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SUPPLEMENT TO “CONTINUOUS IMPLEMENTATION”
(Econometrica, Vol. 80, No. 4, July 2012, 1605-1637)

BY MARION OURY AND OLIVIER TERCIEUX

BELOW WE PROVIDE THE PROOF of Theorem 4, which is omitted in the main
text.

PROOF OF THE “IF PART” OF THEOREM 4: Assume that f: T — A is ratio-
nalizable implementable by a finite mechanism M = (M, g), that is, that, for
allteT,me R(HM,T) = g(m) = f (7).

We first recall the following well known lemma.

LEMMA 1—Dekel, Fudenberg, and Morris (2006): Fix any model T =
(T, k) such that T C T and any finite mechanism M. (i) For any t € T and
any sequence {t[n]}2, in T, if t[n] —p t, then, for n large enough, we have
R(t[n)IM,T) C R(t|M, T). (ii) For any type t € T, R(t| M, T) is nonempty.

Now pick any model 7 = (T, k) such that 7 c 7. We show that there exists
an equilibrium that continuously implements f on 7. For each player i and
each type t; € T;, fix some m;(f;) € R;(#;| M, T) and restrict the space of strate-
gies of player i by assuming that o,(f;) = m,(#;) for each type ; € T,. Because
M is finite and T is countable, standard arguments' show that there exists a
Bayes Nash equilibrium in U(M, 7). Let us first establish that o is a Bayes
Nash equilibrium in U(M, 7). It is clear by construction that, for each i € 7
and 7; ¢ T,

m; € Supp(oi(t;)) = m; € BR,(m;(-|t;, o_;)|IM).

Now fix a player i € Z and a type f; € T;. Since 7 C 7 is a model (and hence,
k(t;) takes its support in @ x T,i), it is easily checked that, by construction of o,
mi(m_i|t;, 0_)) >0=m_; € R_(f.;J,M, T) for some f_; € T_;. Hence, by a well
known argument, BR;(;(-|%;, o_;)|M) C Ri(|M, T). Since g(R({lM, T)) =
{f (1)}, we have, for all 7i1; € R/(t| M, T),

> w0, moilt, o) (g, m_), 0)]
(0,m_;)e@OxM_;

=Y k(E)6, L Jui(f (5, 1), 0),

0,1_;

IThe existence of a Bayes Nash equilibrium can be proved using Kakutani-Fan-Glicksberg’s
fixed point theorem. The space of strategy profiles is compact in the product topology. Using the
fact that u;: 4 x ® — R is bounded, all the desired properties of the best-response correspon-
dence (in particular upper hemicontinuity) can be established.
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and so BR;(m:(:|f;, o_;)|M) = R;(&;l M, T). Hence we must have m;(f;) =
oi(t;) € BR;(m;(-|t;, 0_;)|M). Thus, o is a Bayes Nash equilibrium in U(M, T)
and o7 is a pure Nash equilibrium in U(M, 7). Now, pick any sequence
{t[n]}>>, in T, such that ¢[n] —p t. It is clear that, for each n: Supp(o(t[n])) C
R(t[n] | M, T). In addition, for n large enough, we know by Lemma 1 that
R(t[n] | M, T) C R(f | M, T). Then, for n large enough, Supp(o(t[n])) C
R(f| M, T) and so, (g o o)(t[n]) = f(f) as claimed. Q.E.D.

PROOF OF THE “ONLY IF PART” OF THEOREM 4: We show that a social
choice function f:T — A is continuously implementable by a countable>
mechanism M only if it is rationalizable implementable by some mechanism
M c M (ie., M C M, for each i and g’ = gur).

