
Econometrica Supplementary Material

SUPPLEMENT TO “FUNCTIONAL DIFFERENCING”
(Econometrica, Vol. 80, No. 4, July 2012, 1337–1385)

BY STÉPHANE BONHOMME

THIS SUPPLEMENT CONTAINS analytical and numerical results on various mod-
els. It also presents a method to numerically compute information bounds
and check the non-surjectivity condition. Last, it outlines a specification test
of parametric random-effects models.

S1. EXAMPLES: ANALYTICAL RESULTS

S1.1. Details About Derivations in the Text

EXAMPLE 1A: Note the identity

(y − a−Bα)′Σ−1(y − a−Bα)
= (y − a−Bα)′Σ−1/2QΣ−1/2(y − a−Bα)

+ (y − a)′Σ−1/2W Σ−1/2(y − a)�
We have, for every function g(α), and denoting q= dimα,

[Lθ�xg](y)=
∫

Rq

fy|x�α(y|x�α;θ)g(α)dα(S1)

= (2π)−T/2|Σ|−1/2

{∫
Rq

exp
[
−1

2
(y − a−Bα)′

×Σ−1/2QΣ−1/2(y − a−Bα)
]
g(α)dα

}
×
{

exp
[
−1

2
(y − a)′Σ−1/2W Σ−1/2(y − a)

]}
�

This shows (11).

EXAMPLE 1B: Here we extend the analysis of Example 1B to censored re-
gression models with random coefficients.

Let us assume for simplicity that B(x�θ) has full-column rank q, for all θ,
almost surely in x. Let V be a T × q matrix such that Q= V V ′ and V ′V = Iq.
Let also U be a T × (T − q) matrix such that W =UU ′, and U ′U = IT−q. Last,
let (μ�ν)= (V ′Σ−1/2y�U ′Σ−1/2y).

Then let us consider a region in R
T of the form

{y ∈ R
T � (μ� ν) ∈R1 ×R2} ⊂ {y ∈ R

T � y1 > c1� � � � � yT > cT }�
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where R1 and R2 are subsets of R
q and R

T−q, respectively. Finally, let us define
the function supported on that Cartesian product:

ϕ(y)= ϕ2(ν)1{μ ∈R1}1{ν ∈R2}�
Then (9) will hold if ϕ2 and R2 are chosen such that∫

R2

ϕ2(ν)exp
[
−1

2
(
ν−U ′Σ−1/2a

)′(
ν−U ′Σ−1/2a

)]
dν = 0�(S2)

In particular, if R2 is chosen such that {ν − U ′Σ−1/2a� ν ∈ R2} is symmetric
around zero, then

E
[
U ′Σ−1/2(yi − a)1

{
V ′Σ−1/2yi ∈R1

}
1
{
U ′Σ−1/2yi ∈R2

}|xi]= 0�(S3)

Restrictions (S3) are valid under nonnormality if the distribution of U ′Σ−1/2vi
is symmetric around the origin.

EXAMPLE 2: To see why finding a nonzero {ϕy} that satisfies (16) is equiva-
lent to all 2T products of distinct F ’s being linearly dependent, Fk1

1 × · · ·×FkTT ,
(k1� � � � �kT ) ∈ {0�1}T , consider the case T = 2. Then (16) can be written as

ϕ00 + (ϕ10 −ϕ00)F1 + (ϕ01 −ϕ00)F2

+ (ϕ11 −ϕ10 −ϕ01 +ϕ00)F1F2 = 0�

and we have⎛⎜⎝ ϕ00

ϕ10 −ϕ00

ϕ01 −ϕ00

ϕ11 −ϕ10 −ϕ01 +ϕ00

⎞⎟⎠=
⎛⎜⎝ 1 0 0 0

−1 1 0 0
−1 0 1 0
1 −1 −1 1

⎞⎟⎠
⎛⎜⎝ϕ00

ϕ10

ϕ01

ϕ11

⎞⎟⎠ �
This triangular structure holds for all T ≥ 2.

Last, we prove (18). We have

(17) ⇔
∑

y∈{0�1}T
ϕy(x�θ)

T∏
t=1

Λ(x′
tθ+ α)yt (1 −Λ(x′

tθ+ α))1−yt = 0

⇔
∑

y∈{0�1}T
ϕy(x�θ)

T∏
t=1

[
ex

′
t θ+α

1 + ex′
t θ+α

]yt[ 1
1 + ex′

t θ+α

]1−yt
= 0

⇔
∑

y∈{0�1}T
ϕy(x�θ)e

∑T
t=1 yt (x

′
t θ+α) = 0

⇔
∑

y∈{0�1}T
ϕy(x�θ)e

∑T
t=1 ytx

′
t θeα

∑T
t=1 yt = 0�
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So, as esα, s = 0� � � � � T , are linearly independent, (18) follows.

S1.2. Nonlinear Regression Model

Let us consider the model

yi =m(xi�αi� θ0)+ vi� i= 1� � � � �N�(S4)

wherem(·� ·� ·) is a known T ×1 function. The distribution of vi given xi and αi
is known given θ0, and is independent of αi. The non-Gaussian random coeffi-
cients model is covered as a special case, with m(x�α�θ)= a(x�θ)+B(x�θ)α.
We take Y = R

T , A ⊂ R
q (where q = dimα), and πα = 1 and πy = 1. Last, we

let x ∈ X .
Let g ∈L1(A)∩L2(A). We have

[Lθ�xg](y)=
∫

A
fv|x(y −m(x�α�θ);θ)g(α)dα�(S5)

Let us define the operator

F ◦Lθ�x :L2(A)→L2(RT )�

where F is the L2-Fourier transform (e.g., Yoshida (1971, p. 154)). Taking
Fourier transforms in (S5), we obtain, for all g ∈L1(A)∩L2(A),

[F [Lθ�xg]](ξ)=
(∫

A
e

√−1ξ′m(x�α�θ)g(α)dα

)
·Ψv|x(ξ|x;θ)� ξ ∈ R

T �(S6)

whereΨv|x = Ffv|x is the conditional characteristic function of vi given xi. Here
we assume thatΨv|x is nonvanishing (as in Carrasco and Florens (2009), among
other references).

