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This supplement contains proofs of some results stated in the paper. In particular,
the proofs of the generalization of the results robust to conditional heteroskedasticity
can be found in Section S1. Proofs of the results for multidimensional VAR models
appear in Section S2. A discussion of the Wald statistic for an IRF at long horizons is
placed in Section S3. Section S4 provides a simplified formula for u in the AR(2) case.

S1. HETEROSKEDASTICITY ROBUST INFERENCE

IN THIS SECTION, we generalize the results of the paper to allow for condi-
tionally heteroskedastic processes. There are some challenges to obtaining full
uniformity over Rδ, as Mikusheva (2007) used conditional homoskedasticity
extensively in employing the Skorokhod representation. However, obtaining
pointwise results in the local-to-unity embedding is relatively straightforward.
Andrews and Guggenberger (2010) suggested that establishing asymptotic re-
sults for all local-to-unity sequences should be enough to establish the unifor-
mity.

Let us consider a sample from the process

yt = λpyt−1 + ut� B(L)ut = et� y0 = 0�(S1)

where B(L) = 1 +B1L+· · ·+Bp−1L
p−1 is a lag polynomial of order p− 1 with

all roots strictly inside the circle of radius δ < 1, ut is the stationary realization
of an AR(p − 1) process, and λp = 1 + c/T is the local-to-unity root. The
regression of interest is the correctly specified AR(p) regression in ADF form:

yt = ρyt−1 +
p−1∑
j=1

αj�yt−j + et�

ASSUMPTION HS: Let et be a stationary martingale-difference sequence, with
E|et |2(β+ε) < ∞ for some β > 2� ε > 0, and its mixing numbers αm satisfying∑∞

m=1 α
1−2/β
m < ∞�

The important point here is that et is allowed to be conditionally het-
eroskedastic.

Introduce the notation θ = (ρ�α′)′, xt = (�yt−1� � � � ��yt−p+1)
′, Xt = (yt−1�

x′
t)

′, X = (Xp+1� � � � �XT)
′ is (T −p)×p regressor matrix, and YT = (yp+1� � � � �

yT )
′. Let KT = diag(1/

√
T�1� � � � �1) be a p × p diagonal matrix, let ω2 =
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E(u2
1) + 2

∑∞
k=1 E(u1uk) = σ2

B(1)2 be the long-run variance of ut , and let
σ2 =Ee2

t .
Consider the GMM-based distance-metric statistic, which is asymptotically

equivalent to the LR statistic under assumptions of conditional homoskedas-
ticity,

DMT =QT(θ̃)−QT(θ̂)�

where QT(θ) = e(θ)′XΩ−1
T X ′e(θ)� ΩT = 1

T

∑T

t=p+1 XtX
′
te

2
t (θ̂)� e(θ) = Y −Xθ,

θ̂ is the OLS estimate, and θ̃ = arg minH0 QT(θ) is the restricted estimate of θ.

THEOREM S1: Let us have a sample from the process defined in equation (S1)
with errors satisfying Assumption HS. Consider the following two sequences of
hypotheses:

(i) Linear hypothesis H0 :Aθ = γ0 with the coefficient A = AT satisfying
limT→∞

KTAT

‖KTAT ‖ = a, where a is a p× 1 vector.
(ii) Hypothesis about the IRF at horizon h, that is, H0 : fh(θ) = γ0 with h =

hT : limT→∞
hT√
T

= q ∈ [0�∞].
For both of them we have DMT ⇒ (t(c�u))2� where

t(c�u)=
tc + u

√√√√√
∫ 1

0
J2
c (s)ds

g(c)
N(0�1)√√√√√

1 + u2

∫ 1

0
J2
c (s)ds

g(c)

�

u=
√
A′F ′FA− (i′1FA)2

(i′1FA)2
�(S2)

and A = ∂
∂θ
fh(θ0) should be used in formula (S2) for case (ii).

The proof uses Lemma S1 as established below.

LEMMA S1: Let Assumption HS be satisfied. Then the following statements
hold simultaneously:

(a) 1√
T

∑[rT ]
t=1 (et� e

2
t − Ee2

t )
′ ⇒ (σW1(r)�W2(r)), where W = (σW1�W2)

′ is a

two-dimensional Brownian motion with covariance matrix Σ1 = (
σ2

μ3

μ3
μ4

)
, where

μ3 = ∑∞
k=0 Eete

2
t+k and μ4 = ∑∞

k=−∞ cov(e2
t � e

2
t+k).