Since f is continuously implementable, there exists a mechanism M =
(M, g) such that, for any model 7 = (T, ) satisfying T c T, there is a Bayes
Nash equilibrium o in the induced game U(M, T ) where, for each f € T,
(i) o (¢) is pure, and (ii) for any sequence ¢[n] — p t where, for each n: t[n] € T,
we have (goo)(t[n]) — f (f). We let C be the set of pure Bayes Nash equilibria
of U(M, T). Note that because 7 is finite and M is countable, C is countable.
For each o € C, we build the set of message profiles M (o) in the following
way.

For each player i and each positive integer ¢, we define inductively M/ (o).
First, we set M"(&) = &;(T;). Then, for each £ > 1,

M(5) = BRi(A(O x {8°) x M* (7)) | M).

Recall that in the model 7 = (T, k), marg, k(1)[6°1=1,foreachie Z andf, €
T,. Since & is an equilibrium in U(M, T), M%(&) = &:(T;) C BR,(A(O x {8°} x
M°,(a)) | M) = M} (o). Consequently, it is clear that, for each ¢, M{(d) C
Ml-“'(&). Finally, set M;(d) = lim,_, o M{(d) = J,.y M (7). In the sequel,
for each o € C, we will note by M (o) the mechanism (M (7), gu@))-

A first interesting property of the family of sets {M (7)};<c is that there is a
model 7, satisfying 7 c 7, for which any equilibrium o in U(M, 7') has full
range in M (o 7), that is, each message profile in M (o;7) is played under o at
some profile of types in the model 7. More precisely, Proposition 1 is the first
step of the proof of the only if part of Theorem 4.

PROPOSITION 1: There exists a model T =(T, k) such that, for any ¢ € C and
m € M (o), there exists t[o, m] € T such that o(t[o, m]) = m for any equilibrium
oin UM, T) such that o7 = &.

2As already mentioned, the only if part of the theorem holds beyond finite mechanisms.
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PROOF: We build the model 7 = (T, ) as follows. For each equilibrium
o € C, player i, and integer ¢, we define inductively #[o, £, m;] for each m; €
M{ (o) and set

E=UO U ula,e.m1uT.

oeC (=1 mier'(&)

Note that 7; is countable. In the sequel, we fix an arbitrary ¢ € C. This equilib-
rium ¢ is sometimes omitted in our notations.
For each ¢ > 1 and m; € M} (&), we know that there exists wf’m" € A(O x

{6°}) x M '(&)) such that m; € BR;,(w,"™ | M). Thus we can build # "™
A(O x O x M*7'(7)) such that

marge, yt-15) %fml =margeg, yt-1 ) WfMi’
while margg %f’mi = 8ym;. Note that BR,»(%f""" | M) = {m;}.

In the sequel, for each player i and message m; € M? (o), we pick one
type denoted [0, 0, m;] in T; satistying o,([a, 0, m;]) = m,. This is well de-
fined because, by construction, M? (o) = ;(T;). Now, for each ¢ > 1 and
m; € M} (&), we define inductively ¢, £, m;] by’

k(t:15, £, mI6, 6, 1]
0) if t; ?é t,i[(}, £ — 17 mfi]
for each m_; e M“;' (o),
w0, 0,m_y), ifr=ta,0—1,m]
for some m_; e M7 ().

Al,m,-

This probability measure is well defined since 7;"" (@ x OxM f}' (o)) =1.
To complete the proof, we show that, for any equilibrium o of U(M,T)
such that oy7 = o, we have

(Sl) O-i(ti[a-: Ea ml]) =m;

for each player i, integer ¢, and message m; € M (o). The proof proceeds by
induction on £.

First note that, by construction of #,[o, 0, m;], we must have, for any equilib-
rium o of U(M, T) such that o) = &,

oi(tlo,0, m;]) =m;,

SHere again, we abuse notation and write ¢_,[5,0,m_;] for (t[0,0,m;])jz;. Similarly,
t[a, 0, m] stands for (#;[a, 0, m;]);cz. Similar abuses will be used throughout this proof.
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for each player i and message m; € M) (). Now, assume that Equation (S1) is
satisfied at rank £ — 1 and let us prove that it is also satisfied at rank ¢. Fix any
m; € M{ (o) and any equilibrium o of U(M, 7)) such that o,z = o. Note that

Supp(o;(t;[a, £, m;])) C BR;(m; | M), where m; € A(O x O x M_;) is such that

m(0,0,m_) =Y k(tla, €, mDI6, 6, t_lo_(m_; | 1y).