Note that L1(A)∩L2(A) is dense in L2(A), and that F is one-to-one. Hence
Lθ�x is surjective if and only if F ◦ Lθ�x is surjective. It thus follows from (S6)
that Lθ�x is surjective if and only if{

ξ �→ e
√−1ξ′m(x�α�θ)�α ∈ A

}
(S7)

is dense in the Hilbert space L2(|Ψv|x(·|x;θ)|2).
In particular, if {m(x�α�θ)�α ∈ A} has nonempty interior in R

T , then Lθ�x
is generally surjective. As an example, Lθ�x is surjective when T = q and
m(x� ·� θ) is one-to one. When T > q, surjectivity will hold when m(x� ·� θ) is
a space-filling mapping (such as a Peano curve) that maps surjectively A onto
R
T (or an open ball in R

T ).
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S1.3. The Linear Dynamic Panel Data Model

In this subsection we derive the efficient functional differencing restrictions
for Example 1A. We will distinguish two cases.

• Case I: B(x�θ) does not depend on θ. As an example, the static linear
model falls in that category:

yit = x′
itβ0 + αi + vit�

where vit |xi�αi ∼N[0�σ2
0 ], with θ0 = (β′

0�σ
2
0 )

′, and B(x�θ)= (1� � � � �1)′ is in-
dependent of θ.

• Case II: B(x�θ) depends on θ. As an example, the dynamic AR(1) model

yit = ρ0yi�t−1 + αi + vit� t = 1� � � � �T�

where vit |yi0�αi ∼ N[0�σ2
0 ], falls in that category. For simplicity, we have as-

sumed that the initial condition yi0 is observed (and is thus the only covariate
in the model). To see the correspondence with the general formulation, notice
that

yit = ρt0yi0 + (1 + ρ0 + · · · + ρt−1
0 )αi + vit + ρ0vi�t−1 + · · · + ρt−1

0 vi1�

t = 1� � � � � T�

So, θ0 = (ρ0�σ
2
0 )

′, and

B(x�θ)= (1�1 + ρ� � � � �1 + ρ+ · · · + ρT−1)′�

We have the next result, where for conciseness we omit the reference to x
and θ0 throughout.

PROPOSITION S1: The efficient moment function for θk is

S
∗
k(y�x;θ0)=

(
∂a

∂θk
+ ∂B

∂θk
E
(
αi|QΣ−1/2y

))′
Σ−1/2W Σ−1/2(y − a)

− 1
2

[
(y − a)′Σ−1/2W Σ1/2 ∂Σ

−1

∂θk
Σ1/2W Σ−1/2(y − a)

− Tr
(
Σ1/2W Σ1/2 ∂Σ

−1

∂θk

)]
− (y − a)′Σ−1/2W Σ1/2 ∂Σ

−1

∂θk
Σ1/2QΣ−1/2

× (
y − a−BE

(
αi|QΣ−1/2y

))
�

PROOF: We will need the following result.
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LEMMA S1: 1
fy|x · R(L) coincides with the set of all zero-mean functions of

QΣ−1/2y .

PROOF: It is easy to show that (S1) implies, for all g ∈ Gα,

1
[Lfα](y) [Lg](y)= E

[
g(αi)|QΣ−1/2y�x

]
�

The result follows. Q.E.D.

By Lemma S1, the efficient moment function with respect to θk (k ∈
{1� � � � �dimθ}) is given by

S
∗
k(y�x;θ0)= ∂

∂θk
ln([Lfα](y))− E

(
∂

∂θk
ln([Lfα](yi))

∣∣∣QΣ−1/2y�x

)
�(S8)

Now, from (4),

∂

∂θk
ln([Lfα](y))

= −1
2
∂

∂θk
ln |Σ| + 1

[Lfα](y)

×
∫

Rq

∂

∂θk

[
−1

2
(y − a−Bα)′Σ−1(y − a−Bα)

]
× exp

[
−1

2
(y − a−Bα)′Σ−1(y − a−Bα)

]
fα|x(α|x)dα

= −1
2
∂

∂θk
ln |Σ| +

∫
Rq

∂

∂θk

[
−1

2
(y − a−Bα)′Σ−1(y − a−Bα)

]
× f̃ (α|QΣ−1/2y�x

)
dα�

where f̃ denotes the distribution function of αi given QΣ−1/2yi and xi, and
where we have used the factorization (S1).

Moreover, we have

∂

∂θk

[
−1

2
(y − a−Bα)′Σ−1(y − a−Bα)

]
=
(
∂a

∂θk
+ ∂B

∂θk
α

)′
Σ−1(y − a−Bα)

− 1
2
(y − a−Bα)′ ∂Σ

−1

∂θk
(y − a−Bα)�



6 STÉPHANE BONHOMME

So, by (S8),

S
∗
k = E

[(
∂a

∂θk
+ ∂B

∂θk
αi

)′
Σ−1(y − a−Bαi)

∣∣∣QΣ−1/2y

]
︸ ︷︷ ︸

=A(y)

+ E

[
−1

2
(y − a−Bαi)′ ∂Σ

−1

∂θk
(y − a−Bαi)

∣∣∣QΣ−1/2y

]
︸ ︷︷ ︸

=B(y)

− E
(
A(yi)+B(yi)|QΣ−1/2y

)
�

To simplify this expression, note that

y − a−Bα= Σ1/2QΣ−1/2(y − a−Bα)+Σ1/2W Σ−1/2(y − a)�
So

A(y)= E

[(
∂a

∂θk
+ ∂B

∂θk
αi

)′
Σ−1

(
Σ1/2W Σ−1/2(y − a))∣∣∣QΣ−1/2y

]
+ Ã(QΣ−1/2y

)
for some function Ã(·).

