6 Online appendix

General framework for the proofs of Propositions 1-3

Letting w(eq,c2) = u(eq, c2) + v(cy, e2), the first-order conditions for the competitive consumer’s

maximization problem are given by
(1 + Ti)ﬂ1 (Cl, 62) = TQEQ(C:[, 02) and (1 + Ti)vl (51, 62) = T2U2(61, 52),

where
cr =rik1 +wr+s— (14 7)ka, o =roks + wo,
51 = lel +wy + 85— (1 + Ti)];?g, and 52 = 7‘2232 + wa.
Using the first-order conditions of the consumer, it is easy to show that ko > lzsg and wy(c1,c2) —

v1(€1,¢2) = uy(er, c2) +vi(er, c2) — v1(€1,¢2) > 0. We will use these below. The value function of

the representative agent is given by
U(El,P, Ti) = ﬂ(?“17ﬁ + wy — ];:2, roko + wz) — 1)(7“1]%1 + w1 + TZ'(I%Q — ];}2) — ];:2, TQ];;Q + wg).

Differentiating the value function with respect to 7; and using the consumer’s first-order conditions,

we obtain

dU e dlziz _ d’l“g — dUJQ
i = ui(cr, )i . + u2(c1, ¢2) (dﬂ' ko + . )

L. - = dk L dr dw
_1)1(01,02) {k‘g—/@—i—n ?}—02(01,02) <d2k2 de>

Proof of Proposition 1: In partial equilibrium, % =0 and % = 0. Therefore, we obtain

dUu L dks

dT'i = (U1(c1, c2) — v1(C1, E2)) Ty Ydr;

— 1 (&1, E2){ka — k2}

Since ko > ;2 and Uy (c1, c2) — v1(€1, E2) > 0, then fl—TUi < 0 for all 7; > 0. Therefore, the optimal tax

rate has to be negative.

Proof of Proposition 3: In this case, dr2k + 9 dw2 = w'(kg) + ' (ka)k2 = 0 and dr?k + & dw? =
(k:g)(k:g — kz)%. Using these relations,

au o dk TN, - = dr(k
T = @) - @) e a) R+ (e, e — k)
_ k T dr(k
= (w(e1,c2) —vi(én, Q))Tid—: +v1(é1, é2){ka — k2} {MRS d(7—.2) — 1} )
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where M RS 52(01’62) Taking the derivative of the first-order condition for the actual choice with

(61,62)°
respect to 7;, we can show that % < 0. We will show that 1 — MRS %Z") > 0. This implies that
g—g < 0 for all 7; > 0. Thus, the optimal tax is negative, i.e., 7, < 0. To show this note that, in

equilibrium, r(kg) x MRS = r(ks) x MRS = 1+1;, where MRS = 22(:2) Therefore, it is enough

uy(e1,c2)”

to show that 1 — MRSM > 0. Taking the derivative of r(ks) x M RS = 1+ 7; with respect to 7;,

we obdtj\z;iélsl — MRSdr(Z{(fiz) = dMBS 1 (ky). Given that MRS = nggzzg and ‘;—% < 0, it is then clear
that === > 0.
dr;

Proof of Proposition 2: In this case, % =0,k =0, ky =0, ¢ = wiy, and ¢ = wy. Given

these, we obtain

du _ dks

uy(c1, c)T, draj
—— = uilc,e)Ti—— —
dr; ’ dr;

o = dks
'Ul(cla 62) {—k’g + Tszi} — UQ(CLCQ) dr, ko

dks = ———d
+ 1)1(01,62)]?2 <1 — MRS T2>

= (ui(c1,c2) —v1(é1,62))m

Ti Ti

The key difference between the previous case and this one is that the consumer _consumes his
endowment, i.e., MRS = T (w1,w2) Therefore, dﬂgfs = 0, which implies that 1 — M RS d” = 0.

a1 (wr,w2) ”
Second, Cfl—];? = 0. Thus, we obtain that gTUi = 0 independent of 7;, which implies that the consumer

is indifferent to any ;.

