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APPENDIX B: TAXES

Individuals pay federal, state, and payroll taxes on income. We compute fed-
eral taxes on income net of state income taxes using the Federal Income Tax
tables for “Head of Household” in 1998. We use the standard deduction, and
thus do not allow individuals to defer medical expenses as an itemized deduc-
tion. We also use income taxes for the fairly representative state of Rhode
Island (27.5% of the Federal Income Tax level). Payroll taxes are 7.65% up to
a maximum of $68,400, and are 1.45% thereafter. Adding up the three taxes
generates the following level of post-tax income as a function of labor and asset
income (Table B.I).

TABLE B.I
AFTER-TAX INCOME
Pre-Tax Income (Y) Post-Tax Income Marginal Tax Rate
0-6,250 0.9235Y 0.0765
6,250-40,200 5,771.88 4 0.7384(Y — 6,250) 0.2616
40,200-68,400 30,840.56 + 0.5881(Y — 40,200) 0.4119
68,400-93,950 47,424.98 + 0.6501(Y — 68,400) 0.3499
93,950-148,250 64,035.03 + 0.6166(Y — 93,950) 0.3834
148,250-284,700 97,515.41 + 0.5640(Y — 148,250) 0.4360
284,700+ 174,474.21 + 0.5239(Y — 284,700) 0.4761

APPENDIX C: COMPUTATION OF AIME

We model several key aspects of Social Security benefits. First, Social Secu-
rity benefits are based on the individual’s 35 highest earnings years, relative to
average wages in the economy during those years. The average earnings over
these 35 highest earnings years are called Average Indexed Monthly Earnings
(AIME). It immediately follows that working an additional year increases the
AIME of an individual with less than 35 years of work. If an individual has
already worked 35 years, he can still increase his AIME by working an addi-
tional year, but only if his current earnings are higher than the lowest earnings
embedded in his current AIME. To account for real wage growth, earnings in
earlier years are inflated by the growth rate of average earnings in the overall
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economy. For the period 1992-1999, average real wage growth, g, was 0.016
(Committee on Ways and Means (2000, p. 923)). This indexing stops at the
year the worker turns 60, however, and earnings accrued after age 60 are not
rescaled.! Furthermore, AIME is capped. In 1998, the base year for the analy-
sis, the maximum AIME level was $68,400.

Precisely modelling these mechanics would require us to keep track of
a worker’s entire earnings history, which is computationally infeasible. As an
approximation, we assume that (for workers beneath the maximum) annual-
ized AIME is given by

AIME,,; = (1 + g x 1{t < 60})) AIME,

+ %max{o, W,N, — a,(1+ g x 1{t < 60}) AIME, },
where the parameter «, approximates the ratio of the lowest earnings year to
AIME. We assume that 20% of the workers enter the labor force each year
between ages 21 and 25, so that «, = 0 for workers aged 55 and younger.
For workers aged 60 and older, earnings update AIME, only if current earn-
ings replace the lowest year of earnings, so we estimate «, by simulating wage
(not earnings) histories with the model developed in French (2005), calculat-
ing the sequence {1{time-7 earnings do not increase AIME,}},.4, for each sim-
ulated wage history and estimating «, as the average of this indicator at each
age. Linear interpolation yields ass—asy.

AIME is converted into a Primary Insurance Amount (PIA) using the for-
mula

0.9 x AIME,, if AIME, < $5,724,
$5,151.6 + 0.32 x (AIME, — 5,724),
(C.1) PIA, = if $5,724 < AIME, < $34,500,
$14,359.9 + 0.15 x (AIME, — 34,500),
if AIME, > $34,500.

Social Security benefits ss, depend both on the age at which the individual first
receives Social Security benefits and the Primary Insurance Amount. For ex-
ample, pre-Earnings Test benefits for a Social Security beneficiary will be equal
to PIA if the individual first receives benefits at age 65. For every year before
age 65 that the individual first draws benefits, benefits are reduced by 6.67%
and for every year (up until age 70) that benefit receipt is delayed, benefits
increase by 5.0%. The effects of early or late application can be modelled as
changes in AIME rather than changes in PIA, eliminating the need to include
age at application as a state variable. For example, if an individual begins draw-
ing benefits at age 62, his adjusted AIME must result in a PIA that is only 80%

! After age 62, nominal benefits increase at the rate of inflation.
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of the PIA he would have received had he first drawn benefits at age 65. Using
equation (C.1), this is easy to find.

APPENDIX D: PENSIONS

Although the HRS pension data allow us to estimate pension wealth with
a high degree of precision, Bellman’s curse of dimensionality prevents us from
including in our dynamic programming model the full range of pension hetero-
geneity found in the data. Thus we use the pension data to construct a simpler
model of pensions. The fundamental equation behind our model of pensions
is the accumulation equation for pension wealth, pw,,

) (/s DX +r)pw, + pacc, — pb,], if living at £ +1,
(D) pw = { 0, otherwise,

where pacc, is pension accrual and pb, is pension benefits. Two features of this
equation bear noting. First, a pension is worthless once an individual dies. Di-
viding through by the survival probability s, ensures that the expected value
of pensions E(pw,,,|pw,, pacc,, pb,) equals (1 4 r)pw, + pacc, — pb,, the actu-
arially fair amount. Second, since pension accrual and pension interest are not
directly taxed, the appropriate rate of return on pension wealth is the pre-tax
one. Pension benefits, on the other hand, are included in the income used to
calculate an individual’s income tax liability.

Simulating equation (D.1) requires us to know pension benefits and pension
accrual. We calculate pension benefits by assuming that at age ¢, the pension
benefit is

(D.2)  pb, =pf, x pb;"™,

where pb;™ is the benefit received by individuals who are actually receiving
pensions (given the earnings history observed at time ¢) and pf, is the proba-
bility that a person with a pension is currently drawing pension benefits. We
estimate pf, as the fraction of respondents who are covered by a pension that
receive pension benefits at each age; the fraction increases fairly smoothly, ex-
cept for a 23-percentage-point jump at age 62. To find the annuity pb,™* given
pension wealth at time ¢ (and assuming no further pension accruals so that
pacc, =0for k=t¢,¢t+1,...,T), note first that recursively substituting equa-
tion (D.1) and imposing pw,.,, = 0 reveals that pension wealth is equal to the
present discounted value of future pension benefits,

T

1 S(k7 t) max
= E f, pb
pwl 1+r (1+r)k,tp kp k 2

k=t

where S(k,t) = (1/s,) ]_[f:t s; gives the probability of surviving to age k, con-
ditional on having survived to time ¢. If we assume further that the maxi-
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mum pension benefit is constant from time ¢ forward, so that pb;* = pb/™,
k=t t+1,...,T,this equation reduces to

(D.3)  pw,=Ipb/™,
T

_ Sk, 1)

’=1+ Zl(l—kr)k ,

Using equations (D.2) and (D.3), pension benefits are thus given by

(D.4)  pb,=pf,I;"'pw,.
Next, we assume pension accrual is given by
(D.5)  pacc, = ap(I,, W,N,, t) x W,N,,

where ay(-) is the pension accrual rate as a function of health insurance type,
labor income, and age. We estimate «(-) in two steps, estimating separately
each component of

ao(l;, WN,, t) = E(PaCCthan L1, pen, = 1y
x Pr(pen, = 1|I,, W,N,),

where pacc, is the accrual rate for those who have pension and pen, is a 0-1
indicator equal to 1 if the individual has a pension.