(b) 1√
T
KTX

′e ⇒ (ωσ
∫ 1

0 Jc(t)dW1(t)� ξ
′)′, where ξ ∼ N(0�E(e2

t xtx
′
t)) and

Jc(r) = ∫ r

0 e
c(r−s) dW1(s).
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(c)

1
T
KTX

′XKT ⇒
⎛
⎝ω2

∫ 1

0
J2
c (t)dt 0

0 E(xtx
′
t)

⎞
⎠ �

(d)

1
T
KT

T∑
t=p+1

e2
t XtX

′
tKT ⇒

⎛
⎝σ2ω2

∫ 1

0
J2
c (t)dt 0

0 E(e2
t xtx

′
t)

⎞
⎠ �

(e) 1
T

∑T

t=1(KTXtX
′
tKT )⊗ (KTXtX

′
tKT )=Op(1).

(f) 1
T

∑T

t=1(KTXtX
′
tKT )⊗ (KTXtet)= Op(1).

PROOF: (a) Consider a vector vt = (et�ut� e
2
t − σ2)′. According to Phillips

(1988),

1√
T

[rT ]∑
t=1

vt ⇒W (r)�

where W (r) = (σW1(r)�
σ

B(1)W1(r)�W2(r))
′ is a Brownian motion with covari-

ance matrix

Σ=

⎛
⎜⎜⎜⎜⎜⎜⎝

σ2 σ2

B(1)
μ3

σ2

B(1)
ω2 μ3

B(1)

μ3
μ3

B(1)
μ4

⎞
⎟⎟⎟⎟⎟⎟⎠
�

According to Lemma 3.1 in Phillips (1988), statement (a) implies that y[rT ]√
T

⇒
ωJc(r) = σ

B(1)

∫ r

0 e
(r−s)c dW1, and statements (b) and (c) hold.

For statement (d), notice that

1
T 2

T∑
t=1

y2
t−1e

2
t = 1

T 2

T∑
t=1

y2
t−1Ee

2
t + 1

T 2

T∑
t=1

y2
t−1(e

2
t −Ee2

t )�

The first term converges to ω2(Ee2
t )

∫ 1
0 J2

c (s)ds, while the second term is neg-
ligible. Indeed, according to direct generalization of Theorems 4.2 and 4.4 in
Hansen (1992), 1

T 3/2

∑T

t=1 y
2
t−1(e

2
t −Ee2

t )⇒ ω2
∫ 1

0 J2
c (s)dW2(s)+μ3ω

∫ 1
0 Jc(s)ds

and the last expression is bounded in probability. Let us now consider an off-
diagonal element in (d), namely the (p − 1) × 1 vector 1

T 3/2

∑T

t=1 yt−1xte
2
t , and
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show that it converges to zero in probability. Indeed, the ith component of it
has the form

1
T 3/2

T∑
t=1

yt−1�yt−je
2
t = 1

T 3/2

T∑
t=1

yt−1ut−je
2
t + c

T

1
T 3/2

T∑
t=1

yt−1yt−j−1e
2
t �(S3)

Lemma 4(b) from Andrews and Guggenberger (2008) with vn�i = (ui�ui−je
2
i )

′

implies that 1
T

∑T

t=1 yt−1ut−je
2
t converges in distribution to a bounded in proba-

bility random variable and, as a result, the first term in (S3) is negligible. Fol-
lowing the same reasoning as above, we also know that 1

T 2

∑T

t=1 yt−1yt−j−1e
2
t con-

verges in distribution to a bounded in probability random variable and, thus,
the last term in (S3) is also negligible. This gives statement (d).

For statement (e), we have to show the five statements

1
T 3

T∑
t=p+1

y4
t−1 = Op(1); 1

T 5/2

T∑
t=p+1

y3
t−1xt = Op(1)�

1
T 2

T∑
t=p+1

y2
t−1xtx

′
t = Op(1); 1

T 3/2

T∑
t=p+1

yt−1xt ⊗ xtx
′
t =Op(1)�

1
T

T∑
t=p+1

yt−1(xtx
′
t)⊗ (xtx

′
t)=Op(1)�

First, notice that |xt |, ‖xtx
′
t‖, and ‖xtx

′
txi�t‖ are uniformly integrable L1-

mixingales; see also Hamilton (1994, Chapter 7) for the reasoning. According
to Andrews’ (1988) law of large numbers for L1-mixingales, 1

T

∑
xt , 1

T

∑
xtx

′
t ,

and 1
T

∑
xtx

′
txi�t satisfy the law of large numbers and thus converge in proba-

bility to constants. Since all statements are proven in the same way, we show it
only for the second statement:

∣∣∣∣∣ 1
T 5/2

T∑
t=p+1

y3
t−1xt

∣∣∣∣∣ ≤ max
t

∣∣∣∣ yt√
T

∣∣∣∣
3 1
T

T∑
t=1

|xt | ⇒ sup
0≤s≤1

|Jc(s)|3E|xt |�

The last expression is bounded in probability. The proof of part (f) is analogous
to that of part (e). Q.E.D.