Proof of Proposition 4: See the proof to Proposition 8, which studies a T-period economy with

logarithmic utility.

Proof of Proposition 5: The problem of the consumer can be written as

1 1 ~1—0o ~1 —o
U(ky, F1,7) = max (1 +7) - +6<1+m> 2 — — 5 |max L — + 562
C1,C2 1-— C1,C2 1-— ag
s.t. .
w(ks) _
c1 + 1+7)=rk)k +wk)+s+—==(1+7)=Y.
7“(kiz) r(k2)
The first-order conditions are
) _ _
CIU _ 5( +67) T(kz) C;U and & ~7O‘ T(k2> 550
147 1+ + 7
~——
m (ka,7;)
This implies
Y 5(1 _ 1o
c1 = m a and ¢ = (1 1ﬁ7)m (/cg, T,) c1
148 g A —o)/o Y
1+ 2227 [ (Rz, )]



5 Y - — 1/
= — — 7 and éy = [(Wm (kg,n)] C1.
1 (887 [m (R, )77

From these expressions we obtain

|

|

|

|

|

sa+801Y 1 (1-0)/o
b L+ |2 (ke m)] )
a - — _—
Cc1 1_{_[55]1/0 [m (kQ,Ti)}(l )/
and . .
e =
C2 1+ By c1 1+ by
Then we can write the objective function of the government, inserting the expressions above, as
S ci_" cé_" Ei_" Eé_"
) = (1 1 — 1
Uk, k1, 7i) A7) T+ +0Y) 7= =7 [T PO+ T
1—0o -0 1l—0o 1—0
! € 1-0\ &1 l1-o €
= 1- 1-—
o, b [0 e ]
where
= (1 — d) El + f(El) - Eg and Cy = (1 — d) Ez + f(Ez)
1/o
Taking the derivative of the objective function with respect to 7; and inserting % = [ﬁl(-lk;z)] ‘fzﬁi
we obtain _
d __— — Y —\ _g1 dk2
%U(kl’ kil,Ti) = [*Cl + 57“(](52)62 ] d’Ti
1-0\ —0o 1—0o 7o\ . —C dEQ —0 l—-0o 5 (1 + ’Y) e —0 1—0o dxy
+ [— (1 — ) %+ (1 — T3 ) dpr(ka)c, ] s —y |21%¢; 7+ 60 T x5 7 ¢y e

Let 7 be the tax rate that maximizes the commitment utility. Then 7 will generate the

following condition:
o
= 5(1157)771 (k2,7:) c37, this implies

1+ =
TV ) (Feyy 1) = (o).
1 m (ke,77) = r(k2)
It is easy to see that dinU (k1,k1,77) =0 at 0 = 1. Thus the subsidy that maximizes utility under

Using the first-order condition ¢j

logarithmic utility is the same as the subsidy that maximizes the commitment utility.

We now will characterize the condition under which the following holds:
d 1. 1. *
—U(k1,k1,77) <0foro>1
dr;
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so that for o > 1 the optimal subsidy is larger than the optimal subsidy that maximizes commitment

utility. To do that we take the derivative of dinU (k1, k1, 77) with respect to o and evaluate at o = 1.
If the derivative is negative at o = 1, then din_U (k1, k1, 77) < 0 for o marginally above o = 1. If the

derivative is positive at o = 1, then diTiU (k1,k1,7}) > 0 for o marginally above o = 1.