We estimate the first component, E(pacc,|W,N,,I,,t,pen, = 1), from re-
stricted HRS pension data. To generate a pension accrual rate for each individ-
ual, we combine the pension data with the HRS pension calculator to estimate
the pension wealth that each individual would have if he left his job at differ-
ent ages. The increase in pension wealth gained by working 1 more year is the
accrual. Assuming that pension benefits are 0 as long as the worker continues
working, it follows from equation (D.1) that

pacc, = s,1pw,; — (1 +r)pw,.

The HRS pension data have a high degree of employer- and worker-level de-
tail, allowing us to estimate pension accrual accurately. With accruals in hand,
we then estimate E(pacc,|W,N,, I, t,pen, = 1) by regressing accrual rates on
a fourth-order age polynomial, indicators for age greater than 62 or 65, log
income, log income interacted with the age variables, health insurance indica-
tors, and health insurance indicators interacted with the age variables, using
the subset of workers who have a pension on their current job.

Figure D.1 shows estimated pension accrual by health insurance type and
earnings. It shows that those who have retiree coverage have the sharpest
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Pension Accrual Rates, by Age and Health Insurance Type
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FIGURE D.1.—Pension accrual rates for individuals with pensions, by age, health insurance
coverage, and earnings.

declines in pension accrual after age 60. It also shows that once health insur-
ance and the probability of having a pension plan are accounted for, the effect
of income on pension accrual is relatively small. Our estimated age (but not
health insurance) pension accrual rates line up closely with Gustman, Mitchell,
Samwick, and Steinmeier (2000), who also used the restricted firm-based HRS
pension data.

In the second step, we estimate the probability of having a pension,
Pr(pen, = 1|1,, W;N,, t), using unrestricted self-reported data from individu-
als who are working and are ages 51-55. The function Pr(pen, = 1|1,, W,N,, t)
is estimated as a logistic function of log income, health insurance indicators,
and interactions between log income and health insurance.

Table D.I shows the probability of having different types of pensions, condi-
tional on health insurance. The table shows that only 8% of men with no health

TABLE D.I

PROBABILITY OF HAVING A PENSION ON THE CURRENT JOB, BY HEALTH INSURANCE TYPE,
WORKING MEN, AGE 51-55

Probability of Pension Type

Variable No Insurance Retiree Insurance Tied Insurance
Defined benefit 0.026 0.412 0.260
Defined contribution 0.050 0.172 0.270
Both DB and DC 0.006 0.160 0.106
Total 0.082 0.744 0.636

Number of observations 343 955 369
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insurance have a pension, but 64% of men with tied coverage and 74% of men
with retiree insurance have a pension. Furthermore, it shows that those with
retiree coverage are also the most likely to have defined benefit (DB) pension
plans, which provide the strongest retirement incentives after age 62.

Combining the restricted data with the HRS pension calculator also yields
initial pension balances as of 1992. Mean pension wealth in our estimation
sample is $93,300. Disaggregating by health insurance type, those with retiree
coverage have $129,200, those with tied coverage have $80,000, and those with
none have $17,300. With these starting values, we simulate pension wealth in
our dynamic programming model with equation (D.1), using equation (D.5) to
estimate pension accrual and using equation (D.4) to estimate pension bene-
fits. Using these equations, it is straightforward to track and record the pension
balances of each simulated individual.

Even though it is straightforward to use equation (D.1) when computing
pension wealth in the simulations, it is too computationally burdensome to
include pension wealth as a separate state variable when computing the deci-
sion rules. Our approach is to impute pension wealth as a function of age and
AIME. In particular, we impute a worker’s annual pension benefits as a func-
tion of his Social Security benefits:

(D.6)  pb,(PIA,, I,_;, 1)

= Z [Y0,6,0 + Yo,k + ’Yo,k,ztz] NI - =k}

ke{retiree, tied, none}
+ Y3PIA, + [ya0 + Va1t + va2t7] - max{0, PIA, — 9,999.6}
+ [ys.0 + V5.1t + 52671 - max{0, PIA, — 14,359.9},

where PIA, is the Social Security benefit the worker would get if he were draw-
ing benefits at time ¢; as shown in Appendix C above, PIA is a monotonic func-
tion of AIME. Using equations (D.3) and (D.6) yields imputed pension wealth,
pw, = I;pb,. Equation (D.6) is estimated with regressions on simulated data
generated by the model. Since these simulated data depend on the y’s—pw,
affects the decision rules used in the simulations—the y’s solve a fixed-point
problem. Fortunately, estimates of the y’s converge after a few iterations.

This imputation process raises two complications. The first is that we use
a different pension wealth imputation formula when calculating decision rules
than we do in the simulations. If an individual’s time-¢ pension wealth is pw,,
his time-# + 1 pension wealth (if living) should be

p;\V\VtH = (1/s.41)[(1 + r)pw, + pacc, — pb,].

This quantity, however, might differ from the pension wealth that would be im-

puted using PIA,,,, pW,., = F,HI;B where I/)B[ 41 1s defined in equation (D.6).

t+1 t+1°
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To correct for this, we increase nonpension wealth, 4,1, by s, (1—7,) (5’\7\&7[ e
pW,.,). The first term in this expression reflects the fact that while nonpension
assets can be bequeathed, pension wealth cannot. The second term, 1 — 7,, re-
flects the fact that pension wealth is a pre-tax quantity—pension benefits are
more or less wholly taxable—while nonpension wealth is post-tax—taxes are
levied only on interest income.

A second problem is that while an individual’s Social Security application
decision affects his annual Social Security benefits, it should not affect his pen-
sion benefits. (Recall that we reduce PIA if an individual draws benefits before
age 65.) The pension imputation procedure we use, however, would imply that
it does. We counter this problem by recalculating PIA when the individual be-
gins drawing Social Security benefits. In particular, suppose that a decision to
accelerate or defer application changes PIA, to rem, PIA,. Our approach is to
use equation (D.6) find a value PIA; such that

(1—7,)pb,(PIA*) + PIA* = (1 — ,)pb,(PIA,) + rem,PIA,,

so that the change in the sum of PIA and imputed after-tax pension income
equals just the change in PIA, that is, (1 — rem,)PIA,.

APPENDIX E: NUMERICAL METHODS

Because the model has no closed form solution, the decision rules it gener-
ates must be found numerically. We find the decision rules using value func-
tion iteration, starting at time 7" and working backward to time 1. We find the
time-7 decisions by solving the time-7" Bellman equation at each value of the
state vector X, with the terminal value function set equal to bequest utility:
Vri1 = b(Ar.y). This yields decision rules for time 7" and the value function
Vr. We next find the decision rules at time 7" — 1 by solving the time-(7 — 1)
Bellman equation, having solved for V7 already. Continuing this backward in-
duction yields decision rules for times 7 — 2,7 — 3, ..., 1.

