tighter than the nonparametric bounds
and shrink exponentially fast with T , as shown in Theorem 6.

S.8.3. Proof of Lemma 8

Consider the set  = (−∞�+∞) ∪ {−∞�+∞}. By assumption, H(v)
is strictly monotonic and continuous on  with H(−∞) = 0 and

1Note that rank([A′�1]′) ≤ J, since
∑J

j=1 Lk
j (α�β)= 1. The exact rank of [A′�1]′ depends on

the sequence Xk, the parameter β, the form of Lk
j (α�β), and T . For example, in the model of

equation (8) of the main text with T = 2 andX binary, rank(A)= J− 2 = 2 when x1 = x2, β= 0,
or H is the logistic distribution; whereas rank(A)= J − 1 = 3 for Xk

1 �=Xk
2 , β �= 0, and H is any

continuous distribution different from the logistic.
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FIGURE S.1.—Identified set for parameter and ATEs in binary-choice logit models with
Yit = 1(β∗Xit + αi ≥ εit), εit ∼ L(0�1), Xit = 1(αi ≥ ηit), ηit ∼ N(0�1), αi ∼ N(0�1),
β∗ ∈ [−2�2], and T = 2.

H(+∞) = 1. Let H−1(u) be the inverse function defined on [0�1]. Let
v= maxXk∈{X1�����XK}�β∈B |Xk′

t β| and define the function

T(u)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v+H−1(u)�
3
4

≤ u≤ 1�

(4u− 2)
[
v+H−1

(
3
4

)]
�

1
4
< u<

3
4
�

−v+H−1(u)� 0 ≤ u≤ 1
4
�
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FIGURE S.2.—Identified set for parameter and ATEs in binary-choice logit models with
Yit = 1(β∗Xit + αi ≥ εit), εit ∼ L(0�1), Xit = 1(αi ≥ ηit), ηit ∼ N(0�1), αi ∼ N(0�1),
β∗ ∈ [−2�2], and T = 3.

This function is continuous and differentiable except at u = 1
4 and u = 3

4 .
At u = 1

4 , the left derivative is [h(H−1( 1
4))]−1 and the right derivative is

4[v+H−1( 3
4)].

Consider the functionH(v+T(u)). By the chain rule,H(v+T(u)) is differ-
entiable everywhere on [−v� v] × ( 1

4 �
3
4), and right differentiable at (v� 1

4) and
left differentiable at (v� 3

4) with derivative (right or left) equal to

h
(
v+ T(u))4[v+H−1

(
3
4

)]
�
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This derivative is uniformly bounded on [−v� v] × ( 1
4 �

3
4) by h uniformly

bounded. AlsoH(v+T(u)) is differentiable everywhere on [−v� v]×{( 3
4 �∞)∪

(−∞� 1
4)}, right differentiable at [−v� v] × { 3

4 }, and left differentiable at
[−v� v] × { 1

4 }. For u ∈ [3/4�1], the (right) derivative is

∂

∂u
H
(
v+ T(u)) =H ′(v+ T(u))T ′(u)

= h(v+ v+H−1(u))

h(H−1(u))
≤ h(H−1(u))

h(H−1(u))
= 1�

where the inequality holds by v+v≥ 0 (implied by v≥ −v) and byH−1(u) > 0.
It follows similarly that ∂H(v + T(u))/∂u is uniformly bounded by 1 on
[−v� v]×[0� 1

4 ]. It follows that there is a constant C such that, for all v ∈ [−v� v]
and u� ũ ∈ [0�1],∣∣H(

v+ T(ũ))−H(
v+ T(u))∣∣≤ C|ũ− u|�

Note that T−1(α) is a strictly monotonic increasing function on . Define
d(α̃�α)= |T−1(α̃)− T−1(α)|. Note that d(α̃�α)≥ 0 with equality if and only if
α̃= α, and for any three points α, α̃, and α, the triangle inequality implies

d(α̃�α)= ∣∣T−1(α̃)− T−1(α)
∣∣

≤ ∣∣T−1(α̃)− T−1(α)
∣∣+ ∣∣T−1(α)− T−1(α)

∣∣
= d(α̃�α)+ d(α�α)�

Therefore d(α̃�α) is a metric. Also, for ũ= T−1(α̃) and u= T−1(α), we have

sup
v∈[−v�v]