First, for later use, we compute the following objects:

1/o - B .
dry  1—o0 R [6(11%@} B wml/ dm (k277—i) _1l—0_dm (kz,Ti)
dr, Ai;gf[nz(kQ’”)] 1 - (1-0)/o]? dr;, o By
! 1+ 16877 [m (Ro,m)] 77 T 1

-1 61 -p)

" 1/o x -
d _ [5(14_7)} d and Hi(c =1) = [m (kz,ﬂ')]

dr; 1+ By dr;’ (L+)[1+667
Second, to find ‘%’, take the derivative of the expression ¢} = M%Wm (Eg,n) ¢, 7 with
respect to 7; to obtain
— 0(14 —0 - -
dk‘g %62 dm (kQ, Ti) H dm (]-CQ, Ti)
—_— — — pr— 2 .
dr; [acl_"_l + ocgg_lié(ﬁgwm (k2,7) r (k:z)] dr; dr;

L. d E i
We know that %2 < 0, and thus %

< 0 too. Moreover Hy(o =1) = (1;;677) M(EQ;&H/&].

At 0 = 1, we have that

1y 4+ 51+ By)

1 5(1
= and 2 B 1+v+5(1+8y)

(1 +7)(1+05) 148y (1+09)

Using the expressions above we can write diTiU (k1, k1, 7)) as

d 7. 1. * —0 —0 —adm E » Ti
LU Fr) = [ (=) + (1= oh7) 8] El:>
K11 Ko
1-— _ 1+ /o _ — —o)/o _ d E, 7
— g [1:10_1_56 |:ﬂl(+ 6’7):| l‘QU [57“(]{32)](1 )/ ch% o mElQ T)‘
(o2 y Ti
Ko
Koo

Take the derivative of %U(El,gl, 7;) with respect to o to obtain

dK12 dK11 dKo dKo
K - K — K. .
do T A do Ao 27 0o

d d S 1
7o [dTiU(khk‘l,Tz )] 5 K1

If we evaluate this expression at ¢ = 1 we obtain
d[d_ _— — 1

— | —U(k1,k1,77)| — = K1o———
do [dn (k1 17—1)]7 12
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(14—5’}/) ) dm (E27Ti) dK11 (5(1—ﬂ) _1dm (Eg,Ti) dKsq

= — - k ) Z )
1+ or(k)[1+0] dn do 1+y+6(1+057) o (k2.7 dr; do
=—= U = 2) — 1)- ' = i ko, ) =
where dfl(zl 01 and dfi(o_l Blog(z2) — log(z1). Evaluating at o = 1 and inserting m (k2, ;)
11:'7 7(k2) we obtain
d [ d 1
ki, k —
do |:dTZU( L AL T, 1)] 0%
= B 4y+8(1+8y) L+y+6(1+37)
dm (k2,7i) §(1+ By) (5 log [1+m Trom } — log [(1%)(1%/3) ]) =)
- . % (1-p)
dr; (1 +y)r(k2) +W(l+ﬁ’y)
ince ™ (km) 14+7+5(1+67) L7+5(1+67) (1-9)
Since <0, if (@ og | v G| —los | TS ) rhe + reaciesy > O then

po [ U(kl,l{fl,Ti )} S <0ato=1 Therefore, it is optimal to increase the subsidy for ¢ > 1 if

this condltion above holds.

. B B14y+5(1483 14y +6(148 1-8)(146
To show that it holds, let ¢(3,~,d) = [log (M) —log ( (117)((14-567))) + 1'(*'7+5)((1+%32/)

First, it is easy to show that lim,_. ¢(3,7,d) = 0. Second, we will show that dﬂgj 2) <0 for all
8,9 < 1, which implies that ¢(3,v,d) > 0 for all finite v > 0 and 3,9 < 1.