PROOF OF THEROEM S1: First notice that

DMT = (θ̂− θ̃)′X ′XΩ−1
T X ′X(θ̂− θ̃)�(S4)
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Notice that

ΩT = 1
T

T∑
t=1

XtX
′
te

2
t (θ̂) = 1

T

T∑
t=1

XtX
′
t (et − (θ̂− θ0)

′Xt)
2(S5)

= 1
T

T∑
t=1

XtX
′
te

2
t + 1

T

T∑
t=1

XtX
′
t ((θ̂− θ0)

′Xt)
2

+ 2
T

T∑
t=1

XtX
′
t ((θ̂− θ0)

′Xt)et�

Let us first show that the second term in equation (S5) is asymptotically negli-
gible. Indeed,

KT

1
T

T∑
t=1

XtX
′
t ((θ̂− θ0)

′Xt)
2KT

=KT

1
T

T∑
t=1

XtX
′
t ((θ̂− θ0)

′K−1
T KTXt)

2KT

= (Ip ⊗ (θ̂− θ0)
′K−1

T )

× 1
T

T∑
t=1

(KTXtX
′
tKT )⊗ (KTXtX

′
tKT )(Ip ⊗K−1

T (θ̂− θ0))�

According to statements (b), (c), and (e) of Lemma S1, the OLS estimator
θ̂ satisfies the equation (θ̂ − θ0)

′K−1
T = Op(1/

√
T), while the middle term is

bounded in probability. One can prove in a similar way by using statement (f)
of Lemma S1 that the third term on the right-hand side of equation (S5) is
negligible,

KTΩTKT = 1
T
KT

T∑
t=p+1

e2
t XtX

′
tKT +Op(1/

√
T)

⇒
(
σ2ω2

∫
J2
c dt 0

0 Extx
′
te

2
t

)
�

where the last convergence follows from Lemma S1(d).
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Let us now consider case (i) of the linear test with KTAT

‖KTAT ‖ → a and ‖a‖ �= 0.
By the usual logic, we get

DMT

= (A′(θ̂− θ0))
2

A′(X ′XΩ−1
T X ′X)−1A

=

((
KTAT

‖KTAT‖
)′
(KTX

′XKT)
−1KTX

′e
)2

(
KTAT

‖KTAT‖
)′
(KTX ′XKT)−1KTΩTKT(KTX ′XKT)−1

KTAT

‖KTAT‖
�

Then

DMT ⇒

⎛
⎜⎜⎝a1

σ

∫ 1

0
Jc(t)dW1(t)

ω

∫ 1

0
J2
c (t)dt

+ a′
2N(0� V )

⎞
⎟⎟⎠

2

σ2∫ 1

0
J2
c (t)dt

a2
1 + a′

2V a2

= (t(u� c))2�

where V = (Extx
′
t)

−1E[e2
t xtx

′
t](Extx

′
t)

−1 and u =
√

a′
2V a2g(c)

a2
1

. The last expres-

sion asymptotically coincides with equation (S2) for the local-to-unity case, as
in such an embedding the matrix F becomes diagonal.

Now consider case (ii), H0 :θh = fh(θ) = γ0, where h= [q√
T ]. Denote JT =

X ′XΩ−1
T X ′X and JeT = X ′XΩ−1

T X ′e. Let us consider the first-order condition
for the conditional minimization problem when the DM statistic defined in
equation (S4) is minimized over θ̃ such that fh(θ̃)= fh(θ0):(

JT Ã

A∗ 0

)(
θ̃− θ0

λ

)
=

(
JeT
0

)
�

where Ã= ∂f

∂θ
(θ̃) and A∗ = ∂f

∂θ
(θ∗), with θ∗ being a point between θ̃ and θ0 such

that (θ̃ − θ0)
′A∗ = 0. Following the proof of Lemma 3 in the main paper, one

gets that

DMT = (A∗′J−1
T JeT )

2Ã′J−1
T Ã

(A∗′J−1
T Ã)2

= (A∗′(X ′X)−1X ′e)2Ã′(X ′X)−1ΩT(X
′X)−1Ã

(A∗′(X ′X)−1ΩT(X ′X)−1Ã)2
�
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Repeating steps of the proofs of Lemmas 4 and 5 in the main paper results in
the needed statement. Q.E.D.