[

In addition, by the inductive hypothesis and the fact that ¢ is an equilibrium of
U(M, T) satisfying 0,7 = o, we have o_;(m_; | t_;[o, £ —1,m_;]) = 1 for any
m_; € M*;'(&). Hence, by construction of k(t,[a, £, m;]), we have

(0,0, m_) =Y k(t:la, £, m)0, 0, t_lo_i(m_;| 1)

I
= K(ti[(_r, 59 ml])[ea é7 t—i[a-s - 19 m—i]]

=0, 0,m_;).

We get that Supp(o; (£, £, m;1)) C BR;(m; | M) = BR,(7"™ | M) = {m;} as
claimed. O.E.D.

We now give a first insight on the second step of the proof. First notice that,
by construction, each M (o) satisfies the following closure property: taking any
belief 7; € A(@ x {6°} x M_;(&)) such that BR;(; | M) # ¢, we must have
BR;(m; | M) € M;(7) and hence, BR,(; | M) = BR;(; | M(7)).

Now pick a type t; € T; and a message m; € R} (;|]M(5),7); it is pos-
sible to add a type £ to the model 7 defined in Proposition 1 satisfying
the following two properties.* First, 4} (¢") is arbitrarily close to A}(%); sec-
ond, for any equilibrium o with o7 = &, 0:(¢/"") = m;. Indeed, by definition
of R!(t;JM(&), T), there exists a belief 7 € A(@* x T_; x M_;(7)), where
marg,,. ;" = marg,. k(%) and such that m; € BR,(marge. ., 7" | M(a)).
Using our assumption on cost of messages, we can slightly perturb 7/ so that
m; becomes a unique best reply. So let us assume for simplicity that {m;} =
BR,(margg. 5 ™' | M(&)). We can define the type £ assigning proba-
bility margg., » s) (6%, m_;) to (0%, t [0, m_]), where ¢ [0, m_;] is de-
fined as in Proposition 1 (i.e., t_;[o, m_;] plays m_; under any equilibrium o in
U(M, T) such that o7 = ). Now pick any equilibrium o in U(M, T U {£]"'})

“In this section, for any mechanism M, we use the standard notation where R:(7; | M, 7)
stands for the ¢th round of elimination at type 7 of messages that are not best responses (see,
for instance, Dekel, Fudenberg, and Morris (2007)). Recall that, for any ¢ and 7, we have R;(Z; |
M, T) C Ri(T; | M, T) (for additional details on the relationship between R;(Z; | M, T) and
RY(1; | M, T) when the set of messages is countably infinite, see Lipman (1994)).
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such that o7 = . By construction, Supp(o;(#;")) C BR;(marg,,. M, | M)
and so BR;(margy.,, . ' | M) # @. By the closure property described
above, BR;(marg,.,,, 7" | M)=BR;(margy.,\ 7 | M())andsowe
get that type ¢ plays m,; under the equilibrium o and satisfies the desired

property. Using a similar reasoning, we show inductively the following “conta-
gion” result.

PROPOSITION 2: There exists a model T = (f", K) such that, for each equilib-
rium & € C and each player i, the following statement holds: For all t; € T; and
m; € R(f; | M(&),T), there exists a sequence of types {f,-[n]}f,":0 in fl such that
(i) &i[n] —p &, and (ii) o,(t;[n]) = m; for each integer n and equilibrium o of
UM, T) satisfying o7 = 0.