The value function is directly computed at a finite number of points within
a grid, {X;}/_,.> We use linear interpolation within the grid (i.e., we take
a weighted average of the value functions of the surrounding grid points) and
linear extrapolation outside of the grid to evaluate the value function at points
that we do not directly compute. Because changes in assets and AIME are

2In practice, the grid consists of 32 asset states, A, € [—$55,000, $1,200,000]; 5 wage residual
states, w; € [—0.99, 0.99]; 16 AIME states, AIME, € [$4,000, $68,400]; 3 states for the persistent
component of medical expenses, (i, over a normalized (unit variance) interval of [—1.5, 1.5].
There are also two application states, two health states, and two states for participation in the
previous period. This requires solving the value function at 61,440 different points for ages 62—
69, when the individual is eligible to apply for benefits, at 31,260 points before age 62 (when
application is not an option), or at ages 70-71 (when we impose application), and at 15,360 points
after age 71 (when we impose retirement as well).
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likely to cause larger behavioral responses at low levels of assets and AIME,
the grid is more finely discretized in this region.

At time ¢, wages, medical expenses, and assets at time ¢ + 1 will be random
variables. To capture uncertainty over the persistent components of medical ex-
penses and wages, we convert {, and w,,; into discrete Markov chains, follow-
ing the approach of Tauchen (1986); using discretization rather than quadra-
ture greatly reduces the number of times one has to interpolate when calculat-
ing E,(V (X ,;1)). We integrate the value function with respect to the transitory
component of medical expenses, &, using five-node Gauss—Hermite quadra-
ture (see Judd (1998)).

Because of the fixed time cost of work and the discrete benefit application
decision, the value function need not be globally concave. This means that we
cannot find a worker’s optimal consumption and hours with fast hill climbing
algorithms. Our approach is to discretize the consumption and labor supply
decision space, and to search over this grid. Experimenting with the fineness
of the grids suggested that the grids we used produced reasonable approxima-
tions.?

In particular, increasing the number of grid points seemed to have a small
effect on the computed decision rules.

We then use the decision rules to generate simulated histories. Given the re-
alized state vector X, individual i’s realized decisions at time 0 are found by
evaluating the time-0 decision functions at X;. Using the asset accumulation
equation and budget constraints described in the main text, we combine X,
the time-0 decisions, and the individual i’s time-1 shocks to get the time-1 state
vector, X;;. Continuing this forward induction yields a life-cycle history for in-
dividual i. When X, does not lie exactly on the state grid, we use interpola-
tion or extrapolation to calculate the decision rules. This is true for the shocks
{, and w, as well. While these processes are approximated as finite Markov
chains when the decision rules are found, the simulated sequences of ¢, and w;,
are generated from continuous processes. This makes the simulated life-cycle
profiles less sensitive to the discretization of {; and w, than when ¢; and w, are
drawn from Markov chains.

3The consumption grid has 100 points, and the hours grid is broken into 500-hour intervals.
When this grid is used, the consumption search at a value of the state vector X for time ¢ is
centered around the consumption grid point that was optimal for the same value of X at time
t + 1. (Recall that we solve the model backward in time.) If the search yields a maximizing value
near the edge of the search grid, the grid is reoriented and the search continued. We begin our
search for optimal hours at the level of hours that sets the marginal rate of substitution between
consumption and leisure equal to the wage. We then try six different hours choices in the neigh-
borhood of the initial hours guess. Because of the fixed cost of work, we also evaluate the value
function at N, = 0, searching around the consumption choice that was optimal when H,,; = 0.
Once these values are found, we perform a quick, “second-pass” search in a neighborhood around
them.
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Finally, to reduce the computational burden, we assume that all workers
apply for Social Security benefits by age 70 and retire by age 72: for ¢ > 70,
B,=1,and fort>72, N,=0.

APPENDIX F: MOMENT CONDITIONS, ESTIMATION MECHANICS, AND
THE ASYMPTOTIC DISTRIBUTION OF PARAMETER ESTIMATES

Following Gourinchas and Parker (2002), French (2005), and Laibson,
Repetto, and Tobacman (2007), we estimate the parameters of the model in
two steps. In the first step we estimate or calibrate parameters that can be
cleanly identified without explicitly using our model. For example, we estimate
mortality rates and health transitions from demographic data. As a matter of
notation, we call this set of parameters y. In the second step, we estimate the
vector of “preference” parameters, 8 = (Yo, 1, ¥2, Bo, B1> B2, v, L, dpo, dp1,
dRre, 05, K, Cuin, preference type prediction coefficients), using the method of
simulated moments (MSM).

We assume that the “true” preference vector 6, lies in the interior of
the compact set ® C R*. Our estimate, 9, is the value of 6 that minimizes
the (weighted) distance between the estimated life-cycle profiles for assets,
hours, and participation found in the data and the simulated profiles gener-
ated by the model. We match 217 moment conditions. They are, for each
age t € {1,..., T}, two asset quantiles (forming 27" moment conditions), la-
bor force participation rates conditional on asset quantile and health insurance
type (97), labor market exit rates for each health insurance type (37), labor
force participation rates conditional on the preference indicator described in
the main text (37), and labor force participation rates and mean hours worked
conditional on health status (47).

Consider first the asset quantiles. As stated in the main text, let j €
{1,2,...,J} index asset quantiles, where J is the total number of asset quan-
tiles. Assuming that the age-conditional distribution of assets is continuous,
the 7r;th age-conditional asset quantile, O (A, 1), is defined as

Pl‘(Ai; =< Q‘n'j(Ait’ t)|t) = Tj.

In other words, the fraction of age-# individuals with less than QW]. in assets

is ;. As is well known (see, e.g., Manski (1988), Powell (1994), and Buchin-
sky (1998) or the review in Chernozhukov and Hansen (2002)), the preceding
equation can be rewritten as a moment condition by using the indicator func-
tion

(E1)  E({Ai < O (A, O}11) = ;.

The model analog to QW].(A,,, t)is 8 (1; 60, X0)» the jth quantile of the sim-
ulated asset distribution. If the model is true, then the data quantile in equa-
tion (F.1) can be replaced by the model quantile, and equation (F.1) can be
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rewritten as

(Ez) E(l{Att Sgﬂ'l(t’ 007 XO)} - 7Tj|t) =0)
je{l,2,....J}, te{l,...,T}.

Since J = 2, equation (F.2) generates 27 moment conditions.

Equation (F2) is a departure from the usual practice of minimizing a sum of
weighted absolute errors in quantile estimation. The quantile restrictions just
described, however, are part of a larger set of moment conditions, which means
that we can no longer estimate 6 by minimizing weighted absolute errors. Our
approach to handling multiple quantiles is similar to the minimum distance
framework used by Epple and Seig (1999).*

The next set of moment conditions uses the quantile-conditional means of
labor force participation. Let J_Dj(l , ; 69, xo0) denote the model’s prediction of
labor force participation given asset quantile interval j, health insurance type I,
and age t. If the model is true, Fj(l , t; 69, xo) should equal the conditional
participation rates found in the data,

?1(17 t’ 00’ XU) =E|:Pit|17 ta gﬂ'j,l(t; 60’ XO) S Ait S gw/(t7 00, XU)]

with 77y = 0 and m;; = 1. Using indicator function notation, we can convert
this conditional moment equation into an unconditional one (e.g., Chamber-
lain (1992)):

(E3) E([Pit_ﬁj(la t; 0o, x0)1 x 1{I;; =1}
X 1{gx_, (£: 60, X0) < Ais < &x,(£; 00, x0) }1£) =0

for j € {1,2,...,J + 1}, I € {none, retiree, tied}, ¢ € {1,...,T}. Note that
&x (1) =—o0and g, () = oo. With two quantiles (generating three quantile-
conditional means) and three health insurance types, equation (F3) gener-
ates 97 moment conditions.