∣∣H(v+ α̃)−H(v+ α)∣∣≤ C∣∣T−1(α̃)− T−1(α)
∣∣= Cd(α̃�α)�

Also, by |Xk′
t β| ≤ v, and 0 ≤H(Xk′

t β+ α)≤ 1, for all t, k, and β ∈ B,

∣∣Lk
j (α̃� β̃)− Lk

j (α�β)
∣∣

≤ ∣∣Lk
j (α̃� β̃)− Lk

j (α� β̃)
∣∣+ ∣∣Lk

j (α� β̃)− Lk
j (α�β)

∣∣
≤ Cd(α̃�α)+ sup

α�t�k

∣∣H(
Xk′
t β̃+ α)−H(

Xk′
t β+ α)∣∣

≤ Cd(α̃�α)+ sup
v

h(v) sup
t�k

∥∥Xk
t

∥∥‖β̃−β‖

≤ C[d(α̃�α)+ ‖β̃−β‖]�
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Finally, for every M , let αmM = T((m− 1)/(M − 1)) (m= 1� � � � �M). Then

η(M)= sup
α∈

min
α̃∈ΥM

d(α� α̃)

= sup
u∈[0�1]

min
ũ∈{0�1/(M−1)�2/(M−1)�����1}

|u− ũ| = 1/(M − 1)� Q.E.D.

S.8.4. Proof of Theorem 9

This proof is omitted because it is very similar to (but easier than) the proof
of Theorem 10 to follow.

S.9. SUPPLEMENTS TO SECTION 9

Here we describe the estimation algorithm, give the proofs of Theorems 10
and 11, and present an alternative inference method based on projection.

S.9.1. Estimation: Implementation Details

To implement the estimation method, we also start from simpler estimates
of the bounds corresponding to those described in the computation section.
Specifically, for π̂(β) ∈ arg minπ∈SKM T̂λ(β�π), let Ŝk(β)= {πk :Pkj (β�π�M̂)=
Pkj (β� π̂(β)� M̂), j = 1� � � � � J} and let

Δ̌k� = min
β∈B̂�πk∈Ŝk(β)

M∑
m=1

πkmΔ(αmM�β)�

Δ̌ku = max
β∈B̂�πk∈Ŝk(β)

M∑
m=1

πkmΔ(αmM�β)�

We use these estimated bounds as starting values and then search over other
possible values of π, similarly to the computational approach.

The choice of M̂ is important for this estimator. In our empirical examples,
we have proceeded by starting with a small M̂ , and stopping when the change
in the estimated sets is small. We have found that quite small M̂ often suffices.
The choice of weights ŵk

j is also important. The optimal choice, corresponding
to minimum chi-square, would be ŵk

j = Pk/Pk
j . Using sample frequencies in

place of population frequencies does not work well due to small cell sizes. One
could use a two-step procedure where one first computes the identified set
for weights like ŵk

j = P̂k and then reestimates the identified set using weights
ŵk
j = P̂k/Pkj (β� π̂(β)� M̂) for some β ∈ B̂.
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S.9.2. Proof of Theorem 10

For notational convenience, we here denote the probabilities associated with
the fixed grid {α1M� � � � �αMM} by πk. Let π = (π1′� � � � �πK′)′ be a KM × 1
vector with each πk in the M-dimensional unit simplex SM . Also, let the
probabilities associated with a variable grid {αk1 � � � � �αkJ+1} be πk so that
π = (π1′� � � � �πK′)′ is a [(J + 1)K] × 1 vector of probabilities with each πk
in the J + 1-dimensional unit simplex SJ+1. Let αk = (αk1 � � � � �α

k
J+1)

′, α =
(α1′� � � � �αK′)′, γ = (α′�π ′)′, θ= (β′�γ′)′, P̃kj (θ)= ∑J+1

�=1 Lk
j (α

k
� �β)π

k
� , Δk(θ)=∑J+1

�=1 Δ(α
k
� �β)π

k
� , Θ= B×Υ(J+1)K × SK

J+1, and

Q̂(θ)=
∑
j�k

ŵk
j

[
P̂kj − P̃kj (θ)

]2
� Q(θ)=

∑
j�k

wk
j

[
Pk
j − P̃kj (θ)

]2
�

By applying the Caratheodory theorem as in the proof of Lemma 12, for every
π there is θ(π�β)= (β′�γ(π�β)′)′ with

Δk
(
θ(π�β)

)=
M∑
m=1

Δ(αmM�β)π
k
m�

P̃kj
(
θ(π�β)

)= Pkj (β�π�M) (j = 1� � � � � J;k= 1� � � � �K)�

Let ΘI = {θ :Q(θ)= 0},
Θ̃= {

θ(π�β) : Q̂
(
θ(π�β)