(1+68) (1+B8v) —B1+y+6(1+57)) (1468)(1+v)—(1+y+6(1+57))

dp(8,7,6) 3 (1+87) B (11+7)? (1= +6QA+8)
dry N Lty +0(1+57) 1+y+6(1+87) (1+~46(1+67))2
1+8y I+y

1-1 { 3 5 (1+5)(1+55)}

L+y+614+py) \14+8y 14+ 14+7+6(1+089)
1-7 {ﬁ+67+5+557 1+6+6ﬁ+62ﬁ}

L+ +6(1+87) L 1+7+87+672  1+7+6+087 f

The numerator of the term in curly paranthesis is

[B+ By +8+ 059+ [By+ By" + 8y +057°] + (05 + 68y + 6 + 6°67]
+ (0877 +60°7* + 67 By + 02 5%97]

[146+ 08+ 88 — [y + 6y + 687 + 6°B] — [By + 687 + 68>y + 6° %]
— [BY*+ 087 + 6627 + 6%5°7
= B+By+0"+87By 1= 0B —y =5
= (B-1)+81 -3 +v(B-1)+88y(1-p)
= (1= +0°By—1—1]
= A= 1+8y) -1+

Using this expression in %j’é), we obtain
dp(B,7,6) _ (1-p?  PO+8) - (1+7)
dvy (T+y+01+67))? A+ +57)
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Note that §2(1 + 3v) < 1+ for all §, 3 < 1. As a result, (57’ ) < 0 forall 6,08 < 1.

Next, we will show that - (25 ) |o=1 > 0. For this purpose let ka(7;(0)) be the competitive-
equilibrium savings associated Wlth the optlmal tax policy 7;(0) and k(o) be the commitment
savings for a given 0. We will show that (k‘g(ﬂ( )) — k5(0))|o=1 > 0. Thus, the competitive-
equilibrium savings under the optimal pohcy is higher than commitment savings when ¢ is marginally
higher than 1. To see this, first consider the consumer’s optimality conditions under commitment

and in competitive equilibrium.

/(.c L]W 7 under commitmen
o) (V) = ‘ et
6(1+ Bv) ! (o M 7 — in competitive equilibrium
T ey ) Gty = ! petitive cauilibriu.

We can rewrite this problem as

F(k5(0),0) = 1 under commitment,
(1 +57)
(1 +7)(1 +7i(0))

F(k5(o),0) = 1 in competitive equilibrium,

where F(ks, o) = 0 f (ko) (yl(k’“;) . We know that

L. k§(1) = ka(7i(1))

(1+8v) _
2. Tarne) = 1

3. 7/(1) < 0.

Next, take the derivative of the commitment and competitive equilibrium optimality condition

with respect to o to obtain

@) R0s0),1
do |, Fi(k5(1),1)
dks(7i(0)) __B(k@1)),1) T (D) F (ka(ri(1)), 1)
do [, Fi(ko(ri(1)), 1)~ (1+ 7(1)) Fy(ka(7i(1)), 1)
Since k§(1) = ka(7i(1)), taking the difference yields
dop e T F(R(r(1), 1)
%(ka(TZ( )) k?( ))|0'=1 - (1 +TZ(1))F1(]{32(7'@(1)),1)

Note that 7/(1) < 0 and it is easy to see that Fy(ka(r;(1)),1) < 0. As a result, - (ko(7i(0)) —

k5(0))|o=1 > 0. This directly implies that % (2%28;;) lo=1 > 0.
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Proof of Proposition 7: To prove this proposition, we solve the consumer’s problem backwards,

find her optimal consumption choices, and use those decision rules to obtain her value function.

Problem at time T — 1: The consumer’s problem reads

max (1+7)log(cr—1) +0(1 + fv)log(er) — v max log(ér—1) + 08 log(ér)

Cr—1,¢T CT—1,CT
subject to the budget constraints
cr—1+ (1 —+ Ti’Tfl)kT = T(l_chl)k:T + w(kT) + sr and cr=Yr = T(/_CT)]{:T + ’LU(ET).