Moreover, note thatQΣ−1/2vi andW Σ−1/2vi are uncorrelated, hence (by nor-
mality) independent given xi. As vi and αi are conditionally independent, it
follows that W Σ−1/2(yi − a)=W Σ−1/2vi and QΣ−1/2yi =QΣ−1/2a+Σ−1/2Bαi +
QΣ−1/2vi are also independent given xi.

In particular, this implies that

E
(
W Σ−1/2(yi − a)|QΣ−1/2y�x

)= E
(
W Σ−1/2(yi − a)|x

)= 0�

from which it follows that

A(y)− E
(
A(yi)|QΣ−1/2y

)
=
(
∂a

∂θk
+ ∂B

∂θk
E
(
αi|QΣ−1/2y

))′
Σ−1

(
Σ1/2W Σ−1/2(y − a))�

Next, we have

B(y)= E

[
−1

2
(
Σ1/2QΣ−1/2(y − a−Bαi)+Σ1/2W Σ−1/2(y − a))′

× ∂Σ−1

∂θk

(
Σ1/2QΣ−1/2(y − a−Bαi)

+Σ1/2W Σ−1/2(y − a))∣∣∣QΣ−1/2y

]
�



FUNCTIONAL DIFFERENCING 7

So

B(y)

= − 1
2
(
Σ1/2W Σ−1/2(y − a))′ ∂Σ−1

∂θk

(
Σ1/2W Σ−1/2(y − a))︸ ︷︷ ︸

=B1(y)

−(Σ1/2W Σ−1/2(y − a))′ ∂Σ−1

∂θk

(
Σ1/2QΣ−1/2(y − a−BE

(
αi|QΣ−1/2y

)))
︸ ︷︷ ︸

=B2(y)

+E

[
− 1

2
(
Σ1/2QΣ−1/2(y − a−Bαi)

)′ ∂Σ−1

∂θk

(
Σ1/2QΣ−1/2(y − a−Bαi)

)∣∣∣QΣ−1/2y

]
︸ ︷︷ ︸

=B3(y)

�

Note that B3(y) is a function of QΣ−1/2y , so

B3(y)− E
(
B3(yi)|QΣ−1/2y

)= 0�

Note also that, by the above argument and the law of iterated expectations,

E

[(
Σ1/2W Σ−1/2(yi − a)

)′
× ∂Σ−1

∂θk

(
Σ1/2QΣ−1/2

(
yi − a−BE

(
αi|QΣ−1/2yi

)))∣∣∣QΣ−1/2y

]
= 0�

So

B2(y)− E
(
B2(yi)|QΣ−1/2y

)
= −(Σ1/2W Σ−1/2(y − a))′

× ∂Σ−1

∂θk
Σ1/2QΣ−1/2

(
y − a−BE

(
αi|QΣ−1/2y

))
�

Last, we have

E

[
(yi − a)′Σ−1/2W Σ1/2 ∂Σ

−1

∂θk
Σ1/2W Σ−1/2(yi − a)

∣∣∣QΣ−1/2y

]
= E

[
v′
iΣ

−1/2W Σ1/2 ∂Σ
−1

∂θk
Σ1/2W Σ−1/2vi

∣∣∣QΣ−1/2y

]
= E

[
v′
iΣ

−1/2W Σ1/2 ∂Σ
−1

∂θk
Σ1/2W Σ−1/2vi

]
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= Tr
[
Σ1/2W Σ−1/2ΣΣ−1/2W Σ1/2 ∂Σ

−1

∂θk
Σ1/2W Σ−1/2

]
= Tr

(
Σ1/2W Σ1/2 ∂Σ

−1

∂θk

)
�

where we have used that W Σ−1/2vi and QΣ−1/2yi are independent given xi, and
that W 2 =W .

Hence

B1(y)− E
(
B1(yi)|QΣ−1/2y

)
= −1

2
(
Σ1/2W Σ−1/2(y − a))′ ∂Σ−1

∂θk

(
Σ1/2W Σ−1/2(y − a))

+ 1
2

Tr
(
Σ1/2W Σ1/2 ∂Σ

−1

∂θk

)
�

The expression of S
∗
k then follows from combining the results. Q.E.D.

Several comments are in order. To start with, consider the case where B(x�θ)
does not depend on θ (Case I). Proposition S1 shows that, in this case, the
bound coincides with the standard bound for exponential family models (Hahn
(1997)).

In the general case (Case II), the efficient functional differencing restrictions
comprise five terms. Mean and covariance restrictions in quasi-differences are

E

[(
∂a

∂θk

)′
Σ−1/2W Σ−1/2(yi − a)

]
= 0

and

E

[
(yi − a)′Σ−1/2W Σ1/2 ∂Σ

−1

∂θk
Σ1/2W Σ−1/2(yi − a)

− Tr
(
Σ1/2W Σ1/2 ∂Σ

−1

∂θk

)]
= 0�

respectively, whereas orthogonality restrictions between quasi-differences and
levels are

E

[
(yi − a)′Σ−1/2W Σ1/2 ∂Σ

−1

∂θk
Σ1/2QΣ−1/2(yi − a)

]
= 0�

In the dynamic model, these restrictions combine those proposed by Arel-
lano and Bond (1991) and Ahn and Schmidt (1995). Note that, in this model,
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no stationarity restriction is imposed, so the extra moments of Arellano and
Bover (1995) are invalid here. Imposing these restrictions would require con-
straining the distribution of αi given yi0.