)+ λnπ ′π ≤ εn
}
�

ΘM = {
θ(π�β) :π ∈ SK

M�β ∈ B
}
�

By construction, the projection of Θ̃ on B coincides with B̂ and the projec-
tion of ΘI on B coincides with B. Also the identified set of marginal effects is
{Δk(θ) :θ ∈ΘI}, Δk(θ) is a continuous function of θ, and D̂k = {Δk(θ) :θ ∈ Θ̃}.
Since the minimum and maximum of a set are continuous in the Hausdorff
metric, it suffices to show that dH(Θ̃�ΘI)

p−→ 0.
Let d(θ� θ̃)= maxj�k max{d(αkj � α̃kj )� |πkj −π̃kj |�‖β−β̃‖}. From Assumption 9

and M̂
p−→ ∞, we have

sup
α∈Υ

min
α̃∈Υ

M̂

d(α� α̃)≤ η(M̂) p−→ 0�

Therefore, for every α ∈ Υ , there is αm(α)�M̂ with d(α�αm(α)�M̂) ≤ η(M̂), so
that, for any θ ∈ Θ, there are αm(αk� )�M̂ with max1≤�≤J+1�k{d(αk� �αm(αk� )�M̂)} ≤
η(M̂). Let αk(θ) = (αm(αk1 )�M̂

� � � � �αm(αkJ+1)�M̂
)′, α(θ) = (α1(θ)′� � � � �αK(θ)′)′,

and θ(θ) = (β′�α(θ)′�π ′)′. By construction, θ(θ) ∈ ΘM and d(θ(θ)�θ) ≤
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η(M̂). Thus,

sup
θ∈Θ

inf
θ̃∈Θ

M̂

d(θ� θ̃)≤ η(M̂)�

Also, by Assumption 9,

∣∣P̃kj (θ)− P̃kj (θ̃)
∣∣≤ J∑

�=1

∣∣Lk
j

(
αk� �β

)
πk� − Lk

j

(
α̃k� � β̃

)
π̃k�

∣∣≤ Cd(θ� θ̃)�
It then follows by standard calculations that there is Ĉ =Op(1) such that

∣∣Q̂(θ)− Q̂(θ̃)∣∣≤ Ĉd(θ� θ̃) for all θ� θ̃ ∈Θ�
Therefore we have

sup
θ∈Θ

inf
θ̃∈Θ

M̂

∣∣Q̂(θ)− Q̂(θ̃)∣∣≤ Ĉη(M̂)�
Also note that

sup
θ∈ΘI

Q̂(θ)=
∑
j�k

ŵk
j

[
P̂kj − Pk

j

]2 =Op
(
n−1

)
�

Next let δ > 0 be any positive constant and define the events

E1 = {
η(M̂) < δ

}
� E2 =

{
Ĉη(M̂) <

εn

3

}
�

E3 =
{

sup
θ∈ΘI

Q̂(θ) <
εn

3

}
� E4 = sup

π∈SKM

λnπ
′π <

εn

3
�

By (n−1 +η(M̂)+ λn)/εn p−→ 0, it follows that

Pr(E1)−→ 1�

Pr(E2)= Pr
(
Ĉ <

η(M̂)−1εn

3

)
−→ 1�

Pr(E3)= Pr
(
n sup
θ∈ΘI

Q̂(θ) <
nεn

3

)
−→ 1�

Pr(E4)≥ Pr
(
λnK ≤ εn

3

)
−→ 1�
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It follows that Pr(
⋂4

r=1 Er)−→ 1. When
⋂4

r=1 Er occurs, then, for every θ ∈ΘI ,
there is π with θM = θ(π�β) ∈ΘM such that d(θ�θ) < δ and

Q̂(θ)+ λnπ ′π ≤ Q̂(θ)+ εn

3
≤ Q̂(θ)+ Q̂(θ)− Q̂(θ)+ εn

3

≤ sup
θ∈ΘI

Q̂(θ)+ Ĉη̂(M)+ εn

3
≤ εn�

that is, θ ∈ Θ̃. Thus, with probability approaching 1,

sup
θ∈ΘI

inf
θ̃∈Θ̃
d(θ� θ̃)≤ δ�

Next, note that Q̂(θ)
p−→ Q(θ), so it follows by Theorem 2.1 of Newey

(1991) that supθ∈Θ |Q̂(θ) − Q(θ)| p−→ 0. Define Θδ
I = {θ : infθ̃∈ΘI d(θ� θ̃) < δ}.