The rest-of-lifetime budget constraint is thus

1 + T _ — - 1 —+ TiT—
et + ep—=TL — p (k) )kp_y + w(kr_1) + spo1 + wlkp) ——t = Yp_ .
r(kr) r(kr)
The first-order condition is CT1—1 = 6(11157) 11515?)_ : é Inserting cr into the rest-of-lifetime budget
constraint, we obtain
1+ 6(1+B) r(kr)
cr—1 = Yr_1 and ep = Yr_4.
T i+ 048y T T T Ty (4 B LT
This implies B
_ 1 . o0 r(kr)
1=——Yr_ 1 and ¢y = 1.
R WU T R T I8+

Notice that the ¢ and the ¢ are constant multiples of each other. As a result, the value function
becomes
Ur_1(kr_1,kr_1,7) = log(cr_1) + dlog(cr) + a constant.

Now rewrite the value function in period T'— 1 to be used in the problem of the consumer in

period T' — 2 by inserting the consumption allocations as functions of Yp_1. This delivers

Ur—1(kr—1,kr—1,7) = (1 4 0)log(Yr—1) + 6 log (r(kr)/(1 + Tir—1)) + a constant.

Problem at time T — 2: Using the T — 2 budget constraint and the rest-of-lifetime budget
constraint at time 7' — 1 for the consumer, we obtain the rest-of-lifetime budget constraint at time
T —2as

1+77_
cr—2 + #YT—I =Yr_o
T(k‘Tfl)
_ _ w(kr_1) + s7— w(k
= r(kr—2)kr—o+w(kr—2)+sr—o+ (br —1) T 1(1+Ti,T—2)+#(1+Ti,T—2)(1+Ti,T—1)-
r(kr—1) r(kp—1)r(kr)

The objective of the government is to maximize

r(kr)

max (14 v)log(cr—2) + (1 + Bv) [(1+6)log(Yr—_1) + dlog (1 Fap—

cr—2,YT 1

) +a constant}
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r(kr)

—v max log(ér_2)+ 0 |(1+9) log(f/T,l) +dlog <1 ey

Cr—2,YT 1

) +a constant}

The first-order condition is

1 S(1+0)(1+By) r(kr—y) 1

cr—2 I+~ L+ 7roYrq

Using the budget constraint, we obtain

S(1+6)(1+ By) r(kr-1)
L+y+6(1+8)(1+8y) 1+ Tir_2

B 1+~
Ly + 51+ 6)(1+ By)

cT—2 Yr_gand Yr_; = T—2.

Inserting Y71 in terms of ¢p_1 into the consumer’s problem, we obtain the following Euler equation:

1 01+0)(1+py) r(kr1) 1
cr—y  14+y+0(1+py)1+7mr 201

The temptation allocations are given by

1 . SB(1+68)  r(kr_1)
= Yy oand Yy, =
1+ 0p(1 +0) L7200 711 L+0B8(1+08) 1+ 712

Ccr—2 T—2.

The objective function of the government is

r(kr)

UT—2<kT—2, ET_Q, Ti) = log(cT_g) + (5(1 + (5) log(YT_l) + 52 log <1
+ Tir—1

) + a constant.

r(kT)
147171

Since cp_1 is a multiple of Yp_1 and cr is a multiple of ( ) Yr_1, inserting those we obtain

Ur—a(kr—2, kr—2,7;) = log(cr—2) + dlog(cr—1) + 6* log(cr) + a constant.

Problem at T — 3: The first-order condition for the consumer is

1 01 +6+0)(A+8y) rlkro) 1 5(1+6+8)(1+p0y) rlkra) 1

cr—3 1+ 14+ 7rsYre 14+v+01+8)(1+p6y)1+mr_3cr—2

Ur_3(kr_o,kr_3,7;) = log(cr_3) + 6 log(cr_o) + 52 log(er—1) + log(er) + a constant.

Continuing this procedure backwards completes the proof.