The last two terms involve the conditional mean E(αi|QΣ−1/2yi). It is inter-
esting to compare the optimal mean restrictions in the normal model,

E

[(
∂a

∂θk
+ ∂B

∂θk
E
(
αi|QΣ−1/2yi

))′
Σ−1/2W Σ−1/2(yi − a)

]
= 0�

with the optimal restrictions obtained by Chamberlain (1992), in a model
where second- and higher-order moments of errors are left unrestricted,

E

[(
∂a

∂θk
+ ∂B

∂θk
E(αi|xi)

)′
Σ−1/2W Σ−1/2(yi − a)

]
= 0�

The difference between the two sets of moments is that, under normal-
ity, QΣ−1/2yi = QΣ−1/2a + Σ−1/2Bαi + QΣ−1/2vi is statistically independent of
W Σ−1/2(yi − a) = W Σ−1/2vi given covariates xi. This implies the existence of
additional instruments (namely, QΣ−1/2yi) in the quasi-differenced equations,
in addition to xi.

Note that efficient estimation of θ0 in the normal model requires a non-
parametric estimate of E(αi|QΣ−1/2yi). This is similar to efficient estimation of
common parameters in Chamberlain (1992). A regularized estimate of the op-
timal instruments may be based on a (semi-) parametric random-effects speci-
fication, as discussed in the text.

S1.4. Uniform Fourier Convergence in the Random Coefficients Model

We consider Example 1A, where, in addition, we assume that Σ is known.
We also assume that rank(B)= dimα≡ q, that is, that Lθ�x is injective.

Let us take πα = 1, and πy(y) = exp[− 1
2ηy

′Σ−1y], where η > 0. Let Q =
Σ−1/2B[Σ−1/2B]†, and define V a T ×qmatrix such thatQ= V V ′ and V ′V = Iq.
Let also W = IT −Q, and define U a T × (T − q) matrix such that W =UU ′,
and U ′U = IT−q.

Let us define H the Hilbert space of functions ψ : Rq → R such that∫
Rq

ψ(μ)2 exp
[
−1

2
ημ′μ

]
dμ<∞�

endowed with its canonical scalar product. Last, let LH : H → H be the integral
operator such that, for all ψ ∈ H,

[LHψ](z)=
∫

Rq

exp
[
−1

4
(z−μ)′(z−μ)

]
× exp

[
−1

2
ημ′μ

]
ψ(μ)dμ

for all z ∈ R
q�
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We note that LH is Hilbert–Schmidt, so it admits a singular value decomposi-
tion, and that LH is self-adjoint.

We have the following result.

PROPOSITION S2: The left singular functions of the operator Lθ�x : Gα → Gy are
given by

φj�θ(y)= C(θ)Hj

(
V ′Σ−1/2y

)
exp

[
−1

2
(y − a)′Σ−1/2UU ′Σ−1/2(y − a)

]
�(S9)

where Hj , j = 1�2� � � � are the singular functions of the self-adjoint operator LH,
and where C(θ) is a positive constant, uniformly bounded on Θ provided a(·) is
continuous in θ and Θ is compact.

PROOF: Let Y = R
T , and A = R

q. We have

[Lθ�xL∗
θ�xh](y)

=
∫

Y

∫
A
fy|x�α(y|x�α;θ)fy|x�α(̃y|x�α;θ)πy(̃y)h(̃y)dαdỹ

=
∫

Y

{∫
A
fy|x�α(y|x�α;θ)fy|x�α(̃y|x�α;θ)dα

}
︸ ︷︷ ︸

k(y�̃y)

πy (̃y)h(̃y)dỹ�

Moreover,

fy|x�α(y|x�α;θ)∝ exp
[
−1

2
(
V ′Σ−1/2(y − a)− V ′Σ−1/2Bα

)′
× (
V ′Σ−1/2(y − a)− V ′Σ−1/2Bα

)]
× exp

[
−1

2
(y − a)′Σ−1/2UU ′Σ−1/2(y − a)

]
�

where A ∝ B denotes the fact that A and B are equal up to a multiplicative
constant (possibly dependent on θ�x).

Using the change of variables β = V ′Σ−1/2Bα, and noting that V ′Σ−1/2B is
nonsingular, we obtain

k(y� ỹ)=
∫

A
fv|x(y − a−Bα;θ)fv|x(̃y − a−Bα;θ)dα

∝
∫

A
exp

[
−1

2
(
V ′Σ−1/2(y − a)−β)′(V ′Σ−1/2(y − a)−β)

− 1
2
(
V ′Σ−1/2(̃y − a)−β)′(V ′Σ−1/2(̃y − a)−β)]dβ
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× exp
[
−1

2
(y − a)′Σ−1/2UU ′Σ−1/2(y − a)

− 1
2
(̃y − a)′Σ−1/2UU ′Σ−1/2(̃y − a)

]
�

So, from the usual decomposition of quadratic forms,

k(y� ỹ) ∝ exp
[
−1

4
(
V ′Σ−1/2(y − ỹ))′(V ′Σ−1/2(y − ỹ))

]
× exp

[
−1

2
(y − a)′Σ−1/2UU ′Σ−1/2(y − a)

− 1
2
(̃y − a)′Σ−1/2UU ′Σ−1/2(̃y − a)

]
�

As the left singular function φj�θ belongs to the range of Lθ�x, there exists a
function hj such that

φj�θ(y)= hj
(
V ′Σ−1/2y

)
exp

[
−1

2
(y − a)′Σ−1/2UU ′Σ−1/2(y − a)

]
�

The function φj�θ satisfies

[Lθ�xL∗
θ�xφj�θ](y)∝ φj�θ(y)�

This is equivalent to

hj
(
V ′Σ−1/2y

)∝
∫

Y

{
exp

[
−1

4
(
V ′Σ−1/2(y − ỹ))′(V ′Σ−1/2(y − ỹ))]