PROOF: We again define the set £ by

5:=U{1}u{0}.

qeN*

We build the model T = (T, k) as follows. For each e € £, £ e N*, 0 € C,
t; € T;,and m; € Ri(t; | M(&), T ), we build inductively 7[«, ¢, &, ;, m;] and set

f=UUUU U ietaimiuT,

e€€ t=1 5eC 1T mieR4(GIM(5),T)

where T; is as defined in Proposition 1. Note that YA", is countable. In the se-
quel, we fix an arbitrary ¢ € C. This equilibrium ¢ is sometimes omitted in our
notations. B

We know that, for each integer ¢, player i of type ¢, € T;, and message m; €
Ri(t; | M(a), T), there exists wfi’m" € A(@ x T_; x M_,(&)) such that

margy, 7 wé’m’ = k(1),

margs v Wé’m"(f_,-, m)>0 = m,;eRN,|M(@)T),
and

m; € BR;(marge., ;5 Wﬁ’mi | M(a)).

For ease of exposition, we sometimes consider wé’m" as a measure over @ x
T ; x M_,(&) and sometimes as a measure over @* x T_; x M_;(&) assigning
probability 1 to {6°}. Similar abuses will be used throughout the proof.
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First, we let #[¢, 1, 7, £;, m;] be such that k(%;[ e, 1, 7, 1;, m;]) satisfies the two
conditions

(S2) margg k(4;e, 1, 0, t;, m;]) = &8gm + (1 — &)
and

(S3) margg, ;. k(tile, 1, 0,4, m]) = 77%_"”" o (%7,

where (7{’51)*1 stands for the preimage of the function 7{’[1 OxT ; xM ;—
O x T_;, defined by 7°1(0,7_;, m_;) = (0, t_;[&, m_;]), and t_;[G,m_;] € T_; is
the type profile defined in Proposition 1. Recall that o_;(¢_;[o, m_;]) = m_; for
any equilibrium o in U(M, 7T) such that o, = 6. Now, for each £ > 2, define
t;le, L, 7, t;, m;] inductively by

margg k(l,:l[{;: za 6-7 Zi) mt]) = 85(}’"1‘ + (1 - 8)850
and

marge, ; , k(kile, €, &, h, m]) =" o (7)),
where (777)~! stands for the preimage of the function 7%/:0@ x T_; x M_; —
O x T_;, defined by 770, t_;,m_;) = (0,1_[e, £ — 1,5, _;, m_;]).

CLAIM 1: Foreacht, € T.and m; € Ri(t; | M(&), T):5[&(0), ¢, &, T, m;] = p
t; as £ — oo for some mapping & taking values in € \ {0}.

PROOF: In the sequel, we will denote by / the (continuous) mapping that
projects T into T* and, in a similar way, by h the (continuous) mapping from
T to T~ B B

For any 7; € T}, since’ for all £ > 1 and all m; € R (t; | M(5),T) :ii[e, ¢, 7, 1,
m;] — 4[0,¢,5,%,m;] as € — 0, by Lemma 2 in the main text, for all
¢>1,forall ¢ >1, and all m; € RV (7; | M(3),T):hi(iile, ¥, &, 1, mi]) —
RU(E[0, €, 5, 1, my]) as & — O.

SA type in T} is either in T,—which is endowed with the discrete topology, say 77,—or in T\T.
Any point in T; \ T; is identified with an element of the set £ x N x C x T; x M;, where N, C, T;, M;
are all endowed with the discrete topology, while € is endowed with the usual topology on R
induced on £. Finally, £ x N x C x T; x M; is endowed with the product topology; call this
topology 74, 7,- The topology over T is the coarsest topology that contains 77, U 74, .. It can

easily be checked that under such a topology, 7 satisfies the conditions of Lemma 2 in the main
text.
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Let us now show that, for all £ > 1 and ¢’ > ¢: izf(fl-[O, .o, t,m)) = }_zf(f,-)
forall ; € T, and m; € R (1; | M(a), T). First notice that the first-order beliefs
are equal, that is, for all ¢ > 1,7; € T;, and m; € RV (t; | M(a),T),

illl(il[07 6/7 6-7 ZTi: ml]) = marg@ IA((?[O Zl: 6-7 Zi) ml])