As described in Appendix J, we use HRS attitudinal questions to construct
the preference index pref € {high, low, out}. Considering how participation
varies across this index leads to the moment condition

(F4)  E(Py — P(pref, t; 6y, xo)|pref, = pref, t) =0

forte{l,..., T}, pref € {0, 1, 2}. Equation (F4) yields 37 moment conditions,
which are converted into unconditional moment equations with indicator func-
tions.

“Buchinsky (1998) showed that one could include the first-order conditions from multiple ab-
solute value minimization problems in the moment set. However, his approach involves finding
the gradient of g, (#; 6, x) at each step of the minimization search.
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We also match exit rates for each health insurance category. Let EX (I, ¢;
60, xo) denote the fraction of time-¢# — 1 workers predicted to leave the labor
market at time ¢. The associated moment condition is

(E5)  E(1-PJd—EXU,t 00, x)lio=1,Pi, 1 =1,1)=0

for I € {none, retiree, tied}, ¢ € {1, ..., T}. Equation (E5) generates 3T mo-
ment conditions, which are converted into unconditional moments as well.”

Finally, consider health-conditional hours and participation. Let In N (H, ¢;
6o, xo) and P(H, t; 0y, xo) denote the conditional expectation functions for
hours (when working) and participation generated by the model for workers
with health status H; let In N;, and P;, denote measured hours and participa-
tion. The moment conditions are

(Fo) E(InN;, —InN(H, t; 0y, xo)|P; >0, H;y =H, t) =0,
(E7) E(P,— P(H, t; 00, X)) |Hyy=H,t)=0

forte{l,..., T}, H €{0, 1}. Equations (F.6) and (E7), once again converted
into unconditional form, yield 47 moment conditions, for a grand total of 217
moment conditions.

Combining all the moment conditions described here is straightforward: we
simply stack the moment conditions and estimate jointly.

Suppose we have a data set of / independent individuals who are each ob-
served for T periods. Let ¢(0; xo) denote the 21T-element vector of moment
conditions that was described in the main text and immediately above, and let
¢1(+) denote its sample analog. Note that we can extend our results to an un-
balanced panel, as we must do in the empirical work, by simply allowing some
of the individual’s contributions to ¢(-) to be “missing,” as in French and Jones
(2004). Letting W, denote a 21T x 21T weighting matrix, the MSM estimator 6
is given by

. I .
(E8) argmin o— @100, x0)W;161(6, x0),
0

T

where 7 is the ratio of the number of observations to the number of simulated
observations.
To find the solution to equation (E8), we proceed as follows:

SBecause exit rates apply only to those working in the previous period, they normally do not
contain the same information as participation rates. However, this is not the case for workers
with tied coverage, as a worker stays in the tied category only as long as he continues to work.
To remove this redundancy, the exit rates in equation (E5) are conditioned on the individual’s
age-60 health insurance coverage, while the participation rates in equation (F3) are conditioned
on the individual’s current coverage.
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Step 1. We aggregate the sample data into life-cycle profiles for hours, par-
ticipation, exit rates, and assets.

Step 2. Using the same data used to estimate the profiles, we generate an
initial distribution for health, health insurance status, wages, medical expenses,
AIME, and assets. See Appendix G for details. We also use these data to es-
timate many of the parameters contained in the belief vector y, although we
calibrate other parameters. The initial distribution also includes preference
type, assigned using our type prediction equation.

Step 3. Using y, we generate matrices of random health, wage, mortality,
and medical expense shocks. The matrices hold shocks for 90,000 simulated
individuals.

Step 4. We compute the decision rules for an initial guess of the parameter
vector 6, using y and the numerical methods described in Appendix E.

Step 5. We simulate profiles for the decision variables. Each simulated indi-
vidual receives a draw of preference type, assets, health, wages, and medical
expenses from the initial distribution, and is assigned one of the simulated
sequences of health, wage, and medical expense shocks. With the initial dis-
tributions and the sequence of shocks, we then use the decision rules to gen-
erate that person’s decisions over the life cycle. Each period’s decisions deter-
mine the conditional distribution of the next period’s states, and the simulated
shocks pin the states down exactly.

Step 6. We aggregate the simulated data into life-cycle profiles.

Step 7. We compute moment conditions, that is, we find the distance be-
tween the simulated and true profiles, as described in equation (ES8).

Step 8. We pick a new value of 0, update the simulated distribution of pref-
erence types, and repeat Steps 4-7 until we find the value of 6 that minimizes
the distance between the true data and the simulated data. This vector of pa-

rameter values, é, is our estimated value of 6,.5

Under the regularity conditions stated in Pakes and Pollard (1989) and
Duffie and Singleton (1993), the MSM estimator  is both consistent and as-
ymptotically normally distributed:

VIO~ 65) ~ N(0,V)

with the variance—covariance matrix V given by
V=(1+7)(D'WD) 'DWSWD(D'WD) ',

where S is the 21T x 21T variance—covariance matrix of the data,

— (999(09 XO)

F9) D
(E9) T

0=0

®Because the GMM criterion function is discontinuous, we search over the parameter space
using a Simplex algorithm written by Honore and Kyriazidou. It usually takes 2-4 weeks to esti-
mate the model on a 48-node cluster, with each iteration (of Steps 4-7) taking around 15 minutes.
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is the 217 x 39 Jacobian matrix of the population moment vector, and W =
plim,  _{W;}. Moreover, Newey (1985) showed that if the model is properly
specified,

I . - oA A
mgpl(e’ xo)'R 1§01(07 XO)WX§1T739a

where R™! is the generalized inverse of

R =PSP,
P=1—-D(D'WD) 'D'W.

The asymptotically efficient weighting matrix arises when \\/ converges
to S7!, the inverse of the variance—covariance matrix of the data. When
W = S-!, V simplifies to (1 + 7)(D’'S™'D)~! and R is replaced with S. But
even though the optimal weighting matrix is asymptotically efficient, it can be
severely biased in small samples. (See, for example, Altonji and Segal (1996).)
We thus use a “diagonal” weighting matrix, as suggested by Pischke (1995).
The diagonal weighting scheme uses the inverse of the matrix that is the same
as S along the diagonal and has zeros off the diagonal of the matrix.

We estimate D, S, and W with their sample analogs. For example, our es-
timate of S is the 217 x 21T estimated variance—covariance matrix of the
sample data.” That is, one diagonal element of S; will be the variance esti-
mate }Zf;l[l{/ln < Q,,j(A,«t, 1)} — mr;]%, while a typical off-diagonal element
is a covariance. When estimating parameters, we use sample statistics, so that
O (A, 1) is replaced with the sample quantile O (Airs 1). When computing
the chi-square statistic and the standard errors, we use model predictions, so
that QW]. is replaced with its simulated counterpart, 8 (1 9, x)- Covariances
between asset quantiles and hours and labor force participation are also sim-
ple to compute.