× exp
[
−1

2
(̃y − a)′Σ−1/2UU ′Σ−1/2(̃y − a)

]
×πy(̃y)hj

(
V ′Σ−1/2ỹ

)}
dỹ�

Then we note that, as V V ′ +UU ′ = IT ,

πy(̃y)= exp
[
−1

2
ηỹ ′Σ−1ỹ

]
= exp

[
−1

2
η
(
V ′Σ−1/2ỹ

)′
V ′Σ−1/2ỹ

]
× exp

[
−1

2
ηỹ ′Σ−1/2UU ′Σ−1/2ỹ

]
�
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We thus obtain, using the change in variables (μ�ν)= (V ′Σ−1/2ỹ�U ′Σ−1/2ỹ),

hj
(
V ′Σ−1/2y

)∝
∫

Rq

exp
[
−1

4
(
V ′Σ−1/2y −μ)′(V ′Σ−1/2y −μ)]

× exp
[
−1

2
ημ′μ

]
hj(μ)dμ�

So, (S9) follows. Last, as ‖φj�θ‖ = 1, the proportionality constant C(θ) satis-
fies

1
C(θ)2

=
∫

Y

(
Hj

(
V ′Σ−1/2y

)
exp

[
−1

2
(y − a)′Σ−1/2UU ′Σ−1/2(y − a)

])2

× exp
[
−1

2
ηy ′Σ−1y

]
dy

= |Σ|1/2

∫
Rq

Hj(μ)
2 exp

[
−1

2
ημ′μ

]
dμ

×
∫

RT−q
exp

[−(ν−U ′Σ−1/2a
)′(
ν−U ′Σ−1/2a

)]
× exp

[
−1

2
ην′ν

]
dν

= |Σ|1/2

(
2π

2 +η
)(T−q)/2

exp
[
− η

2 +ηa
′Σ−1/2UU ′Σ−1/2a

]
�

where we have used that ‖Hj‖ = 1. As a(·) is continuous in θ and Θ is com-
pact, and as W =UU ′ is a projector, a′Σ−1/2UU ′Σ−1/2a is bounded. So, C(θ) is
uniformly bounded.

The result follows. Q.E.D.

Using the expression for the left singular functions, we then verify uniform
Fourier convergence for model (2).

COROLLARY S1: The following condition is satisfied for all h ∈ Gy , a.s. in x:

sup
θ∈Θ

(∑
j>J

〈φj�θ�h〉2

)
J→∞→ 0�(S10)

PROOF: We start by checking condition (S10) when h is a polynomial. It is
enough to check the result for h of the form (Σ−1/2y)(k), where y(k) = y

k1
1 ×

· · · × ykTT . Let (μ�ν)= (V ′Σ−1/2y�U ′Σ−1/2y). We have(
Σ−1/2y

)(k) = (
V V ′Σ−1/2y +UU ′Σ−1/2y

)(k) = (V μ+Uν)(k)�
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We note that (V μ + Uν)(k) is a polynomial in μ and ν, the coefficients of
which are uniformly bounded as U and V are orthogonal matrices. So it is
sufficient to check the result for h of the form (V ′Σ−1/2y)(m)(U ′Σ−1/2y)(�).

For such an h, we have

〈φj�θ�h〉 = C(θ)

∫
Y

{(
V ′Σ−1/2y

)(m)(
U ′Σ−1/2y

)(�)
Hj

(
V ′Σ−1/2y

)
× exp

[
−1

2
(y − a)′Σ−1/2UU ′Σ−1/2(y − a)

]
πy(y)

}
dy

= C(θ)|Σ|1/2

∫
Rq

μ(m)Hj(μ)exp
[
−1

2
ημ′μ

]
dμ

×
∫

RT−q
ν(�) exp

[
−1

2
(
ν−U ′Σ−1/2a

)′(
ν−U ′Σ−1/2a

)]
× exp

[
−1

2
ην′ν

]
dν�

where we have factored πy as in the proof of Proposition S2, and where we
have used the change in variables (μ�ν)= (V ′Σ−1/2y�U ′Σ−1/2y).

Now, as μ(m) belongs to H,

∑
j>J

(∫
Rq

μ(m)Hj(μ)exp
[
−1

2
ημ′μ

]
dμ

)2
J→∞→ 0�

In addition,∣∣∣∣∫
RT−q

ν(�) exp
[
−1

2
(
ν−U ′Σ−1/2a

)′(
ν−U ′Σ−1/2a

)]
exp

[
−1

2
ην′ν

]
dν

∣∣∣∣
≤
∫

RT−q
|ν|(�) exp

[
−1

2
ην′ν

]
dν <∞�

This shows uniform Fourier convergence for polynomial h.
Last, let h ∈ Gy , and fix ε > 0. We start by noting that polynomials are dense

in Gy . For example, when T = 1, the (generalized) Hermite polynomials form
an orthogonal basis of the weighted L2 space Gy . So, there exists a polynomial
h̃ such that ‖h− h̃‖2 < ε

4 .
For this h̃, and by the previous result, there exists a J1 such that, for all J ≥ J1,

sup
θ∈Θ

∑
j>J

〈φj�θ� h̃〉2 <
ε

4
�
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Therefore,

sup
θ∈Θ

∑
j>J

〈φj�θ�h〉2 ≤ sup
θ∈Θ

∑
j>J

2
(〈φj�θ� h̃〉2 + 〈φj�θ�h− h̃〉2

)
≤ 2 × sup

θ∈Θ

∑
j>J

〈φj�θ� h̃〉2 + 2 × ‖h− h̃‖2

< 2 × ε

4
+ 2 × ε

4
= ε�

and the corollary is proved. Q.E.D.