Proof of Proposition 9: We will solve the problem of the consumer and find tax rates that
implement the commitment allocation. Proposition 6 implies that the problem of a consumer at

age t is given by
l1—-o

C.
max —t— + 68U 11(Yit1)

ct,Yer1 L — 0O

26



subject to

1+
¢+ Y=Y
Tt41
where
cg_g
Ui(Yy) = 1o 6BU 1 (Yes).

l—0o
We guess and verify that Up41(Y;) = bt%, where by = 1. The optimality condition for the
consumer is given by

Tt+1
Ct _5/8bt+11+ Tit }/;H—‘i—

Inserting this into the budget constraint, we obtain

Y;
Ct =
- (1-0)/c
1+ (8b41)1/7 (ﬁ)
1/o
(5ﬁbt+11 o > Y;
Yivi =

, (1-0)/c"
+ (68bi1) Ve (Tﬁilt)

Using these decision rules, we obtain

r (1—0)/o
1+ 5(68bi11)"/ ) (ﬁ%)

1/(o) [ Tt+1 (1=0)/a\ 177"
1+ (68b+1) (1 m)

Note that the optimality condition for the consumer can be written as

o Bbt 1 1o ree \ T\ —
c o = 0Ty 1+ - 1+ ((5ﬁbt+2) m Cry1-

b =

Inserting b;11

Tt (1=0)/e
e ()

- (I—0)/o Ct+1"
L (08b2)'/7 ()

147 441

—0
c; 7 =or

t t+1
1 + Tit

To implement the commitment allocation, the government should set

- (1-0)/o
g 1+ %(5ﬁbt+2)l/a <1+T:t2+1>

. l1-0)/o
T 3 ot ()

1+75 641

where 7; for all ¢ is the equilibrium interest rate that arises under commitment, i.e. r; = 7(k;).

The recursive formulas for b; and 7;; jointly determine the sequence of optimal tax rates. We

solve these formulas backwards noting that b = 1 and by4q = 0. Thus, ,7—1 = 8 — 1 and
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o . (1—0)/c
1481/l =)/
(14881 /opfl =7/ 7)1-
14840027 (1461 707007
(1+ﬁ51/ar5}:10)/0(1+51/ar5}*0)/0))1—a

B-1
o.(1=0)/o?
14864/ or (=)

br_1 =

- Continuing backwards, we obtain 7,72 = br_o =

9

B-1
1+ B(8/orll =017 4 §2lop (=0 op (1m0l

TiT—3 =

and

g—1
1 _i_ﬂ((;l/ar(Tl:QU)/U _;'_(52/0'7-%:20-)/0—745_‘1:{7)/0 +53/ar(Tl:2ff)/Ur§}:f)/0r(Tl—0)/U)'

TiT—4 =

One can notice the pattern in the expressions above, which implies the optimal tax for period ¢ is

given by:
g—1

1+ 03 Zﬁ:wz { (51/U)m_(t+l) | | T(En)(l_a)/a}

We can also show that as T' — oo, the optimal tax rate converges to a negative value. To see this,

Tit

)

let {cf}72, be the consumption sequence associated with the commitment solution. Inserting the

. . cg . . .
commitment Euler equation -+ = (5rt+1)1/ 7 into the tax expression, we obtain
t

6—1
Tit —
" 1+ B [cite Cit3 + .+ cr
Ciiq | Te42 Ti42Te43 T TegaTiy3..TT
Note that . . .
C C C
c t+2 t+3 T _ ¢
i+ + +o+t—TL— =Y5,,
Tt+2 Tt42Tt+3 Tt42Tt+3---TT

where Y,¢ is the lifetime income at time ¢ associated with the commitment solution. Thus, the

optimal tax rate can be written as

(B —1)5

t+1

@) S '
(1 5)5/&_1 +

Tit =

Note that since cf, /Y%, > 0 for any ¢t and T, we obtain that 7;; < 0 for all ¢. Moreover, since
the equilibrium allocation under the optimal tax sequence is the same as the allocation associated
with the commitment solution and self-control cost is zero, the optimal tax policy delivers first best

welfare.
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