Note that Θδ
I is open so that Θ \ Θδ

I is compact, so by continuity of Q(θ),
infΘ\ΘδI Q(θ)= ρ > 0. It follows by uniform convergence that infΘ\ΘδI Q̂(θ) >

ρ

2

with probability approaching 1 (w.p.a.1). By εn → 0,

sup
θ∈Θ̃

Q̂(θ)≤ sup
π

{
Q̂
(
θ(π�β)

)+ λnπ ′π ≤ εn
}
< ρ/2�

so that Θ̃ ⊆ Θδ
I . Therefore w.p.a.1, for all θ̃ ∈ Θ̃. there exists θ ∈ ΘI such

that d(θ̃� θ) < δ, that is, supθ̃∈Θ̃ infθ∈ΘI d(θ� θ̃)≤ δ. It follows that with w.p.a.1,
dH(Θ̃�ΘI) ≤ δ. Since δ > 0 is arbitrary, it follows that dH(Θ̃�ΘI)

p−→ 0.
Q.E.D.

S.9.3. Proof of Theorem 11

We have that, for Sn(P)= θ̂− θ∗ = θ̂− θ∗(P),
PrΠ

{
θ∗ /∈ [θ�θ]}

= PrΠ
{
Sn(P) /∈ [

G−1
n (α2�P)�G−1

n (1 − α1�P)
]}

≤ PrΠ
({
Sn(P) /∈ [

G−1
n (α2�P)�G−1

n (1 − α1�P)
]}

∩ {
P ∈ CR1−γ(P)

})+ PrΠ
{

P /∈ CR1−γ(P)
}

≤ PrΠ
({
Sn(P) /∈ [

G−1
n (α2�P)�G−1

n (1 − α1�P)
]}

∩ {
P ∈ CR1−γ(P)

})+ PrΠ
{

P �∈ CR1−γ(P)
}

≤ PrΠ
{
Sn(P) /∈ [

G−1
n (α2�P)�G−1

n (1 − α1�P)
]}

+ PrΠ
{

P /∈ CR1−γ(P)
}

≤ α+ PrΠ
{

P /∈ CR1−γ(P)
}
�
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Thus if lim supn→∞ PrΠ{P /∈ CR1−γ(P)} ≤ γ, we obtain that limn PrΠ{θ∗ /∈
[θ�θ]} ≤ α+ γ, which is the desired conclusion.

It now remains to show that lim supn→∞ PrΠ{P /∈ CR1−γ(P)} ≤ γ. We have
that

PrΠ
{

P /∈ CR1−γ(P)
}= PrΠ

{
W (P�P) > c1−γ

(
χ2
K(J−1)

)}
�

By the uniform central limit theorem, W (P� P̂) converges in law to χ2
K(J−1)

under any sequence Π in P. Therefore,

lim
n→∞

PrΠ
{
W (P� P̂) > c1−γ

(
χ2
K(J−1)

)}= Pr
{
χ2
K(J−1) > c1−γ

(
χ2
K(J−1)

)}= γ�

Q.E.D.

S.9.4. Modified Projection Method

The following method projects a confidence region for conditional choice
probabilities onto a simultaneous confidence region for all possible ATEs and
other structural parameters. In general, this method is more conservative than
the perturbed bootstrap method when a single ATE or structural parameter is
of interest. We include a more detailed comparison between the two methods
at the end of this section.

It is convenient to describe the modified projection method in two stages.
Stage 1. The probabilities Pk

j belong to the product SK
J of K unit simplexes

of dimension J. We can begin by constructing a confidence region for the true
choice probabilities P by collecting all probabilities P= (P1

1 � � � � �P
1
J � � � � �P

K
J )

′ ∈
SK
J that pass a goodness-of-fit test:

CR1−α(P)= {
P ∈ SK

J :W (P� P̂)≤ c1−α
(
χ2
K(J−1)

)}
�

where c1−α(χ2
K(J−1)) is the (1 − α)-quantile of the χ2

K(J−1) distribution and W is
the goodness-of-fit statistic:

W (P� P̂)= n
∑
j�k

P̂k
(P̂kj − Pkj )2

Pkj
�

Stage 2. To construct confidence regions for marginal effects and any other
structural parameters, we project each P ∈ CR1−α(P) onto Ξ = {P :∃β ∈ B

with Fk(β�P) �= ∅�∀k = 1� � � � �K}, the space of conditional choice probabil-
ities that is compatible with the model. We obtain this projection P∗(P) by
solving the minimum distance problem:

P∗(P)= arg min
P̃∈Ξ

W (P̃�P)� W (P̃�P)= n
∑
j�k

P̂k
(Pkj − P̃kj )2

P̃kj
�
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The confidence regions are then constructed from the projections of all the
choice probabilities in CR1−α(P). For the identified set of the model parame-
ter, for example, for each P ∈ CR1−α(P), we solve

B∗(P)= {
β ∈ B :∃P̃ ∈ P∗(P) with Fk(β� P̃) �= ∅�k= 1� � � � �K

}
�

Denote the resulting confidence region as

CR1−α
(
B∗)= {

B∗(P) :P ∈ CR1−α(P)
}
�

We may interpret this set as a confidence region for the set B∗ of β that are
compatible with a best approximating model. Under correct specification, this
will be a confidence region for the identified set B.

If we are interested in bounds on marginal effects, for each P ∈ CR1−α(P)
we get

Δk� (P)= min
β∈B∗(P)�Fk∈Fk(β�P

∗(P))

∫
Δ(α�β)dFk(α)�

Δku(P)= max
β∈B∗(P)�Fk∈Fk(β�P

∗(P))

∫
Δ(α�β)dFk(α)�

Denote the resulting confidence regions as

CR1−α
[
Δk∗
� �Δ

k∗
u

]= {[
Δk� (P)�Δ

k
u(P)

]
:P ∈ CR1−α(P)

}
�

These sets are confidence regions for the sets [Δk∗
� �Δ

k∗
u ], where Δk∗

� and Δk∗
u

are the lower and upper bounds on the marginal effects induced by any best-
approximating model. Under correct specification, these will include the true
upper and lower bounds on the marginal effect [Δk� �Δku] induced by any true
model in (B�P).

In a canonical projection method, we would implement the second stage by
simply intersecting CR1−α(P) with Ξ, but this may give an empty intersection
either in finite samples or under misspecification. We avoid this problem by
using the projection step instead of the intersection, and also by retargeting
our confidence regions onto the best approximating model.

THEOREM A15: If Assumptions 5, 8, and 9 are satisfied, then, for any sequence
of data-generating process Π =Πn satisfying Assumption 10,

lim
n→∞

PrΠ
[{

P ∈ CR1−α(P)
}∩ {

B∗ ∈ CR1−α
(
B∗)}

∩ {[
Δk∗
� �Δ

k∗
u

] ∈ CR1−α
[
Δk∗
� �Δ

k∗
u

]
�∀k}]= 1 − α�
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PROOF: By the uniform central limit theorem, W (P� P̂) converges in law to
χ2
J(K−1) under any sequence of true DGPs with Π in P. It follows that

lim
n→∞

PrΠ
{

P ∈ CR1−α(P)
}= 1 − α�

Further, the event P ∈ CR1−α(P) implies then the event P∗(P) ∈ {P∗(P) :P ∈
CR1−α(P)} by construction, which in turn implies the events B∗ ∈ CR1−α(B∗)
and [Δk∗

� �Δ
k∗
u ] ∈ CR1−α[Δk∗

� �Δ
k∗
u ]�∀k. Q.E.D.

We conclude by giving a comparison of the modified projection and per-
turbed bootstrap methods. The modified projection method is well suited for
performing simultaneous inference on all possible functionals of the parame-
ter vector. In contrast, the perturbed bootstrap is better suited for performing
inference on a given functional of the parameter vector, such as the average
structural effect. To understand why the latter method can be much sharper
than the former method in the case where a single functional is of interest,
it suffices to think of how these methods perform in the simplest situation of
inference about the mean of a multinomial distribution. In this case, the per-
turbed bootstrap will become asymptotically equivalent to the usual bootstrap,
since the limit distribution is continuous with respect to the DGP in this ex-
ample, and our local perturbations of DGP converge to the true DGP (note
that, more generally, in cases with limit distributions being discontinuous with
respect to the DGP, the introduction of the local perturbations ensures that
the resulting confidence interval possesses locally uniform coverage). There-
fore, in this example, perturbed bootstrap inference asymptotically becomes
first-order equivalent to the t-statistic-based inference on the mean, and is ef-
ficient. Now compare that with the Scheffé-style projection based confidence
interval, whereby one creates a confidence region for multinomial probabilities
and projects it down to the confidence interval for the mean, a linear functional
of these probabilities. It is clear that the latter is very conservative, and is much
less sharp than the t-statistic based confidence interval. We refer the reader to
Romano and Wolf (2000) for the pertinent discussion of this example in the
context of a closely related inference method.
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