S2. EXAMPLES: NUMERICAL EVIDENCE

In this section, we discuss several numerical issues. We start by describing an
approach to numerically compute semiparametric information bounds.

S2.1. Computing Information Bounds

General Approach

Let πα = 1/fα|x, and πy = 1/fy|x. Here fα|x and fy|x are assumed known. The
efficient moment restrictions are given by (30). Moreover, the information
bound, conditional on x1� � � � � xN , is given by

1
N

N∑
i=1

E

(
πy(yi)

2

[
Wθ0�xi

∂Lθ0�xifα|x
∂θ

]
(yi)

[
Wθ0�xi

∂Lθ0�xifα|x
∂θ′

]
(yi)

∣∣xi)�(S11)

Note that the bound depends on parameter values θ0 and fα|x. Note also
that the information bound simplifies relative to the general formula for the
asymptotic variance of GMM, due to information equality.

Let

Eθ�x = E

(
πy(yi)

2

[
Wθ0�xi

∂Lθ0�xifα|x
∂θ

]
(yi)

×
[
Wθ0�xi

∂Lθ0�xifα|x
∂θ′

]
(yi)

∣∣xi = x)�
We will compute Eθ�x by simulation, drawing Ny values y

s
(s = 1� � � � �Ny)

from fy|x(·|x). That is,

Eθ�x ≈ 1
Ny

Ny∑
s=1

πy(y
s
)2

[
Wθ0�x

∂Lθ0�xfα|x
∂θ

]
(y

s
)

[
Wθ0�x

∂Lθ0�xfα|x
∂θ′

]
(y

s
)�(S12)
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Let us write Wθ0�x = Iy −Qθ0�x, where Qθ0�x is the orthogonal projection op-
erator onto R(Lθ0�x). Equation (S12) may equivalently be written as

Eθ�x ≈ 1
Ny

Ny∑
s=1

(∂ ln[Lθ0�xfα|x](y
s
)

∂θ

− 1
[Lθ0�xfα|x](y

s
)

[
Qθ0�x

∂Lθ0�xfα|x
∂θ

]
(y

s
)

)

×
(∂ ln[Lθ0�xfα|x](y

s
)

∂θ
− 1

[Lθ0�xfα|x](y
s
)

[
Qθ0�x

∂Lθ0�xfα|x
∂θ

]
(y

s
)

)′
�

Now let us define the Nα × 1 and Ny × 1 vectors

f (y)
θ0�x

= [
(fy|x�α(y|x�αn;θ0))n

]
�

∂Lθ0�x
f
α|x

∂θk
=
[(

Nα∑
n=1

∂fy|x�α(y
s
|x�αn;θ0)

∂θk

)
s

]
�

and the Ny ×Nα and Ny ×Ny matrices

Lθ0�x
= [
(fy|x�α(y

s
|x�αn;θ0))s�n

]
�

Dθ0�x
= diag

[(
Nα∑
n=1

fy|x�α(y
s
|x�αn;θ0)

)
s

]
�

We shall adopt a discretization strategy closely related to that of Section 6
in the paper, using Ny draws y

s
from fy|x, and Nα draws αn from π = fα|x.

We start by noting that it follows from the choice of πα that π · πα = 1, and
that [(μs(y))s] ≈ 1

Nα
Lθ�xf

(y)

θ�x
. We will thus approximate [Qθ0�x

∂Lθ0�xfα|x
∂θk

](y) in the
family of functions[

Qθ0�x

∂Lθ0�xfα|x
∂θk

]
(y)≈

Nα∑
n=1

bn fy|x�α(y|x�αn;θ0)︸ ︷︷ ︸
≡νn(y)

�

The projection yields

[(bn)n] ≈
[(∫

Y
νn1(y)νn2(y)πy(y)dy

)
n1�n2

]†

×
[(∫

Y
νn1(y)

[
∂Lθ0�xfα|x
∂θk

]
(y)πy(y)dy

)
n1

]
�
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that is, using importance sampling with Ny draws from fy|x = 1/πy ,

[(bn)n] ≈
[(

Ny∑
s=1

1
fy|x(y

s
|x)2

νn1(ys)νn2(ys)

)
n1�n2

]†

×
[(

Ny∑
s=1

1
fy|x(y

s
|x)2

νn1(ys)

[
∂Lθ0�xfα|x
∂θk

]
(y

s
)

)
n1

]
�

Combining, and noting that [ ∂Lθ0�xfα|x
∂θk

](y
s
)≈ 1

Nα

∑Nα
n=1

∂fy|x�α(ys |x�αn;θ0)

∂θk
, we obtain[

Qθ0�x

∂Lθ0�xfα|x
∂θk

]
(y)

≈ 1
Nα

(
f (y)
θ0�x

)′(
L′
θ0�x
D−2
θ0�x
Lθ0�x

)†
L′
θ0�x
D−2
θ0�x

∂Lθ0�x
f
α|x

∂θk

= 1
Nα

(
f (y)
θ0�x

)′(
D−1
θ0�x
Lθ0�x

)†
D−1
θ0�x

∂Lθ0�x
f
α|x

∂θk
�

Using this approximation, we thus have46

Eθ�x ≈ 1
Ny

(
D−1
θ0�x

∂Lθ0�x
f
α|x

∂θ′

)′[
INy − (

D−1
θ0�x
Lθ0�x

)(
D−1
θ0�x
Lθ0�x

)†]
(S13)

×
(
D−1
θ0�x

∂Lθ0�x
f
α|x

∂θ′

)
�

This formula is intuitive: not knowing fα|x results in a loss of information,
which can be seen by comparing the fixed-effects information bound Eθ�x with
the parametric information bound for fα|x known,

EML
θ�x ≈ 1

Ny

(
D−1
θ0�x

∂Lθ0�x
f
α|x

∂θ′

)′(
D−1
θ0�x

∂Lθ0�x
f
α|x

∂θ′

)
�

Illustrative Calculations

Figure S1 shows the results of a computation of the inverse information
bound for three models, using the formula (S13). We use two different ap-
proaches to compute (S13). The first one is based on the J-modified pseudo-
inverse of the matrix Lθ0�x

, which we mentioned in the text (Section 6).