The gradient in equation (E.9) is straightforward to estimate for most mo-
ment conditions; we merely take numerical derivatives of ¢;(-). However, in
the case of the asset quantiles and quantile-conditional labor force participa-
tion, discontinuities make the function ¢;(-) nondifferentiable at certain data
points. Therefore, our results do not follow from the standard GMM approach,
but rather the approach for nonsmooth functions described in Pakes and Pol-
lard (1989), Newey and McFadden (1994, Section 7), and Powell (1994). We
find the asset quantile component of D by rewriting equation (E2) as

F(gﬂ'/(t’ 007 X0)|t) - 7= 0’

"In one asset tertile-age-insurance type cell, all workers make the same participation deci-
sion. Rather than discard the cell, we smooth across these moment conditions to ensure that the
variance—covariance matrix S is nonsingular. The need for such adjustments should vanish as the
sample size grows.



14 E. FRENCH AND J. B. JONES

where F( 8= (t; 6o, x0)1) is the empirical cumulative distribution function of
time-¢ assets evaluated at the model-predicted mr;th quantile. Differentiating
this equation yields

[?gw/([a 0(]’ XO)

D]t:f(gfr/(t’ 005 XO)lt) 90’

2

where D, is the row of D corresponding to the 7;th quantile at year ¢. In prac-
tice, we find f( 8w, (15 60, x0) 1), the probability density function of time-¢ assets
evaluated at the 7;th quantile, with a kernel density estimator. We use a kernel
estimator for GAUSS written by Ruud Koning.

To find the component of the matrix D for the asset-conditional labor force
participation rates, it is helpful to write equation (E3) as

gm; (t:60,x0)

Pr(l, = 1) x / LEPy| Au, I, 1) =PI, 1; 60, x0)]

8m;j_1 (t:60,x0)

X f(Aitll’ t) dAit = 09
which implies that

dP;(1, t; 89, Xo)

D; = |:— Pf(gﬂ,-,] (t; 60, x0) < Aix < 8x,;(£; 60, X0)|1, t) 20
+ [E(Plt|gﬂ'/(tv 007 X0)7 Ia t) _ﬁj(la L 00) XO)]

98, (t; 0o, X0)
X f (&= (t: 60, xo)I, f)]T

- [E(Pil|g77j,1(t; 005 XO), I> t) _F](Ia t? 903 XO)]

X f(gw/-—l(t; 00a X0)|I9 t) [90/

xPr(li.y=1),

9gmy 1 (£:00,X0)

Wlth f(g‘n'u(ta 003 XO)'Ia t)%:ro’xo) :f(gﬂj+1(t; 005 X0)|17 t)T O

APPENDIX G: DATA AND INITIAL JOINT DISTRIBUTION
OF THE STATE VARIABLES

Our data are drawn from the HRS, a sample of noninstitutionalized individ-
uals aged 51-61 in 1992. The HRS surveys individuals every 2 years; we have
eight waves of data covering the period 1992-2006. We use men in the analysis.

We dropped respondents for the following reasons. First, we drop all individ-
uals who spent over 5 years working for an employer who did not contribute to
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Social Security. These individuals usually work for state governments. We drop
these people because they often have very little in the way of Social Security
wealth, but a great deal of pension wealth, a type of heterogeneity our model
is not well suited to handle. Second, we drop respondents with missing infor-
mation on health insurance, labor force participation, hours, and assets. When
estimating labor force participation by asset quantile and health insurance for
those born in 1931-1935 for the estimation sample [and 1936-1941 for the val-
idation sample], we begin with 21,376 [36,702] person-year observations. We
lose 3,872 [6,919] observations because of missing labor force participation,
2,109 [2,480] observations for those who worked over 5 years for firms that
did not contribute to Social Security, 602 [1,074] observations due to missing
wave-1 labor force participation (needed to construct the preference index),
and 2,103 [3,023] observations due to missing health insurance data. In the
end, from a potential sample of 21,376 [36,702] person-year observations for
those between ages 51 and 69, we keep 12,870 [23,206] observations.

The labor market measures used in our analysis are constructed as follows.
Hours of work are the product of usual hours per week and usual weeks per
year. To compute hourly wages, we use information on how respondents are
paid, how often they are paid, and how much they are paid. For salaried work-
ers, annual earnings are the product of pay per period and the number of pay
periods per year. The wage is then annual earnings divided by annual hours.
If the worker is hourly, we use his reported hourly wage. We treat a worker’s
hours for the nonsurvey (e.g., 1993) years as missing.

For survey years, the individual is considered in the labor force if he reports
working over 300 hours per year. The HRS also asks respondents retrospec-
tive questions about their work history. Because we are particularly interested
in labor force participation, we use the work history to construct a measure of
whether the individual worked in nonsurvey years. For example, if an individ-
ual withdraws from the labor force between 1992 and 1994, we use the 1994
interview to infer whether the individual was working in 1993.

The HRS has a comprehensive asset measure. It includes the value of hous-
ing, other real estate, autos, liquid assets (which includes money market ac-
counts, savings accounts, T-bills, etc.), IRAs, stocks, business wealth, bonds,
and “other” assets, less the value of debts. For nonsurvey years, we assume
that assets take on the value reported in the preceding year. This implies, for
example, that we use the 1992 asset level as a proxy for the 1993 asset level.
Given that wealth changes rather slowly over time, these imputations should
not severely bias our results.

Medical expenses are the sum of insurance premia paid by households, drug
costs, and out-of-pocket costs for hospital, nursing home care, doctor visits,
dental visits, and outpatient care. As noted in the text, the proper measure
of medical expenses for our model includes payments made by Medicaid. Al-
though individuals in the HRS report whether they received Medicaid, they
do not report the payments. The 2000 Green Book (Committee on Ways and
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Means (2000, p. 923)) reports that in 1998 the average Medicaid payment was
$10,242 per beneficiary aged 65 and older, and $9,097 per blind or disabled
beneficiary. Starting with this average, we then assume that Medicaid pay-
ments have the same volatility as the medical care payments made by uninsured
households. This allows us to generate a distribution of Medicaid payments.

To measure health status we use responses to the question, “Would you say
that your health is excellent, very good, good, fair, or poor?” We consider the
individual in bad health if he responds “fair” or “poor,” and consider him in
good health otherwise.® We treat the health status for nonsurvey years as miss-
ing. Appendix H describes how we construct the health insurance indicator.

We use Social Security Administration earnings histories to construct AIME.
Approximately 74% of our sample released their Social Security number to
the HRS, which allowed them to be linked to their Social Security earnings
histories. For those who did not release their histories, we use the procedure
described below to impute AIME as a function of assets, health status, health
insurance type, labor force participation, and pension type.