QU)—l

—i

= marg, 77[ Mo (T
= marg,, 71';1_’ " = marg, k(%;) = h} (1),

sm;

where the third and the fourth equalities are by definition of 7" “ and 772 ,
respectively. Now fix some £ > 2 and let L be the set of all behef proﬁles of
players other than i at order ¢ — 1. Toward an induction, assume that, for all

U>0—1: R0, 0, &, 5, m]) = k(7)) for each j, 7; € Ty and m; € RY (7 |
M(&), T). Then for all ' > £: proj,,, o (ide x h_;) o 7! = proj,,, o (ide x
h_; % idy_,(5)), where ide (resp. idy_,5)) is the identity mapping from @ to @
(resp. from M_;(7) to M_,(&)), while proj,,, (resp. proj,,, ) is the projection
mapping from @ x T* to @ x L (resp. from @ x T* x M_;(o) to O x L); hence,
forall ¢ > ¢, € T, and m; € RV (t; | M(5), T),

NS - = . ~ -1
marg,, , k(4[0, ¢, o, t;,m;]) o (idg x h_;)
' -1 . A
=marg,, 7 "o (%) o (ide x h_;)™!
o m; 0,0\—1 . N | . -1
= 7Tii Mo (T—i ) o (ld@ X l’l,,') o (prO]@XL)

!
' m;

=" o (ide x h_i x ide,-«'r))_l o (Projg, ;)"
=marg,, wfi/’mi o (ide x h_; x idy @)

=marg,,, k(f) o (ide x h_;))~".
Therefore,

hi(410,¢, &, f, m])

= 8;}%—1(&[01,,[—7!;1_,”1’_]) x marg,, , kK(4[0, ¢, o, t;, m;]) o (idg x ho)™

= 8,;1471@_) x marg,, , k(f) o (ide x h_;) ™' = fzf(fi),
showing that hf(t [0,¢, T, t;, m;]) A(f-). Thus, we have proved that, for

all ¢ > 1, all ¢ > ¢: hl(t[O v,o,t m])—ﬁ‘z(f) for any #; € T, and m; €
RY(4; | M(a), T), that is, #[(0,¢, 5,6, m;] —p ; as £ — oo for any f; € T;
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and m; € R;(; | M((r) T). In addition, we know that, for all £ > 1 and all
m; € Ri(t; | M(a),T): t[a v, o,t,m] —p 40,0, 5,1, m;] as € — 0. Since
T* is a metrizable space f; [s(Z ), b, a,t;,m;] —>P t; as £’ — oo for some func-
tion &:N* — &\ {0} satisfying llm[/ﬁoo ()= O.E.D.

CLAIM 2: Foreach ¢ € E\{0}, ¢, t; € T;, and m; € R;(f; | M (&), T), we have
oi(t;[e, L, 7, t;, m;]) = m; for any equilibrium o of U(M, T) satisfying o7 =0.

PROOF: Fix a type f; € T; and an equilibrium o of U(M,7T) satisfying
o7 = 0. We will show by induction on ¢ that, for all ¢ € £\ {0} and ¢ > 1:
oi(tile, £, &, t;, m;]) = m, for all messages m; € R'(f; | M(&), T).