S2. IRFS IN VAR WITH A POTENTIAL UNIT ROOT

In this section, some results in the paper are generalized to VAR systems in
which at most one root is local-to-unity.

Let us consider a k-dimensional process described by an unrestricted
VAR(p) regression

yt = B1yt−1 + · · · +Bpyt−p + et�(S6)

Imagine for simplicity that we know the co-integrating (near co-integrating)
relation and can locate the problematic root. That is, assume that the first
component y1�t has a local-to-unity root, while all other components y−1�t =
(y2�t� � � � � yk�t)

′ are strictly stationary. Formally, let us assume that the VAR lag
polynomial B(L) = Ik − B1L − · · · − BpL

p can be factorized in the manner
B(L)= (Ik − diag(λ�0� � � � �0)L)B̃(L).

ASSUMPTION VAR1:
(i) All roots of the characteristic polynomial B̃ lie strictly inside and are

bounded away from the unit circle. In particular, the process xt given by B̃(L)xt =
et can be written as an MA(∞) process xt = Θ(L)et = ∑∞

j=0 Θjet−j with MA co-

efficients satisfying the condition
∑∞

j=0 j‖Θj‖ <∞� where ‖Θj‖ =
√

trace(ΘjΘ
′
j)�

(ii) Assume that yt = Λyt−1 + xt� y0 = 0, where Λ = diag(λ� � � � �0); that is,
y1�t = λy1�t−1 + x1�t and y−1�t = x−1�t . The problematic root λ is local-to-unity, in
particular, λ= λT = 1 − c/T .

(iii) Errors et are a martingale-difference sequence with respect to sigma algebra
Ft , with E(ete

′
t |Ft−1)=Ω and four finite moments.

The assumption above is a direct generalization of local-to-unity asymptotic
embedding to a multivariate setting. If Assumption VAR1 holds, the OLS es-
timator of regression (S6) demonstrates nonstandard asymptotic behavior due
to some linear combination of coefficients being estimated superconsistently.
A survey of local-to-unity multivariate models can be found in Phillips (1988).

We are interested in testing a hypothesis about the coefficients H0 : f (B1� � � � �
Bp) = 0, where f is some function of coefficients. A generalization of the LR
statistic to the multidimensional case is

LR = T trace(Ω̂−1(Ω̃− Ω̂))(S7)

with Ω(B) = 1
T

∑T

t=1(B(L)yt)(B(L)yt)
′ and Ω̂ = Ω(B̂)� Ω̃ = Ω(B̃), where B̂ is

the OLS estimator of coefficients in regression (S6), while

B̃ = arg min
B=(B1�����Bp):f (B)=0

T trace
(
Ω̂−1(Ω̂−Ω(B))

)
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is the restricted estimate.
Consider the hypothesis about the impulse response of the nearly non-

stationary series y1�t to the jth shock at the horizon h and call it θh = ∂y1�t+h

∂ej�t
. We

consider the horizon h = [q√
T ] as increasing proportionally to

√
T . This em-

bedding implies that uT converges to a constant in the AR(p) case and delivers
the mixture of local-to-unity and normal distributions as the limit distribution
of the LR± statistic. Lemma S4 below points out that the linearized hypothesis
about such an impulse response puts

√
T -increasing weight on the coefficients

estimated superconsistently when compared with weights on the asymptoti-
cally normal coefficients before the stationary regressors. Let Ã = ∂θh

∂B
. Let the

hypothesis H0 : Ã′B = γ0 be the linearized version of hypothesis H0 :θh = γ0.

THEOREM S2: Let yt be a k×1 VAR(p) process satisfying Assumption VAR1.
Assume that the linearized version of hypothesis H0 :θh = ∂y1�t+h

∂ej�t
= γ0 at the

horizon hT = q
√
T is tested using the statistic defined in equation (S7). Then

LR ⇒ (t(u� c))2 as T → ∞ for some u.