The HRS collects pension data from both workers and employers. The HRS
asks individuals about their earnings, tenure, contributions to defined contri-
bution (DC) plans, and their employers. HRS researchers then ask employers
about the pension plans they offer their employees. If the employer offers dif-
ferent plans to different employees, the employee is matched to the plan based
on other factors, such as union status. Given tenure, earnings, DC contribu-
tions, and pension plan descriptions, it is then possible to calculate pension
wealth for each individual who reports the firm he works for. Following Scholz
etal. (2006), we use firm reports of defined benefit (DB) pension wealth and in-
dividual reports of DC pension wealth if they exist. If not, we use firm-reported
DC wealth and impute DB wealth as a function of wages, hours, tenure, health
insurance type, whether the respondent also has a DC plan, health status, age,
assets, industry, and occupation. We discuss the imputation procedure below.

Workers are asked about two different jobs: (i) their current job if working
or last job if not working; (ii) the job preceding the one listed in part (i), if
the individual worked at that job for over 5 years. Pension wealth from both
of these jobs is included in our measure of pension wealth. Below we give de-
scriptives for our estimation sample (born 1931-1935) and validation sample
(born 1936-1941). 41% of our estimation sample [and 52% of our validation
sample] are currently working and have a pension (of which 56% [57% for the
validation sample] have firm-based pension details), 6% [5%] are not working
and had a pension on their last job (of which 62% [62%] have firm-based pen-
sion details), and 32% [32%] of all individuals had a pension on another job
(of which 35% [29%)] have firm-based pension details).

To generate the initial joint distribution of assets, wages, AIME, pensions,
participation, health insurance, health status, and medical expenses, we draw

8Bound et al. (2010) considered a more detailed measure of health status.
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random vectors (i.e., random draws of individuals) from the empirical joint dis-
tribution of these variables for individuals aged 57-61 in 1992, or 1,701 obser-
vations. We drop observations with missing data on labor force participation,
health status, insurance, assets, and age. We impute values for observations
with missing wages, medical expenses, pension wealth, and AIME.

To impute these missing variables, we follow David, Little, Samuhel, and Tri-
est (1986) and Little (1988), and use the following predictive mean matching
regression approach. First, we regress the variable of interest y (e.g., pension
wealth) on the vector of observable variables x, yielding y = x3 + €. Second,
for each sample member i, we calculate the predicted value y;, = x; ﬁ, and for
each member with an observed value of y;, we calculate the residual &; = y, — 3.
Third, we sort the predicted value y; into deciles. Fourth, for missing observa-
tions, we impute ¢; by finding a random individual j with a value of y; in the
same decile as §; and setting &; = &;. The imputed value of y; is J; + &;.

As David et al. (1986) pointed out, our imputation approach is equivalent
to hot decking when the “x” variables are discretized and include a full set of
interactions. The advantages of our approach over hot decking are twofold.
First, many of the x variables are continuous, and it seems unwise to discretize
them. Second, we have very few observations for some variables (such as pen-
sion wealth on past jobs), and hot decking is very data intensive. A small num-
ber of x variables generate a large number of hot-decking cells, as hot decking
uses a full set of interactions. We found that the interaction terms are rela-
tively unimportant, but adding extra variables was very important for improv-
ing goodness of fit when imputing pension wealth.

If someone is not working (and thus does not report a wage), we use the
wage on their last job as a proxy for their current wage if it exists, and otherwise
impute the log wage as a function of assets, health, health insurance type, labor
force participation, AIME, and quarters of covered work. We predict medical
expenses using assets, health, health insurance type, labor force participation,
AIME, and quarters of covered earnings.

Last, we must infer the persistent component of the medical expense residual
from the medical expenses observed in the initial distribution. Recall that the
process for medical expenses is

(G1) InM,=m(H,I,t,P)+o(H,I,t, P)xi,

bi=4+E, E~NO, 0D,

L=pmlio1+ €, €~N(, of).
Given an initial distribution of medical expenses, we calculate ¢, the persistent
medical expense component, by first finding the normalized log deviation ,, as

described by equation (G.1), and then applying standard projection formulae
to impute ¢, from i,.
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APPENDIX H: MEASUREMENT OF HEALTH INSURANCE TYPE AND
LABOR FORCE PARTICIPATION

Much of the identification in this paper comes from differences in medical
expenses and job exit rates between those with tied health insurance coverage
and those with retiree coverage. Unfortunately, identifying these health insur-
ance types is not straightforward. The HRS has rather detailed questions about
health insurance, but the questions asked vary from wave to wave. Moreover,
in no wave are the questions asked consistent with our definitions of tied or
retiree coverage. Fortunately, our estimated health-insurance-specific job exit
rates are not very sensitive to our definition of health insurance, as we show
below.

In all of the HRS waves (but not AHEAD waves 1 and 2), the respondent
is asked whether he has insurance provided by a current or past employer or
union, or a spouse’s current or past employer or union. If he responds “no” to
this question, we code his coverage as none. We assume that this question is
answered accurately, so that there is no measurement error when an individ-
ual reports that his insurance category is none. All of the measurement error
problems arise when we allocate individuals with employer-provided coverage
between the retiree and tied categories.

If an individual has employer-provided coverage in waves 1 and 2, he is
asked, “Is this health insurance available to people who retire?” In waves 3-8,
the analogous question is, “If you left your current employer now, could you
continue this health insurance coverage up to the age of 65?” For individuals
younger than 65, the question asked in waves 3-8 is a more accurate measure
of whether the individual has retiree coverage. In particular, a “yes” response
in waves 1 and 2 might mean only that the individual had tied coverage, but
could acquire COBRA coverage if he left his job. Thus the fraction of indi-
viduals younger than 65 who report that they have employer-provided health
insurance but who answer “no” to the follow-up question roughly doubles be-
tween waves 2 and 3. On the other hand, for those older than 65, the question
used in waves 3-8 is meaningless.

Our preferred approach is to use the wave-1 response to determine who has
retiree coverage. It is possible, however, to estimate the probability of response
error to this variable. Consider first the problem of distinguishing the retiree
and tied types for those younger than 65. As a matter of notation, let / denote
an individual’s actual health insurance coverage, and let /* denote the measure
of coverage generated by the HRS questions. To simplify the notation, assume
that the individual is known to have employer-provided coverage—I = tied
or I = retiree—so that we can drop the conditioning statement in the analysis
below. Recall that many individuals who report retiree coverage in waves 1 and
2 likely have tied coverage. We are therefore interested in the misreporting
probability Pr(I = tied|I* = retiree, wv < 3, ¢ < 65), where wv denotes HRS
wave and ¢ denotes age. To find this quantity, note first that by the law of total
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probability,

(H.1)  Pr( =tiedlwv <3, < 65)
=Pr(I =tied|I* =tied, wv < 3, f < 65)
x Pr(I* =tied|wv < 3, t < 65)
+ Pr(I =tied|I* =retiree, wv < 3, t < 65)

x Pr(I* =retiree|wv < 3, < 65).
Now assume that all reports of tied coverage in waves 1 and 2 are true:
Pr(I =tied|[* =tied,wv < 3,1 < 65) =1.

Assume further that for individuals younger than 65 there is no measurement
error in waves 3-8, and that the share of younger individuals with tied coverage
is constant across waves:

Pr(I =tiedjwv < 3, t < 65) = Pr({ =tied|wv > 3, < 65)
= Pr(I* =tied|wv > 3, f < 65).