46Note that this formula differs slightly from the one that appears in the proof of Theorem 1.
This is because in the above derivations we have used Ny draws from fy|x (while the proof of the
theorem relies on draws from a discrete uniform distribution).
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FIGURE S1.—Inverse information bounds (T = 2). The curves show the inverse information bound of the model, for a given number of singular
values (or columns of Lθ) J used in the computation. Diamonds (solid line) correspond to the SVD-based approach; triangles (dashed line)
correspond to the QR-based approach.
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We refer to this approach as singular value decomposition (SVD) -based.
As a second approach, we use a least-squares (LS) regression to compute

(D−1
θ0�x
Lθ0�x

)†D−1
θ0�x

∂Lθ0�x
f
α|x

∂θk
, using only the first J columns of the matrix Lθ0�x

.
We refer to this method as QR-based.47

The left panel shows the results for a simple linear model yit = αi + θ0(t −
1)+ vit , t = 1�2, where vi1 and vi2 are independent standard normals. We take
θ0 = 1, and αi standard normal. In this case, the first-differenced estimator
reaches the information bound (e.g., Hahn (1997)), the inverse of which is
equal to 2. This provides a convenient benchmark against which to compare
our discretization strategy. We take Ny = 10,000, and Nα = 1000.

We see on the left panel that both methods converge to the theoretical
bound. The SVD-based method gets faster to the solution. However, when J
gets large, the SVD-based method tends to deviate from the theoretical value,
while the LS-based method remains stable. The difference is accentuated when
we increase J beyond 50 (not shown).

The central panel shows the results for Chamberlain’s model, with a similar
pattern for the two methods. This calculation suggests that the inverse informa-
tion bound is ≈1�25. That is, whenN = 100 or 500, the corresponding standard
deviations are ≈√1�25/100 = �112 and ≈√1�25/500 = �050, respectively.

For the Tobit model, we see that the numerical problems in the computa-
tion of singular vectors arise earlier. In particular, the SVD-based method
starts to diverge from the QR-based method when J ≥ 20. We verified that,
for small singular values, the numerical computation of singular vectors starts
being very imprecise. In contrast, the QR-based method gives more stable re-
sults. This computation exercise shows that precise calculation of information
bounds may be difficult, due to errors caused by finite machine precision. Nev-
ertheless, the evidence obtained suggests that the inverse bound is ≈5�0, and
that the corresponding standard deviations for σ0 (obtained using the delta
method) are ≈√5/100/2 = �112 and ≈√5/500/2 = �050, respectively.48

S2.2. Checking the Non-Surjectivity Condition

A similar discretization approach may also be used to provide numerical
evidence on (non-) surjectivity in a given model. To proceed, let us return to
the setup of Section 6, where πy is integrable, and integrals with respect to α
are approximated using importance sampling based on a density π. Fix x ∈ X ,
and θ ∈Θ. For any h ∈ Gy , the squared norm of Wθ�xh may be computed as

‖Wθ�xh‖2 ≈ 1
Ny

h′[INy −Lθ�xL†
θ�x

]
h�(S14)

47In Matlab, linear regression based on the QR decomposition can be done using the backslash
operator.

48The fact that the bounds are numerically equal in the two models is due to chance.
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where h= [(h(y
s
))s] is an Ny × 1 vector and where the expression of the Ny ×

Nα matrix Lθ�x is given in Section 6.
To illustrate the practical usefulness of this type of calculation, we computed

(S14) in the Tobit model and in the simple random coefficients model, for the
special choice h(y) = 1. Note that, given that πy is integrable, h belongs to
Gy and its norm is equal to 1. We take θ = 1 (σ = 1 for tobit), and we show
the results for T = 1, T = 2, and T = 3. We also compare the SVD-based
and QR-based approaches to approximate the projection, as we explained
above.

The results presented in Figure S2 clearly show that Wθh �= 0 when T = 2
or T = 3. This provides numerical evidence on the fact that the operator Lθ
is not surjective for that value of common parameters. In contrast, the graphs
for T = 1 suggest that Wθh = 0, consistently with the fact that Lθ is surjec-
tive when only one period of data is used. The figure thus illustrates the fact
that the availability of panel data is essential to the success of the functional
differencing approach.

S2.3. Varying the Number of Singular Values

In the two upper panels of Figure S3, we show the mean of σ̂ and θ̂, as well as
the mean ± two standard deviations, across 1000 simulations, for a sample size
N = 100. In both models, we set hr(y) = φ(y − μr), where φ is the standard
normal p.d.f. and where μr takes 49 different values in R

2:

{(0�0)� (0�1)� (0�−1)� (0�2)� (0�−2)� (0�3)� (0�−3)� � � � � (−3�−3)}�
On the x-axis of the figure, we report the number of singular values J used

in the numerical computation of the discretized version of the within projec-
tion operator (using the SVD-based approach). We see that the results quickly
stabilize around the true value (σ0 = 1 and θ0 = 1, respectively). This result
is consistent with the absence of ill-posedness in the estimation of common
parameters.49

S2.4. Numerical Evidence on Uniform Fourier Convergence

Here our aim is to provide some numerical evidence on uniform Fourier
convergence in the two models that we used as illustration in Section 6 in the
paper. In Section 5, we assumed uniform Fourier convergence to show root-
N consistency and asymptotic normality of common parameter estimates. In

49We also compared the SVD-based approach with the QR-based approach which we men-
tioned above, and found little difference on the simulated data.
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FIGURE S2.—Numerical evidence on non-surjectivity (T = 1�2�3). The curves show estimates of the squared norm of Wθh, where h(y)= 1 and
(θ�σ)= (1�1). The results are plotted against the number of singular values (or columns of Lθ) J used in the computation. Diamonds (solid line)
correspond to the SVD-based approach; triangles (dashed line) correspond to the QR-based approach.
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FIGURE S3.—Parameter estimates (N = 100�T = 2). On the x-axis we report the number of
singular values used in estimation, while the y-axis shows parameter estimates. The functions
used to construct moment functions are φ(· −μr), r = 1� � � � �49, where the set of values for μr is
indicated in the text. The solid and discontinuous lines show the mean estimate and the mean ±
2 standard deviations, respectively. The thin solid line indicates the true parameter value.