Theorem S2 states that in the multivariate VAR model with at most one
local-to-unity root, the asymptotic behavior of the LR test statistic for the IRF
at the horizon proportional to

√
T is of the same nature as the same statistic

for an IRF in the univariate AR(p).
The VAR regression (S6) can be linearly transformed to a canonical form in

which the nonstandard coefficients are separated. Rather than regressing all
components of yt on (y ′

t−1� � � � � y
′
t−p)

′ as in (S6), the canonical-form regression
has the regressors

Xt = (y ′
t−1��y1�t−1� y

′
−1�t−2��y1�t−2� y

′
−1�t−3� � � � ��y1�t−p+1� y

′
−1�t−p)

′

= (y1�t−1� X̃
′
t )

′�

Only the first regressor y1�t−1 is a local-to-unity process, while X̃t is stationary.
Let Zt = X ′

t ⊗ Ik. The model (S6) can be written as yt = ZtΦ+ et� where Φ—
a k2p × 1 matrix of the coefficients—is a one-to-one linear transformation of
VAR coefficients B1� � � � �Bp. The first k components of Φ correspond to the
nonstandard coefficients on the nonstationary regressor y1�t−1. The OLS esti-
mator Φ̂ is equal to the linearly transformed OLS estimator of B̂, and the same
linear transformation applied to B̃ produces the restricted estimator Φ̃. The
linearized hypothesis described in Theorem S2 can be written as H0 :A′Φ = γ0,
where A = ∂θh

∂Φ
� For the proof of Theorem S2, we need the following three lem-

mas.
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LEMMA S2: The LR statistic for a linear hypothesis H0 :A′Φ = γ0 defined in
(S7) is equal to the Wald statistic defined as

Wald =
(
A′

((∑
XtX

′
t

)−1 ⊗ Ik
)∑

(Xt ⊗ Ik)et
)2

A′
((∑

XtX ′
t

)−1 ⊗ Ω̂
)
A

�

PROOF: Let êt = yt −ZtΦ̂ be the OLS residuals. Notice that

LR(Φ) = trace
(
Ω̂−1

(
2
∑
t

êt(Φ̂−Φ)′Z′
t

+
∑
t

Zt(Φ̂−Φ)(Φ̂−Φ)′Z′
t

))
�

According to the OLS moment condition,
∑

t ê
′
tΩ̂

−1Zt = 0, so

LR(Φ)= (Φ̂−Φ)′
(∑

t

Z′
tΩ̂

−1Zt

)
(Φ̂−Φ)�

∂LR(Φ)

∂Φ
= −2

∑
t

Z′
tΩ̂

−1Zt(Φ̂−Φ)�

The restricted estimator Φ̃ is the solution to a system of two equations: the
first-order condition(∑

t

Z′
tΩ̂

−1Zt

)
(Φ̂− Φ̃) = μA�

where μ is a Lagrange multiplier, and the restriction A′Φ̃ = A′Φ0� Plugging in
the solution, one gets

LR = (Φ̂− Φ̃)′
(∑

t

Z′
tΩ̂

−1Zt

)
(Φ̂− Φ̃)

=

(
A′

(∑
t

Z′
tΩ̂

−1Zt

)−1 ∑
t

Z′
tΩ̂

−1et

)2

A′
(∑

t

Z′
tΩ̂

−1Zt

)−1

A

�

Since the estimation is performed for the full VAR, that is, regression of
all yi�t on the same set of regressors, then Ω̂−1 drops out of the formula
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for the OLS estimate. Indeed,
∑

t Z
′
tΩ̂

−1Zt = ∑
t(Xt ⊗ Ik)

′Ω̂−1(Xt ⊗ Ik) =∑
t(X

′
tXt)⊗ (Ω̂−1). As a result,

(∑
t

Z′
tΩ̂

−1Zt

)−1 ∑
t

Z′
tΩ̂

−1et

=
((∑

t

XtX
′
t

)−1

⊗ Ω̂

)(∑
t

Xt ⊗ (Ω̂−1et)

)

=
((∑

t

XtX
′
t

)−1

⊗ Ik

)(
Xt ⊗

∑
t

(et)

)

=
(∑

Z′
tZt

)−1 ∑
Z′

tet �

This completes the proof of Lemma S2. Q.E.D.

LEMMA S3: Let Assumption VAR1 be satisfied. Let wt = y1�t be a one-
dimensional random process and let X̃t = (x′

t−1� � � � � x
′
t−p)

′ be a kp × 1 vector
process. Also let W (·) be a k-dimensional standard Brownian motion and let
ω2 = i′1Θ(1)ΩΘ(1)′i1 be the long-run variance of the process x1�t . Then the fol-
lowing convergences hold simultaneously:

(a) 1√
T

∑[rT ]
t=1 (e

′
t � x

′
t)

′ ⇒ (Ik�Θ(1)′)′Ω1/2W (r).

(b) 1√
T
w[rT ] ⇒ ωJc(r) = ∫ 1

0 e(r−s)c dW̃ (r), where W̃ (t) = 1
ω

i′1Θ(1)Ω1/2W (t) is
a standard Brownian motion.

(c) 1
T

∑T

t=1 wt−1e
′
t ⇒ω

∫ 1
0 Jc(r)dW (r)′Ω1/2.