Inserting these assumptions into equation (H.1) and rearranging yields the
mismeasurement probability

(H.2) Pr(I =tied|I* = retiree, wv < 3, t < 65)
Pl = tied|wv > 3, < 65) — Pr(J* =tied|wv < 3, < 65)
o Pr(I* = retiree|wv < 3, t < 65) '

To account for mismeasurement in waves 1 and 2 for those 65 and older,
we again assume that all reports of tied health insurance are true. We as-
sume further that Pr(/ = tied|/* = retiree, wv < 3, ¢ > 65) = Pr({ = tied|[* =
retiree, wv < 3, t < 65): the fraction of retiree reports in waves 1 and 2 that are
inaccurate is the same across all ages. We can then apply the mismeasurement
probability for people younger than 65, given by equation (H.2), to retiree re-
ports by people 65 and older.

The second misreporting problem is that the “follow-up” question in
waves 3-8 is completely uninformative for those older than 65. Our strategy
for handling this problem is to treat the first observed health insurance status
for these individuals as their health insurance status throughout their lives.
Since we assume that reports of tied coverage are accurate, older individuals
reporting tied coverage in waves 1 and 2 are assumed to receive tied coverage
in waves 3-8. (Recall, however, that if an individual with tied coverage drops
out of the labor market, his health insurance is none for the rest of his life.) For
older individuals reporting retiree coverage in waves 1 and 2, we assume that
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the misreporting probability—when we choose to account for it—is the same
throughout all waves. (Recall that our preferred assumption is to assume that
a “yes” response to the follow-up question in waves 1 and 2 indicates retiree
coverage.)

A related problem is that individuals® health insurance reports often change
across waves, in large part because of the misreporting problems just described.
Our preferred approach for handling this problem is to classify individuals on
the basis of their first observed health insurance report. We also consider the
approach of classifying individuals on the basis of their report from the previ-
ous wave.

Figure H.1 shows how our treatment of these measurement problems af-
fects measured job exit rates. The top two graphs in Figure H.1 do not ad-
just for measurement error. The bottom two graphs account for the measure-
ment error problems, using the approached described by equation (H.2). The
two graphs in the left column use the first observed health insurance report,
whereas the graphs in the right column use the previous period’s health insur-
ance report. Figure H.1 shows that the profiles are not very sensitive to these
changes. Those with retiree coverage tend to exit the labor market at age 62,
whereas those with tied and no coverage tend to exit the labor market at age 65.

Another, more conceptual, problem is that the HRS has information on
health insurance outcomes, not choices. This is an important problem for in-
dividuals out of the labor force with no health insurance; it is unclear whether
these individuals could have purchased COBRA coverage but elected not to
do so.” To circumvent this problem, we use health insurance in the previous
wave and our model of health insurance transitions to predict health insurance
options. For example, if in the previous wave, an individual reports working
and having health insurance that is tied to his job, that individual’s choice set is
either tied health insurance and working or COBRA insurance and not work-
ing.1

Our preferred specification, which we use in the analysis, is to use the first
observed health insurance report and to not use the measurement error cor-
rections.

Because agents in our model are forward-looking, we need to know the
health-insurance-conditional process for medical expenses facing the very old.
The data we use to estimate medical expenses for those over age 70 comes
from the Assets and Health Dynamics of the Oldest Old survey. French and

9For example, the model predicts that all HRS respondents younger than 65 who report having
tied health insurance 2 years before the survey date, work 1 year before the survey date, and are
not currently working should report having COBRA coverage on the survey date. However, 19%
of them report having no health insurance.

10We are assuming that everyone eligible for COBRA takes up coverage. In practice, only
about 2 of those eligible take up coverage (Gruber and Madrian (1996)). As a robustness check,
we shut down the COBRA option (impose a 0% take-up rate) and reran the model. Eliminating
COBRA had only a small effect on labor supply.
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FIGURE H.1.—Job exit rates using different measures of health insurance type.

Jones (2004) discussed some of the details of the survey, as well as some of
our coding decisions. The main problem with the AHEAD is that there is no
question asked of respondents about whether they would lose their health in-
surance if they left their job, so it is not straightforward to distinguish those
who have retiree coverage from those with tied coverage. To distinguish these
two groups, we do the following. If the individual exits the labor market dur-
ing our sample and has employer-provided health insurance at least 1 full year
after exiting the labor market, we assume that individual has retiree coverage.
All individuals who have employer-provided coverage when first observed, but
do not meet this criterion for having retiree coverage, are assumed to have tied
coverage.
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Our measure of labor force participation is based on the values reported at
the time of the interview. We also use the age at the time of the interview. For
this reason, some of our “65-year-olds” are 65 years and 0 days old, whereas
others are 65 years and 364 days old. Blau (1994) showed that most age-65
job exits occur within a few months of the 65th birthday. Thus, we may be
understating the decline in labor supply at age 65, because our participation
measure combines individuals who are exactly 65, who may not have yet left
the labor force, with those who are almost 66, who may have left the labor
force market months before.

To investigate how this timing issue affects our estimated job exit rates, we
use HRS labor force histories, which provide the dates at which individuals
leave the labor force, to construct three different measures of participation by
age. Figure H.2 presents job exit rates derived with the different measures.

The top left panel of Figure H.2 shows job exit rates derived with the mea-
sure of participation that we use in the paper (participation at the time of the
interview). In the top right panel, participation is measured at the time of the
respondent’s birthday, so that the job exit rate at age 65 measures the proba-
bility that an individual was working on his 64th birthday but not on his 65th
birthday. Relative to the baseline case, the peaks in exit rates at ages 62 and 65
are now less pronounced. The reason for this is that people who report leav-
ing in the months after a 65th birthday are coded as having left at age 66. For
example, an individual leaving the labor market at age 65 and 1 day would be
classified as exiting the labor market at age 66. As a result, measuring labor
force participation at birthdays leads to a higher estimated job exit rate at 66
and a lower rate at 65 than our baseline approach.

In the bottom left panel of Figure H.2, participation is measured at the mid-
point between the respondents’ birthdays. For example, participation at age 65
is measured at age 651, so that the job exit rate at age 65 measures the probabil-
ity that an individual was working at age 64% but was not at age 65 % This panel
looks very similar to the baseline case. In both cases job exit rates are near 20%
at ages 62 and 65, and are lower at other ages. Furthermore, in both cases, job
exit rates for those with retiree coverage are highest at age 62, whereas job exit
rates for those with tied coverage are highest at age 65.

Because it seems extreme to treat an individual who leaves the labor force at
age 65 and 1 day as exiting at age 66, we think measuring participation 6 months
after a birthday yields more plausible results. Because measuring participation
on survey dates gives similar results and drops fewer observations than mea-
suring participation 6 months after a birthday, we use participation on survey
dates as our measure of participation throughout.

Another measurement issue is the treatment of the self-employed. Our pre-
ferred approach is to include the self-employed in our analysis, and treat them
as working with no health insurance. The lower lower right panel of Figure H.2
shows job exit rates when we drop the self-employed, but measure health in-
surance as in the baseline case. The main difference caused by dropping the
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FIGURE H.2.—Job exit rates using different measures of labor force participation.

self-employed is that those with no health insurance have much higher job exit
rates, especially at age 65. Nevertheless, those with retiree coverage are still
most likely to exit at age 62 and those with tied and no health insurance are
most likely to exit at age 65.