Figure S4, we report the sum
∑

j>J〈φj�θ� fy〉2, for various J and for common
parameters (θ and σ) in a grid of values ranging between .5 and 1.5.50

FIGURE S4.—Uniform Fourier convergence (T = 2). We report the quantity
∑

j>J〈φj�θ� fy〉2,
where (J+ 1) is shown on the x-axis. The various curves correspond to different parameters θ (σ
on the left panel), which belong to a grid {�5� �6� � � � �1�5}.

50In our experiments, we observed that estimates of singular vectors associated with very
small singular values were affected by numerical error. In Chamberlain’s model, the sum∑J

j=1〈φj�θ� fy〉2 increased steadily with J and seemed to reach a plateau after a few singular values,
yet the sum jumped after the 19th singular value (and actually became �‖fy‖2). For this reason,
we discarded the singular values λj�θ� j ≥ 19 in the sum. For the Tobit model, this phenomenon
occurred after the 14th singular value, and we proceeded similarly. This is additional evidence of
the difficulty of computing singular vectors associated with small singular values.
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Figure S4 shows that the Fourier coefficients tend quickly to zero, and there
is visual evidence that the convergence is uniform over the set of parameters
that we have considered. This provides numerical support for uniform Fourier
convergence in those two models.

S3. SPECIFICATION TEST

In applied work, a common approach is to assume a parametric model for
the individual effects. Here we show how to use the functional differencing
restrictions for the purpose of specification testing.

Let

fy|x(y|x)=
∫

A
fy|x�α(y|x�α;θ0)fα|x(α|x;η0)dα

be a complete parametric specification of the distribution of the data, which
includes a parametric model for the individual effects. A popular choice is to
let fα|x(α|x;η0) be a Gaussian density, with means and variances that are par-
simonious functions of covariates xi (Chamberlain (1984)).

We wish to test the null hypothesis that fα|x is correctly specified. For this,
we consider the random-effects maximum likelihood estimator (MLE) of θ0,
which solves

θ̃= arg max
θ

[
arg max

η

N∑
i=1

ln

(∫
A
fy|x�α(yi|xi�α;θ)fα|x(α|xi;η)dα

)]
�

Then, we define the statistic

S = 1
N

N∑
i=1

ϕ(yi� xi� θ̃)�

where ϕ= (ϕ1� � � � �ϕR)
′ is given by (35). The statistic S is simply an empirical

counterpart of the functional differencing moment restrictions, evaluated at
the random-effects MLE.

PROPOSITION S3: Under the null of correct specification, and under regularity
conditions given in Section 5 and standard regularity assumptions on the MLE,

√
NS

d→N[0� VS]�
where the expression of VS is provided in equation (S15) below.

PROOF: Let us denote �i(θ�η)= ln[∫A fy|x�α(yi|xi�α;θ)fα|x(α|xi;η)dα], and
Lθθ = E[ ∂2�i(θ0�η0)

∂θ∂θ′ ], with a similar notation for the three other components of
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the Hessian: Lθη, Lηθ, and Lηη. Then, under standard regularity conditions
and under the null of correct specification,

√
N(θ̃− θ0)

d→N[0� Vθ̃]�
where Vθ̃ = [Lθθ −LθηL−1

ηηLηθ]−1.
Let ϕi(θ)= ϕ(yi� xi� θ). It is easy to show that, under the null, and under the

regularity conditions of Theorem 4 and standard regularity assumptions on the
MLE (see Arellano (1991)),

√
NS

d→N[0� VS]�
where

VS = E
[
(ϕi(θ0)−GVθ̃si)(ϕi(θ0)−GVθ̃si)′

]
�(S15)

with si = ∂�i(θ0�η0)

∂θ
−LθηL−1

ηη
∂�i(θ0�η0)

∂η
, and G= E[ ∂ϕi(θ0)

∂θ′ ].
A consistent estimator of VS is then obtained as

V̂S = Ê
[
(ϕi(θ̃)− ĜV̂θ̃̂si)(ϕi(θ̃)− ĜV̂θ̃̂si)′

]
�

where V̂θ̃ is a consistent estimator of Vθ̃, ŝi = ∂�i(θ̃�η̃)

∂θ
− L̂θηL̂

−1
ηη

∂�i(θ̃�η̃)

∂η
, with L̂θη

and L̂ηη consistent estimators of Lθη and Lηη, respectively, and Ĝ is given by
(49) with θ̃ in place of θ̂. Q.E.D.

Let us assume that VS is nonsingular. In particular, this requires that the
vector of moment functions ϕ is not identically zero, thus restricting the model
to be non-surjective. As N tends to infinity, we then have, under the null of
correct specification,

NS′V̂ −1
S S

d→χ2
R�(S16)

where V̂S is a consistent estimator of VS . Thus, (S16) provides a simple way
to test the validity of random-effects specifications in non-surjective models.
This provides an analog of the Hausman test (Hausman (1978)) in a nonlinear
context.
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