Recall that, by construction, for all m; € M;(o), t;[o, m;] € T; is the type
in Proposition 1 such that o;(t;,[o, m;]) = m;. First, fix e € £ \ {0} and m; €
R!(f; | M(&),T) and let us prove that o;(%[e, 1, 7, ;, m;]) = m;. For each
tle, 1, o, t;, m;], define the belief

wf’l =k(tile, 1,0, 6, m]) oy € A(O* x T . x M_),
where y:(0*,t_;[o,m_;]) — (0*,¢t_;[0,m_;], m_;). Note that by construction,
wf’l is the belief of type f;[¢, 1, &, ;, m;] on O* x f,l- x M_; when he believes
that m_; is played at each EH*, t_j[o,m_;]). Hence, for each ¢ > 0, 775”1 cor-
responds to beliefs of type t;[e, 1, 7, t;, m;] when the equilibrium o is played.
Now, by Equations (S2) and (S3), the belief 77?’1 of type £[0, 1, 7, t;, m,] satis-
fies

Marge., . T = marge., . 77-1_""" o (7" o (ye)™!
= margy., . 771'”’,
where yg: (0, t_;[d, m_;]) — (0 6°, t_,[o, m_;], m_;). Since Supp(o;(£[0, 1, 7,
i, mi])) C BRi(margg.,,, @ | M), we have BR,(margg.,,, =" | M) # 0.
In addition, since margg. ;. 77':’, (@ x {8°} x M_i(5)) = 1, by construction of
M;(c) we have BR;(margy, . wfll_’m" | M) C M;(o). Thus,

BR;(marg. ., ﬂ-zli""" | M(a)) = BR;(marg,,..,, ﬂ-;i’m" | M).

1,m;

Recall that, by construction of m ", m; € BR;(margg. ., | 7'rl1 | M(a)). Con-

sequently,
m; € BR;(margg.,,, " | M).
In addition, we have

el 0,1
marge, 7, =Mmalgg, , T;
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Hence, for ¢ € £ \ {0}, by construction of ﬂ-f’l, {m;} = BR;(marge. . wf’l |
M) and o,(ti[s, 1, 7, ;, m;]) = m,.

Now, for each ¢ > 2, proceed by induction and assume that o_i(t_[e, £ —
1,o,t.,m)=m_foranyf,eT ,m_;eR5(i;| M(5),T),and e € £\
{0}. Fix e € £\ {0} and m; € Ri(t; | M(&), T).Foreach i[e, ¢, 7, I, m;], define
the belief
™t =k(li[e, €, T, t;, m;]) oy, ! cAO xT ;x M),

L

where y,: (6", t_[e, ¢ — 1,0, (L, m_])— (0%, f_;[e, £ —1,5,(;,,m ,] m_;).
Note that, by construction, 7"° is the belief of type fl[e, ¢, &, ;, m;] on

~

0" x YA’,,- x M_; when he believes that m_; is played at each (6*, t,,—[s,@ —
1,0,t;,m_;]). Hence, by the induction hypothesis, for each & > 0, wf’l cor-
responds to beliefs of type #[s, ¢, @, t;, m;] when the equilibrium o is played.
The end of the proof mimics the case ¢ = 1. Q.E.D.

This completes the proof of Proposition 2. Q.E.D.

COMPLETION OF THE PROOF OF THE “ONLY IF PART” OF THEOREM 4: Pick

= (T, k) as defined in Proposition 2. By definition of continuous implemen-
tation, there exists an equilibrium o in U(M, T that continuously implements
f, and point (i) in this definition ensures that o}7 is a pure equilibrium. Now
pick any 7 € T and m € R({ | M(o7), T); we show that 8iM(o (M) = f(1),
proving that the mechanism M(oy7) implements f in rationalizable messages.
Applying Proposition 2, we know that there exists a sequence of types {7[n]}>,
in T such that (i) 7/[n] —p 7 and (ii) o(i[n]) = m for all n. By (i) and the fact
that o continuou§ly implements f, we have (g o o) (f[n]) — f(f), while lzy (ii),
we have (g o o) (t[n]) = g(m) for all n. Hence, we must have g(m) = f(t) and
SO g‘M((,ﬁ)(m) = f(¢), as claimed. Q.E.D.
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