(d) 1
T 2

∑T

t=1 w
2
t−1 ⇒ω2

∫ 1
0 J2

c (r)dr.
(e) 1

T 3/2

∑T

t=1 wt−1X̃t →p 0.
(f) 1

T

∑T

t=1 X̃tX̃
′
t →p E[X̃tX̃

′
t] =QX̃ .

(g) 1√
T

∑T

t=1 X̃t ⊗ et ⇒ N(0�QX̃ ⊗Ω) and the limit is independent of W (·).

PROOF: Assumptions about error terms et give us the Functional Central
Limit theorem for 1√

T

∑
et and 1√

T

∑
etet−j with independent limits. State-

ments (a) and (g) are results of the Beveridge and Nelson decomposition. The
proof is a multidimensional analog of Theorem 3.2 in Phillips and Solo (1992).
Statements (b), (c), (d), and (e) can be proved along the lines of Lemma 3.1
in Phillips (1988), which covers multidimensional local-to-unity processes and
related quantities. Statements (e) and (f) are trivial extensions of Theorem 1
from the main paper to the multidimensional case. Q.E.D.

LEMMA S4: Assume that yt satisfies Assumption VAR1. Assume that a
VAR(p) regression is written in the canonical form. Assume that Π denotes a
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k × 1 vector of coefficients on the regressor y1�t−1 in the canonical VAR. Let Φ̃
be all coefficients Φ other than Π, that is, Φ = (Π′� Φ̃′)′. Let θ̃h = ∂y1�t+h

∂ej�t
denote

the impulse response of y1�t to shock ej�t at horizon h. When h = q
√
T and T

increases to infinity, the following two statements hold:
(a) λ−h ∂θ̃h

∂Φ̃′ converges to a finite constant (k2p− k)× 1 vector;

(b) 1√
T
λ−h ∂θ̃h

∂Π′ converges to a constant k × 1 vector proportional to Θ(1)i1,
where ij is a k× 1 vector of zeros with 1 in the jth place.

PROOF: Let yt = ∑∞
h=0 Θ̃het−h, where Θ̃h is a matrix of impulse responses of

yt to et−h. According to Lütkepohl (1990),

∂ vec(Θ̃h)

∂ vec(Bl)
=

h−1∑
m=0

Θ̃′
m ⊗ Θ̃h−m−l�

Given that the regressors Xt of the canonical form are a linear transforma-
tion of the regressors (yt−1� � � � � yt−p) of the unrestricted VAR, the coefficients
B1� � � � �Bp are the same linear transformation of the coefficients Φ of the
canonical form. It is easy to see that

∂ vec(Θ̃h)

∂Π
=

h−1∑
m=0

(Θ̃′
mi1)⊗ Θ̃h−m−1�

Notice that ∂yi�t+h

∂ej�t
= i′iΘ̃hij = (i′j ⊗ i′i) vec(Θ̃h). As a result,

∂θ̃h

∂Π
= (i′j ⊗ i′1)

∂ vec(Θ̃h)

∂Π
=

h−1∑
m=0

(i′jΘ̃
′
mi1)i′1Θ̃h−m−1�

Since xt = ∑∞
j=0 Θjet−j and yt = Λyt−1 + xt , where Λ = diag(λ�0� � � � �0), λ =

1 − c/T , we have Θ̃j = ∑j

k=0 Λ
kΘj−k. Along the lines of Pesavento and Rossi

(2006), we arrive at i′1Θ̃m = λmi′1(Θ(1)+ o(1)) as m→ ∞ and

∂θ̃h

∂Π
=

h−1∑
m=0

(i′jΘ̃
′
mi1)i′1Θ̃h−m−1

= hλh−1
(
(i′1Θ(1)ij)i1Θ(1)+ o(1)

)
as h= q

√
T and T → ∞. At the same time, the derivative of the same impulse

response with respect to any other coefficient will be of order λh. For example,
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let us consider coefficients that stay before the regressor y2�t−1: call them, for
example, Γ . One can see that

∂ vec(Θ̃h)

∂Γ
=

h−1∑
m=0

(Θ̃′
mi2)⊗ Θ̃h−m−1

and, correspondingly,

∂θ̃h

∂Γ
=

h−1∑
m=0

(i′2Θ̃mij)i′1Θ̃h−m−1 =
h−1∑
m=0

(i′2Θmij)λh−m−1(i1Θ(1)+ o(1))�

Assume that μ1� � � � �μk2p−1 are roots of the process xt and that for large
enough T , they are all smaller in absolute value than λ = 1 − c/T . There exists
a set of constants C1� � � � �Ck2p−1 such that i′2Θmij = ∑k2p−1

l=1 Clμ
h
l for any hori-

zon h. This gives us that λ−h ∂Θ̃1j�h
∂Γ

converges to a constant as h→ ∞. Q.E.D.