APPENDIX I: THE MEDICAL EXPENSE MODEL

Recall from equation (G.1) that health status, health insurance type, labor
force participation, and age affect medical expenses through the mean shifter
m(-) and the variance shifter o (-). Health status enters m(-) and o (-) through
0-1 indicators for bad health, and age enters through linear trends. On the
other hand, the effects of Medicare eligibility, health insurance, and labor force
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participation are almost completely unrestricted, in that we allow for an almost
complete set of interactions between these variables. This implies that mean
medical expenses are given by

m(Hz,It,f,Pz)Z)’on+71f+Z Z Z Yh,P.a-

hel Pel0,1} ac{t<65,>65)

The one restriction we impose is that Yone.0.a = Ynone.1,« for both values of a,
that is, participation does not affect health care costs if the individual does not
have insurance. This implies that there are 10 vy, p , parameters, for a total of
12 parameters apiece in the m(-) and the o (-) functions.

To estimate this model, we group the data into 10-year age (55-64, 65-74,
75-84) x health status x health insurance x participation cells. For each of
these 60 cells, we calculate both the mean and the 95th percentile of med-
ical expenses. We estimate the model by finding the parameter values that
best fit this 120-moment collection. One complication is that the medical ex-
pense model we estimate is an annual model, whereas our data are for medical
expenses over 2-year intervals. To overcome this problem, we first simulate
a panel of medical expense data at the 1-year frequency, using the dynamic pa-
rameters from French and Jones (2004) shown in Table III of the main paper
and the empirical age distribution. We then aggregate the simulated data to
the 2-year frequency; the means and 95th percentiles of this aggregated data
are comparable to the means and 95th percentiles in the HRS. Our approach
is similar to the one used by French and Jones (2004), who provided a detailed
description.

Relative to other research on the cross-sectional distribution of medical ex-
penses, we find higher medical expenses at the far right tail of the distribution.
For example, Blau and Gilleskie (2006) used different data and methods to
found average medical expenses that are comparable to our estimates. How-
ever, they found that medical expenses are less volatile than our estimates sug-
gest. For example, they found that for households in good health and younger
than 65, the maximum expense levels (which seem to be slightly less likely than
0.5% probability events) were $69,260 for those without coverage, $6,400 for
those with retiree coverage, and $6,400 for those with tied coverage. Table IT
in the main text shows that our estimates of the 99.5th percentile (i.e., the top
0.5 percentile of the distribution) of the distributions for healthy workers are
$86,900 for those with no coverage, $32,700 for those with retiree coverage,
and $30,600 for those with tied coverage.

Berk and Monheit (2001) used data from the MEPS, which arguably has the
highest quality medical expense data of all the surveys. Analyzing total billable
expenses, which should be comparable to our data for the uninsured, Berk
and Monheit found that those in the top 1% of the medical expense distribu-
tion have average medical expenses of $57,900 (in 1998 dollars). Again, this is
below our estimate of $86,900 for the uninsured. This discrepancy is not sur-
prising. Berk and Monbheit’s estimates are for all individuals in the population,
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whereas our estimates are for older households (many of which include two
individuals). Furthermore, Berk and Monheit’s estimates exclude all nursing
home expenses, while the HRS, although initially consisting only of noninsti-
tutionalized households, captures the nursing home expenses these households
incur in later waves.

APPENDIX J: THE PREFERENCE INDEX

We construct the preference index for each member of the sample using
the wave-1 variables V3319, V5009, and V9063. All three variables are self-
reported responses to questions about preferences for leisure and work. In
V3319, respondents were asked if they agreed with the statement (if they were
working), “Even if I didn’t need the money, I would probably keep on work-
ing.” In V5009, they were asked, “When you think about the time when you
[and your (husband/wife/partner)] will (completely) retire, are you looking for-
ward to it, are you uneasy about it, or what?” In V9063, they were asked (if they
were working), “On a scale where 0 equals dislike a great deal, 10 equals enjoy
a great deal, and 5 equals neither like nor dislike, how much do you enjoy your
job?”

Because it is computationally intensive to estimate the parameters of the
type probability equations in our method of simulated moments approach, we
combine these three variables into a single index that is simpler to use. To con-
struct this index, we regress labor force participation on current state variables
(age, wages, assets, health, etc.), squares and interactions of these terms, the
wave-1 variables V3319, V5009, and V9063, and indicators for whether these
variables are missing. We then partition the x8 matrix from this regression into
X ,él, where the x; matrix consists of V3319, V5009, V9063, and indicators for
these variables being missing, and xzﬁz, where the x, matrix contains all the
other variables. Our preference index is x; Bl.

Individuals who were not working in 1992 were not asked any of the prefer-
ence questions and are not included in the construction of our index. Because
everyone who answered the preference questions worked in 1992, we estimate
the regression models with participation data from 1998-2006.

Finally, we discretize the index into three values: out, for those not employed
in 1992; low, for workers with an index in the bottom half of the distribution;
and high for the remainder.

APPENDIX K: ADDITIONAL PARAMETER ESTIMATES

We assume that the probability of belonging to a particular type follows
a multinomial logit function. Table K.I shows the coefficients of the prefer-
ence type prediction equation. One interesting feature of this equation is that
wealthy individuals who have no health insurance coverage have a high proba-
bility of being type-2 agents. Given that many of these individuals are entrepre-
neurs, it is not surprising that they are often placed in the “motivated” group.
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TABLE K.I
PREFERENCE TYPE PREDICTION COEFFICIENTS

Preference Type 1 Preference Type 2
Parameters Std. Errors Parameters Std. Errors
Preference index = out —-5.33 1.04 —7.33 7.96
Preference index = low 4.79 1.99 0.18 1.32
Preference index = high 2.35 0.81 4.09 0.71
No insurance coverage 3.35 1.54 —2.45 1.82
Retiree coverage —0.98 0.86 —-0.32 0.46
Initial health® —1.04 0.35 -0.37 0.27
Initial wages® 2.74 0.72 —1.01 0.44
Assets/wages® —0.48 0.82 0.97 0.61
AIME /wages* -0.25 0.70 -0.21 0.44
Health cost shock (¢) —1.16 0.65 0.22 0.47
Age — 60 —0.56 0.98 1.72 1.73
Assets® x (no ins. coverage) —0.53 0.36 1.41 0.54

@Variables are expressed as a fraction of average.

Table K.II shows the parameter estimates for the robustness checks. In the
no-saving case, 3 and 63 are both very weakly identified. We therefore follow
Rust and Phelan (1997) and Blau and Gilleskie (2006, 2008) by fixing 3, in this
case to its baseline values of 0.95, 0.86, and 1.12 (for types 0, 1, and 2, respec-
tively). Similarly, we fix 65 to zero. Since the asset distribution is degenerate in
this no-saving case, we no longer match asset quantiles or quantile-conditional
participation rates, matching instead participation rates for each health insur-
ance category.

The last column shows the parameter estimates that result when we remove
the preference index described in Appendix J from our type prediction equa-
tions; we also remove the preference index-conditional moment conditions
from the GMM criterion function. Although the coefficients of the type pre-
diction equations change dramatically, the estimated preference parameters
change very little.
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