PROOF OF THEOREM S2: Let A = AT = λ−h ∂θh
∂Φ′ and let the linearized ver-

sion of the hypothesis about impulse response be H0 :A′
TΦ = A′

TΦ0. We in-
troduce the notation AT = √

TA1�T +A2�T , where A1�T = (a′
1�T �0� � � � �0)′, and

A2�T = (0� � � � �0� a′
2�T )

′. According to Lemma S4, as T → ∞, both vectors con-
verge to some constant vectors a1 = limT→∞ a1�T and a2 = limT→∞ a2�T , and
a1 = CΘ(1)i1 for some constant C. Let us introduce normalization matrix
D∗ = ( 1

T
0

0
1√
T
Ikp−1

)
and D= D∗ ⊗ Ik. Then

LR =
(
(
√
TDA)′

((
D∗

∑
X ′

tXtD
∗
)−1 ⊗ Ik

)∑
(D∗Xt ⊗ Ik)

′et
)2

(
√
TDA)′

((
D∗

∑
X ′

tXtD
∗
)−1 ⊗ Ω̂

)
(
√
TDA)

�

Lemma S3 implies that

D∗ ∑
t

X ′
tXtD

∗ ⇒
⎛
⎝ω2

∫ 1

0
J2
c (r)dr 0

0 QX̃

⎞
⎠ �

Obviously,
√
TDA → (a′

1� a
′
2)

′, so the denominator is

(
√
TDA)′

(
D

∑
Z′

tΩ̂
−1ZtD

)−1√
TDA

⇒ (a′
1Ωa1)

1

ω2

∫ 1

0
J2
c (r)dr

+ a′
2(Q

−1
X̃

⊗Ω)a2�
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Given that a1 = CΘ(1)i1, we have a′
1Ωa1 = C2ω2.

As for the numerator, we have

(
√
TDA)′

((
D∗ ∑

X ′
tXtD

∗
)−1 ⊗ Ik

)∑
(D∗Xt ⊗ Ik)

′et

⇒
ω

∫ 1

0
Jc(r)dW (r)′Ω1/2a1

ω2

∫ 1

0
J2
c (t)dt

+N(0� a′
2(Q

−1
X̃

⊗Ω)a2)�

We notice that

ω

∫ 1

0
Jc(r)dW (r)′Ω1/2a1

ω2

∫ 1

0
J2
c (t)dt

=
Cω

∫ 1

0
Jc(r)dW (r)′Ω1/2Θ(1)i1

ω2

∫ 1

0
J2
c (t)dt

=
Cω2

∫ 1

0
Jc(r)dW̃ (r)

ω2

∫ 1

0
J2
c (t)dt

= Ctc
1√∫ 1

0
J2
c (t)dt

�

so

LR ⇒

⎛
⎜⎜⎜⎜⎝

C√∫ 1

0
J2
c (t)dt

tc +
√
A′

2(Q
−1
X̃

⊗Ω)A2 ·N(0�1)

⎞
⎟⎟⎟⎟⎠

2

C2∫
J2
c dr

+A′
2(Q

−1
X̃

⊗Ω)A2

= (t(c�u))2�

where u=
√
A′

2(Q
−1
X̃

⊗Ω)A2

C
. Q.E.D.
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S3. WALD STATISTIC FOR IRF IN AR(p)

The paper shows that while the LR statistic for highly nonlinear IRFs is well
approximated by the same family of distributions as the LR statistic for the
linear hypothesis, the same does not hold for the Wald statistic. The paper
presented an AR(1) example. The same idea can be applied to higher order
processes as well.

Let the data follow an AR(1) process yt = ρyt−1 +et and treat it as an AR(2)
process yt =φ1yt−1 +φ2yt−2 + et with φ1 = ρ�φ2 = 0. Assume that we estimate
AR(2) coefficients by OLS, and calculate the estimated AR(2) roots μ̂ and
λ̂. We abstract from the unit root problem here and assume that 0 < ρ < 1 is
fixed as T → ∞. Then μ̂→p ρ, λ̂ →p 0, and both roots are

√
T asymptotically

normal.
The theoretical impulse response is θk = ρk, while the estimated impulse re-

sponse is θ̂k = μ̂k+1−λ̂k+1

μ̂−λ̂
. To calculate the t-statistic, we also need the derivatives

of the impulse response:

∂θk

∂φ1
(φ1�φ2)= ∂θk+1

∂φ2
=

k−1∑
j=0

θjθk−j−1�

In our case, we need the derivative to be calculated at the estimated coefficients

∂θk

∂φ1
(φ̂1� φ̂2)

= 1

(μ̂− λ̂)2

k−1∑
j=0

(μ̂j+1 − λ̂j+1)(μ̂k−j − λ̂k−j)

= 1

(μ̂− λ̂)2

(
(k+ 2)μ̂k+1 + (k+ 2)λ̂k+1 − 2

μ̂k+2 − λ̂k+2

μ̂− λ̂

)
�

If we consider a sequence of hypotheses with a growing horizon kT = √
T , then

1
k
μ̂−k−1 ∂θk

∂φ1
(φ̂1� φ̂2)→p 1�

So in the described setting, we have t = ρk− μ̂k+1−λ̂k+1

μ̂−λ̂

s�e�(θ̂k)
and we have shown that

along the sequence kT = √
T , we have s�e�(θ̂k) = kμ̂k(const + op(1))� As a

result, the asymptotic behavior of the t-statistic is defined by the behavior of
the ratio ρk−μ̂k

μ̂k , which is of the same type as for the AR(1) case described in
the paper.
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S4. SIMPLIFIED FORMULA FOR u FOR IRFS IN AR(2)

This section provides a more explicit formula for parameter u defined in (S2)
for the IRFs in an AR(2) model. This formula was used to construct Table I in
the main paper.

Imagine that we have an AR(2) process with roots λ and μ: (1 − λL)(1 −
μL)yt = et . The process can be alternatively written as

yt = ρyt−1 + α�yt−1 + et = φ1yt−1 +φ2yt−2 + et�

where φ1 = α+ ρ�φ2 = −α�α = λμ, and ρ = λ+μ− λμ. As in the paper, let
Xt = (yt−1��yt−1) and Σ(ρ�α) = EXtX

′
t . There is a lower-triangular matrix F

such that FΣ(ρ�α)F ′ = I2.
Let θh be the impulse response at horizon h and let A= ∂

∂(ρ�α)
θh be its deriva-

tive. As can be seen, u is a function of ρ�α, and h,

Σ(α�ρ)= γ0

(
1 1 − r1

1 − r1 2(1 − r1)

)
= γ0

⎛
⎜⎝ 1

1 − ρ

1 + α
1 − ρ

1 + α
2

1 − ρ

1 + α

⎞
⎟⎠ �

where γ0 = Var(yt) and r1 is the first-order correlation. According to Hamilton
(1994, [3.4.27], p. 58), r1 = φ1

1−φ2
= α+ρ

1+α
. One can check that

F = √
γ0

⎛
⎝ 1 0

−
√

1 − ρ

1 + 2α+ ρ

1 + α√
(1 − ρ)(1 + 2α+ ρ)

⎞
⎠

= √
γ0

⎛
⎝ 1 0

−
√
(1 − λ)(1 −μ)

(1 + λ)(1 +μ)

1 + λμ√
(1 − λ2)(1 −μ2)

⎞
⎠ �

Lütkepohl (1990) showed that

∂

∂φ1
θh =

h−1∑
m=0

θmθh−m−1�
∂

∂φ2
θh =

h−2∑
m=0

θmθh−m−2�

Let us denote Ah = ∂
∂φ1

θh. Then ∂
∂φ2

θh = Ah−1. Since θh = λh+1−μh+1

λ−μ
([2.4.14] in

Hamilton (1994)), we can see that

Ah =
h−1∑
m=0

(λm+1 −μm+1)(λh−m −μh−m)

(λ−μ)2

= 1
(λ−μ)2

(
(h+ 2)λh+1 + (h+ 2)μh+1 − 2

λh+2 −μh+2

λ−μ

)
�
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Since φ1 = α+ ρ and φ2 = −α, we have

∂

∂ρ
θh =Ah�

∂

∂α
θh =Ah −Ah−1�

so our vector of derivatives is A = (Ah�Ah−Ah−1). According to formula (S2),

u =

∣∣∣∣∣∣∣∣∣∣

−
√
(1 − λ)(1 −μ)

(1 + λ)(1 +μ)
Ah + 1 + λμ√

(1 − λ2)(1 −μ2)
(Ah −Ah−1)

Ah

∣∣∣∣∣∣∣∣∣∣
= 1√

(1 − λ2)(1 −μ2)

∣∣∣∣(λ+μ)Ah − (1 + λμ)Ah−1

Ah

∣∣∣∣�
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